TWI232126B - Method of removing water and other protic impurities from organic liquid electrolytes - Google Patents

Method of removing water and other protic impurities from organic liquid electrolytes Download PDF

Info

Publication number
TWI232126B
TWI232126B TW090122346A TW90122346A TWI232126B TW I232126 B TWI232126 B TW I232126B TW 090122346 A TW090122346 A TW 090122346A TW 90122346 A TW90122346 A TW 90122346A TW I232126 B TWI232126 B TW I232126B
Authority
TW
Taiwan
Prior art keywords
electrolyte
item
content
scope
lih
Prior art date
Application number
TW090122346A
Other languages
English (en)
Inventor
Ulrich Wietelmann
Klaus Schade
Uwe Lischka
Original Assignee
Chemetall Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemetall Gmbh filed Critical Chemetall Gmbh
Application granted granted Critical
Publication of TWI232126B publication Critical patent/TWI232126B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • H01G11/20Reformation or processes for removal of impurities, e.g. scavenging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/02Diaphragms; Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Primary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

1232126
本發明係關於移除有機液體電解質中水分和其他人μ 不純物之方法。 通常現今使用的鋰電池(主要與二極電池元件兩者)之導 體鹽類,含有無水的、液體、離子導體電解質,像是,例 如,LiPF6、LiBF4、LiC104、亞胺鋰、甲基鋰、或螯合鋰 錯化合物,(像是,雙草酸硼酸鋰),係呈現溶解的型二。 多數此類導體鹽類’在含有質子化合物存在時,咬多或少 會很快地分解,像是,例如,有水分時,例如,根據
LiPF6 + H20—LiF + 2HF t +POF3 丨
L]HC2〇4 γ 〇、r-〇 ' Β -OH〇〆、〇 (2) 況下’形成某種侵佔性和損害性之機能上特性。雖炊,有 導電鹽類與水不反應,像是,例如,uno4,係可預期在 有水存在下,亦有負面的影響’料負面的影響,係主要 歸屬於擾動覆蓋層之形成,其根據與陽極的反應而增加歷 力0 在含氟鹽類的水解反應期間,所形成之氣體產物 (hf,p〇F3,等),係、具有高度腐純,且會傷害到冑池其他部 分,像是,例如,陽極材料。例如,HF將導致於鎮失晶石 的溶解’及傷害電極材料覆蓋層,其對長使用生命期為重 要的。最I ’則使二極電池之循環穩定性受才員。领酸電解 質亦對水分敏感^在M例中,—些不可溶之水解產物的狀 ________ _ 4 _ 本紙張尺度適用巾國g家料(CNS) A4規格 1232126
