TWI276242B - Gas diffusive electrode body, method of manufacturing the electrode body, and electrochemical device - Google Patents

Gas diffusive electrode body, method of manufacturing the electrode body, and electrochemical device Download PDF

Info

Publication number
TWI276242B
TWI276242B TW091104209A TW91104209A TWI276242B TW I276242 B TWI276242 B TW I276242B TW 091104209 A TW091104209 A TW 091104209A TW 91104209 A TW91104209 A TW 91104209A TW I276242 B TWI276242 B TW I276242B
Authority
TW
Taiwan
Prior art keywords
layer
gas
electrode body
electrode
carbon powder
Prior art date
Application number
TW091104209A
Other languages
English (en)
Inventor
Koichi Tanaka
Kenji Katori
Minehisa Imazato
Kiyoshi Yamaura
Katsuya Shirai
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Application granted granted Critical
Publication of TWI276242B publication Critical patent/TWI276242B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8817Treatment of supports before application of the catalytic active composition
    • H01M4/8821Wet proofing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

1276242 A7 B7 五、發明説明(i ) 【發明的技術領域】 本發明係有關如適用於燃料電池之製造之擴散性電極體 及其製造方法、及電化學裝置。 【先前技藝】 近年來呼籲以替代乾淨能源來取代石油等石化燃料的必 要性,如氫(氣)燃料深受矚目。 基於每單位質量所含之化學能量大,且使用時不釋放有 害物質及地球溫室化氣體等的理由,氫氣可以說是一種既 乾淨又使用不盡的理想能源。 因而最近積極開發可自氫能源取得電能的燃料電池,期 待應用於大規模發電至實際用於家庭發電,甚至作為電動 車用的電源等。 該燃料電池係配置燃料電極(如氫電極)與氧電極以夾住質 子導體膜,此等電極上分別供給燃料(氫)及氧以引起電池反 應,獲得起電力,其製造時,通常分別形成質子導體膜、 燃料電極(如氫電極)、氧電極等,並使此等接合製成。 該燃料電池之燃料電極(如氫電極)與氧電極(氣體擴散性 電極)主要包含導電性碳粒子等,並形成具有附載白金等觸 媒金屬之觸媒層的構造。 而先前之上述氣體擴散性電極,係經過在作為導電性粉 體或粒體之碳上,將作為觸媒之附載有白金之的觸媒粒子 與作為潑水性樹脂之如氟樹脂及離子傳導體共同形成板 狀,或是在碳板上直接塗敷的步驟來製成。 亦即,固體高分子燃料電池用氣體擴散性電極,如特開 -4- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) A7 B7 1276242 五、發明説明(2 ) 平5-36418所示,通常係將碳板上附載有白金之粉體或粒體 與潑水性樹脂、離子導電性材料共同塗敷於碳板上來製 成。 此時所謂之氣體擴散性電極,係指具有可擴散作用氣體 之連續氣孔的電極者,且其具有電子傳導性(以下均同)。 而將該氣體擴散性電極作為構成固體高分子型燃料電池 等之燃料電池的氫分解用電極時,燃料因白金等觸媒而離 子化,如此產生之電子流經導電性碳粉體或粒體,且將氫 予以離子化所產生之質子(H + )經由離子傳導體而流入離子 (質子)導體膜> ^在該過程中需要通過氣體之間隙、通電之 碳粉體或粒體、通過離子之離子傳導體、及用於將燃料及 氧化劑予以離子化的觸媒等〉 亦即,此時燃料藉由白金等觸媒而離子化、,藉此產生之 電子流經導電性碳粉體或粒體,而離子化之氫(質子)則通過 離子傳導材料流入離子傳導膜。、此時需要通過氣體之間 隙、通電之碳粉體或粒體、通過離子之離子傳導材料、及 用於將通過離子之離子傳導材料、燃料或氧化劑予以離子 化的觸媒等。 而該氣體擴散性電極(觸媒層)中,燃料為氫時,燃料電池 内引起 H2 —2H+ + 2e· 的反應,氧電極内藉由 02 + 4H+ + 4e.—2H20 的反應而產生水。 -5- 本纸張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1276242 A7 B7 五、發明説明(3 ) 【發明所欲解決之問題】 然而此種燃料電池亦迫切要求增加每單位體積之發電 量。但是,隨發電量增加,氣體擴散性電極趨於大型化。 另外,亦亟需促使氣體擴散性電極薄型化。 又因氣體擴散性電極内所含之觸媒物質(如白金)在粉體或 粒體之狀態下混合時,與質子(H + )等之接觸面積(換言之, 即為電極反應)往往不足。 本發明係有鑑於上述之先前實況而提出,其目的在提供 一種維持發電量等之性能的同時亦可達成小型化之氣體擴 散性電極體及其製造方法、及使用該電極體之電化學裝 置。: 【解決問題之手段】 亦即,本發明係有關氣體擴散性電極體,其係交互配置 有至少包含導電性粉體或粒體之第一層、與包含觸媒物質 之第二層,以形成疊層構造。
本發明亦係有關氣體擴散性電極體之製造方法,其係交 互形成至少包含導電性粉體或粒體之第一層、與包含觸媒 物質之第二層J 本發明亦係有關電化學裝置,其係包含:第一極、第二 極、與夾住於此等兩極間之離子傳導體,交互配置有至少 包含導電性粉體或粒體之第一層、與包含觸媒物質之第二 層以形成疊層構造之氣體擴散性電極體,係構成前述第一 極及第二極中之至少前述第一極。 本發明藉由使用交互配置有至少包含導電性粉體或粒體 -6- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) A7 B7 1276242 五、發明説明(4 ) 之第一層、與包含觸媒物質之第二層以形成疊層構造之氣 體擴散性電極體,在氣體擴散性電極體内之各觸媒物質層 中,可有效地進行將浸入氣體擴散性電極體内之氧效率良 好地予以離子化,擴大與質子(H + )之接觸面積等電極内之 反應,可達到輸出提高等高性能化,由於其係在各層中產 生,因此,即使各層厚度(亦即全厚)薄,仍可達到高效率 化、高性能化。 且在上述之氣體擴散性電極體中,形成疊層構造時,由 於形成上層時已形成有下層,因此較容易形成疊層。因而 可重現性良好的製造上述之氣體擴散性電極體。 【發明之實施形態】 本發明之形成疊層構造之第一層及第二層的各層數為2以 上,100以下,前述第一層宜至少包含碳粉體或粒體,前述 第二層宜包含觸媒金屬。 且前述第一層之層厚為數nm〜數Am(如3/zm),前述第二 層之層厚為數nm〜數百nm,數個前述第二層中至少一層宜 為包含白金者。 :且數個前述第一層中,至少一層宜包含觸媒金屬,前述 第一層包含真有離子傳導性覆膜之導電性粉體或粒體者。 且前述第一層宜包含具有斥水性覆膜之導電性粉體或粒 體,前述疊層構造形成於集電體或底層上。 且宜使用自旋式塗敷法、印刷法、噴乾法、汽相成膜法 中之至少一種方法形成前述第一層,並藉由汽相成膜法形 成前述第二層。 一-ot::.. 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1276242 A7 B7 五、發明説明(5 ) 且前述疊層構造宜形成於集電體或底層上,前述第一極 及第二極中之至少一方為氣體電極,此外,宜適用於燃料 電池。 以下,參照圖式詳細說明本發明適切之實施形態。 第一種實施形態 該實施形態如圖1所示,係藉由在氣體透過性集電體(碳 板)11上塗敷用於通過電子之導電性碳粉體或粒體層22等形 成,其上藉由汽相成膜法(濺射法等)堆疊將氧等作用氣體離 子化成氧離子的白金等觸媒層19,交互堆疊此等導電層22 與觸媒層19,形成氣體擴散性電極體(觸媒層)10作為氧 極。另外,圖1為求簡化而顯示兩層構造的形態,實際上包 含兩層以上的疊層構造(但是,兩層亦可)。此外,省略圖式 之氫極(燃料極)亦可與氧極10同樣構成。 而該氣體擴散性電極體(觸媒層)1〇内,質子(H + )自相對 電極側(圖中上侧),經由離子傳導部(質子導體膜)5侵入質 子(H + ),被經由氣體透過性集電體(碳板)11侵入之空氣(氧) 予以離子化,此等質子與氧離子反應(電池反應)。