TWI359509B - Semiconductor light emitting element, process for - Google Patents

Semiconductor light emitting element, process for Download PDF

Info

Publication number
TWI359509B
TWI359509B TW096113231A TW96113231A TWI359509B TW I359509 B TWI359509 B TW I359509B TW 096113231 A TW096113231 A TW 096113231A TW 96113231 A TW96113231 A TW 96113231A TW I359509 B TWI359509 B TW I359509B
Authority
TW
Taiwan
Prior art keywords
light
layer
izo film
emitting device
semiconductor light
Prior art date
Application number
TW096113231A
Other languages
English (en)
Other versions
TW200805714A (en
Inventor
Naoki Fukunaga
Hiroshi Osawa
Original Assignee
Showa Denko Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko Kk filed Critical Showa Denko Kk
Publication of TW200805714A publication Critical patent/TW200805714A/zh
Application granted granted Critical
Publication of TWI359509B publication Critical patent/TWI359509B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Led Device Packages (AREA)

Description

1359509 九、發明說明 【發明所屬之技術領域】 本發明是關於半導體發光元件、使用該半導體發光元 件之燈’尤其是關於紫外光的發光輸出(p〇)優異之半導 體發光元件、半導體發光元件之製造方法、及使用該半導 體發光元件之燈。 本提案係根據2006年4月14日,日本提案之專利 ^ 2006_ 112012號’主張優先權,此處則是沿用該內容。 【先前技術】 近年,著眼於氮化鎵系化合物半導體發光元件,以作 爲短波長光發光元件。氮化鎵系化合物半導體發光元件, 首推藍寶石單結晶,藉由以金屬有機化學氣相沈積法( MOCVD法)或分子束磊晶法(MBE法)等,將氮化鎵系 化合物半導體,形成在由各種氧化物或III - V族化合物 Φ 所組成的基板上來獲得。 這種氮化鎵系化合物半導體發光元件的缺陷,係由於 電流往橫向的擴散很少,只對電極正下方的半導體注入電 流,發光層所發出的光受到電極遮蔽而無法取出到外部。 爲了要解決該缺陷,通常是使用透明電極來作爲氮化鎵系 化合物半導體發光元件的正極,穿過正極來取出光。 透明電極則是採用Ni/Au或ITO等眾知的透明導電 材料。 近年,透明電極,一般是利用以透光性優異之Ιη203 -5- 1359509 或ZnO等爲主成分之氧化物系的材料。透明電極的材料最 常被利用之ΙΤΟ (銦錫氧化物),係在ln2〇3中摻入5~20 質量%的Sn02,可以獲得2χ10·4 Ω cm程度的低電阻率的 透明導電膜。 ITO膜中,由於能帶隙(band gap)爲3 eV以上,故 呈現對於可視光波長領域的光很高的透過率(>90%)。 然而,ITO膜中,由於從400 nm附近以下的波長領域吸 收到膜中的光變多,故400 nm以下的波長領域會急遽減 少透過率。因而,使用ITO膜來作爲發出紫外領域之波長 的光之發光元件的電極的情況,會有發光輸出變低的問題 〇 爲了要解決這個問題,提案:具有防止紫外線吸收到 透明電極,在紫外線到達透明電極之前就轉換成可視光的 構造之發光元件(例如,參考日本專利文獻1 )。 另外,爲了要降低透光性電極的吸光度,提案:具備 有光射出用的貫穿孔、及光反射率很高之黏接性金屬層之 倒裝晶片型的發光元件(例如,參考日本專利文獻2)。 專利文獻1 :日本專利特開平5 — 299 1 75號公報 專利文獻2:日本專利特開2005 - 123501號公報 【發明內容】 <發明所欲解決之課題> 然而,日本專利文獻1中,因在光到達透明電極之前 就將紫外光轉換成可視光,所以無法充分達到紫外光的發 1359509 光輸出。 另外,即使是採用日本專利文獻2中所述的技術的情 況,仍因透光性電極由ITO膜所組成,所以紫外領域之波 長的光會被ITO膜所吸收,故無法充分達到紫外光的發光 輸出。 本發明係鑑於上的問題點而提案,其目的是要解決上 述的問題點,提供可以有效率地輸出紫外光之半導體發光 Φ 元件及半導體發光元件之製造方法。 另外,本發明的目的是提供使用可以有效率地輸出紫 外光之半導體發光元件的具有優異特性之燈, <用以解決課題之手段> 本發明者爲了要解決上述問題而經不斷檢討的結果, 完成了本發明。 本發明如以下所述:
(1) 一種半導體發光元件,其特徵爲:具備有含有P 型半導體層’至少具有紫外區域的發光波長之半導體層、 及被設置在前述P型半導體層上之透光性電極,前述透光 性電極含有被結晶化之IZO (銦鋅氧化物)膜。 (2) 如同(1)項所述的半導體發光元件,其中,至 少具有3 5 0 nm〜420 nm的發光波長。 (3 )如同(1 )或(2 )項所述的半導體發光元件, 其中’前述IZO膜的厚度爲35 nm〜ΙΟμιη。 (4)如同(3)項所述的半導體發光元件,其中,前 1359509 述IZO膜的厚度爲100 ηιη~1μπι » (5) 如同(1)至(4)項中任一項所述的半導體發 光元件,其中,在前述IZ0膜上形成有保護層》 (6) 如同(1)至(5)項中任一項所述的半導體發 光元件,其中,前述半導體層爲氮化鎵系化合物半導體層 〇 (7) —種半導體發光元件之製造方法,是具備有含 有p型半導體層,至少具有紫外區域的發光波長之半導體 層、及被設置在前述P型半導體層上,含有被結晶化的 IZO膜之透光性電極的半導體發光元件之製造方法,其特 徵爲,具備有:將非晶態的IZO膜形成在前述半導體層上 之步驟、及進行500°c〜900°C的退火處理,將前述非晶態 的IZO膜變成被結晶化的IZO膜之退火步驟。 (8) 如同(7)項所述的半導體發光元件之製造方法 ,其中,具備有:進行前述退火步驟之前,將前述非晶態 的IZO膜予以圖案處理的步驟》 (9) 如同(7)或(8)項所述的半導體發光元件之 製造方法’其中,前述退火處理係在不含〇2的雰圍中進 行。 (10) 如同(9)項所述的半導體發光元件之製造方 法’其中,前述退火處理係在不含N2的雰圍中或是n2和 H2的混合氣體雰圍中進行。 (11) 如同(7)至(10)項中任—項所述的半導體 發光兀件之製造方法,其中,前述IZO膜的厚度爲35 1359509 nm 〜ΙΟμπι 〇 (12) 如同(η)項所述的半導體發光元件之製造方 法,其中,前述ΙΖΟ膜的厚度爲100 nm~bm。 (13) 如同(7)至(12)項中任—項所述的半導體 發光元件之製造方法,其中,具備有:前述退火步驟之後 ’將保護層層積在前述ΙΖΟ膜上的步驟》 (14) —種燈,其特徵爲:採用(1)至(6)項中任 Φ 一項所述的半導體發光元件。 [發明效果] 本發明的半導體發光元件,因含有透光性電極被結晶 化之ΙΖΟ (銦鋅氧化物)膜,所以具備有紫外領域的波長 之光的透過率很高之透光性電極。更詳細上,結晶化的 ΙΖΟ膜與ΙΤΟ膜作比較,具有屬於紫外領域之400 nm附 近的波長領域之光的透過性較優異。因此,本發明的半導 ^ 體發光元件則是受到透光性電極所吸收之紫外領域波長的 光很少,可以有效地輸出紫外光,且紫外光的發光輸出很 大。 另外,依據本發明的半導體發光元件之製造方法,在 P型半導體層上形成非晶態的IZO膜之後,以500°c ~900 °C進行退火處理,以此方式就可以實現具備有含有被結晶 化的IZO膜之透光性電極,又能夠有效率地輸出紫外光之 半導體發光元件。 另外,使用本發明的半導體發光元件來構成燈,以獲 1359509 得能夠有效率地輸出紫外光之發光特性優異之燈》 【實施方式】 以下,參考圖面來說明本發明的半導體發光元件、半 導體發光元件之製造方法及使用半導體發光元件之燈的實 施形態。第1圖爲以模式表示本發明的半導體發光元件的 一個例子之剖面圖。第2圖爲以模式表示第1圖所示的半 導體發光元件之平面圖。 第1圖所示的半導體發光元件1爲面向上型的發光元 件’其槪略構成則是在基板11上,層積:構成至少具有 紫外領域的發光波長之氮化鎵系化合物半導體層之GaN層 (η型半導體層)12、及發光層13、及p型GaN層(p型 半導體層)14,再在氮化鎵系化合物半導體層的p型GaN 層14上’層積:由被結晶化的IZO膜所組成之正極1 5 ( 透光性電極)。在正極15上的一部分形成有正極焊墊16 。另外’還在η型GaN層12上的負極形成區域形成有焊 墊的負極17。 以下’詳述本發明的半導體發光元件之各構成。 「基板」 基板11並沒有任何的限制,可以採用:藍寶石單結 晶(Al2〇3 ; A面、c面、Μ面、R面)、尖晶石單結晶( MgAl204 ) 、ΖηΟ單結晶、LiA102單結晶、LiGa02單結晶 、MgO單結晶等的氧化物單結晶;Si單結晶、siC單結晶 -10- 1359509 、GaAs單結晶、AIN單結晶、GaN單結晶以及ZrB2等的 硼化物單結晶等眾知的基板材料。 此外,基板的面方位並沒有特別的限定。另外,基板 11可以是軸上基板(on-axis substrate),也可以是有偏 角的基板。 「氮化鎵系化合物半導體層」