Li+H20—LiOH + H2 t (3) 因此必須將降低含質子不純物到最少(H2〇〈 2〇 ppm HF <約30Ppm)。為此已經發明有一些方法,但其都有缺點。 在日本專利208 7473提出,將電解質溶液與溶劑混合, 以形成與水之共彿混合物’且可以蒸顧法移除共滩混合物 之水分/溶劑。該方法的缺點,係為溶劑中帶有不希望得到 之不純物,且受限於高沸點之電解質溶劑。 在美國專利5,395,486和WO 2000038813,以鈍性之氟化液 體,像是例如以CsFu為共乘者。彼等方法的缺點,尤其係 為關於隨其物質之氟化物的放射。 在日本專利1〇3 38653所提出的方法,係經由乾燥鈍性 氣體吹拂,以達成電解液之乾燥,其缺點為必須使用非常 昂貴(隨即要純化)之鈍性氣體,且會發生損失大量的溶劑 ,或是必須排出凝結之溶劑蒸氣與反饋之複雜操作。 另一在德國專利1 9 8 2 7 6 3 1和一形式相類似之日本專利 2 0 0 0 0 5 81 19所敘述之方法,係根據水分和[JF,在特別前處 理過氧化鋁之物理吸附。此吸附方法的缺點,係在A丨氧化 物複雜之前處理(在4〇〇°C,氮氣流中,乾燥四星期)。 德國專利1 9827630敘述清潔電池電解液的方法,含有以 驗’利用與電解質接觸時,含質子不純物,係以化學吸附 ’固定在固體上,隨即將此固體清潔劑分開。其缺點為含 有氨類固定在聚合物上之清潔劑很貴且也需要前處理(例 如’在10 0 °C真空下乾燥4天)。 最後,藉由以鹼性金屬乾燥電解液的方法則為人所知。 -5- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)
裝 訂
1232126 五、發明説明(4 本方法 一 可為一般性適用的, —不會導致於額外的污染, 可使用商業上提供之乾燥劑,不需要另外之處理, 一在安全考量上沒有危機, ―、可得到=含量<2〇 PPm之溶液產物。
該目的係藉由移除有機液體電解質中水分和其他含質子 不純物之方法達成,其中將有機液體電解質,與一或多不 互/合之驗金屬氫化物接觸,由此將所形成不互溶之反應副 產物分開。應了解該水分和其他含質子不純物之移除,係 為部份移除對全部移除的方法。
寺 口之使用趣一元氳化物(LiH)和鋼氫化物(NaH),係 為較佳足乾燥劑’其在大量的考量上較便宜,且提供有純 化的形式。雖然該在鋰電池無質子溶劑完全不溶解,頃發 現’以乾燥操作考量程度範圍而言,該LiH、NaH和其他鹼 金屬氫化物,KH、RbH和CsH,可很快地有效率達成,且 剩餘非常少的質子不純物含量。此外,令人驚訝地發現, 使用根據本發明之氫化物形式之乾燥劑,在安全上比鹼金 屬本身更有實質上的優點。以DSC (熱差分析儀,在Systag/ 瑞士RADEX儀器中心執行)量測LiH混合物,或個別!^金屬 ’和二草酸硼酸魏溶液,發現反應一開始係為危險的,高 度放熱分解反應,如所謂的起始溫度所敘(Tqnse〇,係顯著 地高於氫化物的例子(見表1)。 表1 ··電解液與LiH和Li金屬接觸的熱分解(Radex實驗) 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 1232126 A7 ____ _B7__._ 五、發明説明(6 ) 嵌入磷 m[l3p] 其中 M=Li或NR4(R = H或為1到1〇碳之烷基,亦環烷)
Rf全氟烷自由基,為1到1〇碳之烷基,亦環烷 L =有2個〇之雙齒狀配位基,像是,例如,草酸根,鄰苯 二翁,水楊酸,亦部份或完全氟化。
在非質子溶劑,有高介電常數像是 碳酸鹽,例如:二甲基碳酸鹽,二乙基碳酸鹽,乙二醇 碳酸醋,丙二醇碳酸酯,乙基甲基碳酸鹽, 氰’例如:乙氰,乙二酸二氰,戊二酸二氰, 内酯,例如:7 -丁酸丙酯, 氣化物,例如··二甲醯氨,N_甲基吡p各燒酮 醚,例如:四氫呋喃,2-甲基四氫呋喃,丨,2—甲氧基乙 坑(monoglyme) ’ 1, 3-dioxolan ,
乙縮酸,例如:1, 1二乙氧基甲烷 硫化合物,例如:二甲基亞颯,酚烷 和其混合物 驗金屬劇烈地且不可逆與質子活性物質反應,其根據 MH+X-Η—MX 丨 +H2 t (4) X = H0,自素、RC00、R〇和相類似 R =烷基 為了使反應4中不會太劇烈地放出之氣體,氫化物較佳係 以相對液體電解質等比例加入。在本發明另一較佳之實施 例中,該含質子活性物質的量,例如水,不會超過特定舌 -9 - 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 1232126 A7 B7 五、發明説明(7 性Η;辰度0· 6毫莫耳/克的上限。