WO2011102328A1 - 無方向性電磁鋼板及びその製造方法 - Google Patents

無方向性電磁鋼板及びその製造方法 Download PDF

Info

Publication number
WO2011102328A1
WO2011102328A1 PCT/JP2011/053096 JP2011053096W WO2011102328A1 WO 2011102328 A1 WO2011102328 A1 WO 2011102328A1 JP 2011053096 W JP2011053096 W JP 2011053096W WO 2011102328 A1 WO2011102328 A1 WO 2011102328A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
steel sheet
oriented electrical
cold
electrical steel
Prior art date
Application number
PCT/JP2011/053096
Other languages
English (en)
French (fr)
Inventor
山崎 修一
猛 久保田
洋介 黒崎
藤倉 昌浩
島津 高英
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to US13/577,946 priority Critical patent/US9187830B2/en
Priority to KR1020127021052A priority patent/KR101263139B1/ko
Priority to EP11744614.6A priority patent/EP2537958B1/en
Priority to CN201180009924.2A priority patent/CN102782185B/zh
Priority to JP2011527118A priority patent/JP5073853B2/ja
Priority to BR112012020219-7A priority patent/BR112012020219B1/pt
Publication of WO2011102328A1 publication Critical patent/WO2011102328A1/ja
Priority to US14/884,253 priority patent/US9934894B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1288Application of a tension-inducing coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/50Treatment of iron or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/74Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/16Oxidising using oxygen-containing compounds, e.g. water, carbon dioxide
    • C23C8/18Oxidising of ferrous surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • H01F1/14783Fe-Si based alloys in the form of sheets with insulating coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/32Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying conductive, insulating or magnetic material on a magnetic film, specially adapted for a thin magnetic film

Definitions

  • the present invention relates to a non-oriented electrical steel sheet suitable for a motor core material and a manufacturing method thereof.
  • non-oriented electrical steel sheets containing Si and Al to increase the specific resistance and increase the crystal grain size, hot rolled sheet annealing and techniques to improve the texture by adjusting the cold rolling rate. Has been done.
  • the non-oriented electrical steel sheet is an electrical steel sheet whose crystal orientation is random in the direction parallel to the surface, but depending on the application of the non-oriented electrical steel sheet, the magnetic properties in one direction parallel to the surface, for example, the rolling direction.
  • a split core is used as a stator of a motor, it is preferable to use an electromagnetic steel plate as described above for the split core.
  • a grain-oriented electrical steel sheet can be considered as an electrical steel sheet having excellent magnetic properties in the rolling direction, punching is difficult because a glass film is present on the surface of the grain-oriented electrical steel sheet.
  • the direction of easy magnetization of the electromagnetic steel sheet can be matched with the direction of the flow of magnetic flux, so that the efficiency of the motor can be improved.
  • the yield of the electromagnetic steel plate which is a raw material can be improved, and a winding filling rate can be increased.
  • An object of the present invention is to provide a non-oriented electrical steel sheet capable of obtaining better magnetic properties in the rolling direction and a method for producing the same.
  • Patent Document 4 The inventors pay attention to the technique disclosed in Patent Document 4 and use a tension-imparting type insulating coating as an insulating coating formed on the surface of the non-oriented electrical steel sheet. Various experiments etc. were conducted, thinking that this could be improved. However, it has been found that when a tension-imparting type insulating coating is simply used, the insulating coating cannot sufficiently withstand various processes (punching, caulking, etc.) for forming the split core. That is, the insulating film may be peeled off. Further, although the magnetic properties in the rolling direction are improved, it is not always sufficient.
  • the inventors of the present invention conducted intensive studies to investigate these causes, and found that the adhesion between the tension-imparting insulating coating and the ground iron was low, and accompanying this, sufficient tension was applied to the ground iron. Found that is not working. And when the present inventors conducted further intensive studies based on these findings, when a specific oxide layer is present on the surface of the ground iron, this oxide layer is of a tension-providing type with the ground iron. It has been found that the magnetic properties in the rolling direction are remarkably improved by contributing to the improvement of adhesion with the insulating coating. Moreover, it discovered that peeling of an insulating film etc. was suppressed with the improvement of adhesiveness.
  • the gist of the present invention is as follows.
  • a step of finish annealing the cold-rolled steel strip Forming a tension-imparting type insulating coating of 1 g / m 2 or more and 6 g / m 2 or less on the surface of the cold-rolled steel strip;
  • the cold-rolled steel strip is Si, Al and Cr: 2% by mass to 6% by mass in total content, and Mn: 0.1% by mass to 1.5% by mass, Containing C content of the cold-rolled steel strip is 0.005 mass% or less,
  • the remainder of the cold-rolled steel strip is made of Fe and inevitable impurities
  • the step of performing the final annealing is an atmosphere in which the partial pressure ratio of water vapor to hydrogen is 0.005 ⁇ X 2 or less when the total content of Si and Al in the cold-rolled steel strip is expressed as X (mass%).
  • the temperature of the cold-rolled steel strip is 800 ° C. or higher and 1100 ° C. or lower, and the surface of the cold-rolled steel strip contains at least one oxide selected from the group consisting of Si and Al, and has a thickness of 0
  • a method for producing a non-oriented electrical steel sheet comprising a step of forming an oxide layer of 0.01 ⁇ m or more and 0.5 ⁇ m or less.
  • the step of forming the insulating coating is performed after the step of performing the finish annealing. Applying a coating solution to the surface of the cold-rolled steel strip; Baking the coating liquid at a temperature of the cold-rolled steel strip of 800 ° C. or higher and 1100 ° C. or lower; (5) The manufacturing method of the non-oriented electrical steel sheet according to (5).
  • the step of forming the insulating film includes: Applying a coating solution to the surface of the cold-rolled steel strip before the step of performing the finish annealing; A step of baking the coating liquid during the finish annealing; (5) The manufacturing method of the non-oriented electrical steel sheet according to (5).
  • FIG. 1A is a view showing a scanning electron microscope cross-sectional photograph of an oxide on the surface of a steel strip that has been subjected to final annealing in an atmosphere with a partial pressure ratio (P H2O / P H2 ) of 0.1.
  • FIG. 1B is a view showing a scanning electron microscope cross-sectional photograph of oxide on the surface of a steel strip that has been subjected to final annealing in an atmosphere with a partial pressure ratio (P H2O / P H2 ) of 0.01.
  • FIG. 2 is a diagram showing an infrared sensitive reflection spectrum of the external oxide film 102.
  • FIG. 1A is a view showing a scanning electron microscope cross-sectional photograph of an oxide on the surface of a steel strip that has been subjected to final annealing in an atmosphere with a partial pressure ratio (P H2O / P H2 ) of 0.01.
  • FIG. 2 is a diagram showing an infrared sensitive reflection spectrum of the external oxide film 102.
  • FIG. 3 is a diagram showing the relationship between the composition of the cold-rolled steel strip and the atmosphere of finish annealing, and the state of the surface of the base iron.
  • FIG. 4 is a cross-sectional view showing the structure of the non-oriented electrical steel sheet according to the embodiment of the present invention.
  • FIG. 5 is a flowchart showing an example of a method for producing a non-oriented electrical steel sheet.
  • FIG. 6 is a flowchart showing another example of a method for producing a non-oriented electrical steel sheet.
  • the iron loss value (W10 / 50) under the excitation condition with a frequency of 50 Hz and a maximum magnetic flux density of 1.0 T is orthogonal to the rolling direction in the rolling direction (L direction) and the surface of the cold-rolled steel strip.
  • the direction (C direction) was measured.
  • 3 g / m 2 of a coating liquid (coating liquid) composed of aluminum phosphate, colloidal silica, and chromic acid was applied to both surfaces of each steel strip and baked at 800 ° C. That is, a tension applying type insulating coating was formed.
  • the iron loss value (W10 / 50) was measured again about the L direction and the C direction.
  • FIG. 1A shows a scanning electron microscope cross-sectional photograph of the oxide on the surface of a steel strip that has been annealed in an atmosphere with a partial pressure ratio (P H2O / P H2 ) of 0.1
  • FIG. 1B shows the partial pressure ratio (P The scanning electron microscope cross-sectional photograph of the oxide of the surface of the steel strip which performed final annealing in the atmosphere whose H2O / PH2 ) is 0.01 is shown.
  • a thick internal oxide layer 103 was present on the surface of the steel strip 101 of the steel strip that was subjected to finish annealing in an atmosphere with a partial pressure ratio (P H2O / P H2 ) of 0.1.
  • a thin external oxidation having a thickness of about 50 nm is formed on the surface of the steel strip 101 of the steel strip that has been subjected to finish annealing in an atmosphere with a partial pressure ratio (P H2O / P H2 ) of 0.01.
  • a membrane 102 was present. Note that the Au vapor deposition layer 104 existing on the outer oxide film 102 and the inner oxide layer 103 is formed for protecting the outer oxide film 102 and the inner oxide layer 103 in preparing a sample for cross-sectional observation.
  • FIG. 2 shows an infrared sensitive reflection spectrum of the external oxide film 102. From the spectrum shown in FIG. 2, it was confirmed that the outer oxide film 102 was mainly made of Al 2 O 3 .
  • annealing conditions are important for forming an external oxide film during finish annealing. Therefore, the present inventors investigated the relationship between the composition of the cold-rolled steel strip that is the subject of finish annealing, the atmosphere of finish annealing, and the state of the surface of the ground iron.
  • various cold-rolled steel strips having different total contents (X (mass%)) of Si, Al, and Cr were produced, and finish annealing was performed in atmospheres having various partial pressure ratios (P H2O / P H2 ). went.
  • the finish annealing temperature was 900 ° C. The result is shown in FIG.
  • the white marks in FIG. 3 indicate that the internal oxide layer has been formed, and the black marks indicate that the external oxide film has been formed.
  • FIG. 3 shows that the external oxide film has a partial pressure ratio (P H2O / P H2 ) of less than 0.005 ⁇ X 2 with respect to the total content (X (mass%)) of Si, Al, and Cr. It can be seen that can be formed.
  • FIG. 4 is a cross-sectional view showing the structure of the non-oriented electrical steel sheet according to the embodiment of the present invention.
  • a stress applying type insulating coating 2 of 1 g / m 2 or more and 6 g / m 2 or less is formed on the surface of the ground iron 1.
  • an outer oxide film 3 containing at least one oxide selected from the group consisting of Si, Al, and Cr and having a thickness of 0.01 ⁇ m or more and 0.5 ⁇ m or less is formed on the surface of the ground iron 1.
  • the base iron 1 includes a base 4 and an external oxide film 3.
  • the external oxide film 3 is an example of an oxide layer.
  • the base iron 1 contains Si, Al, and Cr: 2% by mass to 6% by mass in total content, and Mn: 0.1% by mass to 1.5% by mass.
  • the C content of the base iron 1 is 0.005% by mass or less, and the balance of the base iron 1 is composed of Fe and inevitable impurities.
  • FIG. 5 is a flowchart showing an example of a method for producing a non-oriented electrical steel sheet.
  • step S1 hot rolling of a slab (steel material) having a predetermined composition heated to a predetermined temperature is performed to produce a hot-rolled steel strip.
  • step S2 the scale is removed by pickling and cold rolling of the hot-rolled steel strip is performed to produce a cold-rolled steel strip.
  • the cold rolling only one cold rolling may be performed, or two or more cold rollings with intermediate annealing interposed therebetween may be performed. In addition, you may anneal as needed before cold rolling.
  • the C content is 0.005% by mass or less.
  • Si, Al, and Cr exhibit the effect of increasing the specific resistance of the non-oriented electrical steel sheet and reducing eddy current loss.
  • Si, Al, and Cr are used for forming the external oxide film 3 as will be described in detail later.
  • the total content of Si, Al, and Cr is 2 mass% or more.
  • the total content of Si, Al and Cr is more than 6% by mass, cold working such as cold rolling becomes difficult. Therefore, the total content of Si, Al, and Cr is 6% by mass or less.
  • Mn exhibits the effect of reducing the solute S during slab heating. However, if the Mn content is less than 0.1% by mass, this effect cannot be sufficiently obtained. Therefore, the Mn content is 0.1% by mass or more. On the other hand, if the Mn content is more than 1.5% by mass, the magnetic properties are deteriorated. Therefore, the Mn content is 1.5% by mass or less.
  • unavoidable impurities such as Ti, V, Zr, and Nb that may form nonmagnetic inclusions by combining with S, N, and O are minimized.
  • rare earth elements, Ca, etc. may be contained in order to scavenge S, N, and O. Preferable contents of rare earth elements and Ca are 0.002 mass% or more and 0.01 mass% or less.
  • Sn and Sb have an effect of improving the L-direction characteristics by improving the texture, and can be added to expect a synergistic effect with the effect of the present invention.
  • step S3 finish annealing of the cold-rolled steel strip is performed in a predetermined atmosphere, and the base iron 1 having the outer oxide film 3 formed on the surface is produced (step S3).
  • the temperature of the cold-rolled steel strip is set to 800 ° C. or more and 1100 ° C. or less. If the temperature is lower than 800 ° C., it is difficult to sufficiently form the external oxide film 3. On the other hand, when the temperature is higher than 1100 ° C., the cost increases remarkably and stable operation becomes difficult.
  • the partial pressure ratio (P H2O / P H2 ) of water vapor to hydrogen is 0 with respect to the total content (X (mass%)) of Si, Al, and Cr. and less than .005 ⁇ X 2. If this condition is satisfied, a desired external oxide film can be formed as the oxide layer 3 as described above.
  • This external oxide film 3 contributes to a significant improvement in the adhesion between the tension applying type insulating coating 2 and the ground iron 1. And tension
  • the thickness of the external oxide film 3 is desirably 0.01 ⁇ m or more. In addition, it is difficult to obtain sufficient adhesion even when the thickness of the external oxide film 3 exceeds 0.5 ⁇ m. This is presumably because unnecessary stress is generated on the surface of the base 4 of the ground iron 1 by forming the outer oxide film 3 thick. Therefore, the thickness of the external oxide film 3 is desirably 0.5 ⁇ m or less.
  • the thickness of the external oxide film 3 can be controlled, for example, by adjusting the temperature of the final annealing and the soaking time. That is, the higher the soaking temperature and the longer the soaking time, the thicker the outer oxide film 3 is formed.
  • the material constituting the external oxide film 3 is determined according to the respective contents of Si, Al, and Cr, and the main components of the external oxide film 3 are, for example, SiO 2 , Al 2 O 3 , Cr 2 O 3, etc. is there.
  • SiO 2 is mainly external oxide film 3
  • the total content of Al and Cr is 0.8 mass% or more
  • Al 2 O 3, Cr 2 O 3 or (Al, Cr) 2 O 3 is the main component of the external oxide film 3.
  • the main constituent of the external oxide film 3 is not particularly limited, but particularly high adhesion can be obtained when the main component is Al 2 O 3 , Cr 2 O 3 or (Al, Cr) 2 O 3 .
  • the total content of Al and Cr is preferably 0.8% by mass or more.
  • the external oxide film 3 is not composed only of these main components, and even when Al and Cr are small, Al 2 O 3 and Cr 2 O 3 and the like may be contained. Even when the content is more than 0.8% by mass, SiO 2 may be contained.
  • the tension-imparting type insulating coating 2 is formed on the surface of the base iron 1 (step S4).
  • a predetermined coating solution is applied and baked.
  • the coating solution it is possible to use a coating solution used for grain-oriented electrical steel sheets.
  • a coating solution mainly composed of phosphate and colloidal silica can be used.
  • the proportion of phosphate and colloidal silica is not particularly limited, but the proportion of colloidal silica is preferably 4% by mass to 24% by mass, and the proportion of phosphate is preferably 5% by mass to 30% by mass.
  • Such coating solutions are described, for example, in JP-A-48-39338 and JP-A-50-79442.
  • a coating solution mainly composed of boric acid and alumina sol can be used.
  • the component ratio of aluminum and boron is not particularly limited, but aluminum oxide is preferably 50% by mass to 95% by mass in terms of each oxide.
  • Such coating liquids are described in, for example, Japanese Patent Application Laid-Open Nos. 6-65754 and 6-65555.
  • the amount of the tension-imparting insulating coating 2 formed is 1 g / m 2 or more and 6 g / m 2 or less per side. If the formation amount of the insulating coating 2 is less than 1 g / m 2 , the tension is not sufficiently applied, and it is difficult to sufficiently improve the magnetic properties in the rolling direction (L direction). On the other hand, when the formation amount of the insulating coating 2 exceeds 6 g / m 2 , the space factor decreases.
  • the baking temperature is preferably 800 ° C. or higher and 1100 ° C. or lower.
  • the baking temperature is less than 800 ° C., the tension is not sufficiently applied, and it is difficult to sufficiently improve the magnetic properties in the rolling direction (L direction).
  • the baking temperature is higher than 1100 ° C., the cost increases remarkably and stable operation becomes difficult.
  • the non-oriented electrical steel sheet according to the embodiment can be manufactured by such a series of processes.
  • the outer oxide film 3 firmly adheres the ground iron 1 and the tension-imparting insulating coating 2 to each other. For this reason, even when a higher tension is applied to further improve the magnetic properties in the rolling direction (L direction) and various processes (such as punching and caulking) for forming the split core are performed, the insulating coating 2 Can be prevented.
  • step S4 application
  • a coating made of only a resin on the tension-applying insulating coating 2 and / or You may form the film comprised from an inorganic substance and resin. That is, the punching property can be further improved by applying and baking the coating liquid usually used for forming the insulating coating of the non-oriented electrical steel sheet.
  • a coating solution containing chromate and an acrylic resin can be used.
  • a coating solution in which a metal oxide, a metal hydroxide, and a metal carbonate are dissolved in a chromic acid aqueous solution and an emulsion type resin is further added can be used.
  • a coating solution is described in, for example, Japanese Patent Publication No. 50-15013.
  • the coating liquid containing a phosphate and an acrylic resin can also be used.
  • a coating solution in which 1 part by mass to 300 parts by mass of an organic resin emulsion is added to 100 parts by mass of phosphate can be used.
  • Such a coating solution is described, for example, in JP-A-6-330338.
  • the coating liquid was applied and baked under the conditions shown in Table 3 to form a tension-imparting type insulating coating.
  • “S” in the column “Coating solution” in Table 3 indicates that a coating solution containing colloidal silica, aluminum phosphate and chromic acid was used, and “A” used a coating solution containing boric acid and alumina sol. It shows that there was.
  • the iron loss improvement rate in the L direction was also evaluated.
  • the iron loss value W 1 (W10 / 50) of the non-oriented electrical steel sheet manufactured by the above method was measured and compared with the iron loss value W 0 (W10 / 50) of the reference sample.
  • the reference sample instead of the tension-applying type insulating film, a film in which an insulating film was formed by applying and baking a coating solution containing a phosphate and an acrylic resin described in JP-A-6-330338 was used. .
  • Such an evaluation was performed because the absolute value of the iron loss depends on the components and the process conditions.
  • the results are also shown in Table 3.
  • the numerical value in the column of “I-direction iron loss improvement rate” in Table 3 is a value represented by “(W 0 ⁇ W 1 ) / W 0 ”.
  • the coating solution was applied under the conditions shown in Table 4.
  • finish annealing was performed under the conditions shown in Table 4 which also served to bake the coating solution. That is, in the first experiment, processing according to the flowchart shown in FIG. 5 was performed, whereas in the second experiment, processing according to the flowchart shown in FIG. 6 was performed. Then, as in the first experiment, the adhesion of the insulating coating and the iron loss improvement rate in the L direction were evaluated. The results are also shown in Table 4.
  • the present invention can be used, for example, in the electrical steel sheet manufacturing industry and the electrical steel sheet utilizing industry.

Abstract

 無方向性電磁鋼板は、地鉄(1)と、地鉄(1)の表面上に形成された1g/m以上6g/m以下の応力付与型の絶縁被膜(2)と、を有する。地鉄(1)の表面に、Si、Al及びCrからなる群から選択された少なくとも一種の酸化物を含有し、厚さが0.01μm以上0.5μm以下の酸化物層(3)が形成されている。

Description

無方向性電磁鋼板及びその製造方法
 本発明は、モータの鉄心材料に好適な無方向性電磁鋼板及びその製造方法に関する。
 電気機器の効率化が強く望まれており、電気機器に含まれるモータの鉄心材料に用いられる無方向性電磁鋼板に対して更なる低鉄損化が要求されている。そこで、Si及びAl等を無方向性電磁鋼板に含有させて固有抵抗を高め、かつ結晶粒径を大きくする技術、熱延板焼鈍及び冷延率の調整により集合組織を改善する技術等について検討が行われている。
 また、無方向性電磁鋼板はその表面に平行な方向では結晶方位がランダムな電磁鋼板であるが、無方向性電磁鋼板の用途によっては、表面に平行なある一方向、例えば圧延方向の磁気特性が他の方向の磁気特性よりも優れたものが好ましい場合もある。例えば、モータのステータとして分割コアを用いる場合には、上述のような電磁鋼板を分割コアに用いることが好ましい。圧延方向の磁気特性が優れた電磁鋼板としては方向性電磁鋼板も考えられるが、方向性電磁鋼板の表面にはグラス皮膜が存在するため、打ち抜き加工が困難である。また、無方向性電磁鋼板と比較すると方向性電磁鋼板の製造にはより多くの制御が必要であり、方向性電磁鋼板は高価である。なお、モータのステータとして分割コアを用いた場合には、磁束の流れの方向に電磁鋼板の容易磁化方向を一致させることができるため、モータの効率を向上させることができる。また、素材である電磁鋼板の歩留まりを向上させ、巻き線充填率を増加させることができる。
 しかしながら、分割コア用の無方向性電磁鋼板に関する種々の提案がなされているものの、従来の技術では、十分な圧延方向の磁気特性を得ることが困難である。
特開2004-332042号公報 特開2006-265720号公報 特開2008-260996号公報 特開昭56-55574号公報 特開2001-140018号公報 特開2001-279400号公報
 本発明は、より良好な圧延方向の磁気特性を得ることができる無方向性電磁鋼板及びその製造方法を提供することを目的とする。
 本発明者らは、特許文献4に開示された技術に着目し、無方向性電磁鋼板の地鉄の表面上に形成する絶縁被膜として張力付与型の絶縁被膜を用いることにより圧延方向の磁気特性を向上することができるのではないかと考え、種々の実験等を行った。しかしながら、単純に、張力付与型の絶縁被膜を用いた場合には、絶縁被膜が分割コアを形成するための各種加工(打ち抜き、かしめ等)に十分に耐えられないことが判明した。つまり、絶縁被膜の剥がれ等が生じることがある。また、圧延方向の磁気特性が向上するものの、必ずしも十分なものとはいえなかった。本発明者らは、これらの原因を究明すべく鋭意検討を行ったところ、張力付与型の絶縁被膜と地鉄との間の密着性が低いこと、及びこれに伴って地鉄に十分な張力が作用していないことを見出した。そして、本発明者らは、これらの知見に基づいて更に鋭意検討を行ったところ、地鉄の表面に特定の酸化物層が存在する場合に、この酸化物層が地鉄と張力付与型の絶縁被膜との密着性の向上に寄与し、圧延方向の磁気特性が著しく向上することを見出した。また、密着性の向上に伴って絶縁被膜の剥がれ等が抑制されることも見出した。
 本発明の要旨は、以下の通りである。
 (1) 地鉄と、
 前記地鉄の表面上に形成された1g/m以上6g/m以下の応力付与型の絶縁被膜と、
 を有し、
 前記地鉄は、
 Si、Al及びCr:総含有量で2質量%以上6質量%以下、及び
 Mn:0.1質量%以上1.5質量%以下、
 を含有し、
 前記地鉄のCの含有量が0.005質量%以下であり、
 前記地鉄の残部がFe及び不可避的不純物からなり、
 前記地鉄の表面に、Si、Al及びCrからなる群から選択された少なくとも一種の酸化物を含有し、厚さが0.01μm以上0.5μm以下の酸化物層が形成されていることを特徴とする無方向性電磁鋼板。
 (2) 前記地鉄のAl及びCrの総含有量が0.8質量%以上であることを特徴とする(1)に記載の無方向性電磁鋼板。
 (3) 前記絶縁被膜が、リン酸塩及びコロイダルシリカを含む塗布液の焼き付けにより形成されていることを特徴とする(1)又は(2)に記載の無方向性電磁鋼板。
 (4) 前記絶縁被膜が、ほう酸及びアルミナゾルを含む塗布液の焼き付けにより形成されていることを特徴とする(1)又は(2)に記載の無方向性電磁鋼板。
 (5) 冷延鋼帯の仕上げ焼鈍を行う工程と、
 前記冷延鋼帯の表面に1g/m以上6g/m以下の張力付与型の絶縁被膜を形成する工程と、
 を有し、
 前記冷延鋼帯は、
 Si、Al及びCr:総含有量で2質量%以上6質量%以下、及び
 Mn:0.1質量%以上1.5質量%以下、
 を含有し、
 前記冷延鋼帯のCの含有量が0.005質量%以下であり、
 前記冷延鋼帯の残部がFe及び不可避的不純物からなり、
 前記仕上げ焼鈍を行う工程は、前記冷延鋼帯のSi及びAlの総含有量をX(質量%)と表したときに、水素に対する水蒸気の分圧比が0.005×X以下となる雰囲気中で前記冷延鋼帯の温度を800℃以上1100℃以下として、前記冷延鋼帯の表面に、Si及びAlからなる群から選択された少なくとも一種の酸化物を含有し、厚さが0.01μm以上0.5μm以下の酸化物層を形成する工程を有することを特徴とする無方向性電磁鋼板の製造方法。
 (6) 前記絶縁被膜を形成する工程は、前記仕上げ焼鈍を行う工程の後に、
 前記冷延鋼帯の表面に塗布液を塗布する工程と、
 前記冷延鋼帯の温度を800℃以上1100℃以下として前記塗布液の焼き付けを行う工程と、
 を有することを特徴とする(5)に記載の無方向性電磁鋼板の製造方法。
 (7) 前記絶縁被膜を形成する工程は、
 前記仕上げ焼鈍を行う工程の前に前記冷延鋼帯の表面に塗布液を塗布する工程と、
 前記仕上げ焼鈍の際に前記塗布液の焼き付けを行う工程と、
 を有することを特徴とする(5)に記載の無方向性電磁鋼板の製造方法。
 (8) 前記塗布液は、リン酸塩及びコロイダルシリカを含むことを特徴とする(6)又は(7)に記載の無方向性電磁鋼板の製造方法。
 (9) 前記塗布液は、ほう酸及びアルミナゾルを含むことを特徴とする(6)又は(7)に記載の無方向性電磁鋼板の製造方法。
 (10) 前記冷延鋼帯のAl及びCrの総含有量が0.8質量%以上であることを特徴とする(5)~(9)のいずれかに記載の無方向性電磁鋼板の製造方法。
 本発明によれば、地鉄と張力付与型の絶縁被膜との間の高い密着性を得ることができ、圧延方向の磁気特性を著しく向上することができる。
図1Aは、分圧比(PH2O/PH2)が0.1の雰囲気で仕上げ焼鈍を行った鋼帯の表面の酸化物の走査型電子顕微鏡断面写真を示す図である。 図1Bは、分圧比(PH2O/PH2)が0.01の雰囲気で仕上げ焼鈍を行った鋼帯の表面の酸化物の走査型電子顕微鏡断面写真を示す図である。 図2は、外部酸化膜102の赤外高感度反射スペクトルを示す図である。 図3は、冷延鋼帯の組成及び仕上げ焼鈍の雰囲気と、地鉄の表面の状態との関係を示す図である。 図4は、本発明の実施形態に係る無方向性電磁鋼板の構造を示す断面図である。 図5は、無方向性電磁鋼板の製造方法の例を示すフローチャートである。 図6は、無方向性電磁鋼板の製造方法の他の例を示すフローチャートである。
 先ず、本発明者らが行った張力付与型の絶縁被膜の無方向性電磁鋼板への適用に関する実験について説明する。
 この実験では、Si:3質量%、Mn:0.15質量%、及びAl:1.2質量%を含有し、残部がFe及び不可避的不純物からなる厚さが0.35mmの2つの無方向性電磁鋼板用の冷延鋼帯を作製した。そして、冷延鋼帯毎に異なる焼鈍雰囲気で1000℃の仕上げ焼鈍を行った。一方の焼鈍雰囲気では、水素に対する水蒸気の分圧比(PH2O/PH2)を0.01とし、他方の焼鈍雰囲気では分圧比(PH2O/PH2)を0.1とした。そして、周波数が50Hz、最大磁束密度が1.0Tの励磁条件下での鉄損値(W10/50)を、圧延方向(L方向)、及び冷延鋼帯の表面内で圧延方向に直交する方向(C方向)について測定した。その後、各鋼帯の両面に、リン酸アルミニウム、コロイダルシリカ、及びクロム酸から構成される塗布液(コーティング液)を片面あたり3g/m塗布し、800℃で焼き付けた。つまり、張力付与型の絶縁被膜を形成した。そして、鉄損値(W10/50)を、L方向及びC方向について再度測定した。これらの結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、分圧比(PH2O/PH2)が0.1の雰囲気で焼鈍した場合には、L方向の鉄損に8%程度の改善が認められた。しかしながら、このようにして形成された絶縁被膜を備えた無方向性電磁鋼板から分割コアを作製しようとすると、打ち抜き及びかしめ等の加工に絶縁被膜が耐えられなかった。
 一方、分圧比(PH2O/PH2)が0.01の雰囲気で焼鈍した場合には、L方向の鉄損に17%もの改善が認められ、また、打ち抜き及びかしめ等の加工に絶縁被膜が十分に耐えることができた。
 本発明者らは、上述のような仕上げ焼鈍の雰囲気に起因する絶縁被膜の加工耐性の差異の原因を調査するために、仕上げ焼鈍後の鋼帯の表面の酸化物の断面観察を行った。図1Aに、分圧比(PH2O/PH2)が0.1の雰囲気で仕上げ焼鈍を行った鋼帯の表面の酸化物の走査型電子顕微鏡断面写真を示し、図1Bに、分圧比(PH2O/PH2)が0.01の雰囲気で仕上げ焼鈍を行った鋼帯の表面の酸化物の走査型電子顕微鏡断面写真を示す。
 図1Aに示すように、分圧比(PH2O/PH2)が0.1の雰囲気で仕上げ焼鈍を行った鋼帯の地鉄101の表面には、厚い内部酸化層103が存在していた。一方、図1Bに示すように、分圧比(PH2O/PH2)が0.01の雰囲気で仕上げ焼鈍を行った鋼帯の地鉄101の表面には、厚さが50nm程度の薄い外部酸化膜102が存在していた。なお、外部酸化膜102及び内部酸化層103上に存在するAu蒸着層104は、断面観察用の試料を作製するに当たり外部酸化膜102及び内部酸化層103の保護のために形成したものである。
 また、図2に、外部酸化膜102の赤外高感度反射スペクトルを示す。図2に示すスペクトルから、外部酸化膜102が主にAlからなることが確認できた。
 以上のことから、無方向性電磁鋼板の製造に際し、冷延鋼帯の仕上げ焼鈍時に外部酸化膜を形成し、その後に、張力付与型の絶縁被膜を形成すると、絶縁被膜と地鉄との密着性が著しく向上し、また、L方向の磁気特性が著しく改善されることがわかった。なお、後述するように、張力付与型の絶縁被膜の原料(塗布液)の塗布を行った後に、仕上げ焼鈍を行って、外部酸化膜の形成及び塗布液の焼き付けによる絶縁被膜の形成を並行して行っても、密着性の向上及びL方向の磁気特性の著しい改善が達成される。
 ここで、仕上げ焼鈍時に外部酸化膜を形成するためには、焼鈍条件が重要である。そこで、本発明者らは、仕上げ焼鈍の対象である冷延鋼帯の組成及び仕上げ焼鈍の雰囲気と、地鉄の表面の状態との関係について調査した。この調査では、Si、Al及びCrの総含有量(X(質量%))が異なる種々の冷延鋼帯を作製し、種々の分圧比(PH2O/PH2)の雰囲気下で仕上げ焼鈍を行った。そして、仕上げ焼鈍後の地鉄の表面の状態を観察した。なお、仕上げ焼鈍の温度は900℃とした。この結果を図3に示す。図3中の白抜きの印は内部酸化層が形成されていたことを示し、黒塗りの印は外部酸化膜が形成されていたことを示す。
 図3から、Si、Al及びCrの総含有量(X(質量%))に関し、分圧比(PH2O/PH2)が0.005×X未満である条件下であれば、外部酸化膜を形成できることがわかる。
 以下、本発明の実施形態について、添付の図面を参照しながら説明する。図4は、本発明の実施形態に係る無方向性電磁鋼板の構造を示す断面図である。
 図4に示すように、本実施形態に係る無方向性電磁鋼板では、地鉄1の表面上に1g/m以上6g/m以下の応力付与型の絶縁被膜2が形成されている。また、地鉄1の表面には、Si、Al及びCrからなる群から選択された少なくとも一種の酸化物を含有し、厚さが0.01μm以上0.5μm以下の外部酸化膜3が形成されている。地鉄1には、基部4及び外部酸化膜3が含まれている。外部酸化膜3は、酸化物層の一例である。
 地鉄1は、Si、Al及びCr:総含有量で2質量%以上6質量%以下、及びMn:0.1質量%以上1.5質量%以下を含有する。地鉄1のCの含有量は0.005質量%以下であり、地鉄1の残部はFe及び不可避的不純物からなる。
 次に、このような無方向性電磁鋼板の製造方法について説明する。図5は、無方向性電磁鋼板の製造方法の例を示すフローチャートである。
 本実施形態では、先ず、所定の温度に加熱した所定の組成のスラブ(鋼素材)の熱間圧延を行って熱延鋼帯を作製する(ステップS1)。次いで、酸洗によりスケールを除去し、熱延鋼帯の冷間圧延を行って冷延鋼帯を作製する(ステップS2)。冷間圧延としては、1回のみの冷間圧延を行ってもよく、間に中間焼鈍を挟む2回以上の冷間圧延を行ってもよい。なお、冷間圧延の前に、必要に応じて焼鈍を行ってもよい。
 ここで、スラブ(鋼素材)に含まれる成分について説明する。
 Cは鉄損を増加させかつ磁気時効の原因となる。従って、C含有量は0.005質量%以下とする。
 Si、Al、及びCrは無方向性電磁鋼板の固有抵抗を増大させて渦電流損失を低減する効果を呈する。また、Si、Al、及びCrは、詳細は後述するが、外部酸化膜3の形成に用いられる。但し、Si、Al及びCrの総含有量が2質量%未満であると、これらの効果が十分に得られない。従って、Si、Al及びCrの総含有量は2質量%以上とする。Si、Al及びCrの総含有量が6質量%超であると、冷間圧延等の冷間加工が困難となる。従って、Si、Al及びCrの総含有量は6質量%以下とする。
 Mnはスラブ加熱時に固溶Sを低減する効果を呈する。但し、Mn含有量が0.1質量%未満であると、この効果が十分に得られない。従って、Mn含有量は0.1質量%以上とする。その一方で、Mn含有量が1.5質量%超であると、磁気特性が低下する。従って、Mn含有量は1.5質量%以下とする。
 なお、S、N及びO、並びにこれらと結合して非磁性介在物を形成する可能性のあるTi、V、Zr、Nb等の不可避的不純物の含有量は極力少なくする。また、S、N及びOをスカベンジするために希土類元素及びCa等が含まれていてもよい。希土類元素及びCa等の好ましい含有量は、0.002質量%以上、0.01質量%以下である。
 SnやSbは、集合組織改善によりL方向特性改善効果があり、添加して本願発明による効果との相乗作用を期待することができる。
 冷間圧延(ステップS2)の後、所定の雰囲気で冷延鋼帯の仕上げ焼鈍を行い、表面に外部酸化膜3が形成された地鉄1を作製する(ステップS3)。この仕上げ焼鈍では、冷延鋼帯の温度を800℃以上1100℃以下とする。温度が800℃未満であると、外部酸化膜3を十分に形成することが困難である。一方、温度が1100℃超であると、コストが著しく上昇すると共に、安定した操業が困難になる。また、仕上げ焼鈍の雰囲気としては、上記の知見を考慮して、Si、Al及びCrの総含有量(X(質量%))に関し、水蒸気の水素に対する分圧比(PH2O/PH2)を0.005×X未満とする。この条件が満たされていれば、上述のように、所望の外部酸化膜を酸化物層3として形成することができる。この外部酸化膜3が張力付与型の絶縁被膜2と地鉄1との密着性の著しい向上に寄与する。そして、密着性の向上に伴って張力が効果的に作用し、L方向の磁気特性がより一層改善される。
 なお、外部酸化膜3の厚さが0.01μm未満であると、十分な密着性を得ることが困難である。従って、外部酸化膜3の厚さは0.01μm以上であることが望ましい。また、外部酸化膜3の厚さが0.5μm超である場合にも、十分な密着性を得ることが困難である。これは、外部酸化膜3が厚く形成されることによって地鉄1の基部4の表面に不必要な応力が生じるためであると推定される。従って、外部酸化膜3の厚さは0.5μm以下であること望ましい。外部酸化膜3の厚さは、例えば、仕上げ焼鈍の温度及び均熱時間を調整して制御することが可能である。即ち、均熱温度が高いほど、均熱時間が長いほど、外部酸化膜3が厚く形成される。
 外部酸化膜3を構成する物質は、Si、Al及びCrの各含有量に応じて決定され、外部酸化膜3の主要構成物は、例えばSiO、Al、Cr等である。例えば、冷延鋼帯中のAl及びCrが少ない場合、SiOが外部酸化膜3の主体となり、Al及びCrの総含有量が0.8質量%以上であると、Al、Cr又は(Al,Cr)が外部酸化膜3の主体となる。外部酸化膜3の主要構成物は特に限定されないが、主体がAl、Cr又は(Al,Cr)の場合に、特に高い密着性を得ることができる。従って、Al及びCrの総含有量は0.8質量%以上であることが望ましい。なお、外部酸化膜3がこれら主要構成物のみから構成されるのではなく、Al及びCrが少ない場合でも、Al及びCr等が含まれることがあり、Al及びCrの総含有量が0.8質量%超の場合でも、SiOが含まれ得る。
 仕上げ焼鈍及び酸化物層の形成(ステップS3)の後、地鉄1の表面上に張力付与型の絶縁被膜2を形成する(ステップS4)。絶縁被膜2の形成では、所定の塗布液の塗布及び焼き付けを行う。塗布液としては、方向性電磁鋼板に用いられている塗布液を使用することが可能である。例えば、リン酸塩及びコロイダルシリカを主体とする塗布液を用いることができる。リン酸塩及びコロイダルシリカの割合は特に限定されないが、コロイダルシリカの割合が4質量%~24質量%、リン酸塩の割合が5質量%~30質量%であることが好ましい。このような塗布液は、例えば特開昭48-39338号公報及び特開昭50-79442号公報等に記載されている。また、ほう酸及びアルミナゾルを主体とする塗布液を用いることもできる。アルミニウム及び硼素の成分比は特に限定されないが、それぞれの酸化物換算で酸化アルミニウムが50質量%~95質量%であることが好ましい。このような塗布液は、例えば特開平6-65754号公報及び特開平6-65755号公報に記載されている。
 また、張力付与型の絶縁被膜2の形成量は片面あたり1g/m以上6g/m以下とする。絶縁被膜2の形成量が1g/m未満であると、張力が十分に付与されず、圧延方向(L方向)の磁気特性を十分に改善することが困難である。一方、絶縁被膜2の形成量が6g/m超であると、占積率が低下する。
 また、焼き付け温度は800℃以上1100℃以下とすることが好ましい。焼き付け温度が800℃未満であると、張力が十分に付与されず、圧延方向(L方向)の磁気特性を十分に改善することが困難である。一方、焼き付け温度が1100℃超であると、コストが著しく上昇すると共に、安定した操業が困難になる。
 このような一連の処理により、実施形態に係る無方向性電磁鋼板を製造することができる。そして、この無方向性電磁鋼板では、外部酸化膜3が地鉄1と張力付与型の絶縁被膜2とを互いに強固に密着させる。このため、より高い張力が付与されて圧延方向(L方向)の磁気特性が更に改善されると共に、分割コアを形成するための各種加工(打ち抜き、かしめ等)を行った場合でも、絶縁被膜2の剥がれ等を抑制することができる。
 なお、この製造方法では、絶縁被膜2の形成(ステップS4)のための塗布液の塗布及び焼き付けを仕上げ焼鈍(ステップS3)後に行っているが、焼き付けを仕上げ焼鈍と並行して行ってもよい。即ち、図6に示すように、冷間圧延(ステップS2)の後に、冷延鋼帯に塗布液を塗布し(ステップS11)、塗布液の焼き付けを兼ねる仕上げ焼鈍(ステップS12)を行ってもよい。
 また、張力付与型の絶縁被膜2の形成後に、分割コア等のコアを形成する際の打ち抜き性を改善するために、張力付与型の絶縁被膜2上に、樹脂のみからなる被膜、及び/又は無機物及び樹脂から構成される被膜を形成してもよい。即ち、無方向性電磁鋼板の絶縁被膜の形成に通常用いられている塗布液の塗布及び焼き付けを行うことにより、打ち抜き性をより良好なものとすることができる。このような塗布液としては、クロム酸塩及びアクリル樹脂を含む塗布液を用いることができる。例えば、クロム酸水溶液に金属酸化物、金属水酸化物、金属炭酸塩を溶解させ、更にエマルジョンタイプの樹脂を添加した塗布液を用いることができる。このような塗布液は、例えば特公昭50-15013号公報に記載されている。また、リン酸塩及びアクリル樹脂を含む塗布液を用いることもできる。例えば、100質量部のリン酸塩に対して1質量部~300質量部の有機樹脂エマルジョンを添加した塗布液を用いることができる。このような塗布液は、例えば特開平6-330338号公報に記載されている。
 次に、本発明者らが行った実験について説明する。これらの実験における条件等は、本発明の実施可能性及び効果を確認するために採用した例であり、本発明は、これらの例に限定されるものではない。
 (第1の実験)
 先ず、表2に示す種々の成分を含有し、残部がFe及び不可避的不純物の鋼スラブ(鋼No.1~No.7)を熱間圧延して厚さが2.5mmの熱延鋼帯を作製した。次いで、900℃で1分間の熱延鋼帯の焼鈍(熱延板焼鈍)を行った。その後、酸洗し、冷間圧延を行って厚さが0.35mmの冷延鋼帯を作製した。
Figure JPOXMLDOC01-appb-T000002
 続いて、表3に示す条件で仕上げ焼鈍を行い、形成された外部酸化膜(酸化物層)の主要構成物質及び厚さを調査した。外部酸化膜の主要構成物質の同定は赤外高感度反射スペクトルにより行い、外部酸化膜の厚さは透過電子顕微鏡観察により調べた。
 次いで、表3に示す条件で塗布液の塗布及び焼き付けを行って張力付与型の絶縁被膜を形成した。表3中の「塗布液」の欄の「S」は、コロイダルシリカ、リン酸アルミニウム及びクロム酸を含む塗布液を用いたことを示し、「A」は、ほう酸及びアルミナゾルを含む塗布液を用いたことを示す。
 そして、絶縁被膜の密着性を評価した。この結果も表3に示す。表3中の「密着性」の欄の「×」は、直径が30mmの丸棒に無方向性電磁鋼板を巻き付けた場合に絶縁被膜が剥離したことを示す。また、「○」は、直径が30mmの丸棒に巻き付けた場合は剥離しなかったものの、直径が20mmの丸棒に巻き付けた場合に剥離したことを示す。「◎」は、直径が20mmの丸棒に巻き付けた場合でも剥離しなかったことを示す。
 また、L方向の鉄損改善率の評価も行った。この評価では、上記の方法で製造された無方向性電磁鋼板の鉄損値W(W10/50)を測定し、基準試料の鉄損値W(W10/50)と比較した。基準試料としては、張力付与型の絶縁被膜に代えて、特開平6-330338号公報に記載されたリン酸塩及びアクリル樹脂を含む塗布液の塗布及び焼き付けにより絶縁被膜を形成したものを用いた。このような評価を行ったのは、鉄損の絶対値は成分と工程条件に依存するためである。この結果も表3に示す。表3中の「L方向の鉄損改善率」の欄中の数値は、「(W-W)/W」で表される値である。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、本発明の条件が満たされる場合には、絶縁被膜の密着性及びL方向の磁気特性が極めて良好であった。また、外部酸化膜が形成されずに内部酸化層が形成された場合には、密着性が極めて低かった。
 (第2の実験)
 表2に示す鋼No.1、No.3及びNo.4の鋼スラブを熱間圧延して厚さが2.5mmの熱延鋼帯を作製した。次いで、900℃で1分間の熱延鋼帯の焼鈍(熱延板焼鈍)を行った。その後、酸洗し、冷間圧延を行って厚さが0.35mmの冷延鋼帯を作製した。
 続いて、表4に示す条件で塗布液の塗布を行った。次いで、表4に示す条件で塗布液の焼き付けを兼ねる仕上げ焼鈍を行った。つまり、第1の実験では、図5に示すフローチャートに従った処理を行ったのに対し、第2の実験では、図6に示すフローチャートに従った処理を行った。そして、第1の実験と同様にして、絶縁被膜の密着性及びL方向の鉄損改善率を評価した。この結果も表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、図6に示すフローチャートに従って、塗布液の焼き付けを兼ねる仕上げ焼鈍を行った場合にも、極めて良好な絶縁被膜の密着性及びL方向の磁気特性を得ることができた。
 本発明は、例えば、電磁鋼板製造産業及び電磁鋼板利用産業において利用することができる。

Claims (20)

  1.  地鉄と、
     前記地鉄の表面上に形成された1g/m以上6g/m以下の応力付与型の絶縁被膜と、
     を有し、
     前記地鉄は、
     Si、Al及びCr:総含有量で2質量%以上6質量%以下、及び
     Mn:0.1質量%以上1.5質量%以下、
     を含有し、
     前記地鉄のCの含有量が0.005質量%以下であり、
     前記地鉄の残部がFe及び不可避的不純物からなり、
     前記地鉄の表面に、Si、Al及びCrからなる群から選択された少なくとも一種の酸化物を含有し、厚さが0.01μm以上0.5μm以下の酸化物層が形成されていることを特徴とする無方向性電磁鋼板。
  2.  前記地鉄のAl及びCrの総含有量が0.8質量%以上であることを特徴とする請求項1に記載の無方向性電磁鋼板。
  3.  前記絶縁被膜が、リン酸塩及びコロイダルシリカを含む塗布液の焼き付けにより形成されていることを特徴とする請求項1に記載の無方向性電磁鋼板。
  4.  前記絶縁被膜が、ほう酸及びアルミナゾルを含む塗布液の焼き付けにより形成されていることを特徴とする請求項1に記載の無方向性電磁鋼板。
  5.  前記絶縁被膜が、リン酸塩及びコロイダルシリカを含む塗布液の焼き付けにより形成されていることを特徴とする請求項2に記載の無方向性電磁鋼板。
  6.  前記絶縁被膜が、ほう酸及びアルミナゾルを含む塗布液の焼き付けにより形成されていることを特徴とする請求項2に記載の無方向性電磁鋼板。
  7.  冷延鋼帯の仕上げ焼鈍を行う工程と、
     前記冷延鋼帯の表面に1g/m以上6g/m以下の張力付与型の絶縁被膜を形成する工程と、
     を有し、
     前記冷延鋼帯は、
     Si、Al及びCr:総含有量で2質量%以上6質量%以下、及び
     Mn:0.1質量%以上1.5質量%以下、
     を含有し、
     前記冷延鋼帯のCの含有量が0.005質量%以下であり、
     前記冷延鋼帯の残部がFe及び不可避的不純物からなり、
     前記仕上げ焼鈍を行う工程は、前記冷延鋼帯のSi及びAlの総含有量をX(質量%)と表したときに、水素に対する水蒸気の分圧比が0.005×X以下となる雰囲気中で前記冷延鋼帯の温度を800℃以上1100℃以下として、前記冷延鋼帯の表面に、Si及びAlからなる群から選択された少なくとも一種の酸化物を含有し、厚さが0.01μm以上0.5μm以下の酸化物層を形成する工程を有することを特徴とする無方向性電磁鋼板の製造方法。
  8.  前記絶縁被膜を形成する工程は、前記仕上げ焼鈍を行う工程の後に、
     前記冷延鋼帯の表面に塗布液を塗布する工程と、
     前記冷延鋼帯の温度を800℃以上1100℃以下として前記塗布液の焼き付けを行う工程と、
     を有することを特徴とする請求項7に記載の無方向性電磁鋼板の製造方法。
  9.  前記塗布液は、リン酸塩及びコロイダルシリカを含むことを特徴とする請求項8に記載の無方向性電磁鋼板の製造方法。
  10.  前記塗布液は、ほう酸及びアルミナゾルを含むことを特徴とする請求項8に記載の無方向性電磁鋼板の製造方法。
  11.  前記絶縁被膜を形成する工程は、
     前記仕上げ焼鈍を行う工程の前に前記冷延鋼帯の表面に塗布液を塗布する工程と、
     前記仕上げ焼鈍の際に前記塗布液の焼き付けを行う工程と、
     を有することを特徴とする請求項7に記載の無方向性電磁鋼板の製造方法。
  12.  前記塗布液は、リン酸塩及びコロイダルシリカを含むことを特徴とする請求項11に記載の無方向性電磁鋼板の製造方法。
  13.  前記塗布液は、ほう酸及びアルミナゾルを含むことを特徴とする請求項11に記載の無方向性電磁鋼板の製造方法。
  14.  前記冷延鋼帯のAl及びCrの総含有量が0.8質量%以上であることを特徴とする請求項7に記載の無方向性電磁鋼板の製造方法。
  15.  前記冷延鋼帯のAl及びCrの総含有量が0.8質量%以上であることを特徴とする請求項8に記載の無方向性電磁鋼板の製造方法。
  16.  前記冷延鋼帯のAl及びCrの総含有量が0.8質量%以上であることを特徴とする請求項9に記載の無方向性電磁鋼板の製造方法。
  17.  前記冷延鋼帯のAl及びCrの総含有量が0.8質量%以上であることを特徴とする請求項10に記載の無方向性電磁鋼板の製造方法。
  18.  前記冷延鋼帯のAl及びCrの総含有量が0.8質量%以上であることを特徴とする請求項11に記載の無方向性電磁鋼板の製造方法。
  19.  前記冷延鋼帯のAl及びCrの総含有量が0.8質量%以上であることを特徴とする請求項12に記載の無方向性電磁鋼板の製造方法。
  20.  前記冷延鋼帯のAl及びCrの総含有量が0.8質量%以上であることを特徴とする請求項13に記載の無方向性電磁鋼板の製造方法。
PCT/JP2011/053096 2010-02-18 2011-02-15 無方向性電磁鋼板及びその製造方法 WO2011102328A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US13/577,946 US9187830B2 (en) 2010-02-18 2011-02-15 Non-oriented electrical steel sheet and manufacturing method thereof
KR1020127021052A KR101263139B1 (ko) 2010-02-18 2011-02-15 무방향성 전자기 강판 및 그 제조 방법
EP11744614.6A EP2537958B1 (en) 2010-02-18 2011-02-15 Non-oriented electromagnetic steel sheet and process for production thereof
CN201180009924.2A CN102782185B (zh) 2010-02-18 2011-02-15 无方向性电磁钢板及其制造方法
JP2011527118A JP5073853B2 (ja) 2010-02-18 2011-02-15 無方向性電磁鋼板及びその製造方法
BR112012020219-7A BR112012020219B1 (pt) 2010-02-18 2011-02-15 chapa de aço elétrico não orientado e método de fabricação da mesma
US14/884,253 US9934894B2 (en) 2010-02-18 2015-10-15 Non-oriented electrical steel sheet and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010033937 2010-02-18
JP2010-033937 2010-02-18

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/577,946 A-371-Of-International US9187830B2 (en) 2010-02-18 2011-02-15 Non-oriented electrical steel sheet and manufacturing method thereof
US14/884,253 Division US9934894B2 (en) 2010-02-18 2015-10-15 Non-oriented electrical steel sheet and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2011102328A1 true WO2011102328A1 (ja) 2011-08-25

Family

ID=44482913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053096 WO2011102328A1 (ja) 2010-02-18 2011-02-15 無方向性電磁鋼板及びその製造方法

Country Status (8)

Country Link
US (2) US9187830B2 (ja)
EP (1) EP2537958B1 (ja)
JP (1) JP5073853B2 (ja)
KR (1) KR101263139B1 (ja)
CN (1) CN102782185B (ja)
BR (1) BR112012020219B1 (ja)
TW (1) TWI403614B (ja)
WO (1) WO2011102328A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011219795A (ja) * 2010-04-06 2011-11-04 Nippon Steel Corp 高周波鉄損の優れた無方向性電磁鋼板、及びその製造方法
WO2013179438A1 (ja) * 2012-05-31 2013-12-05 新日鐵住金株式会社 無方向性電磁鋼板
KR101379751B1 (ko) 2012-02-28 2014-03-31 청주대학교 산학협력단 합금입자화박막 및 그 제조방법
WO2019132355A1 (ko) * 2017-12-26 2019-07-04 주식회사 포스코 전기강판 접착 코팅 조성물, 전기강판 제품, 및 이의 제조방법
JP2022509865A (ja) * 2018-11-30 2022-01-24 ポスコ 電磁鋼板およびその製造方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2976349B1 (fr) * 2011-06-09 2018-03-30 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de realisation d'un element absorbeur de rayonnements solaires pour centrale solaire thermique a concentration.
TWI487795B (zh) * 2012-10-12 2015-06-11 China Steel Corp Non - directional electromagnetic steel sheet for compressor motor and its manufacturing method
TWI487796B (zh) * 2012-10-12 2015-06-11 China Steel Corp Non - directional electromagnetic strip annealing method
TWI504752B (zh) * 2012-10-12 2015-10-21 China Steel Corp Non - directional electromagnetic steel sheet with tissue - optimized and its manufacturing method
US11674212B2 (en) * 2014-03-28 2023-06-13 Kubota Corporation Cast product having alumina barrier layer
KR101596446B1 (ko) * 2014-08-07 2016-03-07 주식회사 포스코 포스테라이트 피막이 제거된 방향성 전기강판용 예비 코팅제 조성물, 이를 이용하여 제조된 방향성 전기강판 및 상기 방향성 전기강판의 제조방법
US20180251899A1 (en) * 2015-09-02 2018-09-06 Jfe Steel Corporation Insulative coating processing liquid and method for manufacturing metal having insulative coating
US10658885B2 (en) * 2015-11-27 2020-05-19 Nidec Corporation Motor and manufacturing method of motor
KR102230629B1 (ko) * 2016-10-18 2021-03-22 제이에프이 스틸 가부시키가이샤 방향성 전기 강판 및 방향성 전기 강판의 제조 방법
JP7068313B2 (ja) 2016-12-23 2022-05-16 ポスコ 電磁鋼板接着コーティング組成物、電磁鋼板製品、およびその製造方法
KR102259136B1 (ko) * 2017-01-16 2021-06-01 닛폰세이테츠 가부시키가이샤 무방향성 전자 강판 및 무방향성 전자 강판의 제조 방법
DE102017204522A1 (de) * 2017-03-17 2018-09-20 Voestalpine Stahl Gmbh Verfahren zur Herstellung von lackbeschichteten Elektroblechbändern und lackbeschichtetes Elektroblechband
JP6876280B2 (ja) * 2017-07-13 2021-05-26 日本製鉄株式会社 方向性電磁鋼板
JP6915690B2 (ja) * 2017-07-13 2021-08-04 日本製鉄株式会社 方向性電磁鋼板
KR102009393B1 (ko) * 2017-12-26 2019-08-09 주식회사 포스코 무방향성 전기강판 및 그 제조방법
WO2019155858A1 (ja) * 2018-02-06 2019-08-15 Jfeスチール株式会社 絶縁被膜付き電磁鋼板およびその製造方法
TWI665311B (zh) * 2018-10-26 2019-07-11 中國鋼鐵股份有限公司 無方向性電磁鋼捲及其製造方法
PL3913109T3 (pl) * 2019-01-16 2024-03-25 Nippon Steel Corporation Blacha cienka ze stali elektrotechnicznej o ziarnach zorientowanych i sposób jej wytwarzania
EP3913083A4 (en) * 2019-01-16 2022-10-05 Nippon Steel Corporation GRAIN-ORIENTED ELECTRICAL STEEL SHEET, INTERMEDIATE STEEL SHEET FOR GRAIN-ORIENTED ELECTRICAL STEEL SHEET, AND METHOD OF MANUFACTURING THEREOF
US20220074016A1 (en) * 2019-01-16 2022-03-10 Nippon Steel Corporation Grain-oriented electrical steel sheet and method for manufacturing same
KR20220028054A (ko) * 2019-07-31 2022-03-08 제이에프이 스틸 가부시키가이샤 무방향성 전기강판 및 그 제조 방법
KR102325005B1 (ko) * 2019-12-20 2021-11-11 주식회사 포스코 무방향성 전기강판 및 그 제조방법

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4839338A (ja) 1971-09-27 1973-06-09
JPS5015013B1 (ja) 1970-08-28 1975-06-02
JPS5079442A (ja) 1973-11-17 1975-06-27
JPS5655574A (en) 1979-10-15 1981-05-16 Nippon Steel Corp Manufacture of nondirectional magnetic steel sheet excellent in iron loss and magnetostriction characteristic
JPS58110679A (ja) * 1981-12-25 1983-07-01 Kawasaki Steel Corp 鉄損および磁歪特性の優れた無方向性電磁鋼板の製造方法
JPS60152681A (ja) * 1984-01-19 1985-08-10 Nippon Steel Corp 無方向性電磁鋼板の絶縁皮膜
JPH0665754A (ja) 1992-08-21 1994-03-08 Nippon Steel Corp 低鉄損方向性電磁鋼板の製造方法
JPH0665755A (ja) 1992-08-21 1994-03-08 Nippon Steel Corp 低鉄損方向性電磁鋼板
JPH06330338A (ja) 1993-05-21 1994-11-29 Nippon Steel Corp 被膜特性の極めて良好な無方向性電磁鋼板の製造方法
JPH11209891A (ja) * 1997-10-14 1999-08-03 Nippon Steel Corp 電磁鋼板の絶縁皮膜形成方法
JP2001140018A (ja) 1999-08-30 2001-05-22 Nippon Steel Corp 磁気特性に良好な界面形態を有する無方向性電磁鋼板及びその製造方法
JP2001279400A (ja) 2000-03-30 2001-10-10 Kawasaki Steel Corp 被膜密着性に優れた無方向性電磁鋼板およびその製造方法
JP2004332042A (ja) 2003-05-07 2004-11-25 Nippon Steel Corp 圧延方向とその板面内垂直方向磁気特性の優れた無方向性電磁鋼板の製造方法
JP2006265720A (ja) 2005-02-23 2006-10-05 Nippon Steel Corp 圧延方向の磁気特性に優れた無方向性電磁鋼板とその製造方法
JP2008031499A (ja) * 2006-07-26 2008-02-14 Nippon Steel Corp 皮膜密着性に優れ磁気特性が良好な複層皮膜を有する電磁鋼板及びその製造方法
JP2008260996A (ja) 2007-04-11 2008-10-30 Nippon Steel Corp 圧延方向の磁気特性に優れる無方向性電磁鋼板およびその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3840983A (en) 1973-04-30 1974-10-15 Ford Motor Co Method of manufacture of a dynamoelectric machine laminated armature structure
JPS5573819A (en) * 1978-11-22 1980-06-03 Nippon Steel Corp Production of cold rolled non-directional electromagnetic steel plate of superior high magnetic field iron loss
JPS60131976A (ja) 1983-12-19 1985-07-13 Kawasaki Steel Corp 鉄損特性に優れた一方向性けい素鋼板の製造方法
US5411808A (en) 1992-02-13 1995-05-02 Nippon Steel Corporation Oriented electrical steel sheet having low core loss and method of manufacturing same
JP2698003B2 (ja) 1992-08-25 1998-01-19 新日本製鐵株式会社 一方向性珪素鋼板の絶縁皮膜形成方法
KR0129687B1 (ko) 1993-05-21 1998-04-16 다나까 미노루 피막특성이 극히 우수한 절연 피막 처리제 및 이 처리제를 이용한 무방향성 전기강판의 제조방법
KR100240995B1 (ko) 1995-12-19 2000-03-02 이구택 절연피막의 밀착성이 우수한 무방향성 전기강판의 제조방법
EP0985743B8 (en) * 1997-10-14 2009-08-05 Nippon Steel Corporation Method of forming an insulating film on a magnetic steel sheet
JP3307872B2 (ja) * 1998-02-06 2002-07-24 新日本製鐵株式会社 無方向性電磁鋼板鋼板を用いた電気自動車用モータ及びその電磁鋼板の製造方法
US6713187B2 (en) 2001-04-23 2004-03-30 Nippon Steel Corporation Grain-oriented silicon steel sheet excellent in adhesiveness to tension-creating insulating coating films and method for producing the same
US7850792B2 (en) 2005-07-14 2010-12-14 Nippon Steel Corporation Grain-oriented electrical steel sheet having insulating film not containing chromium and insulating film agent of same

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5015013B1 (ja) 1970-08-28 1975-06-02
JPS4839338A (ja) 1971-09-27 1973-06-09
JPS5079442A (ja) 1973-11-17 1975-06-27
JPS5655574A (en) 1979-10-15 1981-05-16 Nippon Steel Corp Manufacture of nondirectional magnetic steel sheet excellent in iron loss and magnetostriction characteristic
JPS58110679A (ja) * 1981-12-25 1983-07-01 Kawasaki Steel Corp 鉄損および磁歪特性の優れた無方向性電磁鋼板の製造方法
JPS60152681A (ja) * 1984-01-19 1985-08-10 Nippon Steel Corp 無方向性電磁鋼板の絶縁皮膜
JPH0665754A (ja) 1992-08-21 1994-03-08 Nippon Steel Corp 低鉄損方向性電磁鋼板の製造方法
JPH0665755A (ja) 1992-08-21 1994-03-08 Nippon Steel Corp 低鉄損方向性電磁鋼板
JPH06330338A (ja) 1993-05-21 1994-11-29 Nippon Steel Corp 被膜特性の極めて良好な無方向性電磁鋼板の製造方法
JPH11209891A (ja) * 1997-10-14 1999-08-03 Nippon Steel Corp 電磁鋼板の絶縁皮膜形成方法
JP2001140018A (ja) 1999-08-30 2001-05-22 Nippon Steel Corp 磁気特性に良好な界面形態を有する無方向性電磁鋼板及びその製造方法
JP2001279400A (ja) 2000-03-30 2001-10-10 Kawasaki Steel Corp 被膜密着性に優れた無方向性電磁鋼板およびその製造方法
JP2004332042A (ja) 2003-05-07 2004-11-25 Nippon Steel Corp 圧延方向とその板面内垂直方向磁気特性の優れた無方向性電磁鋼板の製造方法
JP2006265720A (ja) 2005-02-23 2006-10-05 Nippon Steel Corp 圧延方向の磁気特性に優れた無方向性電磁鋼板とその製造方法
JP2008031499A (ja) * 2006-07-26 2008-02-14 Nippon Steel Corp 皮膜密着性に優れ磁気特性が良好な複層皮膜を有する電磁鋼板及びその製造方法
JP2008260996A (ja) 2007-04-11 2008-10-30 Nippon Steel Corp 圧延方向の磁気特性に優れる無方向性電磁鋼板およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2537958A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011219795A (ja) * 2010-04-06 2011-11-04 Nippon Steel Corp 高周波鉄損の優れた無方向性電磁鋼板、及びその製造方法
KR101379751B1 (ko) 2012-02-28 2014-03-31 청주대학교 산학협력단 합금입자화박막 및 그 제조방법
WO2013179438A1 (ja) * 2012-05-31 2013-12-05 新日鐵住金株式会社 無方向性電磁鋼板
CN103582713A (zh) * 2012-05-31 2014-02-12 新日铁住金株式会社 无方向性电磁钢板
EP2778246A4 (en) * 2012-05-31 2015-07-15 Nippon Steel & Sumitomo Metal Corp NON-ORIENTED ELECTROMAGNETIC STEEL SHEET
WO2019132355A1 (ko) * 2017-12-26 2019-07-04 주식회사 포스코 전기강판 접착 코팅 조성물, 전기강판 제품, 및 이의 제조방법
US11613673B2 (en) 2017-12-26 2023-03-28 Posco Co., Ltd Electrical steel sheet adhesive coating composition, electrical steel sheet product, and manufacturing method therefor
JP2022509865A (ja) * 2018-11-30 2022-01-24 ポスコ 電磁鋼板およびその製造方法
JP7329049B2 (ja) 2018-11-30 2023-08-17 ポスコ カンパニー リミテッド 電磁鋼板およびその製造方法

Also Published As

Publication number Publication date
CN102782185A (zh) 2012-11-14
EP2537958A4 (en) 2015-04-29
TWI403614B (zh) 2013-08-01
JP5073853B2 (ja) 2012-11-14
US20160035469A1 (en) 2016-02-04
KR101263139B1 (ko) 2013-05-15
CN102782185B (zh) 2014-05-28
US20120305140A1 (en) 2012-12-06
JPWO2011102328A1 (ja) 2013-06-17
US9187830B2 (en) 2015-11-17
EP2537958A1 (en) 2012-12-26
KR20120105051A (ko) 2012-09-24
EP2537958B1 (en) 2016-08-31
BR112012020219A2 (pt) 2017-01-24
BR112012020219B1 (pt) 2020-12-01
TW201204872A (en) 2012-02-01
US9934894B2 (en) 2018-04-03

Similar Documents

Publication Publication Date Title
JP5073853B2 (ja) 無方向性電磁鋼板及びその製造方法
JP6168173B2 (ja) 方向性電磁鋼板とその製造方法
JP5716315B2 (ja) 無方向性電磁鋼板およびその製造方法
EP3037568A1 (en) Grain-oriented electrical steel sheet and method for manufacturing the same
JP6658338B2 (ja) 占積率に優れる電磁鋼板およびその製造方法
WO2018135414A1 (ja) 無方向性電磁鋼板およびその製造方法
JPWO2018131710A1 (ja) 無方向性電磁鋼板及び無方向性電磁鋼板の製造方法
US20190024205A9 (en) Non-oriented electrical steel sheet and method of producing same
JP2012036459A (ja) 無方向性電磁鋼板およびその製造方法
JP5447167B2 (ja) 無方向性電磁鋼板およびその製造方法
JP4277432B2 (ja) 低磁歪二方向性電磁鋼板
JP5671872B2 (ja) 無方向性電磁鋼板およびその製造方法
JPH0888114A (ja) 無方向性電磁鋼板の製造方法
JP2007056303A (ja) 磁気特性に優れた無方向性電磁鋼板の製造方法
TW201928086A (zh) 複層型電磁鋼板
JP7331802B2 (ja) 無方向性電磁鋼板およびその製造方法
JP4810777B2 (ja) 方向性電磁鋼板およびその製造方法
WO2020149331A1 (ja) 方向性電磁鋼板およびその製造方法
JP5245323B2 (ja) エッチング加工用電磁鋼板
JP7355989B2 (ja) 方向性電磁鋼板
JP7368688B2 (ja) 方向性電磁鋼板
JP5200363B2 (ja) 方向性電磁鋼板およびその製造方法
JP2017197806A (ja) 高性能モータ用無方向性電磁鋼板
JPH11243005A (ja) 超低鉄損一方向性珪素鋼板およびその製造方法
JP2000096195A (ja) 電気自動車モータ用の無方向性電磁鋼板およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180009924.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011527118

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11744614

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 6326/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13577946

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127021052

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011744614

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011744614

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012020219

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012020219

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120813