η型GaN層12、發光層13以及p型GaN層(p型半 導體層)14爲眾知的既有的各種構造,這些眾知的各種構 造並沒有任何的限制都可以使用。尤其,p型半導體層採 用載子濃度爲一般濃度的半導體層即可,即使是較低的載 子濃度,例如爲lxl 〇17 cnT3程度的p型GaN層的情況, 仍可使用構成本發明的被結晶化之IZO膜的正極15。 氮化鎵系化合物半導體層半導體,已知有例如以一般 式 AlxInyGai-x-yN (0$χ< 1,〇Sy< 1,0$x+y< 1)所 表示之各種組成的半導體,構成本發明的n型GaN層、發 光層以及P型GaN層之氮化鎵系化合物半導體層半導體, 也是沒有任何的限制,可以使用以一般式AlxInyGai-x-yN (0各x<l,0Sy<l,0Sx+y<l)所表示之各種組成的 半導體。 這些氮化鎵系化合物半導體層半導體的成長方法並沒 有特別的限定,可以利用MOCVD (金屬有機化學氣相沈 積法)、HVPE (氫化物氣相磊晶法)、MBE (分子束磊 晶法)等既有的令ΙΠ族氮化物半導體成長之全部的方法 -11 - 1359509 。基於膜厚控制性' 量產性的觀點,成長方法最好是 MOCVD 法。 MOCVD法則是採用氫氣(h2)或是氮氣(n2)來作 爲載體氣體,採用三甲基鎵(TMG)或是三乙基鎵(TEG )來作爲屬於III族原料的Ga源,採用三甲基鋁(TM A ) 或是三乙基鋁(TEG)來作爲A1源,採用三甲基銦(TMI )或是三乙基銦(TEI)來作爲in源,採用氨(NH3)、 聯氨(hydrazine; N2H4)等來作爲屬於V族原料的N源 。另外,關於摻雜物,η型是採用單矽烷(monosiUne: SiH4)或是雙矽烷(disilane; Si2H6)來作爲Si原料,採 用鍺烷氣體(GeH4 )來作爲Ge原料,p型則是採用例如 二茂基鎂(bis-cyclopentadienyl magnesium ( Cp2Mg )) 或是二乙茂基錶(bis-ethylcycropentadienyl magnesium ((EtCp) 2Mg))來作爲Mg原料。 由這種氮化鎵系化合物半導體層半導體所組成之氮化 鎵系化合物半導體層半導體層的一個例子,可以列舉出: 具有第3圖所示的層積體構造之氮化鎵系化合物半導體層 半導體層20。第3圖所示的氮化鎵系化合物半導體層20 係在由藍寶石所組成的基板2 1上’層積由A1N所組成之 緩衝層(未圖示)後’依序將GaN基底層(η型半導體層 )22、Il型GaN接觸層(n型半導體層)23、rl型AlGaN 包覆層(η型半導體層)24、由In GaN所組成的發光層25 、?型AlGaN包覆層(p型半導體層)26、p型GaN接觸 層(P型半導體層)層積在一起。 -12- 1359509 「正極(IZO膜)」 如第1圖所示,在P型GaN層14上形成有被結晶化 的IZO膜來作爲正極15。IZO膜係介於金屬層等形成在p 型GaN層14的正上方或者形成在p型GaN層14的上面 。在正極15與p型GaN層14之間夾著金屬層的情況,可 以讓半導體發光元件1的驅動電壓(Vf)減低,不過會減 φ 少透過率而降低輸出。因此,依照半導體發光元件1的用 途等來取得與驅動電壓(Vf)的輸出平衡,適當判斷是否 要在正極I5與P型GaN層14之間夾著金屬層等。此處的 金屬層最好是採用由Ni或Ni氧化物、pt、Pd、Ru、Rh、 R e、O s等所組成的金屬。 另外’ IZO膜最好是使用電阻率最低的組成。例如, IZO膜中的ZnO濃度爲5~15質量%的範圍較佳,若爲1〇 質量%則更理想。
另外,IZO膜的膜厚,由於要有低電阻率又要有高透 過率,最好是35 nm~l 0000 nm ( ΙΟμηι )的範圍,再更好 是100 nm〜Ιμιη的範圍。進而,基於生成成本的觀點, ΙΖΟ膜的膜厚最好是ΙΟΟΟηιη(Ιμηι)以下。 其次,舉例來說明ΙΖΟ膜的形成方法。 首先’在Ρ型GaN層14上的全範圍,形成非晶態的 IZO膜。IZO膜的形成方法’若爲能夠形成非晶態的IZ0 膜的方法的話,也可以採用形成薄膜所使用之眾知的任何 一種方法。例如’可以採用濺鍍法或真空蒸鍍法等的方法 -13- 1359509 來進行成膜,不過與真空蒸鍍法作比較,採用成膜時所產 生的粒子或塵埃等較少的濺鍍法則更理想。另外,採用濺 鍍法的情況,能夠以RF磁控管濺鍍法來將In2〇3標靶及 ΖηΟ標靶予以公轉進行成膜,但爲了要更提高成膜率, ΙΖΟ標靶以DC磁控管濺鍍法來進行成膜較佳。此外,爲 了要減輕P型GaN層14受到電漿的破壞,濺鍍的放電輸 出最好是1000W以下。 以此方式成膜之非晶態的IZO膜係屬於p型GaN層 14上的形成正極15的區域之正極形成區域除外的區域, 採用眾知的光蝕刻法和蝕刻進行圖案處理,如第2圖所示 ,成爲只形成在正極形成區域的狀態。 IZO膜的圖案處理最好是在進行後述的退火步驟之前 就進行。經由退火步驟,非晶態的IZO膜變成被結晶化的 IZO膜,故與非晶態的IZO膜作比較,蝕刻變困難。對於 此點,退火步驟前的IZO膜爲非晶態,故採用眾知的蝕刻 液很容易就能夠有精度良好的蝕刻。另外,IZO膜的蝕刻 也可以用乾式蝕刻裝置來進行。 本實施形態中,IZO膜進行圖案處理過後,以500°C 〜900°c來進行退火處理,藉由此方式,將非晶態的IZO膜 變成被結晶化的IZO膜(退火步驟)。藉由成爲被結晶化 的IZO膜,可以使紫外領域(3 5 0 nm~420 nm )之波長的 光透過率提高。雖藉由成爲被結晶化的IZO膜來使紫外領 域的透過率變高的機構尙未明確,但被認爲經由結晶化會 使IZO膜的能帶隙(band gap)變大。 -14 - 1359509