結果電化 學能作為輸出被取得,產生水(H20)。 另外,上述之白金濺射層19不需要為連續膜,可為多孔 性,亦可為部分具有非連續性。此因,形成有連續膜時, 可能妨礙質子(H + )及氧等氣體通過。 另外,上述之碳粉體或粒體等導電性粉體或粒體包含粒 狀、球狀、纖維狀等各種形狀者,以下均同。 而本實施形態之燃料電池的構造係如圖9所示者,簡述之 -8- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 6 1276242 五、發明説明( (评述於後),基本上係在具有# 子導體膜)5的兩面上分別 守庇之離子得¥4(質 極(氧極)17。 4有負極(燃料電極)16、及正 而上述負極(燃料電極)16上 醇 給氧(空氣)時引起電池反應,產生^,正極(氧極)17上供 料電極)16上,如為所謂之直接^起電力。此時,負極(燃 作為氫源。、 知方式時,亦可供給曱 材 另山外,上述負極(燃料電極)16及正極(氧極)”係 料(碳)粉體或粒體1主要作為電極材料而形成者/、、反 另外,本實施形態如圖i所示,係交互堆 或粒體之層22與白金錢射(觸媒金屬)之層19^成有碳粉體 、而藉由如此構成氣體擴散性電極,可 金屬之接觸面積,有效引起電極反應,以开=體等與觸媒 其次,作為構成電極之主要材料所採用之碳。 體或粒體,由於需要具有電子傳導性,宜 碑(锬)粉 之 種碳質材料(碳)及碳毫微管等。再者,系之各 觀點,黑錯宜為針狀。 门成體擴散性 t 另外,上豸碳毫微管可在稱之為真空處 内,經由間隙相對配置均包含石墨等碳棒之^應 並在氦等稀有氣體的環境下,藉由在各 7 ,、陽極 。弧形放電’由堆積在反應室内面之碳質 而將上述方法所產生之礙質材科用作電極 氣趙透過性集電遵11上直接形成負極(燃料電極)戏正杨可在 -9 \ 本紙張尺度適用中國國家標準(CNS) A4規格(210 x 297公釐) 1276242 A7 B7 五、發明説明(7 ) 極)。此時之形成方法如··自旋式塗敷法、噴射法及滴下 法、棒塗法等。 例如,所謂自旋式塗敷法,係將上述碳質材料(碳粉體或 粒體)分散於水、或乙醇等之溶劑内,將其直接滴在旋轉之 集電體上的方法。而噴射法係將上述碳質材料(碳粉體或粒 體)分散於水或乙醇等之溶劑内,將其直接吹附於集電體上 之方法。而滴下法仍係將上述碳質材料(碳粉體或粒體)分散 於水或乙醇等之溶劑内,將其直接滴在集電體上之方法。 藉由此等之上述形成方法,形成上述碳質材料(碳粉體或粒 體)堆積在集電體上的狀態。 此時,上述碳毫微管係呈現直徑約1 nm,長度約1〜10/Z m之細長纖維狀的形狀,且針狀黑鉛亦呈現直徑約0 · 1〜0 · 5 //m,長度約1〜50/im的針狀形狀,彼此纏繞,雖無特別的 結合劑,仍可構成良好的層狀體。當然,依需要亦可併用 結合劑(Binder)。 亦即,對碳粉體或粒體之氣體透過性集電體(碳板)塗敷 時,亦可使用如結合劑分散液等。 且汽相成膜法中亦可使用如濺射法等。 另外,亦可使氣體擴散性電極體(觸媒層)1〇中含觸媒物 質(白金等),而該方法亦可使用濺射法等之汽相成膜法在碳 表面形成觸媒物質膜,亦可混合觸媒粒子。 例如,使用5吋徑之白金(Pt)標的,施加DC1A、 420V。繼續使基板旋轉,藉由進行8分8秒的濺射,可形成 1000 nm的觸媒物質(白金等)膜。 -10- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1276242 A7 B7 五、發明説明(8 ) 另外,藉由上述氣體擴散性電極所形成之負極(燃料電極) 及正極(氧極)等時,藉由自旋式塗敷法等在氣體擴散性集電 體(碳板)上直接形成氣體擴散性電極後,由於不需要將其作 為自立膜個別形成,因此不要求對作業中之破損等所要求 的機械性強度,因此,其厚度可設定達10 // m以下,如約 2〜4/zm之極薄的厚度。但是,當然亦可製成自立膜。 另外,先前之構造主要為單層或單層疊層構造,厚度如 為50 /z m。 其次,本實施形態之使用於燃料電池之質子導體的原料 宜使用如:全氟磺酸樹脂(如DUPON公司製,商品名稱: 那飛翁(R)等)等質子(氫離子)傳導性高分子材料,或 Η3Μο12ΡΟ40 · 29H20 及 Sb205 · 5·4Η20 等富水和性之聚 鉬酸類及氧化物等,或芙等各種碳質材料中導入質子解離 性基者,或以氧化矽及布朗斯台德酸作為主體之化合物與 側鎖上具有磺酸基之聚合物之混合物等,不過並不限定於 此等材料。 另外,上述之全氟磺酸樹脂及聚鉬酸類及氧化物等高分 子材料及水合化合物處於濕潤狀態時,在常溫附近顯示高 質子傳導性。 亦即,以全氟磺酸樹脂為例,自該磺酸基電離之質子與 被大量取入高分子矩陣中之水分結合(氫結合)而生成質子化 水,亦即水合氫離子(Η30 + ),由於質子以該水合氫離子之 形態可順利在高分子矩陣内移動,因此此種矩陣材料即使 在常溫下仍可發揮高的質子傳導效果。 -11 - 本紙張尺度適用中國國家標準(CNS) Α4規格(210 X 297公釐) 1276242 A7
_B7 五、發明説明(9 ) 或是,亦可使用與此等材料在傳導機構上完全不同的質 子導體。 亦即,為具有摻雜镱(Yb)之SrCe〇3等鈣鈦礦構造之複合 金屬氧化物等。另外’發現具有此種每鈦礦構造之複合金 屬氧化物即使不將水分作為移動媒體,仍具有質子傳導 性。其因係該複合金屬氧化物之質子單獨溝流傳導在形成 鈣鈦礦構造主體之氧離子間。 且,在上述芙等各種碳質材料内導入質子解離性基者之 中,所謂質子解離性基,係指如-OH、-〇S〇3H、 -SO3H、-COOH、-OPO(OH)2等,藉由電離能分離質子的 官能基,而所謂質子(H+)之解離,係指質子藉由電離自官 能基離開。該質子導體中,質子經由質子解離性基而移 動,發現有離子傳導性。 尤其是包含上述碳質材料母體之碳質材料中,只要是以 碳為主要成分者,可使用任何材料,不過導入質子解離性 基後,需要使離子傳導性大於電子傳導性。 具體而言,如包含碳原子集合體之碳組合成分丨及管狀 碳質(所謂碳亳微管)之碳質材料等。 另外’有各種上述碳組合成分,適宜的有芙、具有芙構 造之至少一部分之開放端者、具有鑽石構造者等。 以下’進一步詳細說明該碳組合成分。 而上述之所謂碳組合成分,通常係指數個至數百個原子 結合或凝集所形成之集合體,該原子為碳時,藉由該凝集 (集合)體,質子傳導性提高,同時保持化學性質形成足夠之 -12- 本紙張國國家標準(CNS) Α4規格(210 X 297公釐) 1276242 A7 B7 五、發明説明(1〇 ) 膜強度,容易形成層。 且所謂以碳為主要成分之組合成分5係指不論碳-碳間之 結合種類為何,結合數個至數百個碳原子所形成的集合 體。但是,並不限定於僅由100%碳所形成,亦可混合在其 他原子中。也包含此種情況,將碳原子佔多數之集合體稱 之為破組合成分。 另外,含有以具有上述質子解離性基之碳質材料作為主 要成分之質子導體,即使在乾燥狀態,質子容易自前述質 子解離性基解離,且該質子在包含常溫之廣泛溫度區域(至 少在約160°c〜-40°c之範圍)可發揮高傳導性。 另外,如上所述,該質子導體即使在乾燥狀態,亦顯示 足夠之質子傳導性,不過即使存在水分亦無妨(另外,該水 分亦可為自外部浸入者)。 其次,上述之實施形態的疊層數宜為2〜100層,不過,此 因不滿兩層時形成單層(或單疊層)構造,與先前在構造上幾 乎無變化,無法產生疊層構造的優點。 且超過100層時,質子(H + )及空氣(氧)在侵入氣體擴散性 電極體(觸媒層)10的初期,主要與電極外周之白金濺射層 19接觸,即早引起電極反應,質子(H + )及空氣(氧)很難充 分到達氣體擴散性電極體(觸媒層)10之内部,可能在氣體 擴散性電極體(觸媒層)10的内部產生無法進行電極反應之 無效部分。 再者,保持相同電極厚度且增加層數時,此時,雖碳粉 體或粒體層的厚度變薄,但碳粉體或粒體層22及白金濺射 -13- 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 1276242 A7 B7 五、發明説明(Ή ) (觸媒金屬)層19超過100層時,氣體的透過性受損,電池反 應被抑制,造成輸出降低,且亦增加整個厚度。 因此,上述條件下之最適切層數,如層22與19分別為 5〜6層。但是,如不喪失功能而能製造更薄的碳粒體或粒體 層時,狀況改變的可能性高。另外,碳粉體或粒體層宜為 對一層粒體層,採用一層白金滅射層19的組合。 例如,以粒徑為數十nm之碳粉體或粒體形成數//m厚之 碳粉體或粒體層時,應宜形成約100層或其以下。 且本實施形態中,用於通過電子之導電性碳粉體或粒體1 之層的厚度為數nm〜數,將氧及氫等作用氣體分解成質 子與電子或將氧離子化之觸媒之白金濺射層19的厚度為數 nm〜數百nm 〇 再者,本實施形態藉由導電性碳粉體或粒體所形成之層 若具有導電性,且發揮特定功能時,亦可使用碳(亦即碳質 系物質)以外的物質。 且上述形態所使用之碳粉體或粒體之外徑、重量、形成 方法、形成之層數等,只要具有特定效果,可自由變更。 另外,形成方法可自自旋式塗敷法、印刷法、噴乾法、 汽相成膜法等中選擇。但是,若能獲得特定效果,亦可採 用上述以外的形成方法。 且厚度係包含上述限制内的範圍,不過,若能獲得特定 效果,亦可在上述以外的範圍。 