雖然,該含有較多不純物之 液體電解質,亦可由熟知此技藝者觀察安全之預防措施下 乾燥’其建議在此類情況下,先以不同之乾燥方法且僅在 最後執行根據本發明之乾燥方法。 以下用實例敘述根據本發明方法所執行之乾燥方式。 將鹼金屬依比例,較佳以攪拌,加入潮濕之液體電解質 ,可視情況而定,以其他質子活性物質污染之。該操作較 佳係在溫度範圍從-20到15〇。〇執行,最好係從〇到9〇。(:。隨 即可藉由量測所產生之氣體體積,監測其乾燥操作。在一 些例子中,(王要係當有特定量之酸存在,亦即〇 ·丨毫莫耳/ 克HC1),該氣體係為非常劇烈且有泡沐發生。其必要隨即 冷卻。否貝|卜該反應決不顯著地放熱。根據乾燥劑的活性 ,ρ遺即係必要在室溫或高溫(高於9(rc有時高於⑽。c)下的 反應相,完成乾燥。 在-万面係藉由所用之金屬氫化物的活性,另一方面係 =子活性不純物,通常為水之濃度,來^乾燥劑的使用 里。通常係以Karl Fischer滴定儀來決定水含量。所用之乾 燥劑之水含量’較佳係為相對應於KadFischer滴定儀 能偵測之最少量(或是其他水分決㈣)。為了能縮短反庫 的時間’(例如,從2到1〇〇次),較佳㈣以化學計量上過量 使用乾燥劑。該過量係從藉由氫化物的活性,和所 燥操㈣確方式之特定例子+給定。該㈣能力,係㈣ 金屬氫化物之活性表面積’亦即較細分散程度之金屬氮化 物’有較佳之活性。該乾燥能力,更進一#,根據前處理 -10- 1232126 A7 B7 五、發明説明(9 ) 放置未經加工之有問題的電解溶液,在鈍性多頸燒瓶中 ,其裝設有KPG攪拌器、加入固體的裝置、和熱偶計。以 塑膠注射器移除樣品,且以Karl Fischer滴定儀來確認其水 含量。 P远即加入如表2所示之l i Η的量,且亦如表2所示之條件執 行揽拌。在給定的乾燥次數後,再次移除樣品,及藉由注 射器附屬之過濾器過濾澄清之。(例如,Minisart SRP, Sartorius 0.45微米孔徑大),且再次確認其水含量。 隨即再次藉由經過玻璃過濾熔塊澄清乾燥溶液。 表2 ··不同電解液之乾燥條件 t例 電解質 H20 量 LiH 乾燥 乾燥 H20 溶液 含量 量 溫度 時間 含量 (ppm) (g) (g) α) (hrs) (ppm) 1 LiC10"P〇DME 870 150 0· 8 室溫 2. 5 265 2 ” ” ” ,, ” 15 15 3 LiC10"PC - DME 340 8000 3. 4 70 2 100 4 ” 340 8000 4. 7 70 5 10 5 L0B/PC-DME 340 1010 4. 8 40 24 55 6 L0B/PC-DMC 120 2600 15. 4 70 24 <20 裝 訂 將可見表2,乾燥的程度係根據每一例子所給定的條件。 為了要達到剩餘水含量< 2〇 ppm,在所述實例之乾燥時間 從5到24小時,係為必要的。 -12- 本紙張尺度適用中國國家標準(CNs) A4規格(210X297公釐) 修正/更士 申請曰期 __^fo v °\ κ ι〇 · * 案 犹 ------- 090122346 —-----一 類 別 (以上各棚由本局填註)
公告本I A4 C4 1232126 中文說明書替換頁(93年5月)
l專利説明書 中 文 自有機液體電解質中移除水分和其他含質子不純物之方法 英 文
METHOD OF REMOVING WATER AND OTHER PROTIC IMPURITIES FROM ORGANIC LIQUID ELECTROLYTES 姓 名 國 1·歐瑞曲懷特曼ULRICH WIETELMANN 2. 克拉斯史庫德KLAUS SCHADE 3. 悠威里斯許達UWELISCHKA 均德國 發明 住、居所 1·德國弗瑞得瑞取多夫市羅海默街19號 2·德國威斯巴登市瓦魯爾路12G號 3·德國尼德許貝斯市剛特渥特玲路79號 裝 姓 么 (名稱f 國 籍 德商開麥妥公司 CHEMETALL GMBH 德國 線 申請人 德國法蘭克福市崔肯那路3號