另外,IZO膜的退火處理最好是在不含〇2的雰圍中 進行,不含〇2的雰圍,可以列舉出:N2雰圍等的惰性氣 體氛圍或N2等的惰性氣體與h2的混合氣體雰圍,最好是 N2與h2的混合氣雰圍。IZO膜的退火處理在n2#圍中或 是N2與h2的混合氣雰圍中進行,就會使IZO膜結晶化, 並且能夠有效地減少IZO膜的薄片電阻。尤其,欲使IZO 膜的薄片電阻變低的話,在1^2與H2的混合氣雰圍中進行 IZO膜的退火處理較佳。混合氣體雰圍中的N2與H2的比 率,最好是100 : 1〜1 : 1〇〇。 對於此點,例如在含有〇2的雰圍中進行退火處理, 就會增加IZ0膜的薄片電阻。在含有〇2的雰圍中進行退 火處理,會上升IZO膜的薄片電p且的原因,被認爲是IZO 膜中的氧空洞減少之故。IZO膜呈現導電性的原因係氧空 洞存在於IZ0膜中而令成爲載子的電子產生之故。因此, 被認爲:經過在含有02的雰圍中進行退火處理,屬於載 子電子的產生源之氧空洞會減少,IZO膜的載子濃度會減 低,薄片電阻會變高。 另外,IZO膜的退火處理溫度設定爲500°C~90(TC。 以不到5〇0〇C的溫度進行退火處理的話,會有IZO膜無法 充分結晶化之虞,還會IZO膜在紫外領域的透過率無法達 到十分高的情況。另外,以超過900。(:的溫度進行退火處 理的話’會有位於IZO膜下方的半導體層劣化之虞》 此外,本實施形態中,爲了要讓IZO膜結晶化而採用 退火處理’不過本發明的半導體發光元件,若爲可以讓 -15- 1359509 IZO膜結晶化的話,也可以採用任何一種的方法,例如, 採用RTA退火爐的方法、進行雷射退火的方法、進行電 子線照射的方法等的方法皆可。 另外*由被結晶化的IZO膜所組成之正極1 5,不僅 會有效地提高持有紫外領域( 350 nm〜42 0 nm )的中心波 長之半導體發光元件的光取出效率,例如是中心波長爲 45 0 nm程度之藍色領域的半導體發光元件,若是具有350 nm〜4 2 0 nm地發光領域的話,仍可以提高光取出效率。 另外,與p型半導體層14或正極焊墊16的密合性, 係經退火處理被結晶化的IZO膜比非晶質的IZO膜還要更 良好,故可以防止半導體發光元件在製造步驟等因剝離造 成的收率(yield)降低。另外,理想之被結晶化的IZO膜 ,由於與空氣中的水分很少起反應,故長時間的耐久試驗 也很少特性劣化。 「負極」 負極17係在IZO膜經退火處理之後,如第1圖所示 ,設置在將P型半導體層14、發光層13以及η型GaN層 12的一部分以蝕刻除去而露出的η型GaN層12上。負極 1 7已知有例如由Ti / Au所組成的負極等的各種組成和構 造,這些已知的負極沒有任何的限制都可以採用。 「正極焊墊」 在屬於正極15之IZO膜層上的一部分,設置用來與 -16- 1359509 電路基板或導線框等電連接之正極焊墊16。正極焊墊16 已知有使用Au、Al、Ni及Cu等的材料之各種構造,這些 已知的材料、構造之正極焊墊沒有任何的限制都可以使用 〇 另外,正極焊墊16的厚度最好是在1〇〇~1〇〇〇 nm的 範圍內。另外,焊墊的特性上,厚度很大會使焊率變高, 故正極焊墊16的厚度爲300 nm以上則更加理想。進而, φ 基於製造成本的觀點,最好是500 nm以下。 「保護層」 爲了要防止IZO膜的氧化,最好是以覆蓋正極焊墊 16的形成區域以外之IZO膜上的全部區域的方式,形成 保護層(未圖示)。該保護層最好是採用透光性優異的材 料。爲了要防止P型半導體層與η型半導體層的洩漏,最 好是以具有絕緣性的材料來形成。構成保護層的材料最好 Φ 是例如採用Si02或Α1203等。另外,保護層的膜厚若爲可 以防止ΙΖΟ膜的氧化,且透光性優異的膜厚即可,具體上 ,例如爲20 nm~500 nm的膜厚較佳。 「燈」 以上,說明過之本發明的半導體發光元件,例如可以 經由該業者所眾知的手段,設置透明外殼來構成燈。另外 ,本發明的半導體發光元件與具有螢光體的外殼組合在一 起,就可以構成白色的燈。 -17- 1359509 另外,本發明的半導體發光元件,採用習知的方法並 沒有任何的限制就可以構成來作爲LED燈。燈可以應用 於一般用途的砲彈型、攜帶之背光用途的側視型、用於顯 示器的俯視型等任何的用途》 第4圖爲用來說明本發明的燈的一個例子之槪略構成 圖。第4圖所示的燈30係呈砲彈型來安裝面向上型之本 發明的半導體發光元件。第4圖所示的燈30係在2個框 架31、32的其中一方,藉由樹脂等來連接第1圖所示的 半導體發光元件,正極焊墊16和負極17用由金等的材質 所組成的線3 3、3 4來分別接合到框架3 1、3 2上。另外, 如第4圖所示,在半導體發光元件1的周邊,形成有由透 明樹脂所組成的模型3 5。 