且將本實施形態所使用之氧及氫等作用氣體分解成質子 與電子之觸媒的白金濺射層19,若所使用之觸媒金屬具有 -14- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1276242 A7 B7 五、發明説明(12 ) 特定效果,並非必須為白金,亦可使用其他觸媒金屬。 再者,該層厚度、層數等只要具有特定效果,亦可自由 變更。 且本實施形態在氣體透過性集電體(碳板)與氣體擴散性電 極之間,只要具有特定效果,亦可設置第三層及底層等。 因而,本實施形態藉由使用交互配置有至少包含導電性 粉體或粒體之第一層、與包含觸媒物質之第二層以形成疊 層構造之氣體擴散性電極體,氣體擴散性電極體内之各觸 媒物質層有效將侵入氣體擴散性電極體内之氧予以離子 化,可有效進行擴大與質子(H + )之接觸面積等電極内反 應,可達到輸出提高等之高性能化,由於其係在各層產 生,因此即使各層厚度(亦即全厚)較薄,仍可達到高效率 化、高性能化。 且上述氣體擴散性電極體於形成疊層構造時,由於形成 上層時已形成有下層,因此可較容易形成疊層。因而可製 造重現性良好之上述氣體擴散性電極體。 亦即,本實施形態提供一種氣體擴散性電極,其係具有 碳粉體或粒體層、與觸媒金屬層,具有交互配置有碳粉體 或粒體層與觸媒金屬層之構造。 且本實施形態之氣體擴散性電極之製造方法,係提供一 種交互形成數次包含碳粉體或粒體層與觸媒金屬之層之製 造方法。 再者,本實施形態提供一種燃料電池,其係包含成對之 氣體擴散性電極,此等成對之氣體擴散性電極經由質子導 -15- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1276242 A7 B7 五、發明説明(13 ) 體膜彼此相對配置所形成,且上述成對之氣體擴散性電極 之至少一方具有碳粉體或粒體層與觸媒金屬,具有交互配 置有碳粉體或粒體層與觸媒金屬層之構造。 且採用本實施形態之氣體擴散性電極時,由於具有碳粉 體或粒體層與觸媒金屬層,並具有交互配置有碳粉體或粒 體層與觸媒金屬層之構造,可有效進行電極反應,因此可 將氣體擴散性電極形成薄型化。 且採用本實施形態之氣體擴散性電極之製造方法時,可 容易製造具有碳粉體或粒體層與觸媒金屬層,且具有交互 配置有碳粉體或粒體層與觸媒金屬層之構造的氣體擴散性 電極。 再者,採用本實施形態之燃料電池時,可藉由將氣體擴 散性電極形成具有碳粉體或粒體層與觸媒金屬層,且形成 交互配置有碳粉體或粒體層與觸媒金屬層之構造而予以薄 型化,因此可將燃料電池予以小型化。 第二種實施形態 該實施形態如圖2所示,除在藉由碳粉體或粒體所形成之 層22上進一步混合均一徑之白金粉體6作為觸媒之外,其餘 與上述第一種實施形態相同。 另外,本實施形態只要具有特定效杲時,亦可使用白金 以外之觸媒金屬粉體等作為觸媒。 且白金粉體6之外徑、藉由碳粉體或粒體所形成之層内所 含之比率(重量%)、混合方法等,只要具有特定效果時,可 自由變更。且氣體擴散性電極層内之整個包含碳粉體或粒 -16- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1276242 A7 B7 五、發明説明(14 ) 體之各疊層内22内是否混合白金粉體6,可考慮特定效果來 自由決定。但是至少使一層混合。 另外,本實施形態之作為觸媒金屬的白金由於以粉體含 在氣體擴散性電極内,因此促進觸媒功能,活化電極反 應'〇 此外,本實施形態可獲得與上述第一種實施形態同樣的 作用效果。 第三種實施形態 本實施形態如圖3所示,除在主要藉由碳粉體或粒體所形 成之層内進一步混合H+傳導性覆膜形成碳粉體或粒體之 外,其餘與上述第一種實施形態相同。 而本實施形態如圖3所示,係以包含芙電介質,如芙醇 (以下相同)之H+傳導性覆膜20覆蓋球狀之碳質材料(碳)粉 體或粒體1之一部分表面。 另外,碳質材料(碳)粉體或粒體之形狀並不限定於圖3所 示的球形,即使為各種形狀,亦可設置H +傳導性覆膜20。 且由於覆蓋碳粉體或粒體之H+傳導性覆膜20的厚度只要 具有單分子層以上即可,因此最低限為數nm即可,若過厚 時,因碳粉體或粒體之導電性受損,因此上限宜為數百 nm。因而,如H +傳導性覆膜形成碳粉體或粒體之覆膜厚度 可在10nm〜數十nm的範圍。 另外,以H +傳導性覆膜20覆蓋碳質材料(碳)粉體或粒體1 之表面時,如可將H+傳導性樹脂分散於溶媒中,在其中浸 入碳質材料(碳)粉體或粒體後予以乾燥。 -17- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1276242 A7 B7 五、發明説明(15 ) 另外,亦可以觸媒物質(如白金)等覆蓋設有有H+傳導性 覆膜之碳粉體或粒體之表面的至少一部分。 且因該H+傳導性覆膜形成碳粉體或粒體具有同種之粉體 或粒體容易凝集的性質,因此,如圖3所示,氣體擴散性電 極(觸媒層)10中,H+傳導性覆膜形成碳粉體或粒體21形成 連接鏈構造。因此,上述H+傳導性覆膜形成碳粉體或粒體 21形成之鏈構造促進質子(H + )氣體的流通,因此,可確保 質子氣體H+等透過之氣孔(間隙),可充分進行氣體的擴 散。 另外,上述氣體擴散性電極體(觸媒層)10内含有1〜80重 量%,更宜含有20〜70重量%之H +傳導性覆膜形成碳粉體或 粒體,係考慮有助於活潑的電池反應。 此因,若H+傳導性覆膜形成碳粉體或粒體之重量%過小 時,在氣體擴散性電極體(觸媒層)1〇内,因質子(H + )氣體 的流通降低而妨礙氣體透過,亦減弱電池反應。 若氣體擴散性電極體(觸媒層)10内之H+傳導性覆膜形成 碳粉體或粒體之重量%過大時,雖有助於質子(H + )氣體的流 通,但是碳粉體或粒體相互的接觸性降低,或其分布容易 不均一,造成電子之導電性不足,而減弱電池反應。 另外,藉由上述氣體擴散性電極所形成之負極(燃料電極) 及正極(氧電極)等,藉由自旋式塗敷法等,在氣體擴散性集 電體(碳板)上直接形成氣體擴散性電極後,由於不需要將其 作為自立膜而個別形成,因此,不要求對作業中之破損等 所要求的機械性強度,因此,其厚度可設定達10/zm以 -18- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1276242 A7 B7 五、發明説明(16 ) 下,如約2〜4//m之極薄的厚度。但是,當然亦可製成自立 膜。 另外,本實施形態之氣體擴散性電極内之碳粉體或粒 體、H +傳導性覆膜形成碳粉體或粒體等之混合率(重量%)、 混合方法等,只要具有特定效果,可自由變更。 且H+傳導性物質之種類、對碳粉體或粒體之附著方法、 附著厚度等,只要具有特定效果,可自由變更。 另外,本實施形態由於包含碳粉體或粒體之層上含有H + 傳導性覆膜形成碳粉體或粒體,因此自離子傳導部浸入之 質子(H+)氣體通過H+傳導性覆膜,充分浸透氣體擴散電極 内,因而電極反應活潑地進行。 此外,本實施形態可獲得與上述第一種實施形態同樣的 作用效果。 第四種實施形態 本實施形態如圖4所示,除在主要藉由碳粉體或粒體所形 成之層内進一步混合斥水性覆膜形成碳粉體或粒體26之 外,其餘與上述第一種實施形態相同。 另外,本實施形態如圖4所示,係以斥水性覆膜18覆蓋球 狀之碳質材料(碳)粉體或粒體1之一部分表面。 另外,碳質材料(碳)粉體或粒體之形狀並不限定於圖4所 示的球形,即使為各種形狀亦可設置斥水性覆膜。 且由於覆蓋碳粉體或粒體之斥水性覆膜的厚度只要具有 單分子層以上即可,因此最低限為數nm即可,若過厚時, 因碳粉體或粒體之導電性受損大,因此上限宜為數百nm。 -19- 本纸張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1276242 A7 B7 五、發明説明(17 ) 因而,如斥水性覆膜形成碳粉體或粒體之覆膜厚度可在10 nm〜數十nm的範圍。 另外,亦可以觸媒物質(如白金)等覆蓋設有斥水性覆膜之 碳粉體或粒體表面之至少一部分。 另外,以此種斥水性覆膜18所覆蓋之斥水性覆膜形成碳 粉體或粒體(碳質材料粉體)26的周圍,由於藉由電極内反 應所產生之生成水被排出而未附著,且電極内之生成水被 排出,並未過剩貯存而排出電極外,可確保氧氣透過間 隙。因此,不致妨礙氣體擴散性電極内(正極)之氧氣的供 給。由於可持續供給充分的氧氣,因而可保持較高的輸 出。 另外,以斥水性覆膜18覆蓋碳質材料(碳)粉體或粒體1的 表面時,如將斥水性樹脂分散於溶媒中,在其中浸入碳質 材料(碳)粉體或粒體後予以乾燥即可。 而構成上述斥水性覆膜18之斥水性材料,宜使用包含氟 之如聚氟化亞乙烯基(P VdF)及氟系聚合物(C2F6聚合物 等)、鐵氟龍(DUPON公司製PTFE)等。且覆膜方法可採用 浸潰法、電漿CVD法等。 另外,由於使用上述氣體擴散性電極之斥水性覆膜形成 碳粉體或粒體具有防水性質,因而該碳粉體或粒體的周圍 無水附著。 且由於該斥水性覆膜形成碳粉體或粒體具有同種粉體或 粒體容易凝集的性質,因此如圖5所示,於氣體擴散性電極 體(觸媒層)1〇中,斥水性覆膜形成碳粉體或粒體26形成連 -20- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1276242 A7 B7 五、發明説明(18 ) 接鏈構造。