1. 湯瑪士克拉特 THOMAS KLATT 2. H.-P.羅森伯格博士 DR.H.-P. ROSENBERGER 本紙張尺度適用中g g *操準(Cns) μ規格(⑽χ挪公發) 1232 126 第 090122346 號申請案 年^月 修正 中文說明書替換頁(93年5月)A7 五、發明説明(3 ) 例如,F.P. Dousek et al.(Chem. Listy (1973),67(4)427-432) ’提出最前面以分子篩乾燥,隨即藉由液體K/Na合金進行 最後乾燥。此方式係類似於日本專利〇1 122566之原理,其 敘述以經過用鹼性金屬填充之層析管,過濾乾淨之電解液 。然而,在安全考量上,將鹼性金屬與相對上易反應之溶 劑接觸’並不會沒有風險的。因此,四氫咬喃,例如在約 高於1 oo°c與鋰金屬接觸已為吾人所知。其他鹼性金屬,也 可在適當的高溫下,與用在鐘電池電解液溶劑,超越平常 活潑地反應。 近代的超電容也含有有機電解液,及通常為高介電常數 在非質子溶劑中之銨鹽,像是,例如,乙氰或7 -丁酸丙酉旨 。該銨鹽通常有全氟離子像是PF,或是BF4·。此等係為電 化學穩定’不是非常親核性,且不會介入於活性電極主體。 該型電解液也須為低水含量(<20 ppm)。為了能達到此 目的,日本專利1 1054378和日本專利1 1008 163提出,基 於無機氧化物加入電解液吸收劑像是,矽酸鋁。此類吸收 劑係為低水含量,因此能改進可信度、安全和電流特性。 此方法的缺點為,一方面該吸收劑必須經由前處理,另— 方面’該吸收劑係存在於最終之電容中,以至於降低特定 儲存客積。 本發明的目的,係要避免先前技藝之缺點,以提供從有 機液體電解質中移除水分與含質子不純物的方法。應了解 ’有機液體電解質,係為含有電化學抵抗離子,在無質子 、極性、有機溶劑之鋰鹽和/或氨鹽。
本紙張尺度適用中國國家襟準(Cns) A4規格(210χ 297公策) 1232126 第090122346號申請案f多年;月7^修正/更 中文說明書替換頁(93年5月)Α7 Β7 五、發明説明(5 ) ΕΟ乙二醇碳酸醋,DMC =二甲基酸醋,PC=丙二醇碳酸 醋,DME=1,2-二甲氧基乙烷,L〇B =二草酸硼酸鋰。 導體鹽類 電解質 濃度 (Wt.%) Li金屬 T ONSET Τ MAX LiH T ONSET Tmax LiPF6/EC-DMC 11 145 160 230 (240)1) L1CIO4/PC-DME 6 160 165 255 265 LOB/EC-DMC 10.5 180 220 240 ./.1) 1}Tmax : 因為樣品容器開放性,所以不能或不易得到。 T〇NSET * 第一個放熱反應的起始溫度。
Tmax : 放熱反應溫度的最大值。 從該相較的數據確定得知氫化物具有高度操作安全性, 其在相當大量製造實例下,係為非常重要的。 根據本發明所使用的皆為有機液體電解質也就是,例如 ,為以下之溶液 氟化物,像是 MPF6,MAsF6,MBF4 全氯酸 MC104 破化鋰 Lil
三石黃酸 MSO3RF 亞胺鹽 mn(so2rf)2 甲基鹽 m[c(so2rf)3] 嵌入砸1 M [L2B ] -8- 本紙張尺度適用中國國家標準(CNS) Α4規格(210 X 297公釐) J232126,修至 090122346號中請案 尤說明書替換頁(92年1〇月) A7 B7 煩請委員明示,本案修正後是否變更原:r質内容 五、發明説明(8 ) 的本質。 “新鮮’’之金屬氫化物,通常有較多之活性。已經接觸過 空氣或溼氣之金屬氫化物,係被“保護”,通常必須要活 化之。其可藉由在鈍氣環境中研磨來達成I從空間的觀點 上,孩操作可以分開或同時,亦即在乾燥電解質的期間進 行。 頃發現,商業上所提供之氫化物等級,係有足夠的活性 (在數小時中,水含量〈2〇 PPm),以乾燥電解質。為了能 促進實驗室規模之乾燥操作,較佳係執行密集的攪拌,例 如使用同速之螺旋槳攪摔器《也可藉由將液體電解質通 過含有金屬氫化物固定床來執行(例如,層析管)。 當完成乾燥操作時,必須將乾燥劑殘留物和不可溶之反 應產物分離《頃發現根據反應4所形成之鹼金屬氫氧化物, 係完全不溶解於溶劑和上述之溶劑中。因此,藉由簡單之 固/液分離操作,像是過濾或離心器,可將不希望得到之反 應副產物分離。 乂此方法所製備之澄清溶液,具有相當低的水含量(相等 於其他質子活性物質之低含量)。其不需經由進一步之處理 ’即可使用在電解電池,較佳係链電池,或是電解雙層電 谷器(超級電容器)之電解液。 以實例的方式,更詳細解釋本發明的主體。 實例1至6 :乾燥不同電解液 。藉由根據本發明方法的協助,在不同的乾燥狀況下,乾 燥表2所不〈不同電解液溶劑。如下為一般之實驗裝置: ^紙張尺度適用中國國家標準X 297:ϋ---—----

