TWI403614B - Non-oriented electrical steel sheet and a manufacturing method - Google Patents

Non-oriented electrical steel sheet and a manufacturing method Download PDF

Info

Publication number
TWI403614B
TWI403614B TW100105243A TW100105243A TWI403614B TW I403614 B TWI403614 B TW I403614B TW 100105243 A TW100105243 A TW 100105243A TW 100105243 A TW100105243 A TW 100105243A TW I403614 B TWI403614 B TW I403614B
Authority
TW
Taiwan
Prior art keywords
mass
cold
steel sheet
oriented electrical
less
Prior art date
Application number
TW100105243A
Other languages
English (en)
Other versions
TW201204872A (en
Inventor
Shuichi Yamazaki
Takeshi Kubota
Yousuke Kurosaki
Masahiro Fujikura
Takahide Shimazu
Original Assignee
Nippon Steel & Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel & Sumitomo Metal Corp filed Critical Nippon Steel & Sumitomo Metal Corp
Publication of TW201204872A publication Critical patent/TW201204872A/zh
Application granted granted Critical
Publication of TWI403614B publication Critical patent/TWI403614B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • H01F1/14783Fe-Si based alloys in the form of sheets with insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1288Application of a tension-inducing coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/50Treatment of iron or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/74Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/16Oxidising using oxygen-containing compounds, e.g. water, carbon dioxide
    • C23C8/18Oxidising of ferrous surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/32Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying conductive, insulating or magnetic material on a magnetic film, specially adapted for a thin magnetic film

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Laminated Bodies (AREA)