因此,形成上述斥水性覆膜形成碳粉體或粒體 26的鏈構造,形成防止生成水(H20)浸入用的壁,形成有效 排出生成水的通路,因此可確保氧氣等透過的氣孔(間隙), 氣體充分進行擴散。 另外,上述氣體擴散性電極體(觸媒層)10内含1〜80重量 %,更宜含20〜70重量%之斥水性覆膜形成碳粉體或粒體, 係考慮有助於活潑的電池反應。 此因,若斥水性覆膜形成碳粉體或粒體之重量%過小時, 在氣體擴散性電極體(觸媒層)1〇内,藉由電池反應所產生 的生成水未排出而大量附著在碳粉體或粒體周圍,貯存於 電極内,因堵住通氣間隙,減少氣體進入,而妨礙氣體透 過,亦減弱電池反應。 若氣體擴散性電極體(觸媒層)1〇内之斥水性覆膜形成碳 粉體或粒體之重量%過大時,碳粉體或粒體相互的接觸性降 低,或其分布容易不均一,造成電子之導電性不足,而減 弱電池反應。 另外,藉由上述氣體擴散性電極所形成之負極(燃料電極) 及正極(氧電極)等,藉由自旋式塗敷法等,在氣體擴散性集 電體(碳板)上直接形成氣體擴散性電極後,由於不需要將其 作為自立膜而個別形成,因此,不要求對作業中之破損等 所要求的機械性強度,因此,其厚度可設定達10//Π1以 下,如約2〜4 μ m之極薄的厚度。但是,當然亦可製成自立 膜。 另外,本實施形態之氣體擴散性電極内之碳粉體或粒 -21 - 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) A7 B7 1276242 五、發明説明(19 ) 體、斥水性覆膜形成碳粉體或粒體等之混合率、混合方法 等,只要具有特定效果,可自由變更。 且斥水性物質之種類、對碳粉體或粒體之附著方法、附 著厚度等,只要具有特定效果,可自由變更。 且上述導電體粉體或粒體並不限定於碳,只要具有導電 性且可獲得特定效果,亦可採用其他物質。 由於本實施形態係在主要包含導電性碳粉體或粒體之氣 體擴散性電極體内進一步混合有具有斥水性覆膜的導電性 碳粉體或粒體,因此藉由該導電性碳粉體或粒體之斥水性 覆膜有效排出氣體擴散性電極體内所產生的生成水,不附 著在導電性碳粉體或粒體上而排出電極外,因此不致因生 成水而妨礙作用氣體透過,可確保對氣體擴散性電極體内 充分的氣體透過能。 再者,上述氣體擴散性電極體由於可藉由與其他材料混 合形成具有斥水性覆膜之導電性碳粉體或粒體,因此不需 要複雜的製造步驟,可較簡易地製造。 此外,本實施形態可獲得與上述第一種實施形態同樣的 作用效果。 第五種實施形態 該實施形態如圖5所示,除在藉由碳粉體或粒體所形成之 層22内進一步混合斥水性覆膜形成碳粉體或粒體26與H+傳 導性覆膜形成碳粉體或粒體21之外,其餘與第一種實施形 態相同。 而斥水性覆膜形成碳粉體或粒體26與H+傳導性覆膜形成 -22- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1276242 A7 B7 五、發明説明(2()) 碳粉體或粒體21已詳述於上述第三及第四種實施形態中, 因此此處省略。 本實施形態係在包含碳粉體或粒體之層22内進一步混合 與上述同樣的H+傳導性覆膜形成碳粉體或粒體21及與上述 同樣的斥水性覆膜形成碳粉體或粒體26,不過,此等之混 合比(重量%)、混合方法、層厚度等,只要具有特定效果, 可自由變更。 由於本實施形態之包含碳粉體或粒體之層22内含有H+傳 導性覆膜形成碳粉體或粒體21,因此自離子傳導部侵入之 質子(H + )氣體通過H+傳導性覆膜20充分浸透氣體擴散電極 内,有效與觸媒金屬接觸,因此可活潑地進行電極反應。 再者,由於本實施形態係在主要包含導電性碳粉體或粒 體之氣體擴散性電極體内進一步混合有具有斥水性覆膜18 的導電性碳粉體或粒體26,因此藉由該導電性碳粉體或粒 體26之斥水性覆膜18有效排出氣體擴散性電極體内所產生 的生成水,不附著在導電性碳粉體或粒體上而排出,因此 不致因生成水而妨礙作用氣體透過,可確保對氣體擴散性 電極體内充分的氣體透過能。 再者,上述氣體擴散性電極體由於可藉由與其他材料混 合形成具有斥水性覆膜之導電性碳粉體或粒體,因此不需 要複雜的製造步驟,可較簡易地製造。 由於本實施形態併用具有上述質子傳導性覆膜之導電性 粉體或粒體21、及具有斥水性覆膜的導電性粉體或粒體 26,藉此質子傳導性之提高與排水作用之兩者作用相乘地 -23- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1276242 五、發明説明( A7 B7
發揮,可期待活潑且高效率的電池反應。 此外’本實施形態可獲得與上述第一種實施形態同樣的 作用效果》 其次’圖6係顯示本實施形態之其他形態之導電性碳粉體 或粒體之剖面圖。 亦即’如圖6(A)所示,本實施形態由於採用如物理性成 膜法,因此所獲得之導電性碳粉體或粒體之白金(觸媒)2成 膜狀附著於導電性碳粉體或粒體1之表面。因此,採用本形 悲可以更少量獲得良好之觸媒作用,且由於可確保足夠之 觸媒與氣體之接觸面積,因此促進反應之觸媒之比表面積 大,觸媒能亦提高。 且本實施形態如圖6(B)所示,上述白金(觸媒)2亦可不均 一地膜狀附著於上述導電性碳粉體或粒體1之表面,此時, 與具有圖6(A)之構造之上述導電性碳粉體或粒體同樣的, 可以更少之觸媒量獲得良好的觸媒作用,且可確保足夠之 上述觸媒與氣體的接觸面積,促進反應之觸媒之比表面積 大’可促進觸媒能的提高。 且如圖6(C)所示,亦可於上述導電性碳粉體或粒體1之表 面使離子傳導體3附著,進一步在該離子傳導體3之表面藉 由物理性成膜法使上述白金(觸媒)2成膜狀附著,來取代於 上述導電性碳粉體或粒體之表面,藉由物理性成膜法使上 述白金(觸媒)2成膜狀附著,以獲得導電性碳粉體或粒體。 此時,由於係藉由物理性成膜法使白金(觸媒)2附著,因 此不需要如先前之為使觸媒之結晶性良好而進行熱處理, -24- 本紙银尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1276242 A7 B7 五、發明説明(22 ) 不損及上述離子傳導體之性能即可使觸媒附著β 另外,顯示於圖6之(A), (Β)及(C)之任何一個上述導電性 碳粉體或粒體,於本實施形態中,對上述導電性碳粉 粒體均宜以10〜1000之重量%的比率使上述觸媒附著,且上 述觸媒宜使用具有電子傳導性之金屬,如白金、釕、叙、 鎢等,或此等之混合物。 且上述導電性碳粉體或粒體1只要為具有财酸性、導電十生 及低成本性之材料’並非為須特別限定者,如碳粉體、I 化銦錫(ΙΤΟ ; Indium tin oxide)等,尤其宜為使用上逃碳 粉體者。 另外,該碳粉體之平均粒徑宜約在1 以下,更宜為 0.005〜0」// m 〇 且物理性成膜法宜為濺射法、脈衝雷射沉積(PLD)法或真 空蒸鍍法等。 且作為物理性成膜法之上述濺射法可輕易實施生產,生 產性南且成膜性良好。且作為物理性成膜法之上述脈衝雷 射沉積法之成膜控制容易,且成膜性良好。 此處,特表平11-510311中揭示有在碳板上形成濺射膜之 例,而本實施形態由於係在具有導電性之碳粉體或粒體之 表面使上述白金(觸媒)成膜狀附著,因此與上述特表平1卜 510311比較,可更擴大促進反應之上述白金(觸媒)之比表 面積’可促使觸媒能之提高。 再者,本實施形態藉由物理性成膜法在上述導電性碳粉 體或粒體之表面使白金(觸媒)成膜狀附著時,宜使上述導電 -25- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1276242 A7 B7 五、發明説明(23 性碳粉體或粒體振動,藉此,可附著更充分之續媒量,可 獲得良好之均一性。 ' 另外,產生該振動之機構並無特別限定,不過宜如施加 超音波來產生上述振動,同時藉由物理性成祺法在上述導 電性碳粉體或粒體之表面使白金(觸媒)成膜狀附著。 且本實施形態可藉由如樹脂結合在上述導電技碳於體或 粒體之表面使上述白金(觸媒)成膜狀附著所獲得之上述導電 性碳粉體或粒體,進一步宜使上述導電性碳粉體或粒體保 持在多孔性之氣體透過性集電體(如碳板)上。 ,、 且本實施形態之上述氣體擴散性電極,如上所述叮為 實質上僅包含上述導電性碳粉體或粒體之表面戍膜狀附著 多孔性之氣體透過性集電體(如碳板)上。 且本實施形態於上述氣體擴散性電極中, 上述電化學裝置之第一極與第二極之兩極間 之上述觸媒之上述導電性碳粉體或粒體,或是除上述導電 性碳粉體或粒體之外,含有用於結合該粒子之樹^等其他 成分,為後者時,上述其他成分如造孔劑(如)及離 子傳導體等。再者,宜使上述導電性碳粉體或麵體保持在 或失住於構成 之離子傳導部 内,可使用之上述離子傳導體,除一般之那飛翁(dupc)n 公司製之全氟磺酸樹脂)之外,亦可使用如芙醇(聚氮氧化芙) 等之芙電介質。 尤其如圖7所示,具有在芙分子上附加數個氫氧基構造之 芙醇,於1992年由Chiang等報告有最初之合成例(Chiang, L.Y.,Swirczewski,J. W. ; Hsu,C· S. ; Chowdhury,S· -26- 本紙張尺度適用中國國家標準(CNS) A4規格(210x 297公釐) 1276242
五、發明説明( K. ; Cameron,s· ; Creegan,K.,J. Chem. Soc,chem
Commun. 1992, 179l)〇 本申請人將此種芙醇作為如圖8(人)大致圖示之凝集體, 使近接接合之芙醇分子(圖中〇表示芙醇分子)之各氫氧基上 產生相互作用時,始理解該凝集體作為巨量之集合體:發 揮高值子傳⑽性(換言之,自⑽分子之苯雜氫氧基^ Η十的解離性)〇 另外,本實施形態除上述芙醇之外,亦可使用具有數個_ OSOsH基之芙之凝集體作為離子傳導體。〇Η基與〇s〇3H 基置換之如圖8(B)所示之聚氫氧化芙,亦即,硫酸氫酯化 芙醇仍為Chiang等於1994年所報告(Chiang,L γ ; Wang, L. Y. ; Swirczewski, J. W. ;S〇led? S. ; Cameron, H〇ig· Chem」994, 59, 396〇)。而硫酸氫酯化之芙醇 中,亦可有於一個分子内僅包含〇s〇3H基者,或是亦可分 別具有數個該基與氫氧基。 使上述之芙醇及硫酸氫酯化芙醇多數凝集時,由於其整 體顯示之質子傳導性與因分子内原本所含之大量氮基及 0/03Η基造成之質子移動直接相關,因此,不需要自氣體 兄中取得將水蒸氣分子等作為起源之氫、質子,且亦不 需要自外部補給水分,尤其不需要自外氣吸收水分等,對 氣體環境並無限制。因此,即使在乾燥氣體環境下亦可持 續地使用。 且構成此等分子基體之芙特別具有求電子性之性質,此 應除酸性度高之〇S〇3H基之外,氫氧基等亦大有助於促進 -27- ^紙張尺度適用中國國^^^(CNS) A4規格(210X297公爱)—--- 1276242 A7 B7 五、發明説明(25 ) 氫離子的電離,顯示優異的質子傳導性。且因在一個芙分 子中,可導入相當多的氫氧基及0S03H基等,有關傳導之 質子之導體單位體積之數密度非常多,因此發現實效性的 傳導率。 由於上述芙醇及硫酸氫酯化芙醇幾乎全部以芙之碳原子 構成,因此重量輕、不易變質、且亦不含污染物質。再 者,芙之製造成本亦曰益急遽降低。此外,從資源性、環 境性、經濟性上觀察,芙也加在其他任何材料内,應為接 近理想的碳質系材料。 再者,再者,芙分子内,除上述- OH、-OS〇3H以外,亦 可使用具有-COOH、-S03H、-OPO(OH)2i任何一個者。 且合成可使用於本實施形態之上述芙醇等時,對芙分子 之粉末,如藉由適切組合實施酸處理及加水分解等熟知之 處理,可導入所需之基至芙分子的構成碳原子内。 此處,構成上述離子傳導部之離子傳導體使用上述芙電 介質時,該離子傳導體宜為實質上僅包含芙電介質,或藉 由結合劑結合者。 且本實施形態之氣體擴散性電極可適用於各種電化學裝 置上。亦即。包含第一極、第二極、夾住於此等兩極間之 離子傳導體之基本性構造體,在上述第一極及上述第二極 中之至少上述第一極上適用本實施形態之氣體擴散性電 極。 進一步具體而言,對第一極及第二極之至少一方為氣體 電極之電化學裝置等,可適用本實施形態之氣體擴散性電 -28- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X297公釐) 1276242 A7 B7 五、發明説明( 極。 其次,如圖9所示,簡單顯示使用本實施形態之氣體擴散 性電極之具體例的燃料電池。 該燃料電池具有分別具有氣體擴散性電極1〇之彼此相對 的負極(燃料電極或氫電極)16及正極(氧電極)17,此等兩 電極間夾住有離子傳導部(質子導體部)5。自此等負極16、 正極17分別引出有端子15,14,形成與外部電路(負荷4)連 接的構造。 另外’該燃料電池於使用時,負極16側自導入口(圖上未 顯示)供給有氫,自排出口(圖上未顯示,另外,有時亦不設 置排出口)排出。 而燃料氣體(氫)通過氫流路12間,氫向負極擴散,此處 產生質子(H+),該質子(H + )與離子傳導部(質子導體部)5產 生之質子同時向正極17側移動,因此,與自導入口(圖上未 顯示)向供給至氧流路13之排氣口(圖上未顯示)的氧(空氣) 反應,藉此取得所需的起電力。 另外’以上構造未顯示之在氫之供給源内收納有氫吸藏 合金及氫吸藏碳質材料。另外,亦可預先吸藏氫至該氫吸 藏用碳質材料内,並收納於氫供給源内。 另外,該燃料電池由於上述本實施形態之氣體擴散性電 極構成上述第一極及/或第二極,因此具有良好之觸媒作 用’且由於可確保足夠之上述觸媒與氣體(氫等)之接觸面 積’因此促進反應之上述觸媒的比表面積大,觸媒能亦提 高,可獲得良好之輸出特性。 -29- 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公爱) 1276242 A7 B7 五、發明説明(27 ) 且由於氫離子在負極16中解離,且氫離子在離子傳導部5 解離,同時此等氫離子向正極17側移動,因此具有即使在 乾燥狀態,氫離子之傳導率仍高的特徵。因此,由於不需 要加濕裝置等,因此可促使系統簡單化、輕量化,更可促 使電流密度及輸出特性等電極之功能的提高。 另外,亦可將藉由結合劑所結合之芙電介質用於離子傳 導部5,來取代僅包含加壓成形上述芙電介質所獲得之膜狀 之上述芙電介質(夾住於上述第一極與第二極)的離子傳導 部。此時,藉由以結合劑結合,可形成有足夠強度之離子 傳導部。 此處可使用作為上述結合劑之高分子材料,可使用具有 熟知之成膜性之一種或兩種以上的聚合物,其離子傳導部 中之配合量通常抑制在20重量%以下即可。此因超過20重 量%時,可能造成氫離子之傳導性降低。 由於此種構造之離子傳導部亦含有上述芙電介質作為離 子傳導體,因此可發揮與上述實質上僅包含芙電介質之離 子傳導體同樣的氫離子傳導性。 且與芙電介質單獨時不同,賦予有來自高分子材料的成 膜性,與芙電介質之粉末壓縮成形品比較,強度較大,且 可作為具有氣體透過防止能之柔軟之離子傳導性薄膜(厚度 通常在300 /zm以下)使用。 另外,上述高分子材料只要為儘量不阻礙氫離子之傳導 性(藉由與芙電介質之反應),而具有成膜性者,並無特別限 定。通常係使用不具電子傳導性,具有良好穩定性者,其 -30- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1276242 A7 B7 五、發明説明(28 ) 具體例如:聚氟乙烯、聚乙烯醇等,從以下所述之理由亦 知此等為適切之高分子材料。 首先,聚四氟乙烯之所以適宜,係因與其他高分子材料 比較,可輕易以少量之配合量形成強度更大之薄膜。此時 之配合量只須少量達3重量%以下,更宜為0.5〜1.5重量%即 可,薄膜厚度通常可薄至100//m至l#m。 另外,聚乙烯醇之所以適宜,係因可獲得具有更優異之 氣體透過防止能之離子傳導性薄膜。此時之配合量在5〜15 重量%的範圍即可。 另外,不論是聚氟乙烯或是聚乙烯醇,此等之配合量低 於上述之各個範圍的下限值時,會對成膜造成不良影響。 而獲得本實施形態之藉由結合劑結合有各芙電介質所形 成之離子傳導部的薄膜時,可使用加壓成形及擠壓成形等 熟知的成膜法。 且本實施形態之電化學裝置,夾住於本實施形態之氣體 擴散性電極之離子傳導體,並非須特別限定者,只要具有 離子(氫離子)傳導性者,任何均可使用,如:氫氧化芙、硫 酸酯化芙醇及那飛翁等。此外,亦可將上述結合劑作為氣 體擴散性電極之斥水性樹脂使用。 實施例. 以下依據實施例具體地說明本發明。 實施例一 該實施例係在氣體透過性集電體(碳板)上交互形成碳粒體 或粒體層22與白金(濺射層)層19,製作如圖1所示之氣體擴 -31 - 本纸張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 1276242 A7 B7 五、發明説明(29 ) 散性電極,以構成燃料電池。 亦即,碳粉體或粒體層22,係將使通常之碳粉體或粒體 1(粒徑30〜40 nm)0.6g分散於溶媒N-甲基吡咯烷酮 (NMP)40g中之塗料,藉由自旋式塗敷法,先以500 rpm滴 下5秒鐘,之後,以1000 rpm滴下30秒以形成層,繼續以 120°C加熱乾燥形成。 其次,白金濺射層19使用5吋徑之白金(Pt)標的,施加 DC1A、420 V。繼續使基板旋轉,同時藉由進行8分8秒之 濺射,以形成100 nm的觸媒物質(白金等)膜。 另外,上述碳粉體或粒體層22係使用自旋式塗敷法,形 成厚度為300 nm,並設置5層,合計為1500 nm。且白金 (濺射層)層19係使用濺射法,形成厚度為20 nm,並設置5 層,合計為100 nm。亦即,分別在氣體透過性集電體(碳板) 上各形成5層,氣體擴散性電極之厚度為1.6#m。 繼續,將藉由上述步驟所獲得之氣體擴散性電極層設置 於包含那飛翁之離子交換膜(質子傳導部)與集電電極之間, 作為燃料電池單元,藉由導入氫氣、氧氣,測定對構成電 極之碳粉體或粒體層之層數(以下簡稱層數)之燃料電池之輸 出電壓的變化。 實施例二 本例如圖2所示,除在碳粉體或粒體層22内以混合比混合 20重量%之粒徑2〜3 nm之白金粉體6之外,其餘與實施例 一相同。 繼續,將藉由上述步驟所獲得之氣體擴散性電極設置於 -32- 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 1276242 A7 B7 五、發明説明(30 ) 離子交換膜(質子傳導部)與集電電極之間,作為燃料電池單 元,藉由導入氫氣、氧氣,測定對燃料電池之層數之輸出 電壓的變化。其結果後述。 實施例三 本例如圖3所示,除在碳粉體或粒艟層22内,混合形成包 含芙醇之H+傳導性覆膜(以下均同)20之碳粉體或粒體21之 外,其餘與實施例一相同。 另外,H+傳導性覆膜形成碳粉體或粒體21之H+傳導性覆 膜20之厚度侷限在10 nm〜數時nm的範圍,H+傳導性覆膜 形成碳粉體或粒體21與無覆膜之碳粉體或粒體1之配合比的 重量比為1 : 1。 再者,對覆蓋有H+傳導性之芙電介質之H+傳導性覆膜形 成碳粉體或粒體21之總量,將H +傳導性覆膜之比率設定為 30重量%。並混合經過該H+傳導處理之碳粉體或粒體、與 未經H +傳導處理之碳粉體或粒體1。 繼續,將藉由上述步驟所獲得之氣體擴散性電極放入與 實施例一同樣的燃料電池單元内,測定其輸出。 實施例四 本例如圖4所示,除在碳粉體或粒體層22内,混合形成有 包含鐵氟龍之斥水性覆膜(以下均同)18之碳粉體或粒體26 之外,其餘與實施例一相同。 另外,斥水性覆膜形成碳粉體或粒體之斥水性覆膜厚度 侷限在10 nm〜數時nm的範圍,斥水性覆膜形成碳粉體或粒 體與無覆膜之碳粉體或粒體之配合比的重量比為1 : 1。 -33- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1276242 A7 B7 五、發明説明(31 ) 再者,對覆蓋有斥水性鐵氟龍之斥水性覆膜形成碳粉體 或粒體之總量,將斥水性鐵氟龍之比率設定為30重量%。 並混合經過該排水處理之碳粉體或粒體、與未經排水處理 之碳粉體或粒體。 繼續,將藉由上述步驟所獲得之氣體擴散性電極放入與 實施例一同樣的燃料電池單元内,測定其輸出。 實施例五 本例如圖5所示,除在碳粉體或粒體層22内,混合H +傳導 性覆膜形成碳粉體或粒體21與斥水性覆膜形成碳粉體或粒 體26之外,其餘與實施例一相同。 另外,斥水性覆膜形成碳粉體或粒體26及H+傳導性覆膜 形成碳粉體或粒體21之各個覆膜厚度侷限在10 nm〜數時 nm的範圍,斥水性覆膜形成碳粉體或粒體26、H +傳導性覆 膜形成碳粉體或粒體與無覆膜之碳粉體或粒體1之配合比的 重量比為0.5 : 0,5 : 1。 再者,斥水性覆膜形成碳粉體或粒體26中形成斥水性覆 膜時,如浸入碳粉體等在鐵氟龍溶液内後予以乾燥。對覆 蓋有該鐵氟龍之斥水性覆膜形成碳粉體或粒體之總量,將 斥水性鐵氟龍之比率設定為30重量%。 再者,H+傳導性覆膜形成碳粉體或粒體21中形成傳導性 覆膜時,如浸入碳粉體等在芙電介質之氧染環戊烷溶液内 後予以乾燥。對覆蓋有該芙電介質之H+傳導性覆膜形成碳 粉體或粒體之總量,將H+傳導性覆膜之比率設定為30重量 %。 -34- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)
裝 訂
1276242 A7 B7 五、發明説明(32 ) 混合經過該排水處理之碳粉體或粒體、經過H+傳導性處 理之碳粉體或粒體、與未經處理之碳粉體或粒體。 繼續,將藉由上述步驟所獲得之氣體擴散性電極放入與 實施例一同樣的燃料電池單元内,測定其輸出。 比較例一 該比較例如先前,係製成使用使平均粒徑100 nm之白金 粒子之分散液散布於厚度為2//m之氣體透過性集電體(碳板) 上之氣體擴散性電極所構成的燃料電池。 另外,分散液中之白金粒子濃度為20重量%,分散液量 為200 // 1。而分散液滲入碳板内。 繼續,將藉由上述步驟所獲得之氣體擴散性電極層設置 於離子交換膜(質子傳導部)與集電電極之間,作為燃料電池 單元,藉由導入氫氣、氧氣,測定對燃料電池之層數的輸 出電壓。 比較例二 該比較例係製成使用使上述分散液散布於厚度為50 //m之 氣體透過性集電體(碳板)上之氣體擴散性電極所構成的燃料 電池。其他與比較例一相同。 繼續,將藉由上述步驟所獲得之氣體擴散性電極層設置 於離子交換膜(質子傳導部)與集電電極之間,作為燃料電池 單元,藉由導入氫氣、氧氣,測定對燃料電池之層數的輸 出電壓。 比較例三 該比較例除在氣體透過性集電體(碳板)與白金粒子之分散 -35- 本纸張尺度適用中國國家標準(CNS) A4規格(210X 297公釐)
裝 訂
1276242 A7 B7 五、發明説明(33 ) 液之間設有厚度為1.5//m之碳粉體或粒體層之外,其餘與 比較例一相同。 檢討上述實施例及比較例結果顯示於下表: 【表1】 抽樣 電極厚度(#m) 輸出電壓(V) 實施例一 1.6 0.6 實施例二 1.6 0.7 實施例三 1.6 0.7 實施例四 1.6 0.6 實施例五 1.6 0.7 比較例一 2.0 0.4 比較例二 50.0 0.6 比較例三 3.5 0.4
裝 訂
從此等結杲可知,實施例一之電極厚度為1.6 ,輸出 電壓為0.6 V顯示良好。且實施例二〜5之結杲亦與實施例一 同樣良好。 另外,比較例一之電極厚度為2 ,輸出電壓降低為0.4 V。且比較例二之電極厚度為50//m,輸出電壓為0.6 V雖 良好,但是電極本身厚度變大。且比較例三的結果與比較 例一相同。 如上述,比較例一中,由於僅白金粒子稀疏分散,因此 不易引起觸媒作用,輸出電壓不足。且比較例二中,輸出 -36- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1276242 A7 B7 五、發明説明(34 ) 電壓雖足夠,但是電極厚度與亦與比較例三的結果相同。 再者,比較例二中,輸出電壓雖足夠,但是電極厚度為50 // m,不易薄型化。 但是,實施例一中之氣體擴散性電極厚度為1.6//m,雖 是比較例二(50//m)約30分之1的厚度,但是輸出電壓與比 較例二相同(0 · 6 V )。且實施例二〜5的結果亦同。 從以上可知,使用本實施之氣體擴散性電極的燃料電 池,與使用先前構造之比較例的燃料電池比較,可維持較 高的輸出電壓,且氣體擴散性電極可予以薄型化。 其次,圖10顯示實施例一之燃料電池輸出電壓與層數之 相關關係。 依據該圖,層數在2以上,100以下之範圍時,輸出大致 保持在0.6 V,超過100層時即逐漸下降,於150層時降至 0.54 V,於200層時降至0.44 V。 從該結果可知,可維持較高輸出電壓之層數範圍宜在2層 以上,150層以下(甚至120層以下),更宜在2層以上,100 層以下。 以上,係說明本發明之實施形態,不過上述實施形態依 據本發明之記述構想還可進一步改變。 例如,上述之電化學裝置除氫等分解之電池反應之外, 藉由顛倒其過程,如亦可適用於氫及H202的製造。 且上述之實施形態除獲得特定效果之外,亦可堆疊同一 氣體擴散性電極内之碳粉體或粒體層及白金濺射層之各層 層數、厚度、構成材質、濃度、形成方法等各不相同的組 -37- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)
裝 訂
1276242 A7 B7 五、發明説明(35 ) 合。 【發明之功效】 本發明藉由使用交互配置有至少包含導電性粉體或粒體 之第一層、與包含觸媒物質之第二層以形成疊層構造之氣 體擴散性電極體,在氣體擴散性電極體内之各觸媒物質層 中,可有效地進行將侵入氣體擴散性電極體内之氧效率良 好地予以離子化,擴大與質子(H + )之接觸面積等電極内之 反應,可達到輸出提高等高性能化,由於其係在各層中產 生,因此,即使各層厚度(亦即全厚)薄,仍可達到高效率 化、高性能化。 且在上述之氣體擴散性電極體中,形成疊層構造時,由 於形成上層時已形成有下層,因此較容易形成疊層。因而 可重現性良好的製造上述之氣體擴散性電極體。 【圖式之簡單說明】 圖1係本發明第一種實施形態之氣體擴散性電極體之部分 詳細剖面圖。 圖2係本發明第二種實施形態之氣體擴散性電極體之部分 詳細剖面圖。 圖3係本發明第三種實施形態之氣體擴散性電極體之部分 詳細剖面圖。 圖4係本發明第四種實施形態之氣體擴散性電極體之部分 詳細剖面圖。 圖5係本發明第五種實施形態之氣體擴散性電極體之部分 詳細剖面圖。 -38- 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 1276242 A7 B7 五、發明説明(36 ) 圖6(A)〜(C)係顯示一種本發明實施形態之導電性碳粉體 或粒體的剖面圖。 圖7(A),(B)係本發明實施形態之一種可使用之芙電介質 之聚氫氧化芙的構造圖。 圖8(A),(B)係顯示本發明實施形態之一種芙電介質的模 式圖。 圖9係本發明實施形悲之燃料電池的大致構造圖。 圖10係顯示本發明實施形態之燃料電池之輸出特性圖。 【元件符號之說明】 1…碳粉體或粒體(碳質材料粉體),2…白金, 3…離子傳導體,4…負荷,5…離子傳導部(質子導體 膜), 6…白金粉體,7…燃料側,8…空氣側,9…石墨, 10…氣體擴散性電極(觸媒層)或電極體, 11…氣體透過性集電體(碳板),12…氫流路, 13…氧流路,14,15…端子,16···負極,17…正極, 18…斥水性覆膜,19…白金濺射層,20…H+傳導性覆 膜, 21…H+傳導性覆膜形成碳粉體或粒體, 22…碳粉體或粒體層,26···斥水性覆膜形成碳粉體或粒 體 -39- 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐)
裝 訂
k