Claims (1)

12靴 90122346號申請案 中文申凊專利範圍替換本(93年申請專利範圍 A8 B8 5月) •一種自有#液體電解質中#除水分和其他含質子不純 之方法其特彳政為在-20至150。(:之溫度下將電解液與 (鋰虱化物)接觸,並且將所形成之不可溶反應副產 物以及LiH殘留物移除。 根據申凊專利範圍第丨項之方法,其特徵為在欲乾燥之 1〉夜體電解質之質子化合物的含量係<0.6毫莫耳/克。 根據申#專利範圍第丨項之方法,其特徵為溫度係從〇 到 90°(:〇 j據申5目專利㈣第丨或2項之方法,其特徵為僅的含 里至少在化學計量上,係相對應於質子不純物的含量。 根據申叫專利範圍第4項之方法,其特徵為LiH的含量 在化學計量上,係相對於質子不純物的含量之2到1〇〇 倍。 ,,申叫專利範圍第1或2項之方法,其特徵為藉由在鈍 氣環境中研磨以活化LiH。 根據申μ專利知圍第〗或2項之方法,其特徵為在中 攪拌液體電解質。 2據申叩專利範圍第丨或2項之方法,其特徵為使液體電 解質通過含有UH之固定床。 才艮據申叫專利範圍第丨或2項之方法,其特徵為藉由過濾 或離心器移除不可溶之反應副產物。 ^據申μ專利範圍第丨或2項之方法,其中該有機液體電 解質係用於電解電池或超級電容器。 U·,申請專利範圍第…項之方法,其中該有機液體電 科質係用於鐘電池。
TW090122346A 2000-09-27 2001-09-10 Method of removing water and other protic impurities from organic liquid electrolytes TWI232126B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10049097A DE10049097B4 (de) 2000-09-27 2000-09-27 Verfahren zur Trocknung von organischen Flüssigelektrolyten