Description

無方向性電磁鋼板及其製造方法 發明領域
本發明係有關於適合馬達之鐵芯材料的無方向性電磁鋼板及其製造方法。
發明背景
現正強烈地期待電氣機器之效率化,且對於電氣機器所含之馬達之鐵芯材料所使用的無方向性電磁鋼板亦要求更加低鐵損化。因此,正進行檢討於無方向性電磁鋼板含有Si及Al等以提高比電阻並增大結晶粒徑之技術、藉由調整熱軋板退火及冷軋率以改善集合組織之技術等。
又,無方向性電磁鋼板係於其表面平行之方向上結晶方位無規則的電磁鋼板,依無方向性電磁鋼板之用途,於表面平行之某一方向,亦有例如軋延方向之磁性較其他方向之磁性優異者較佳的情形。例如,於使用分離鐵芯作為馬達之定子時,以將如上述之電磁鋼板作為分離鐵芯中使用為佳。軋延方向之磁性優異的電磁鋼板,亦考慮過方向性電磁鋼板,但方向性電磁鋼板之表面因存在玻璃皮膜,故衝壓加工係為困難。又,相較於無方向性電磁鋼板,方向性電磁鋼板之製造需要較多之控制,且方向性電磁鋼板係為高價。另外,於使用分離鐵芯作為馬達之定子時,因可使電磁鋼板之容易磁化方向與磁通量之流動方向一致,故可提升馬達之效率。又,可提升作為素材之電磁鋼板的良率,使線圈填充率增加。
然而,雖有各種關於分離鐵芯用之無方向性電磁鋼板的提案,但於習知技術中,欲得充分之軋延方向的磁性係為困難。
先前技術文獻 專利文獻
專利文獻1:日本專利特開2004-332042號公報
專利文獻2:日本專利特開2006-265720號公報
專利文獻3:日本專利特開2008-260996號公報
專利文獻4:日本專利特開昭56-55574號公報
專利文獻5:日本專利特開2001-140018號公報
專利文獻6:日本專利特開2001-279400號公報
本發明係以提供可得較良好之軋延方向之磁性的無方向性電磁鋼板及其製造方法為目的。
本發明人等著眼於專利文獻4所揭示之技術,考量到藉由使用張力賦予型之絕緣被膜作為形成於無方向性電磁鋼板之基質鐵表面上的絕緣被膜,或許可提升軋延方向之磁性,而進行了各種實驗等。然而,單純地,於使用張力賦予型之絕緣被膜時,可知絕緣被膜無法充分地承受用以形成分離鐵芯所進行的各種加工(衝壓、型鍛等)。換言之,有產生絕緣被膜剝落等情形。又,雖於軋延方向之磁性提升,但並非為充分者。本發明人等為了查明該等原因而致力進行檢討後,發現張力賦予型之絕緣被膜與基質鐵間之密著性低、及隨之而來的於基質鐵未有充分之張力作用。此外,本發明人等依據該等觀察所得知識更加致力進行檢討後,發現於基質鐵表面存在特定之氧化物層時,該氧化物層將有助於提升基質鐵與張力賦予型之絕緣被膜的密著性,使軋延方向之磁性顯著地提升。又,亦發現隨著密著性之提升,絕緣被膜之剝落等受到抑制。
本發明之要旨,係如以下所示。
(1)一種無方向性電磁鋼板,其特徵在於具有:基質鐵;及於前述基質鐵之表面上所形成之1g/m2 以上且6g/m2 以下的張力賦予型之絕緣被膜,前述基質鐵含有Si、Al及Cr:以總含量計係2質量%以上且6質量%以下,及Mn:0.1質量%以上且1.5質量%以下,前述基質鐵之C的含量係0.005質量%以下,且前述基質鐵之剩餘部分係由Fe及不可避免的雜質所構成,於前述基質鐵之表面形成厚度係0.01μm以上且0.5μm以下之氧化物層,該氧化物層含有選自於由Si、Al及Cr所構成之群之至少一種氧化物。
(2)如(1)之無方向性電磁鋼板,其中前述基質鐵之Al及Cr的總含量係0.8質量%以上。
(3)如(1)或(2)之無方向性電磁鋼板,其中前述絕緣被膜係藉由燒附包含磷酸鹽及膠質氧化矽之塗布液所形成。
(4)如(1)或(2)之無方向性電磁鋼板,其中前述絕緣被膜係藉由燒附包含硼酸及氧化鋁溶膠之塗布液所形成。
(5)一種無方向性電磁鋼板之製造方法,其特徵在於,具有下述步驟:進行冷軋鋼帶之完工退火(finish annealing)步驟;及於前述冷軋鋼帶之表面形成1g/m2 以上且6g/m2 以下之張力賦予型之絕緣被膜的步驟,前述冷軋鋼帶含有:Si、Al及Cr:以總含量計係2質量%以上且6質量%以下,及Mn:0.1質量%以上且1.5質量%以下,前述冷軋鋼帶之C的含量係0.005質量%以下,前述冷軋鋼帶之剩餘部分係由Fe及不可避免的雜質所構成,前述進行完工退火之步驟,係於以X(質量%)表示前述冷軋鋼帶之Si及Al的總含量時,相對於氫之水蒸氣的分壓比係0.005×X2 以下之環境氣體中,將前述冷軋鋼帶之溫度設為800℃以上且1100℃以下,並具有於前述冷軋鋼帶之表面形成厚度係0.01μm以上且0.5μm以下之氧化物層的步驟,該氧化物層含有選自於由Si及Al所構成之群之至少一種氧化物。
(6)如(5)之無方向性電磁鋼板之製造方法,其中前述形成絕緣被膜之步驟係於進行前述完工退火步驟後,具有:於前述冷軋鋼帶之表面塗布塗布液的步驟,及將前述冷軋鋼帶之溫度設為800℃以上且1100℃以下,進行前述塗布液之燒附的步驟。
(7)如(5)之無方向性電磁鋼板之製造方法,其中前述形成絕緣被膜之步驟具有:於前述進行完工退火步驟前,於前述冷軋鋼帶之表面塗布塗布液的步驟,及於前述完工退火時進行前述塗布液之燒附的步驟。
(8)如(6)或(7)之無方向性電磁鋼板之製造方法,其中前述塗布液包含磷酸鹽及膠質氧化矽。
(9)如(6)或(7)之無方向性電磁鋼板之製造方法,其中前述塗布液包含硼酸及氧化鋁溶膠。