Claims (1)

  1. I276H__號專利申請案 中文申請專利範圍替換本(94年2月)六、申請專利範圍 ABCD Woo 日 j 月7年 修堯 手 • 一種氣體擴散性電極體,其係交互配置有至少包含具有離 ,傳導性覆膜及/或具有斥水性覆膜之導電性粉體或粒體之 第一層、與包含觸媒物質之第二層,以形成疊層構造。 2·如申請專利範圍第!項之氣體擴散性電極體,其中前述疊 層構造之前述第一層及前述第二層❸各層數為2以上, 1 〇 0以下。 3·如申請專利範圍第!項之氣體擴散性電極體,其中前述第 層至少包含碳粉體或粒體,前述第二層包含觸媒金屬。 4·如申明專利範圍第1項之氣體擴散性電極體,其中前述第 -層之層厚為數nm〜數㈣,前述第二層之層厚為數⑽〜 數百nm。 5·如申叫專利範圍第1項之氣體擴散性電極體,其中數個前 述第二層中至少一層包含白金。 6·如申印專利範圍第1項之氣體擴散性電極體,其中數個前 述第一層中,至少一層包含觸媒金屬。 7·如申请專利範圍第1項之氣體擴散性電極體,其中前述疊 層構造形成於集電體或底層上。 且 & 一種氣體擴散性電極體之製造方法,其係交互形成至少包 含具有離子解性覆膜及/或具有斥水性覆膜之導電性粉體或 粒體之第一層、與包含觸媒物質之第二層。 9·如申請專利範圍第8項之氣體擴散性電極體之製造方法, 其中藉由自旋式塗敷法、印刷法、噴乾法、氣相成膜法中 之至少一種方法形成前述第一層。 1〇·如申請專利範圍第8項之氣體擴散性電極體之製造方法, 本紙張尺度適财國國家標準(CNS) A4規格(2i〇 X挪公楚)
    12. 13 17 18 其中藉由氣相成膜法形成前述第二層。 •如申請專利範圍第8項之氣體擴散性電極體之製造方法, 其中前述疊層構造之前述第一層及前述第二層各自的層數 為2以上,100以下。 如申請專利範圍第8項之氣體擴散性電極體之製造方法, 其中至少藉由碳粉體或粒體形成前述第一層,藉由觸媒金 屬形成前述第二層。 如申請專利範圍第8項之氣體擴散性電極體之製造方法, /、中則述第一層之層厚為數11111〜數#m,前述第二層之層 厚為數nm〜數百nm。 Η如申請專利範圍第8項之氣體擴散性電極體之製造方法, 其中數個前述第二層中至少一層包含白金。 15·如申請專利範圍第8項之氣體擴散性電極體之製造方法, 其中數個前述第一層中,至少一層包含觸媒金屬。 16.如申請專利範圍第8項之氣體擴散性電極體之製造方法, 其中前述疊層構造形成於集電體或底層上。 種電化學裝置,其係包含:第一極、第二極、與夾持於 此等兩極間之離子傳導體;交互配置有至少包含具有離子 傳導性覆膜及/或具有斥水性覆膜之導電性粉體或粒體之第 一層、與包含觸媒物質之第二層形成疊層構造之氣體擴散 I*生電極體,係構成前述第一極及第二極中之至少前述第一 才亟° 如申請專利範圍第17項之電化學裝置,其中前述疊層構造 之前述第一層及前述第二層的各層數為2以上,1〇〇以 -2-
    8 8 8 8 A BCD 1276242 六、申請專利範圍 下。 19. 如申請專利範圍第17項之電化學裝置,其中前述第一層至 少包含碳粉體或粒體,前述第二層包含觸媒金屬。 20. 如申請專利範圍第17項之電化學裝置,其中前述第一層之 層厚為數nm〜數,前述第二層之層厚為數nm〜數百 nm 〇 21. 如申請專利範圍第17項之電化學裝置,其中數個前述第二 層中至少一層包含白金。 22. 如申請專利範圍第17項之電化學裝置,其中數個前述第一 層中,至少一層包含觸媒金屬。 23. 如申請專利範圍第17項之電化學裝置,其中前述疊層構造 形成於集電體或底層上。 24. 如申請專利範圍第17項之電.化學裝置,其中前述第一極及 第二極中之至少一方為氣體電極。 25. 如申請專利範圍第17項之電化學裝置,其係作為燃料電池 構成者。 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐).
TW091104209A 2001-03-08 2002-03-07 Gas diffusive electrode body, method of manufacturing the electrode body, and electrochemical device TWI276242B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001064814 2001-03-08