Publications (1)

Publication Number Publication Date
TWI232126B true TWI232126B (en) 2005-05-11

Family

ID=7658628

Family Applications (1)

Application Number Title Priority Date Filing Date
TW090122346A TWI232126B (en) 2000-09-27 2001-09-10 Method of removing water and other protic impurities from organic liquid electrolytes

Country Status (10)

Country Link
US (2) US20040096746A1 (zh)
EP (1) EP1330299A1 (zh)
JP (1) JP5021147B2 (zh)
KR (1) KR20030039376A (zh)
CN (1) CN1476343A (zh)
AU (1) AU2002214984A1 (zh)
CA (1) CA2424361C (zh)
DE (1) DE10049097B4 (zh)
TW (1) TWI232126B (zh)
WO (1) WO2002028500A1 (zh)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10143171A1 (de) 2001-09-04 2003-03-20 Solvay Fluor & Derivate Verfahren zur Säureabtrennung
US20030113622A1 (en) * 2001-12-14 2003-06-19 Blasi Jane A. Electrolyte additive for non-aqueous electrochemical cells
US20030162099A1 (en) 2002-02-28 2003-08-28 Bowden William L. Non-aqueous electrochemical cell
US7498102B2 (en) * 2002-03-22 2009-03-03 Bookeun Oh Nonaqueous liquid electrolyte
DE10228201B4 (de) * 2002-06-24 2006-12-21 Chemetall Gmbh Verfahren zur Herstellung von Lithiumiodidlösungen
EP1597639A1 (de) * 2003-02-24 2005-11-23 Bayerische Motoren Werke Aktiengesellschaft Verfahren und vorrichtung zur visualisierung eines reparaturablaufs an einem fahrzeug
US7473491B1 (en) * 2003-09-15 2009-01-06 Quallion Llc Electrolyte for electrochemical cell
US7459237B2 (en) 2004-03-15 2008-12-02 The Gillette Company Non-aqueous lithium electrical cell
US7285356B2 (en) * 2004-07-23 2007-10-23 The Gillette Company Non-aqueous electrochemical cells
US7479348B2 (en) * 2005-04-08 2009-01-20 The Gillette Company Non-aqueous electrochemical cells
CA2517248A1 (fr) 2005-08-29 2007-02-28 Hydro-Quebec Procede de purification d'un electrolyte, electrolyte ainsi obtenu et ses utilisations
US20100143806A1 (en) * 2007-07-04 2010-06-10 Rainer Dietz Method for producing low-acid lithium borate salts and mixtures of low-acid lithium borate salts and lithium hydride
US8000084B2 (en) * 2007-07-25 2011-08-16 Honeywell International, Inc. High voltage electrolytes
JP5794028B2 (ja) * 2011-08-03 2015-10-14 セントラル硝子株式会社 テトラフルオロホウ酸リチウム溶液の製造方法
CN102522588A (zh) * 2011-11-08 2012-06-27 天津市泰豪锂电池有限公司 锂电池电解液无热配制工艺
DE102011086812A1 (de) * 2011-11-22 2013-05-23 Wacker Chemie Ag Verfahren zur Herstellung von Feststoffen aus Alkalisalzen von Silanolen
EP2607306A1 (de) 2011-12-23 2013-06-26 LANXESS Deutschland GmbH LiPF6-Lösungen
EP2607316A1 (de) 2011-12-23 2013-06-26 LANXESS Deutschland GmbH LiPF6-Lösungen
EP2607315A1 (de) 2011-12-23 2013-06-26 LANXESS Deutschland GmbH LiPF6-Lösungen
EP2607305A1 (de) 2011-12-23 2013-06-26 LANXESS Deutschland GmbH LiPF6-Lösungen
US9559374B2 (en) 2012-07-27 2017-01-31 Lockheed Martin Advanced Energy Storage, Llc Electrochemical energy storage systems and methods featuring large negative half-cell potentials
US9382274B2 (en) 2012-07-27 2016-07-05 Lockheed Martin Advanced Energy Storage, Llc Aqueous redox flow batteries featuring improved cell design characteristics
US9899694B2 (en) 2012-07-27 2018-02-20 Lockheed Martin Advanced Energy Storage, Llc Electrochemical energy storage systems and methods featuring high open circuit potential
US10164284B2 (en) 2012-07-27 2018-12-25 Lockheed Martin Energy, Llc Aqueous redox flow batteries featuring improved cell design characteristics
US8691413B2 (en) * 2012-07-27 2014-04-08 Sun Catalytix Corporation Aqueous redox flow batteries featuring improved cell design characteristics
US9768463B2 (en) 2012-07-27 2017-09-19 Lockheed Martin Advanced Energy Storage, Llc Aqueous redox flow batteries comprising metal ligand coordination compounds
US9865893B2 (en) 2012-07-27 2018-01-09 Lockheed Martin Advanced Energy Storage, Llc Electrochemical energy storage systems and methods featuring optimal membrane systems
CN107108669A (zh) 2014-11-26 2017-08-29 洛克希德马丁尖端能量存储有限公司 取代的儿茶酚盐的金属络合物及含有其的氧化还原液流电池
US10253051B2 (en) 2015-03-16 2019-04-09 Lockheed Martin Energy, Llc Preparation of titanium catecholate complexes in aqueous solution using titanium tetrachloride or titanium oxychloride
US10316047B2 (en) 2016-03-03 2019-06-11 Lockheed Martin Energy, Llc Processes for forming coordination complexes containing monosulfonated catecholate ligands
US10644342B2 (en) 2016-03-03 2020-05-05 Lockheed Martin Energy, Llc Coordination complexes containing monosulfonated catecholate ligands and methods for producing the same
US9938308B2 (en) 2016-04-07 2018-04-10 Lockheed Martin Energy, Llc Coordination compounds having redox non-innocent ligands and flow batteries containing the same
CN109831926A (zh) * 2016-06-30 2019-05-31 罗伯特·博世有限公司 形成蓄电池的方法
US10377687B2 (en) 2016-07-26 2019-08-13 Lockheed Martin Energy, Llc Processes for forming titanium catechol complexes
US10343964B2 (en) 2016-07-26 2019-07-09 Lockheed Martin Energy, Llc Processes for forming titanium catechol complexes
US10065977B2 (en) 2016-10-19 2018-09-04 Lockheed Martin Advanced Energy Storage, Llc Concerted processes for forming 1,2,4-trihydroxybenzene from hydroquinone
US10930937B2 (en) 2016-11-23 2021-02-23 Lockheed Martin Energy, Llc Flow batteries incorporating active materials containing doubly bridged aromatic groups
US10497958B2 (en) 2016-12-14 2019-12-03 Lockheed Martin Energy, Llc Coordinatively unsaturated titanium catecholate complexes and processes associated therewith
US10741864B2 (en) 2016-12-30 2020-08-11 Lockheed Martin Energy, Llc Aqueous methods for forming titanium catecholate complexes and associated compositions
US10320023B2 (en) 2017-02-16 2019-06-11 Lockheed Martin Energy, Llc Neat methods for forming titanium catecholate complexes and associated compositions
CN110310842B (zh) * 2018-03-20 2022-03-18 中天超容科技有限公司 高电压电容的电解液及其制备方法和电容器件