此外,本發明並不侷限於上述過的實施形態。例如, 本發明的半導體發光元件上所具備之半導體層,並不侷限 於上述過的氮化鎵系化合物半導體層,若爲至少要有紫外 領域的發光波長的發光元件,則也可以採用本發明的發光 元件。 (實驗例1 ) 「IZO膜進行退火處理的雰圍」 依照以下的方式,檢驗IZO膜進行退火處理的雰圍與 退火處理後之IZO膜的薄片電阻的關係。 即是在玻璃基板上形成非晶態的IZO膜(250 nm ), 所獲得的IZO膜,在以300°C〜600°C的各溫度,在N2的 雰圍中,進行退火處理的情況、及在N2中含有2 5%的02 -18- 1359509 之混合 1氣體雰圍中,進行退火處理的情況下’測定薄片電 阻。該結果顯示在表1中。 <表1> 溫度 薄片電阻(Ω/sq.) 含有〇2之N2雰圍 N2雰圍 300°C 15 13 400°C 150 13 500°C 200 12 600°C 7x105 9
表1中得知:在N2中含有02之混合氣體雰圍中進行 退火處理的情況,退火溫度愈高則薄片電阻愈高。相對於 此,得知:在不含〇2之混合氣體雰圍中進行退火處理的 情況,退火溫度愈高則薄片電阻愈減少。此外,在退火處 理前之非晶態的厚度250 rim之IZO膜的薄片電阻爲15 Ω / sq.。
(實驗例2 ) 「IZO膜的退火處理溫度」 依照以下的方式,檢驗IZO膜的退火處理溫度與IZO 膜的結晶化的關係。 即是在玻璃基板上形成非晶態的IZO膜(250 nm ), 所獲得的未經退火處理之IZO膜,以X線回折(XRD )法 來進行測定。另外,形成在玻璃基板上之非晶態的IZO膜 ,以300°C〜800°C的各溫度,在心的雰圍中,進行1分鐘 的退火處理。退火處理過後的IZO膜,以X線回折(XRD )法來進行測定。該結果顯示在第5圖中。 -19- 1359509 第5圖爲呈現IZO膜的X線回折(XRD )結果之圖形 ,橫軸表示繞射角(20 (度)),縱軸表示解析強度(s )° 如第5圖所示,IZO膜以600°C以上的退火處理溫度 來進行退火處理的情況,主要是檢測由Ιη203所組成之X 線的峰値,得知已結晶化。另外,IZO膜以400 °c以下的 退火處理溫度進行退火處理的情況,得知尙未結晶化。 (實驗例3 ) 「IZO膜的透過率」 依照以下的方式,檢驗IZO膜的退火處理溫度與退火 處理後之IZO膜的溫度的關係。 即是將實驗例2所獲得之未經退火處理過的IZO膜和 以300°C、600°C進行退火處理過後的IZO膜之透過率予 以測定出來。該結果顯示在第6圖中。 此外,測定IZO膜的透過率,使用日本島津製作所公 司製造的紫外可視光光度計UV— 2450。另外,透過率的 値係將只針對玻璃基板測定透過率所獲得之光透過對照値 予以減去來算出。 第6圖爲呈現IZO膜的透過率之圖形,橫軸表示波長 (nm),縱軸表示透過率(%)。 由第6圖得知:IZO膜以600°C的退火處理溫度進行 退火處理的情況,與未經退火處理過的IZO膜作比較,紫 外領域( 350 nm〜420 nm)的透過率變高20~30%。 -20- 1359509
〔實施例1〕(氮化鎵系化合物半導體層的製造) 以以下所示的方式,製造第3圖所示的氮化鎵系化合 物半導體層20。即是在由藍寶石的c面((0001 )晶面) 所組成之基板21上,介於由A1N所組成之緩衝層(未圖 示),將未摻雜之GaN基底層(層厚= 2μιη) 22、摻Si 的η型GaN接觸層(層厚= 2μιη,載子濃度=lxl019cnT3 )23、慘 Si 的 η 型 Al〇.〇7Ga〇.93N 包覆層(層厚=12.5 nm ,載子濃度=lxl〇18 cm·3 ) 24、由6層的摻GaN障壁層( 層厚=14.0 nm,載子濃度=lxl〇18 cnT3)和5層的未摻 雜之Ino.2oGao.8QN的井層(層厚=2.5 nm )所組成之多重 量子構造的發光層25、摻Mg的p型AU.07Ga0.93N包覆層 (層厚=10 nm) 26、摻Mg的p型GaN接觸層(層厚= 100 rim) 27依序予以層積在一起。此外,上述氮化鎵系化 合物半導體層20之層積構造體的各構成層22〜27則是以 減壓MOCVD手段來予以成長。
(半導體發光元件的製造) 其次,利用獲得之第3圖所示的氮化鎵系化合物半導 體層20,製作氮化鎵系化合物半導體發光元件。首先,使 用HF和HC1,將氮化鎵系化合物半導體層20之p型GaN 接觸層27的表面予以洗淨,再以DC磁控管濺鍍,在該p 型GaN接觸層27上,形成膜厚220 nm的IZO膜。 濺鏟IZO膜進行濺鍍採用 ZnO濃度爲10質量%的 IZO標靶。另外,IZO成膜係導入70 seem的Ar氣體,在 -21 - 1359509 壓力大約0.3 Pa下進行。 以上述的方法所形成之IZO膜,在400 nm附近的波 長領域大致有60%的透過率,薄片電阻則爲17Q/sq·。 另外,以上述的方法所形成之剛成膜之後的IZO膜,以X 線回折(XRD )法進行測定,確認爲非晶質。 之後,採用光蝕法和乾式蝕刻,將非晶態的IZO膜予 以圖案處理,成爲只在p型GaN接觸層27上的正極形成 區域形成IZO膜的狀態。