Publications (1)

Publication Number Publication Date
TWI276242B true TWI276242B (en) 2007-03-11

Family

ID=18923585

Family Applications (1)

Application Number Title Priority Date Filing Date
TW091104209A TWI276242B (en) 2001-03-08 2002-03-07 Gas diffusive electrode body, method of manufacturing the electrode body, and electrochemical device

Country Status (5)

Country Link
US (1) US7407722B2 (zh)
JP (1) JPWO2002073722A1 (zh)
KR (1) KR100894928B1 (zh)
TW (1) TWI276242B (zh)
WO (1) WO2002073722A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102460792A (zh) * 2009-06-04 2012-05-16 索尼公司 高分子电解质-催化剂复合结构体粒子及其制造方法、电极、膜电极接合体(mea)、以及电化学装置

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246034A (ja) * 2001-02-21 2002-08-30 Sony Corp ガス拡散性電極体及びその製造方法、並びに電気化学デバイス
AU2003258909B2 (en) 2002-08-20 2010-07-08 Philera New Zealand Limited Dosage forms and related therapies
KR101117630B1 (ko) * 2004-06-23 2012-02-29 삼성에스디아이 주식회사 연료전지용 막-전극 접합체 및 그 제조방법
US9346673B2 (en) * 2004-06-23 2016-05-24 Samsung Sdi Co., Ltd. Electrode for fuel cell, membrane-electrode assembly for fuel cell comprising the same, fuel cell system comprising the same, and method for preparing the electrode
JP2006073467A (ja) * 2004-09-06 2006-03-16 Asahi Glass Co Ltd 固体高分子型燃料電池用膜・電極接合体
KR100578981B1 (ko) * 2004-09-08 2006-05-12 삼성에스디아이 주식회사 연료전지용 전극, 이를 포함하는 연료전지 시스템
KR101035620B1 (ko) 2004-09-24 2011-05-19 삼성에스디아이 주식회사 연료전지용 전극, 이를 포함하는 연료전지 및 연료전지용전극의 제조방법
KR100669456B1 (ko) * 2004-11-26 2007-01-15 삼성에스디아이 주식회사 연료전지용 전극, 이를 포함하는 연료전지 및 연료전지용전극의 제조방법
KR100658675B1 (ko) * 2004-11-26 2006-12-15 삼성에스디아이 주식회사 연료전지용 전극, 이를 포함하는 연료전지 및 연료전지용전극의 제조방법
KR100684797B1 (ko) 2005-07-29 2007-02-20 삼성에스디아이 주식회사 연료 전지용 전극, 이를 포함하는 막-전극 어셈블리 및이를 포함하는 연료 전지 시스템
JP2007149513A (ja) * 2005-11-29 2007-06-14 National Institute Of Advanced Industrial & Technology 固体高分子形燃料電池用触媒担体
KR100763548B1 (ko) * 2006-01-16 2007-10-04 주식회사 아모메디 연료전지용 가스 확산층의 형성방법
KR100846478B1 (ko) 2006-05-16 2008-07-17 삼성에스디아이 주식회사 담지 촉매, 그 제조방법 및 이를 이용한 연료전지
KR100738062B1 (ko) * 2006-05-16 2007-07-10 삼성에스디아이 주식회사 막 전극 접합체 및 이를 이용한 연료전지
JP5224674B2 (ja) * 2006-09-29 2013-07-03 三洋電機株式会社 燃料電池及び燃料電池発電システム
JP4740179B2 (ja) 2007-03-20 2011-08-03 株式会社東芝 触媒層担持基板の製造方法、膜電極複合体の製造方法、および燃料電池の製造方法
KR20100011644A (ko) * 2008-07-25 2010-02-03 주식회사 아모메디 탄소나노섬유웹을 이용하여 촉매층과 가스확산층을일체화시킨 연료전지 전극, 그의 제조방법, 및 그를 사용한연료전지
JP5342824B2 (ja) 2008-07-25 2013-11-13 株式会社東芝 触媒層担持基板の製造方法、触媒層担持基板、膜電極複合体、および燃料電池
JP4861445B2 (ja) 2009-03-19 2012-01-25 株式会社東芝 触媒層担持基板の製造方法、触媒層担持基板および燃料電池
WO2011009124A2 (en) * 2009-07-17 2011-01-20 Florida State University Research Foundation, Inc. Catalytic electrode with gradient porosity and catalyst density for fuel cells
JP6143663B2 (ja) 2013-12-19 2017-06-07 株式会社東芝 多孔質触媒層、その製造方法、膜電極接合体および電気化学セル
DE102014109071A1 (de) * 2014-06-27 2015-12-31 Inp Greifswald E.V. Verfahren zur Herstellung von Gasdiffusionselektroden für Brennstoffzelle, sowie Gasdiffusionselektrode und Brennstoffzelle
KR101876024B1 (ko) * 2016-05-19 2018-07-06 현대자동차주식회사 전고체전지
CN110797539B (zh) * 2019-09-24 2022-06-03 山东魔方新能源科技有限公司 一种氢燃料电池膜电极的制备方法及氢燃料电池膜电极
CN110993974A (zh) * 2019-12-25 2020-04-10 武汉理工大学 一种低铂载量质子交换膜燃料电池用高活性炭载铂型催化剂及其制备方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US395601A (en) * 1889-01-01 Gilbert walker
US3956014A (en) 1974-12-18 1976-05-11 United Technologies Corporation Precisely-structured electrochemical cell electrode and method of making same
JPS60133661A (ja) * 1983-12-21 1985-07-16 Fuji Electric Corp Res & Dev Ltd 燃料電池の電極製造方法
JPS62165863A (ja) 1986-01-14 1987-07-22 Tanaka Kikinzoku Kogyo Kk ガス拡散電極とその製造方法
EP0241432B1 (en) 1986-03-07 1993-08-11 Tanaka Kikinzoku Kogyo K.K. Gas permeable electrode
JPS62208554A (ja) * 1986-03-07 1987-09-12 Tanaka Kikinzoku Kogyo Kk ガス拡散電極及びその製造方法
JPH0766809B2 (ja) 1986-09-03 1995-07-19 田中貴金属工業株式会社 ガス拡散電極用原料粉
US4816431A (en) * 1986-04-03 1989-03-28 Nagakazu Furuya Process for preparing materials for reaction layer of gas permeable electrode
JPH03254066A (ja) * 1990-03-05 1991-11-13 Fuji Electric Co Ltd 燐酸型燃料電池の電極触媒層
JPH0536418A (ja) 1991-03-13 1993-02-12 Fuji Electric Co Ltd 固体高分子電解質型燃料電池およびその製造方法
US5773162A (en) 1993-10-12 1998-06-30 California Institute Of Technology Direct methanol feed fuel cell and system
JPH07118322A (ja) * 1993-10-27 1995-05-09 Tonen Corp ステレオブロックポリプロピレン
JP3555196B2 (ja) 1994-09-19 2004-08-18 トヨタ自動車株式会社 燃料電池とその製造方法
US5750013A (en) * 1996-08-07 1998-05-12 Industrial Technology Research Institute Electrode membrane assembly and method for manufacturing the same
JPH1125992A (ja) 1997-07-01 1999-01-29 Tanaka Kikinzoku Kogyo Kk 高分子固体電解質型燃料電池用電極及びその製造方法
JP2001015123A (ja) 1999-06-30 2001-01-19 Sanyo Electric Co Ltd 燃料電池用電極基体、燃料電池用電極及びこれを用いた燃料電池
US6482763B2 (en) * 1999-12-29 2002-11-19 3M Innovative Properties Company Suboxide fuel cell catalyst for enhanced reformate tolerance
US6749892B2 (en) * 2000-03-22 2004-06-15 Samsung Electronics Co., Ltd. Method for fabricating membrane-electrode assembly and fuel cell adopting the membrane-electrode assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102460792A (zh) * 2009-06-04 2012-05-16 索尼公司 高分子电解质-催化剂复合结构体粒子及其制造方法、电极、膜电极接合体(mea)、以及电化学装置

Also Published As

Publication number Publication date
JPWO2002073722A1 (ja) 2004-07-08
US7407722B2 (en) 2008-08-05
WO2002073722A1 (fr) 2002-09-19
KR20030086260A (ko) 2003-11-07
US20040076870A1 (en) 2004-04-22
KR100894928B1 (ko) 2009-04-27

Similar Documents

Publication Publication Date Title
TWI276242B (en) Gas diffusive electrode body, method of manufacturing the electrode body, and electrochemical device
JP3719178B2 (ja) 水素ガス製造充填装置及び電気化学装置
JP4697378B2 (ja) ガス拡散性電極とその製造方法および導電性イオン伝導体並びに電気化学デバイス
US8323848B2 (en) Membrane-electrode assembly for fuel cell, preparation method, and fuel cell comprising the same
JP4061573B2 (ja) 導電性触媒粒子の製造方法及びガス拡散性触媒電極の製造方法、並びに導電性触媒粒子の製造方法に用いる装置
JP2003080085A (ja) 導電性触媒粒子及びその製造方法、ガス拡散性触媒電極及び電気化学デバイス
JP5214602B2 (ja) 燃料電池、膜−電極接合体、及び膜−触媒層接合体
JP2009524178A (ja) 多孔質フリット系複合陽子交換膜を有する燃料電池
JP6382277B2 (ja) 耐食触媒を形成するための方法、及びインク組成物
JP5669432B2 (ja) 膜電極接合体、燃料電池および燃料電池の活性化方法
Moore et al. Microfabricated fuel cells with thin-film silicon dioxide proton exchange membranes
KR100875946B1 (ko) 가스 확산성 전극체 및 그 제조 방법, 및 전기 화학 디바이스
WO2003088396A1 (fr) Batterie de piles a combustible a electrolyte polymere solide a performance amelioree et son procede de fabrication
US8518606B2 (en) Catalyst thin layer and method for fabricating the same
JP4691794B2 (ja) 電気化学デバイスの製造方法
US20030021890A1 (en) Process for making a fuel cell with cylindrical geometry
JP7287347B2 (ja) 燃料電池用の積層体
JP2001093544A (ja) 燃料電池用電極、その製造方法並びに燃料電池
JP4810725B2 (ja) ガス拡散性触媒電極及びその製造方法、並びに電気化学デバイス
JP2008204950A (ja) 固体高分子型燃料電池及びその製造方法
JP4779278B2 (ja) 固体高分子型燃料電池用膜・電極接合体
JP5809307B2 (ja) 触媒薄層およびその製造方法
JP2006059618A (ja) 固体高分子形燃料電池
JP5388639B2 (ja) 固体高分子型燃料電池の触媒層、膜電極接合体及び燃料電池
JP2004055311A (ja) フラーレン誘導体含有プロトン伝導性複合膜、電解質膜、膜−電極接合体、並びに電気化学デバイス