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2562972A (en) * 1944-11-14 1951-08-07 Rca Corp Method and apparatus for purifying and testing a fluid dielectric and filling a container or an electrical capacitor therewith
US3864168A (en) * 1974-03-22 1975-02-04 Yardney International Corp Electrolytic cells incorporating water scavengers
JPS5946764A (ja) * 1982-05-10 1984-03-16 Fuji Elelctrochem Co Ltd 非水電解液電池
JPS599874A (ja) * 1982-07-08 1984-01-19 Nippon Denso Co Ltd 有機電池
JPH01122566A (ja) * 1987-11-05 1989-05-15 Mitsubishi Petrochem Co Ltd 非水電解液の精製方法
CA2104718C (en) * 1993-08-24 1999-11-16 Huanyu Mao Simplified preparation of lipf6 based electrolyte for non-aqueous batteries
JP3848435B2 (ja) * 1997-06-18 2006-11-22 昭和電工株式会社 電気二重層コンデンサ及びその製造方法
JPH1154378A (ja) * 1997-07-30 1999-02-26 Honda Motor Co Ltd 電気二重層キャパシタ
CA2218271A1 (en) * 1997-10-10 1999-04-10 Mcgill University Method of fabrication of complex alkali mental hydrides
US6195251B1 (en) * 1997-10-29 2001-02-27 Asahi Glass Company Ltd. Electrode assembly and electric double layer capacitor having the electrode assembly
JP3369937B2 (ja) * 1997-11-19 2003-01-20 セントラル硝子株式会社 テトラフルオロホウ酸リチウムの精製方法
DE19827631A1 (de) * 1998-06-20 1999-12-23 Merck Patent Gmbh Aufreinigung von Batterieelektrolyten mittels physikalischer Adsorption
DE19827630A1 (de) * 1998-06-20 2000-04-27 Merck Patent Gmbh Aufreinigung von Batterieelektrolyten mittels chemischer Adsorption
JP3483120B2 (ja) * 1998-09-07 2004-01-06 セントラル硝子株式会社 リチウム電池用電解液の製造方法
US6551748B1 (en) * 2000-06-29 2003-04-22 The United States Of America As Represented By The Secretary Of The Army Prevention of polymerization in Li/MnO2 organic electrolyte electrochemical systems