(10)如(5)~(9)中任一者之無方向性電磁鋼板之製造方法,其中前述冷軋鋼帶之Al及Cr的總含量係0.8質量%以上。
依據本發明,可於基質鐵與張力賦予型之絕緣被膜之間得到高密著性,且軋延方向之磁性可顯著地提升。
圖式簡單說明
第1A圖係顯示於分壓比(PH2O /PH2 )為0.1之環境氣體下經進行完工退火之鋼帶表面氧化物之掃描型電子顯微鏡截面照片的圖。
第1B圖係顯示於分壓比(PH2O /PH2 )為0.01之環境氣體下經進行完工退火之鋼帶表面氧化物之掃描型電子顯微鏡截面照片的圖。
第2圖係顯示外部氧化膜102之紅外線高感度反射光譜的圖。
第3圖係顯示冷軋鋼帶之組成及完工退火之環境氣體與基質鐵之表面的狀態之關係的圖。
第4圖係顯示本發明之實施形態的無方向性電磁鋼板之構造的截面圖。
第5圖係顯示無方向性電磁鋼板之製造方法之例的流程圖。
第6圖係顯示無方向性電磁鋼板之製造方法之其他之例的流程圖。
用以實施發明之形態
首先,說明關於本發明人等進行之張力賦予型之絕緣被膜於無方向性電磁鋼板中使用的實驗。
該實驗中,製作含有Si:3質量%、Mn:0.15質量%、及Al:1.2質量%,且剩餘部分係由Fe及不可避免的雜質所構成之厚度為0.35mm的2個無方向性電磁鋼板用之冷軋鋼帶。並且,於每個冷軋鋼帶相異之退火環境氣體下進行1000℃之完工退火。其中一者之退火環境氣體中,將相對於氫之水蒸氣的分壓比(PH2O /PH2 )設為0.01,另一者之退火環境氣體中將分壓比(PH2O /PH2 )設為0.1。並且,於軋延方向(L方向)、及冷軋鋼帶之表面內與軋延方向直交之方向(C方向)上,測定於頻率為50Hz、最大磁通量密度為1.0T之激發條件下之鐵損值(W10/50)。之後,於各鋼帶之兩面上,於每單面塗布3g/m2 之由磷酸鋁、膠質氧化矽、及鉻酸所構成之塗布液(塗佈液),並以800℃燒附。即,形成張力賦予型之絕緣被膜。並且,再度測定L方向及C方向上之鐵損值(W10/50)。於表1顯示該等之結果。
如表1所示,於分壓比(PH2O /PH2 )為0.1之環境氣體下退火時,確認L方向之鐵損有8%左右之改善。然而,於將具有如此所形成之絕緣被膜的無方向性電磁鋼板製作成分離鐵芯時,絕緣被膜無法承受衝壓及型鍛等加工。
另一方面,於分壓比(PH2O /PH2 )為0.01之環境氣體下退火時,確認L方向之鐵損改善17%,又,絕緣被膜可充分地承受衝壓及型鍛等之加工。
本發明人等為了調查起因於如上述之完工退火之環境氣體的絕緣被膜加工耐性之差異的原因,進行完工退火後之鋼帶表面之氧化物的截面觀察。於第1A圖顯示分壓比(PH2O /PH2 )為0.1之環境氣體下經進行完工退火之鋼帶表面氧化物的掃描型電子顯微鏡截面照片,於第1B圖顯示於分壓比(PH2O /PH2 )為0.01之環境氣體下經進行完工退火之鋼帶表面氧化物的掃描型電子顯微鏡截面照片。
如第1A圖所示,於分壓比(PH2O /PH2 )為0.1之環境氣體下經進行完工退火之鋼帶之基質鐵101的表面存在有厚之內部氧化層103。另一方面,如第1B圖所示,於分壓比(PH2O /PH2 )為0.01之環境氣體下經進行完工退火之鋼帶之基質鐵101的表面存在有厚度50nm左右之薄的外部氧化膜102。另外,存在於外部氧化膜102及內部氧化層103上之Au蒸鍍層104係於製作截面觀察用之試料時,用以保護外部氧化膜102及內部氧化層103而形成者。
又,於第2圖顯示外部氧化膜102之紅外線高感度反射光譜。由第2圖所示之光譜,可確認外部氧化膜102主要係由Al2 O3 所構成。
由以上可知,於製造無方向性電磁鋼板時,於冷軋鋼帶之完工退火時形成外部氧化膜,之後,於形成張力賦予型之絕緣被膜時,絕緣被膜與基質鐵之密著性將顯著地提升,又,L方向之磁性顯著地改善。另外,如後述,於進行張力賦予型之絕緣被膜原料(塗布液)的塗布後,經進行完工退火,再一同進行外部氧化膜之形成及利用燒附塗布液之絕緣被膜的形成,可達成顯著地改善密著性之提升及L方向之磁性。
此處,為於完工退火時形成外部氧化膜,退火條件係為重要。此處,本發明人等調查關於作為完工退火對象之冷軋鋼帶的組成及完工退火之環境氣體,與基質鐵表面之狀態的關係。該調查中,製作Si、Al及Cr之總含量(X(質量%))相異之各種冷軋鋼帶,並於各種分壓比(PH20 /PH2 )之環境氣體下進行完工退火。並且,觀察完工退火後基質鐵表面之狀態。另外,將完工退火之溫度設為900℃。於第3圖顯示該結果。第3圖中反白之記號係顯示形成有內部氧化層,塗黑之記號係顯示形成有外部氧化膜。
由第3圖可知,關於Si、Al及Cr之總含量(X(質量%)),只要分壓比(PH2O /PH2 )為小於0.005×X2 之條件下,即可形成外部氧化膜。
以下,一面參照附加圖式一面說明本發明之實施形態。第4圖係顯示本發明之實施形態的無方向性電磁鋼板之構造的截面圖。
如第4圖所示,本實施形態之無方向性電磁鋼板中,於基質鐵1之表面上形成有1g/m2 以上且6g/m2 以下的張力賦予型之絕緣被膜2。又,基質鐵1之表面形成有厚度為0.01μm以上且0.5μm以下之外部氧化膜3,且該外部氧化膜3含有選自於由Si、Al及Cr所構成之群之至少一種氧化物。基質鐵1含有基部4及外部氧化膜3。外部氧化膜3係氧化物層之一例。
基質鐵1含有Si、Al及Cr:總含量為2質量%以上且6質量%以下,及Mn:0.1質量%以上且1.5質量%以下。基質鐵1之C的含量為0.005質量%以下,且基質鐵1之剩餘部分係由Fe及不可避免的雜質所構成。
接著,說明如此之無方向性電磁鋼板之製造方法。第5圖係顯示無方向性電磁鋼板之製造方法之例的流程圖。
本實施形態中,首先,進行經加熱至預定溫度之預定組成的扁鋼胚(鋼素材)之熱軋延,製作熱軋鋼帶(步驟S1)。接著,利用酸洗去除水垢,進行熱軋鋼帶之冷軋延,製作冷軋鋼帶(步驟S2)。冷軋延可僅進行1次,亦可於中間夾有中間退火進行2次以上之冷軋延。另外,於冷軋延之前,亦可視需要進行退火。
此處,說明扁鋼胚(鋼素材)所含之成分。
C係使鐵損增加且磁性衰減之原因。因此,將C含量設為0.005質量%以下。
Si、Al、及Cr係增大無方向性電磁鋼板之比電阻顯現降低渦流損耗的效果。又,Si、Al、及Cr之詳細內容係如後述,係用於外部氧化膜3之形成。然而,當Si、Al及Cr之總含量小於2質量%時,未能充分地得到該等效果。因此,將Si、Al及Cr之總含量設為2質量%以上。當Si、Al及Cr之總含量大於6質量%時,冷軋延等冷加工變得困難。因此,將Si、Al及Cr之總含量設為6質量%以下。
Mn係顯現扁鋼胚加熱時降低固溶S之效果。然而,當Mn含量小於0.1質量%時,未能充分得到該效果。因此,將Mn含量設為0.1質量%以上。另一方面,當Mn含量大於1.5質量%時,磁性下降。因此,將Mn含量設為1.5質量%以下。
另外,盡量減少S、N及O、及與該等結合後有形成非磁性夾雜物之可能性的Ti、V、Zr、Nb等不可避免的雜質之含量。又,為了清除S、N及O亦可含有稀土元素及Ca等。稀土元素及Ca等之較佳含量係0.002質量%以上且0.01質量%以下。
Sn或Sb藉由集合組織改善有L方向特性改善效果,可期待添加後與本申請案發明所產生之效果的相乘作用。
冷軋延(步驟S2)後,於預定之環境氣體下進行冷軋鋼帶之完工退火,製作於表面形成有外部氧化膜3之基質鐵1(步驟S3)。該完工退火中,將冷軋鋼帶之溫度設為800℃以上且1100℃以下。當溫度小於800℃時,充分地形成外部氧化膜3係為困難。另一方面,當溫度大於1100℃時,成本將顯著地上升,且不易穩定地作業。又,完工退火之環境氣體,考量到前述觀察所得知識,關於Si、Al及Cr之總含量(X(質量%))方面,將水蒸氣相對於氫之分壓比(PH2O /PH2 )設為小於0.005×X2 。只要滿足該條件,即可如上述,將外部氧化膜形成所期之氧化物層3。該外部氧化膜3有助於顯著地提升張力賦予型之絕緣被膜2與基質鐵1之密著性。並且,隨著密著性之提升,張力有效地產生作用,更加改善L方向之磁性。
另外,當外部氧化膜3之厚度小於0.01μm時,不易得到充分之密著性。因此,以外部氧化膜3之厚度為0.01μm以上為佳。又,當外部氧化膜3之厚度大於0.5μm時,亦不易得到充分之密著性。這被推測係因形成過厚之外部氧化膜3,而於基質鐵1之基部4表面產生不必要之應力的緣故。因此,以外部氧化膜3之厚度為0.5μm以下為佳。外部氧化膜3之厚度,例如,調整完工退火之溫度及均熱時間,可進行控制。換言之,均熱溫度越高、均熱時間越長,將形成越厚之外部氧化膜3。
構成外部氧化膜3之物質係隨著Si、Al及Cr之各含量而決定,外部氧化膜3之主要構成物係例如,SiO2 、Al2 O3 、Cr2 O3 等。例如,於冷軋鋼帶中之Al及Cr少時,SiO2 將成為外部氧化膜3之主體,當Al及Cr之總含量為0.8質量%以上時,Al2 O3 、Cr2 O3 或(Al,Cr)2 O3 將成為外部氧化膜3之主體。外部氧化膜3之主要構成物並未特別限定,於主體為Al2 O3 、Cr2 O3 或(Al,Cr)2 O3 時,可得特別高之密著性。因此,以Al及Cr之總含量為0.8質量%以上為佳。另外,於外部氧化膜3不僅由該等主要構成物所構成,Al及Cr少時,亦含有Al2 O3 及Cr2 O3 等,於Al及Cr之總含量大於0.8質量%時,亦可含有SiO2
完工退火及氧化物層之形成(步驟S3)後,於基質鐵1之表面上形成張力賦予型之絕緣被膜2(步驟S4)。絕緣被膜2之形成中,進行預定之塗布液之塗布及燒附。塗布液可使用方向性電磁鋼板所使用之塗布液。例如,可使用以磷酸鹽及膠質氧化矽作為主體之塗布液。磷酸鹽及膠質氧化矽之比例並未特別限定,以膠質氧化矽之比例為4質量%~24質量%、磷酸鹽之比例為5質量%~30質量%為佳。此種塗布液係例如,日本專利特開昭48-39338號公報及日本專利特開昭50-79442號公報等所記載。又,亦可使用以硼酸及氧化鋁溶膠作為主體之塗布液。鋁及硼之成分比並未特別限定,各自之氧化物換算下以氧化鋁為50質量%~95質量%為佳。此種,塗布液係例如,日本專利特開平6-65754號公報及日本專利特開平6-65755號公報所記載。
又,張力賦予型之絕緣被膜2的形成量設為每單面係1g/m2 以上且6g/m2 以下。當絕緣被膜2之形成量小於1g/m2 時,無法賦予充分之張力,不易充分地改善軋延方向(L方向)之磁性。另一方面,當絕緣被膜2之形成量大於6g/m2 時填充係數下降。
又,燒附溫度以800℃以上且1100℃以下為佳。當燒附溫度小於800℃時,未能充分地賦予張力,且不易充分地改善軋延方向(L方向)之磁性。另一方面,當燒附溫度大於1100℃時,成本將顯著地上升,且不易穩定地作業。
藉由如此一連串之處理,可製造實施形態之無方向性電磁鋼板。並且,該無方向性電磁鋼板中,外部氧化膜3使基質鐵1與張力賦予型之絕緣被膜2互相緊密地密著。因此,將賦予更高之張力,更加改善軋延方向(L方向)之磁性,且於進行用以形成分離鐵芯之各種加工(衝壓、型鍛等)時,亦可抑制絕緣被膜2之撥離等。
另外,於該製造方法中,用以形成絕緣被膜2(步驟S4)之塗布液的塗布及燒附係於完工退火(步驟S3)後進行,但燒附亦可與完工退火一同進行。換言之,如第6圖所示,於冷軋延(步驟S2)後,亦可進行於冷軋鋼帶塗布塗布液(步驟S11)、兼具有塗布液之燒附的完工退火(步驟S12)。
又,於形成張力賦予型之絕緣被膜2後,為了改善形成分離鐵芯等鐵芯時之衝壓性,亦可於張力賦予型之絕緣被膜2上形成僅由樹脂所構成之被膜、及/或由無機物及樹脂所構成之被膜。換言之,藉由進行於通常無方向性電磁鋼板之絕緣被膜的形成所使用之塗布液的塗布及燒附,可作成衝壓性更良好者。此種塗布液可使用包含鉻酸鹽及丙烯酸樹脂之塗布液。例如,可使用於鉻酸水溶液溶解有金属氧化物、金屬氫氧化物、金屬碳酸鹽,更添加有乳膠型之樹脂的塗布液。此種塗布液係例如,日本專利特公昭50-15013號公報所記載。又,亦可使用包含磷酸鹽及丙烯酸樹脂之塗布液。例如,可使用相對於100質量份之磷酸鹽添加有1質量份~300質量份之有機樹脂乳膠的塗布液。此種塗布液係例如,日本專利特開平6-330338號公報所記載。
[實施例]
接著,說明本發明人等所進行之實驗。該等實驗之條件等係用以確認本發明之實施可能性及效果而採用之例,本發明並未受該等例所限定。
(第1實驗)
首先,熱軋延含有表2所示之各種成分,且剩餘部分係Fe及不可避免的雜質的鋼扁鋼胚(鋼No.1~No.7),製作厚度為2.5mm之熱軋鋼帶。接著,以900℃進行1分鐘之熱軋鋼帶的退火(熱軋板退火)。之後,進行酸洗、冷軋延,製作厚度為0.35mm之冷軋鋼帶。
然後,以表3所示之條件進行完工退火,調查所形成之外部氧化膜(氧化物層)的主要構成物質及厚度。藉由紅外線高感度反射光譜進行外部氧化膜之主要構成物質的識別,外部氧化膜之厚度係藉由穿透電子顯微鏡觀察調查。
接著,以表3所示之條件進行塗布液之塗布及燒附,形成張力賦予型之絕緣被膜。表3中之「塗布液」欄的「S」係顯示使用有包含膠質氧化矽、磷酸鋁及鉻酸之塗布液,「A」係顯示使用有包含硼酸及氧化鋁溶膠之塗布液。
並且,評價絕緣被膜之密著性。亦於表3顯示該結果。表3中之「密著性」欄的「×」係顯示將無方向性電磁鋼板捲附至直徑30mm之圓棒時有絕緣被膜剝離。又,「○」係顯示雖於捲附至直徑30mm之圓棒時未有剝離,但於捲附至直徑20mm之圓棒時有剝離。「◎」係顯示於捲附至直徑20mm之圓棒時亦無剝離。
又,亦進行L方向之鐵損改善率的評價。該評價中,測定以前述方法所製造之無方向性電磁鋼板的鐵損值W1 (W10/50),並與基準試料之鐵損值W0 (W10/50)比較。基準試料係使用藉由日本專利特開平6-330338號公報所記載之包含磷酸鹽及丙烯酸樹脂的塗布液之塗布及燒附而形成絕緣被膜者,取代張力賦予型之絕緣被膜。進行此種評價係因為鐵損之絕對值係依據成分與步驟條件的緣故。亦於表3顯示該結果。表3中「L方向之鐵損改善率」欄中之數值係以「(W0 -W1 )/W0 」所表示之值。
如表3所示,於滿足本發明之條件時,絕緣被膜之密著性及L方向之磁性係極為良好。又,於未形成外部氧化膜地形成內部氧化層時,密著性係極低。
(第2實驗)
熱軋延表2所示之鋼No.1、No.3及No.4的鋼扁鋼胚,製作厚度為2.5mm之熱軋鋼帶。接著,以900℃進行1分鐘之熱軋鋼帶的退火(熱軋板退火)。之後,進行酸洗、冷軋延,製作厚度為0.35mm之冷軋鋼帶。
接著,以表4所示之條件進行塗布液之塗布。然後,以表4所示之條件進行兼具塗布液之燒附的完工退火。即,相對於第1實驗中進行依據第5圖所示之流程圖的處理,第2實驗中進行依據第6圖所示之流程圖的處理。並且,與第1實驗同樣地,評價絕緣被膜之密著性及L方向的鐵損改善率。亦於表4顯示該結果。
如表4所示,於依據第6圖所示之流程圖進行兼具塗布液之燒附的完工退火時,亦可得極良好之絕緣被膜的密著性及L方向之磁性。
產業上之可利用性
本發明可使用於例如,電磁鋼板製造產業及電磁鋼板利用產業。
1,101...基質鐵
2...張力賦予型之絕緣被膜
3,102...外部氧化膜
4...基部
103...內部氧化層
104...Au蒸鍍層
S1~S4,S11,S12...步驟
第1A圖係顯示於分壓比(PH2O /PH2 )為0.1之環境氣體下經進行完工退火之鋼帶表面氧化物之掃描型電子顯微鏡截面照片的圖。
第1B圖係顯示於分壓比(PH2O /PH2 )為0.01之環境氣體下經進行完工退火之鋼帶表面氧化物之掃描型電子顯微鏡截面照片的圖。
第2圖係顯示外部氧化膜102之紅外線高感度反射光譜的圖。
第3圖係顯示冷軋鋼帶之組成及完工退火之環境氣體與基質鐵之表面的狀態之關係的圖。
第4圖係顯示本發明之實施形態的無方向性電磁鋼板之構造的截面圖。
第5圖係顯示無方向性電磁鋼板之製造方法之例的流程圖。
第6圖係顯示無方向性電磁鋼板之製造方法之其他之例的流程圖。
1...基質鐵
2...張力賦予型之絕緣被膜
3...外部氧化膜
4...基部

Claims (12)

  1. 一種無方向性電磁鋼板,其特徵在於具有:基質鐵;及張力賦予型之絕緣被膜,係於前述基質鐵之表面上形成1g/m2 以上且6g/m2 以下者,前述基質鐵含有Si、Al及Cr:以總含量計係2質量%以上且6質量%以下,及Mn:0.1質量%以上且1.5質量%以下,前述基質鐵之C的含量係0.005質量%以下,前述基質鐵之剩餘部分係由Fe及不可避免的雜質所構成,且於前述基質鐵之表面形成厚度係0.01μm以上且0.5μm以下之外部氧化膜,該外部氧化膜含有選自於由Si、Al及Cr所構成之群之至少一種氧化物。
  2. 如申請專利範圍第1項之無方向性電磁鋼板,其中前述基質鐵之Al及Cr的總含量係0.8質量%以上。
  3. 如申請專利範圍第1或2項之無方向性電磁鋼板,其中前述絕緣被膜係藉由燒附包含磷酸鹽及膠質氧化矽之塗布液所形成。
  4. 如申請專利範圍第1或2項之無方向性電磁鋼板,其中前述絕緣被膜係藉由燒附包含硼酸及氧化鋁溶膠之塗布液所形成。
  5. 一種無方向性電磁鋼板之製造方法,其特徵在於具有下述步驟: 進行冷軋鋼帶之完工退火步驟;及於前述冷軋鋼帶之表面形成1g/m2 以上且6g/m2 以下之張力賦予型之絕緣被膜的步驟,前述冷軋鋼帶含有Si、Al及Cr:以總含量計係2質量%以上且6質量%以下,及Mn:0.1質量%以上且1.5質量%以下,前述冷軋鋼帶之C的含量係0.005質量%以下,前述冷軋鋼帶之剩餘部分係由Fe及不可避免的雜質所構成,前述進行完工退火之步驟,係於以X(質量%)表示前述冷軋鋼帶之Si及Al的總含量時,相對於氫之水蒸氣的分壓比係0.005×X2 以下之環境氣體中,將前述冷軋鋼帶之溫度設為800℃以上且1100℃以下,並具有於前述冷軋鋼帶之表面形成厚度係0.01μm以上且0.5μm以下之外部氧化膜的步驟,該外部氧化膜含有選自於由Si及Al所構成之群之至少一種氧化物。
  6. 如申請專利範圍第5項之無方向性電磁鋼板之製造方法,其中前述形成絕緣被膜之步驟係於進行前述完工退火步驟後,具有:於前述冷軋鋼帶之表面塗布塗布液的步驟,及將前述冷軋鋼帶之溫度設為800℃以上且1100℃以下,進行前述塗布液之燒附的步驟。
  7. 如申請專利範圍第5項之無方向性電磁鋼板之製造方法,其中前述形成絕緣被膜之步驟具有:於前述進行完工退火步驟前,於前述冷軋鋼帶之表面塗布塗布液 的步驟,及於前述完工退火時進行前述塗布液之燒附的步驟。
  8. 如申請專利範圍第6或7項之無方向性電磁鋼板之製造方法,其中前述塗布液包含磷酸鹽及膠質氧化矽。
  9. 如申請專利範圍第6或7項之無方向性電磁鋼板之製造方法,其中前述塗布液包含硼酸及氧化鋁溶膠。
  10. 如申請專利範圍第5至7項中任一項之無方向性電磁鋼板之製造方法,其中前述冷軋鋼帶之Al及Cr的總含量係0.8質量%以上。
  11. 如申請專利範圍第8項之無方向性電磁鋼板之製造方法,其中前述冷軋鋼帶之Al及Cr的總含量係0.8質量%以上。
  12. 如申請專利範圍第9項之無方向性電磁鋼板之製造方法,其中前述冷軋鋼帶之Al及Cr的總含量係0.8質量%以上。
TW100105243A 2010-02-18 2011-02-17 Non-oriented electrical steel sheet and a manufacturing method TWI403614B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010033937 2010-02-18

Publications (2)

Publication Number Publication Date
TW201204872A TW201204872A (en) 2012-02-01
TWI403614B true TWI403614B (zh) 2013-08-01

Family

ID=44482913

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100105243A TWI403614B (zh) 2010-02-18 2011-02-17 Non-oriented electrical steel sheet and a manufacturing method

Country Status (8)

Country Link
US (2) US9187830B2 (zh)
EP (1) EP2537958B1 (zh)
JP (1) JP5073853B2 (zh)
KR (1) KR101263139B1 (zh)
CN (1) CN102782185B (zh)
BR (1) BR112012020219B1 (zh)
TW (1) TWI403614B (zh)
WO (1) WO2011102328A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI665311B (zh) * 2018-10-26 2019-07-11 中國鋼鐵股份有限公司 無方向性電磁鋼捲及其製造方法

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5839778B2 (ja) * 2010-04-06 2016-01-06 新日鐵住金株式会社 高周波鉄損の優れた無方向性電磁鋼板、及びその製造方法
FR2976349B1 (fr) * 2011-06-09 2018-03-30 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de realisation d'un element absorbeur de rayonnements solaires pour centrale solaire thermique a concentration.
KR101379751B1 (ko) 2012-02-28 2014-03-31 청주대학교 산학협력단 합금입자화박막 및 그 제조방법
PL2778246T3 (pl) * 2012-05-31 2018-09-28 Nippon Steel & Sumitomo Metal Corporation Niezorientowana blacha cienka ze stali elektrotechnicznej
TWI504752B (zh) * 2012-10-12 2015-10-21 China Steel Corp Non - directional electromagnetic steel sheet with tissue - optimized and its manufacturing method
TWI487796B (zh) * 2012-10-12 2015-06-11 China Steel Corp Non - directional electromagnetic strip annealing method
TWI487795B (zh) * 2012-10-12 2015-06-11 China Steel Corp Non - directional electromagnetic steel sheet for compressor motor and its manufacturing method
US11674212B2 (en) * 2014-03-28 2023-06-13 Kubota Corporation Cast product having alumina barrier layer
KR101596446B1 (ko) * 2014-08-07 2016-03-07 주식회사 포스코 포스테라이트 피막이 제거된 방향성 전기강판용 예비 코팅제 조성물, 이를 이용하여 제조된 방향성 전기강판 및 상기 방향성 전기강판의 제조방법
RU2689353C1 (ru) * 2015-09-02 2019-05-27 ДжФЕ СТИЛ КОРПОРЕЙШН Обрабатывающий раствор для получения изоляционного покрытия и способ изготовления металла, имеющего изоляционное покрытие
CN108292866B (zh) * 2015-11-27 2021-03-12 日本电产株式会社 马达和马达的制造方法
EP3514261B1 (en) 2016-10-18 2020-06-17 JFE Steel Corporation Oriented electromagnetic steel sheet and method for manufacturing oriented electromagnetic steel sheet
WO2018117670A2 (ko) * 2016-12-23 2018-06-28 주식회사 포스코 전기강판 접착 코팅 조성물, 전기강판 제품, 및 이의 제조 방법
KR102259136B1 (ko) * 2017-01-16 2021-06-01 닛폰세이테츠 가부시키가이샤 무방향성 전자 강판 및 무방향성 전자 강판의 제조 방법
DE102017204522A1 (de) * 2017-03-17 2018-09-20 Voestalpine Stahl Gmbh Verfahren zur Herstellung von lackbeschichteten Elektroblechbändern und lackbeschichtetes Elektroblechband
RU2729666C1 (ru) * 2017-07-13 2020-08-11 Ниппон Стил Корпорейшн Электротехнический стальной лист с ориентированной зеренной структурой
JP6915690B2 (ja) * 2017-07-13 2021-08-04 日本製鉄株式会社 方向性電磁鋼板
KR102009393B1 (ko) * 2017-12-26 2019-08-09 주식회사 포스코 무방향성 전기강판 및 그 제조방법
KR102112171B1 (ko) 2017-12-26 2020-05-18 주식회사 포스코 전기강판 접착 코팅 조성물, 전기강판 제품, 및 이의 제조 방법
KR102483593B1 (ko) * 2018-02-06 2022-12-30 제이에프이 스틸 가부시키가이샤 절연 피막 부착 전자 강판 및 그의 제조 방법
KR102176346B1 (ko) * 2018-11-30 2020-11-09 주식회사 포스코 전기강판 및 그 제조 방법
WO2020149345A1 (ja) * 2019-01-16 2020-07-23 日本製鉄株式会社 方向性電磁鋼板及びその製造方法
WO2020149334A1 (ja) * 2019-01-16 2020-07-23 日本製鉄株式会社 方向性電磁鋼板、方向性電磁鋼板用の中間鋼板及びそれらの製造方法
CN113286907B (zh) * 2019-01-16 2023-04-14 日本制铁株式会社 方向性电磁钢板及其制造方法
WO2021019859A1 (ja) * 2019-07-31 2021-02-04 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法
KR102325005B1 (ko) * 2019-12-20 2021-11-11 주식회사 포스코 무방향성 전기강판 및 그 제조방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11209891A (ja) * 1997-10-14 1999-08-03 Nippon Steel Corp 電磁鋼板の絶縁皮膜形成方法
JP2008031499A (ja) * 2006-07-26 2008-02-14 Nippon Steel Corp 皮膜密着性に優れ磁気特性が良好な複層皮膜を有する電磁鋼板及びその製造方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5015013B1 (zh) 1970-08-28 1975-06-02
BE789262A (fr) 1971-09-27 1973-01-15 Nippon Steel Corp Procede de formation d'un film isolant sur un feuillard d'acierau silicium oriente
US3840983A (en) 1973-04-30 1974-10-15 Ford Motor Co Method of manufacture of a dynamoelectric machine laminated armature structure
JPS5652117B2 (zh) 1973-11-17 1981-12-10
JPS5573819A (en) 1978-11-22 1980-06-03 Nippon Steel Corp Production of cold rolled non-directional electromagnetic steel plate of superior high magnetic field iron loss
JPS5655574A (en) 1979-10-15 1981-05-16 Nippon Steel Corp Manufacture of nondirectional magnetic steel sheet excellent in iron loss and magnetostriction characteristic
JPS58110679A (ja) 1981-12-25 1983-07-01 Kawasaki Steel Corp 鉄損および磁歪特性の優れた無方向性電磁鋼板の製造方法
JPS60131976A (ja) * 1983-12-19 1985-07-13 Kawasaki Steel Corp 鉄損特性に優れた一方向性けい素鋼板の製造方法
JPS60152681A (ja) 1984-01-19 1985-08-10 Nippon Steel Corp 無方向性電磁鋼板の絶縁皮膜
EP0555867B1 (en) 1992-02-13 2000-12-06 Nippon Steel Corporation Oriented electrical steel sheet having low core loss and method of manufacturing same
JP2662482B2 (ja) 1992-08-21 1997-10-15 新日本製鐵株式会社 低鉄損方向性電磁鋼板
JP2698003B2 (ja) 1992-08-25 1998-01-19 新日本製鐵株式会社 一方向性珪素鋼板の絶縁皮膜形成方法
JP2688147B2 (ja) 1992-08-21 1997-12-08 新日本製鐵株式会社 低鉄損方向性電磁鋼板の製造方法
JP2944849B2 (ja) 1993-05-21 1999-09-06 新日本製鐵株式会社 被膜特性の極めて良好な無方向性電磁鋼板の製造方法
KR0129687B1 (ko) 1993-05-21 1998-04-16 다나까 미노루 피막특성이 극히 우수한 절연 피막 처리제 및 이 처리제를 이용한 무방향성 전기강판의 제조방법
KR100240995B1 (ko) 1995-12-19 2000-03-02 이구택 절연피막의 밀착성이 우수한 무방향성 전기강판의 제조방법
EP0985743B8 (en) * 1997-10-14 2009-08-05 Nippon Steel Corporation Method of forming an insulating film on a magnetic steel sheet
JP3307872B2 (ja) * 1998-02-06 2002-07-24 新日本製鐵株式会社 無方向性電磁鋼板鋼板を用いた電気自動車用モータ及びその電磁鋼板の製造方法
JP3490048B2 (ja) 1999-08-30 2004-01-26 新日本製鐵株式会社 無方向性電磁鋼板の製造方法
JP2001279400A (ja) 2000-03-30 2001-10-10 Kawasaki Steel Corp 被膜密着性に優れた無方向性電磁鋼板およびその製造方法
WO2002088424A1 (fr) 2001-04-23 2002-11-07 Nippon Steel Corporation Tole d'acier au silicium unidirectionnel presentant une excellente adhesivite d'une couche de revetement isolant imprimant une force de traction
JP4358550B2 (ja) 2003-05-07 2009-11-04 新日本製鐵株式会社 圧延方向とその板面内垂直方向磁気特性の優れた無方向性電磁鋼板の製造方法
JP4681450B2 (ja) 2005-02-23 2011-05-11 新日本製鐵株式会社 圧延方向の磁気特性に優れた無方向性電磁鋼板とその製造方法
BRPI0520381B1 (pt) 2005-07-14 2016-03-08 Nippon Steel & Sumitomo Metal Corp agente de película isolante para chapa de aço elétrico com grãos orientados que não contém cromo.
JP2008260996A (ja) 2007-04-11 2008-10-30 Nippon Steel Corp 圧延方向の磁気特性に優れる無方向性電磁鋼板およびその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11209891A (ja) * 1997-10-14 1999-08-03 Nippon Steel Corp 電磁鋼板の絶縁皮膜形成方法
JP2008031499A (ja) * 2006-07-26 2008-02-14 Nippon Steel Corp 皮膜密着性に優れ磁気特性が良好な複層皮膜を有する電磁鋼板及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI665311B (zh) * 2018-10-26 2019-07-11 中國鋼鐵股份有限公司 無方向性電磁鋼捲及其製造方法

Also Published As

Publication number Publication date
JPWO2011102328A1 (ja) 2013-06-17
KR101263139B1 (ko) 2013-05-15
CN102782185B (zh) 2014-05-28
US20160035469A1 (en) 2016-02-04
EP2537958A4 (en) 2015-04-29
EP2537958A1 (en) 2012-12-26
EP2537958B1 (en) 2016-08-31
TW201204872A (en) 2012-02-01
JP5073853B2 (ja) 2012-11-14
WO2011102328A1 (ja) 2011-08-25
KR20120105051A (ko) 2012-09-24
BR112012020219A2 (pt) 2017-01-24
US9187830B2 (en) 2015-11-17
BR112012020219B1 (pt) 2020-12-01
CN102782185A (zh) 2012-11-14
US9934894B2 (en) 2018-04-03
US20120305140A1 (en) 2012-12-06

Similar Documents

Publication Publication Date Title
TWI403614B (zh) Non-oriented electrical steel sheet and a manufacturing method
JP5716315B2 (ja) 無方向性電磁鋼板およびその製造方法
JP6651759B2 (ja) 無方向性電磁鋼板およびその製造方法
WO2009025389A1 (ja) 方向性電磁鋼板用絶縁被膜処理液、および絶縁被膜を有する方向性電磁鋼板の製造方法
WO1997022723A1 (fr) Procede de fabrication de toles d'acier non orientees a usage electrique excellentes pour renforcer l'adhesion d'un film isolant
WO2018135414A1 (ja) 無方向性電磁鋼板およびその製造方法
US20190024205A9 (en) Non-oriented electrical steel sheet and method of producing same
JP5447167B2 (ja) 無方向性電磁鋼板およびその製造方法
CN111448330A (zh) 多层型电磁钢板
JP2012036459A (ja) 無方向性電磁鋼板およびその製造方法
JP4277432B2 (ja) 低磁歪二方向性電磁鋼板
JP5671872B2 (ja) 無方向性電磁鋼板およびその製造方法
JP5671871B2 (ja) 無方向性電磁鋼板およびその製造方法
KR20220028054A (ko) 무방향성 전기강판 및 그 제조 방법
JP2007056303A (ja) 磁気特性に優れた無方向性電磁鋼板の製造方法
JP7331802B2 (ja) 無方向性電磁鋼板およびその製造方法
TW201928086A (zh) 複層型電磁鋼板
JP2005264280A (ja) 打ち抜き性及び耐被膜剥離性に優れた方向性電磁鋼板及びその製造方法
JP4810777B2 (ja) 方向性電磁鋼板およびその製造方法
JP5402846B2 (ja) 無方向性電磁鋼板の製造方法
WO2020149331A1 (ja) 方向性電磁鋼板およびその製造方法
JP4707162B2 (ja) 耐疲労特性に優れた高強度無方向性電磁鋼板とその製造法
JP5245323B2 (ja) エッチング加工用電磁鋼板
CN111465709B (zh) 多层型电磁钢板
JP5671870B2 (ja) 無方向性電磁鋼板およびその製造方法