非晶質的IZO膜係以大約40 nm / min的蝕刻速度來進行蝕刻。 IZO膜經圖案處理過後,使用RTA退火爐,以600°C ,在N2氣體雰圍中進行1分鐘的退火處理。 退火處理後的IZO膜在400 nm附近的波長領域有很 高的透光性,400 nm附近的波長領域之透光率爲90%以上 。另外,IZO膜的薄片電阻則爲14Ω / sq. »另外,退火 處理後進行XRD的測定,主要是檢測由Ιη203所組成之X 線的峰値,確認IZO膜已結晶化。 對形成η型電極的區域施予乾式蝕刻,只限於該區 域,讓摻Si之η型GaN接觸層23的表面露出。之後,以 真空蒸鍍法,將由Cr所組成的第1層(層厚=40 nm)、 由Ti所組成的第2層(層厚=100 nm)、由Au所組成的 第3層(層厚= 400 nm),依序層積在IZO膜層(正極) 上的一部分和摻Si之η型GaN接觸層23上,分別形成正 極焊墊和負極,形成正極焊墊和負極之後,使用鑽石微粒 等的磨石顆粒來硏磨由藍寶石所組成之基板11的背面, -22- 1359509 最後精密處理成鏡面。 之後,切割層積構造體,分割成350μπι角的正方形知 各別的晶片,獲得半導體發光元件。 (驅動電壓(Vf)和發光輸出(ρ〇 )的測定) 將以此方式所獲得之半導體發光元件(晶片),載置 在引導線架上,用金(Au)線來與導線架連結。然後,利 # 用探針來進行通電’測定半導體發光元件的電流施加値20 mA之順向電壓(驅動電壓Vf)。另外,利用一般的積分 球來測定發光輸出(P〇)和發光波長。 發光面的發光分布確認了正極的全面都會發光。另外 ,半導體發光元件具有400 nm附近的波長領域之發光波 長,Vf 爲 3.3V,Po 則爲 15 mW。 〔實施例2〕
除了使用退火處理的氣體中混合了 N2和H2之混合氣 體之外,都以與實施例1同樣方式,製作半導體發光元件 。此外,剛退火過後的IZO膜,在400 nm附近的波長領 域之透過率爲90%以上,薄片電阻爲1 1 Q / sq.。另外, 獲得的半導體發光元件具有400 nm附近的波長領域之發 光波長,Vf爲3.25V,Po則爲l5mW。 〔比較例1〕 除了退火處理的溫度以300 °C來進行之外,都以與實 -23- 1359509 施例1同樣方式,製作半導體發光元件。此外,退火處理 後的IZO膜,在400 nm附近的波長領域之透過率大約爲 70%,薄片電阻爲16 Ω / sq.。另外,獲得的半導體發光元 件具有400 nm附近的波長領域之發光波長,Vf爲3.3V, P 〇 則爲 1 2 m W。 [比較例2〕 與實施例2同樣,以濺鍍法,將25 0 nm的IZO膜形 成在氮化鎵系化合物半導體層20的p型GaN接觸層27上 。之後,用FeCl3與HC1的混合液,將非晶態的IZO膜予 以濕式蝕刻,成爲只在P型GaN接觸層27上的正極形成 區域形成有IZO膜的狀態。IZO膜經圖案處理過後,以 600°C,在含有25%02的N2氣體雰圍中進行1分鐘的退火 處理,接著以500°C,在N2氣體雰圍中進行1分鐘的退火 處理之2階段的退火處理。此外,2次退火處理後的IZO 膜,400 nm附近的波長領域之透過率大約爲8 0%,薄片電 阻爲 15Ω / sq.。 另外,2次退火處埋後,以與實施例1同樣的方式, 製作半導體發光元件。獲得的半導體發光元件具有400 nm 附近的波長領域之發光波長,Vf爲3.3V,Po則爲13 mW 〇 由實施例和實施例2、比較例1和比較例2的結果所 得的結論:構成正極之退火處理後之IZO膜的透過率,係 實施例和實施例2的半導體發光元件大於比較例1和比較 -24- 1359509 例2的半導體發光元件,薄片電阻則很低。 另外,得到的結論:紫外領域的光之發光輸出,係實 施係例和實施例2的半導體發光元件優於比較例1和比較 例2的半導體發光元件。 [產業上的可利用性] 本發明可以應用於半導體發光元件、使用該半導體發 φ 光元件之燈,尤其,可以應用於紫外光的發光輸出(Po) 優異之半導體發光元件、半導體發光元件之製造方法、以 及使用該半導體發光元件之燈》 【圖式簡單說明】 第1圖爲以模式表示本發明的半導體發光元件的一個 例子之剖面圖。 第2圖爲以模式表示第1圖所示的半導體發光元件之
第3圖爲以模式表示氮化鎵系化合物半導體層的一個 例子之剖面圖。 第4圖爲以模式說明使用本發明的半導體發光元件所 構成的燈之剖面圖。 第5圖爲呈現IZO膜的X線回折(XRD )結果之圖形 第6圖爲呈現IZO膜的透過率之圖形。 -25- 1359509 【主要元件符號說明】 1 :半導體發光元件 1 1、21 :基板 12 : η型GaN層(η型半導體層) 13 :發光層 14 : ρ型GaN層(ρ型半導體層) 15:正極(透光性電極) 1 6 :正極焊墊 ^ 1 7 :負極 20 :氮化鎵系化合物半導體層 22: GaN基底層(η型半導體層) 23: η型GaN接觸層(η型半導體層) 24: η型AlGaN包覆層(η型半導體層) 25 :發光層 26: ρ型AlGaN包覆層(ρ型半導體層) 27:p型GaN接觸層(ρ型半導體層) φ 30 :燈 -26-

Claims (1)

1359509 第096113231號專利申請案中文申請專利範圍修正本 民國100年8月24日修正 十、申請專利範圍 1. 一種半導體發光元件之製造方法,是具備有含有p 型半導體層,至少具有紫外區域的發光波長之半導體層、 及被設置在前述P型半導體層上,含有被結晶化的IZO膜 之透光性電極的半導體發光元件之製造方法,其特徵爲: Φ 具備有: 將非晶態的IZO膜形成在前述p型半導體層上之步驟 :及 藉由進行在5 00°C~900°C的溫度下,不含〇2的雰圍中 退火處理,將前述非晶態的IZO膜變成被結晶化的薄片電 阻比15 Ω /sq還小的IZO膜之退火步驟。 2. 如申請專利範圍第1項所述的半導體發光元件之製 造方法,其中,具備有:進行前述退火步驟之前,將前述 φ 非晶態的IZO膜予以圖案處理的步驟。 3. 如申請專利範圍第1項所述的半導體發光元件之製 造方法,其中,前述退火處理係在N2的雰圍中或是1^2和 ' H2的混合氣體雰圍中進行》 4. 如申請專利範圍第1項所述的半導體發光元件之製 造方法’其中,前述IZO膜的厚度爲35 nm〜ΙΟμηι» 5. 如申請專利範圍第4項所述的半導體發光元件之製 造方法,其中,前述ΙΖΟ膜的厚度爲100ηηι~1μιη。 6. 如申請專利範圍第1至5項中任一項所述的半導體 1359509 發光元件之製造方法,其中,具備有:前述退火步驟之後 ,將保護層層積在前述IZO膜上的步驟。
-2- 1359509 七、指定代表圖: (一) 、本案指定代表圖為:第(1 )圖 (二) 、本代表圖之元件代表符號簡單說明: 1 :半導體發光元件 1 1、21 :基板 12: η型GaN層(η型半導體層) 13 :發光層 14: ρ型GaN層(ρ型半導體層) 15:正極(透光性電極) 16 :正極焊墊
17 :負極 八、本案若有化學式時,請揭示最能顯示發明特徵的化學 式··
-4-
TW096113231A 2006-04-14 2007-04-14 Semiconductor light emitting element, process for TWI359509B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006112012A JP5265090B2 (ja) 2006-04-14 2006-04-14 半導体発光素子およびランプ

Publications (2)

Publication Number Publication Date
TW200805714A TW200805714A (en) 2008-01-16
TWI359509B true TWI359509B (en) 2012-03-01

Family

ID=38609590

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096113231A TWI359509B (en) 2006-04-14 2007-04-14 Semiconductor light emitting element, process for

Country Status (7)

Country Link
US (1) US8334200B2 (zh)
EP (1) EP2012371B1 (zh)
JP (1) JP5265090B2 (zh)
KR (1) KR100988143B1 (zh)
CN (1) CN101421856A (zh)
TW (1) TWI359509B (zh)
WO (1) WO2007119830A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5201566B2 (ja) * 2006-12-11 2013-06-05 豊田合成株式会社 化合物半導体発光素子及びその製造方法
WO2008081566A1 (ja) * 2006-12-28 2008-07-10 Nec Corporation 電極構造、半導体素子、およびそれらの製造方法
US20080223434A1 (en) 2007-02-19 2008-09-18 Showa Denko K.K. Solar cell and process for producing the same
JP2009260237A (ja) * 2008-01-24 2009-11-05 Showa Denko Kk 化合物半導体発光素子及びその製造方法、化合物半導体発光素子用導電型透光性電極、ランプ、電子機器並びに機械装置
US20090205707A1 (en) * 2008-02-19 2009-08-20 Showa Denko K.K. Solar cell and method for producing the same
KR101481855B1 (ko) * 2008-03-06 2015-01-12 스미토모 긴조쿠 고잔 가부시키가이샤 반도체 발광소자, 반도체 발광소자의 제조방법 및 이 반도체 발광소자를 사용한 램프
US20110018022A1 (en) 2008-03-13 2011-01-27 Okabe Takehiko Semiconductor light-emitting device and method for manufacturing the same
JP5083973B2 (ja) * 2008-03-28 2012-11-28 スタンレー電気株式会社 光半導体素子の製造方法
JP2009246275A (ja) * 2008-03-31 2009-10-22 Showa Denko Kk Iii族窒化物半導体発光素子及びランプ
JP2009253056A (ja) * 2008-04-07 2009-10-29 Showa Denko Kk Iii族窒化物半導体発光素子及びランプ
JP2009283551A (ja) * 2008-05-20 2009-12-03 Showa Denko Kk 半導体発光素子及びその製造方法、ランプ
JP2011086855A (ja) * 2009-10-19 2011-04-28 Showa Denko Kk 半導体発光素子の製造方法
JP5379703B2 (ja) * 2010-01-26 2013-12-25 パナソニック株式会社 紫外半導体発光素子
US20110244663A1 (en) * 2010-04-01 2011-10-06 Applied Materials, Inc. Forming a compound-nitride structure that includes a nucleation layer
CN101847677B (zh) * 2010-04-07 2012-11-14 中国科学院半导体研究所 采用mvpe两步法制备氧化锌透明电极的方法
JP5829014B2 (ja) * 2010-09-30 2015-12-09 シャープ株式会社 化合物半導体発光素子の製造方法
CN110459658A (zh) * 2018-05-08 2019-11-15 山东浪潮华光光电子股份有限公司 一种P型GaN层的UV LED芯片及其制备方法
CN112420888B (zh) * 2021-01-21 2021-04-23 华灿光电(浙江)有限公司 紫外发光二极管外延片及其制备方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6222312A (ja) * 1985-07-23 1987-01-30 アルプス電気株式会社 透明導電性被膜の形成方法
JPH05299175A (ja) 1992-04-24 1993-11-12 Fuji Xerox Co Ltd El発光素子
JP2000026119A (ja) 1998-07-09 2000-01-25 Hoya Corp 透明導電性酸化物薄膜を有する物品及びその製造方法
JP2000067657A (ja) * 1998-08-26 2000-03-03 Internatl Business Mach Corp <Ibm> 赤外線透過に優れた透明導電膜及びその製造方法
CN1195886C (zh) * 1999-11-25 2005-04-06 出光兴产株式会社 溅射靶、透明导电氧化物和制备该溅射靶的方法
JP2002164570A (ja) * 2000-11-24 2002-06-07 Shiro Sakai 窒化ガリウム系化合物半導体装置
JP4310984B2 (ja) * 2002-02-06 2009-08-12 株式会社日立製作所 有機発光表示装置
JP3720341B2 (ja) * 2003-02-12 2005-11-24 ローム株式会社 半導体発光素子
JP4259268B2 (ja) 2003-10-20 2009-04-30 豊田合成株式会社 半導体発光素子
JP2005217331A (ja) 2004-01-30 2005-08-11 Nichia Chem Ind Ltd 半導体発光素子
JP2005259891A (ja) * 2004-03-10 2005-09-22 Toyoda Gosei Co Ltd 発光装置
KR100634503B1 (ko) * 2004-03-12 2006-10-16 삼성전자주식회사 질화물계 발광소자 및 그 제조방법
US7339255B2 (en) 2004-08-24 2008-03-04 Kabushiki Kaisha Toshiba Semiconductor device having bidirectionally inclined toward <1-100> and <11-20> relative to {0001} crystal planes
TWI417905B (zh) * 2004-09-13 2013-12-01 Sumitomo Metal Mining Co A transparent conductive film and a method for manufacturing the same, and a transparent conductive substrate and a light-emitting device
JP4578929B2 (ja) 2004-10-15 2010-11-10 日本エステル株式会社 ポリ乳酸系複合バインダー繊維

Also Published As

Publication number Publication date
CN101421856A (zh) 2009-04-29
WO2007119830A1 (ja) 2007-10-25
EP2012371A1 (en) 2009-01-07
KR100988143B1 (ko) 2010-10-18
TW200805714A (en) 2008-01-16
EP2012371A4 (en) 2014-01-22
KR20080104363A (ko) 2008-12-02
US8334200B2 (en) 2012-12-18
JP5265090B2 (ja) 2013-08-14
JP2007287845A (ja) 2007-11-01
US20090179220A1 (en) 2009-07-16
EP2012371B1 (en) 2015-02-25

Similar Documents

Publication Publication Date Title
TWI359509B (en) Semiconductor light emitting element, process for
TWI392113B (zh) 化合物半導體發光元件及其製法
US8207003B2 (en) Method of manufacturing gallium nitride-based compound semiconductor light-emitting device, gallium nitride-based compound semiconductor light-emitting device, and lamp
US8222667B2 (en) Semiconductor light-emitting element, method for manufacturing the semiconductor light-emitting element and lamp that uses the semiconductor light-emitting element
JP5047516B2 (ja) 窒化ガリウム系化合物半導体発光素子の製造方法、窒化ガリウム系化合物半導体発光素子及びそれを用いたランプ
WO2009093683A1 (ja) 化合物半導体発光素子及びその製造方法、化合物半導体発光素子用導電型透光性電極、ランプ、電子機器並びに機械装置
TW200807756A (en) Process for producing semiconductor light emitting element, semiconductor light emitting element, and lamp equipped with the same
WO2010150501A1 (ja) 発光素子、その製造方法、ランプ、電子機器及び機械装置
TW200810151A (en) Process for producing gallium nitride type compound semiconductor light emitting element, gallium nitride type compound semiconductor light emitting element, and lamp using the same
JP2012084667A (ja) 化合物半導体発光素子及びその製造方法、ランプ、電子機器並びに機械装置
JP2006245555A (ja) 透光性電極
JP4252622B1 (ja) 半導体発光素子の製造方法
JP2013058608A (ja) 半導体発光素子、ランプおよび半導体発光素子の製造方法