Also Published As

Publication number Publication date
DE10049097B4 (de) 2004-08-26
US20060138056A1 (en) 2006-06-29
EP1330299A1 (de) 2003-07-30
CA2424361A1 (en) 2003-03-25
CN1476343A (zh) 2004-02-18
DE10049097A1 (de) 2002-04-25
US20040096746A1 (en) 2004-05-20
AU2002214984A1 (en) 2002-04-15
CA2424361C (en) 2010-04-06
US7666310B2 (en) 2010-02-23
JP5021147B2 (ja) 2012-09-05
KR20030039376A (ko) 2003-05-17
JP2004511068A (ja) 2004-04-08
WO2002028500A1 (de) 2002-04-11

Similar Documents

Publication Publication Date Title
TWI232126B (en) Method of removing water and other protic impurities from organic liquid electrolytes
JP4646399B2 (ja) リチウム電池用電解液及びその製造方法
CN105556729B (zh) 非水电解质组合物
KR101600685B1 (ko) 리튬이온전지 양극재료의 개질방법
KR101046107B1 (ko) 전지 활성 물질을 정제하는 방법
TWI295117B (en) High purity lithium polyhalogenated boron cluster salts useful in lithium batteries
JP6672691B2 (ja) リチウムイオンキャパシタ
JP5506671B2 (ja) 酸含有率の低いホウ酸リチウム塩の製造方法および酸含有率の低いホウ酸リチウム塩と水素化リチウムとからなる混合物
JP2018035054A (ja) ビス(フルオロスルホニル)イミドアルカリ金属塩の製造方法ならびにビス(フルオロスルホニル)イミドアルカリ金属塩組成物
Rauh et al. Efficiencies of cycling lithium on a lithium substrate in propylene carbonate
CN106067387B (zh) 锂离子电容器
TWI594489B (zh) Electrolyte solution purification method and electrolyte solution manufacturing method
JP2009540518A (ja) 金属リチウム電極の界面抵抗を改変する方法
WO2016052092A1 (ja) ジフルオロイオン性錯体の製造方法
KR100236383B1 (ko) 함수 조성물을 탈수시키는 방법
JP2000268794A (ja) 電 池
JP3687283B2 (ja) リチウムイオン2次電池用溶媒
CN111293359A (zh) 一种用于低温锂离子电池的添加剂及使用该添加剂的电解液和锂离子电池
JP5758214B2 (ja) 電解質及び電解質膜
JP2000243446A5 (zh)
JPH11185810A (ja) リチウム電池用電解液及びその製造方法
WO2020113539A1 (zh) 一种用于低温锂离子电池的添加剂及使用该添加剂的电解液和锂离子电池
JPH07122295A (ja) 非水電解質二次電池
JPH11185811A (ja) リチウム電池用電解液及びその製造方法
CN115916706A (zh) 阴极活性材料的制备方法

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees