TW492156B - Method of fabricating flux concentrating layer for use with magnetoresistive random access memories - Google Patents

Method of fabricating flux concentrating layer for use with magnetoresistive random access memories Download PDF

Info

Publication number
TW492156B
TW492156B TW090106479A TW90106479A TW492156B TW 492156 B TW492156 B TW 492156B TW 090106479 A TW090106479 A TW 090106479A TW 90106479 A TW90106479 A TW 90106479A TW 492156 B TW492156 B TW 492156B
Authority
TW
Taiwan
Prior art keywords
layer
forming
copper
bit
magnetic flux
Prior art date
Application number
TW090106479A
Other languages
English (en)
Inventor
Mark Durlam
Eugene Youjun Chen
Saied N Tehrani
Jon Michael Slaughter
Gloria Kerszykowski
Original Assignee
Motorola Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motorola Inc filed Critical Motorola Inc
Application granted granted Critical
Publication of TW492156B publication Critical patent/TW492156B/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/14Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements
    • G11C11/15Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements using multiple magnetic layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Memories (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)

Description

492156 五、發明說明(l) 本發明已於2000年3月21曰太¥ 為〇 9/ 5 2 8,97 1。 1日在吳國提出申請,申請序號 本發明有關製造高密度、北概^ 法,尤i &制从a , 非揮發性之磁性記憶體的方 ^ 尤其,與製作磁阻隨機、左% ^ 編寫線(1包括_ _ _磁、s θ #圮憶體(MRAM)之磁場程式 低# - /、4A 積肢磁通罝集中層,用來提供遮蔽及降 低位凡切換電流)的方法有關。 負電體(咖)裝置中的記憶細胞以由-載 導體,苴一,產生的磁性場來編寫程式。通常兩個正交之 線,而^ =成於該磁性記憶位元之下,於此後稱為數位 線,該等形,於該磁性記憶位元之上,於此後稱為位元 磁場做為:正交之導體被安排於一交又點矩陣中,以提供 序使用銅金ΐ Ϊ寫程式之用:一般來說,先進之半導體程 使用金屬山連。形成該等銅金屬内連之較佳的方法為 先前已利用、嵌法或是嵌入處理。在形成該裝置的過程中, 先於—八心兹通里集中層° 5亥結構通常的形成方式為’首 障蔽層;、[二層中圖案化及蝕刻一淺槽,接著,沉積一第一 層、i最$磁通量集中層、一第二障蔽層、一銅(Cu)種子 幾個。$ 1灸為一電鐘銅(Cu)層。需要該等障蔽膜的原因有 (N i F e ) /第障蔽層對快速擴散元素如銅(C u)及錄鐵合金 (TaN)、故為—擴散障蔽。該障蔽層通常以鋁(Ta)、氮化鈕 或是其纽石夕氮化物(Ta/Si/N)、鈦(Ti)、氮化鈦(TiN)、 "了以禁止晶粒邊界擴散的材料。還有該障蔽層必
第7頁 492156 五、發明說明(2) 須要具傳導性。 該磁通量集中層必須具高穿透性,並且磁性柔軟(低矯 頑磁性)。m a g n e t 〇 s t r i c t i ο η也必須要低才行。該錄鐵合 金C Ν 1 F e )對此類之磁通量集中層來說很好用。該第二障蔽 層的作用為鎳鐵合金(NiFe)與銅(Cu)層間的擴散障蔽。鎳 鐵合金(NiFe)與銅(Cu)已經是内混合(intermix),在該高 穿透性材料中產生一個磁性死(d e a d )層。該磁性死層降低 該高穿透性材料降低其有效性的有效厚度。該障蔽材料必 須能傳導,而且其選擇性不能高於用來移除該銅(C u)與錄 鐵合金(N i F e )之研磨化學物質。以钽(Ta )為主的障蔽層具 有該所需之選擇性,但並不是第二障蔽層的理想材料,因 為其程序之複雜性的增加。以鈷(C 〇 )或是鈷鐵(C 〇 F e )的材 料做的第二障蔽層較好,因為其在鎳鐵合金(Ν 1 F e )與銅 (Cu)間的障蔽層具有與鎳鐵合金(NiFe)與銅(Cu)相似的研 磨特性。使用鈷(Co)或是鈷鐵(CoFe)為第二障蔽層也增加 磁通量集中層的穿透性,但是必須要較鎳鐵合金(N i F e ) 薄,因為其具較高之矯頑磁性。進一步有關磁性裝置包括 一磁通量集中層的資訊,可以在1 9 9 9年一月1 9日頒發之美 國專利、序號5,861,3 2 8、名稱為"METHOD 〇F FABRICATING GMR DEVICES"中找到,讓渡給相同的讓渡 人,並於此以提及的方式併入本發明中。 在如前所述之MR AM裝置製造中的一個問題,尤其一般的 記憶細胞,是該包層(通常為鎳鐵(N i F e)與銅(c u)導體)在 高溫下的内混合。此外,先進之CMOS處理使用單一或是雙
第8頁 492156 五、發明說明(3) ' -- 欲入(inlaid )銅(Cu)金屬内連。為了克服該等問題,
使用一包覆形成於記憶體位元(其利用標準之私入銅^ 設備)之下與之上的銅(c U)線的技術。 ~ ° U 將每個導體外表面的咼穿透性包覆材料八 一 说If σ併,可以將該 磁通量集中朝向該位元。使用磁通量集中材料的节包豐 層,與非包覆線相比的話,會降低該程式電流,其^ =約 為二(2)。此外,該包覆層會對其他Stray%部場提供遮蔽 的作用。 如此,吾人想要的是提供一改良的材料堆疊,於銅(Cu) 鑲嵌線加入一磁通量集中層。在此所揭示的是一種形成-包 覆之敌入銅(Cu)鑲後線’其利用標準設備及處理,做為形 成該包覆之銅(Cu)鑲嵌線之用。 因此,本發明之一目的為提供含有磁通量材料之磁阻隨 機存取記憶體(MR A Ms)的一個新穎並且改良之製造方法。 本發明的另一個目的為提供含有磁通材料之磁阻隨機存 取記憶體(M R A M s )的一個新穎並且改良之製造方法,其包 括一種包覆在該磁性記憶體位元之上的該位元線的技術, 以及使用標準嵌入處理設備來製造一形成於該磁性記憶體 位元之下的數位線。 本發明尚有一個目的,為提供含有磁通量材料之磁阻隨 機存取記憶體(M R A M s )的一個新穎並且改良之製造方法, 其具有改良的結構用障蔽層(其對形成於該磁性記憶體位 元之下的該數位線,集中該磁性通量向上朝向該位元;對 形成於該磁性記憶體位元之上的該位元線,集中該磁性通
II
492156 五、發明說明(4) 量向下朝向該位元)來形成該等包覆。 發明概述 以上的問題與其他的問題,至少部分被解決了 ,而且以 上的目的與其他的目的都落實於一種製造磁性記憶體裝置 的方法,其中負載電流的導體形成於該磁性記憶體位元之 上與磁性記憶體位元之下。該製造方法包括以在銅(C U )鑲 嵌線上加入一磁通量集中層之方式,形成一改良的材料堆 疊。該結構禁止該鎳鐵合金(NiFe)磁通量集中層與銅(Cu) 位元線間的擴散,並增加磁通量集中層的穿透性,以及符 低製造的複雜性。 ’ 在製作位元線的過程中,使用與銅(Cu)鑲嵌處理一致之 製造技術,將該磁通量集中層加在一銅(Cu)鑲嵌線之上。 該磁通量集中層形成來覆蓋該位元線的三(3)邊,以達最 大效益。 此外,在此揭示的是將一電流負載導體,或是一數位 線,形成於該磁性位元的下邊。該數位線的形成,包括以 將一磁通量集中層與障蔽層加在一銅(Cu)鑲嵌線之上的方 式,形成一改良材料堆疊。 圖式簡單說明 參考圖式: 圖1至9為簡單侧視圖,示範根據本發明磁性記憶體裝置 製造方法的步驟。 較佳具體實施例說明 現在請參看圖式,圖1至9為簡單側視圖,示範根據本發
第10頁 492156 五、發明說明(5) 明磁性記憶體裝置之製造方法的幾個步驟。參考圖1,示 範的是製造一磁性隨機存取記憶體(MR AM )裝置(包括一 MR AM位元10)的第一步驟。在此具體實施例中,MRAM位元 1 0為標準MR A Μ位元,根據此項技藝中所熟知的技術所形 成。雖然在此為了方便之故以標準之MRAM位元做示範,熟 知此項技藝之人士應了解,許多其他種類的半導體裝置也 可以應用。同時,雖然在此為了方便之故,以一單一之 MRAM位元做示範,吾人應了解,舉例來說,一組磁性記憶 體位元的周邊可以有一個完全之裝置或是控制驅動器電路 組。還有,圖1包括一接觸金屬層1 6,其連接MR AM位元1 0 至一電晶體(圖未示)。M R A Μ位元1 0還額外地包括形成一材 料堆疊13於一最上表面12,並形成一嵌入材料堆疊17於接 觸金屬層1 6之下。吾人應了解,雖然圖1至9示範一種使用 雙重金屬鑲嵌處理形成磁性位元線及數位線的方法,尤其 是包括兩個攝影與蝕刻的步驟,以及一個電鍍或是沉積步 驟,在本發明中所使用乃為單一金屬鑲嵌處理(其中使用 一個攝影與蝕刻的步驟及一個電鍍或是沉積步驟)形成磁 性位元線及數位線的方法。根據如此,本發明申請人盼望 在此所說明之方法包括單一與雙重金屬鑲嵌處理。此外, 吾人應了解,雖然圖式示範的是製造一位元線實際與該磁 性記憶位元接觸,然申請人盼望此發明包括所形成的位元 線,雖與該磁性記憶位元接近,但是並不接觸。 吾人想要的是一改良之材料堆疊,用來在與MRAM位元10 一起形成之銅(Cu)鑲散線加入一磁通量集中層。在製造一
492156 五、發明說明(6) 數位線的過程巾’其結構的形成方式為首先在—介電層ιδ =刻:!槽,然後沉積一第-障蔽層2。、-磁 :);2弟7二障蔽層24、一銅(Cu)種子層26,最 -障蔽層20以-耐火全屬“t(Ta屬鑲联線28。該第 j人▲屬,如钽(Ta)、氮化妲(τ N)、 矽氮化物(TaSiN)或是類似的今屬开;A Q Μ — 、diN」 ^ 鈷(Co)材料或是鈷鐵材料(c〇F ) /成 弟一卩早敝層24以 何抖Ue )形成,亚做為快速擴散元 素如銅(Cu)及鎳鐵合金(NlFe)之擴散障蔽。磁通量隼中層 22是以—高穿透性並磁性柔軟的材料(低橋頑磁性)形成。曰 通常磁通量集中層22是以鎳鐵(NiFe)形成。接著,電鍍-銅 層27被研磨,形成銅金屬鑲嵌線28 ’而一介電材料之介層 3 0 ;儿積於數位線2 8及介雪;y*料1 β夕界μ主^ ^久;丨尾材枓18之取上表面上。MRAM位元 10接下來被插入介電層3〇上。 在製造一形成於磁性記憶位元10之上或是幾近其的位元 線過程中(現在正討論)’ 一第一層介電材料層32沉積於 MR AM位凡1〇表面31上,或是接近MRAM位元1〇。為了容易說 明」將參考圖卜9,來說明銅(Cu)鑲嵌位元線實際與該磁 性記憶位元接觸的製造。吾人應了解,在另一具體實施例 中並不要求该金屬鑲喪位元線與磁性記憶位元1 〇有實際 接觸。介電材料層32通常以任何一種絕緣材料形成,如二 ^化石夕jSi〇2)或是氮化矽(SiN)材料,其以一標準沉積步 驟(通常稱為一帽層cap layer)形成於MRAM位元1〇表面Η 上。介電材料層32接著被平坦化,且其做為形成通道(現 在正在介紹),因此允許與M RAM位元1 〇實際接觸。吾人應
第12頁 492156 五、發明說明(7) 了解’在另—具體實施例中,在MR A Μ位元1 0與一磁性耦合 位兀線(分開討論)並無實際接觸。接著,一蝕刻停止層3 4 形成於^電材料層32之最上表面33上。蝕刻停止層34是用 一對以氣為主的材料具有選擇性的材料,或者,蝕刻停止 層3 4可以用一材料其提供一終點信號以停止該蝕刻步驟。 一提供所想要的選擇性的合適之蝕刻停止材料為,舉例來 說’二氧化銘(A 1 〇2 )或是氮化鋁(Α 1 Ν )、厚度在丨〇 〇埃至 5 0 0埃間’或是氮化矽(SiN)或是氮氧化矽以…”層,以提 供一終點信號。 一第二介電層36沉積於每一蝕刻停止層34之最上表面35 上。介電層3 6將形成銅金屬鑲嵌位元線(於此討論)。介電 層3 6通常以任何一種絕緣材料形成,如二氧化矽(s丨% )於 氮化石夕(S込叱)上,或是由二氧化矽(s i 〇2)所組成之三層堆 豐於蝕刻停止層3 4上,如氮化鋁(A I N )、或是氧化鋁 (A 1 〇3)於氮化石夕(S “ )上。此外,介電層3 6應具有與濕 氣及氧化有關之障蔽性質。 現在請參考圖2 ’示範如從圖1之2 — 2線所視的簡單側視 圖’其為製造一包括一磁通量集中層之MRAM裝置。介電層 36被圖案化並#刻以形成一淺槽38,用以形成銅(Cu)鑲嵌 位凡線。介電層3 6利用標準蝕刻技術如R丨e被蝕刻。介電 層3 6之姓刻使得其被钱刻停止層3 4停止,該蝕刻停止層3 4 在之前被形成為一層材料、不適合蝕刻,或是由於終點偵 測材料的改變而停止I虫刻之信號。如圖3所示,接下來使 用一分開之圖案及钱刻步驟,以建立一马MRAM位元1〇的通
卓13頁 492156 五、發明說明(8) 道40。此蝕刻建立一模式(f orm)或是淺槽,做為沉積一金 屬糸統(在此討論)之用。 現在請參考圖4,在簡單側視圖中所示的是製造一包括 一磁通量集中層之MRAM裝置的下一步驟。更特別的是,在 此所示範的一金屬系統,通常以2 9表示,被沉積並由幾層 所組成。一開始,一第一障蔽層4 2在淺槽3 8中,而且通道 40形成於其中。第一障蔽層42由钽(Ta)、氮化钽(TaN)、 钽矽氮化物(TaS i N )或其他合適的材料形成。第一障蔽層 4 2使用物理蒸汽沉積(p v D )或是離子金屬電漿(I Μ P)技術來 沉積。如圖5所示,一銅(Cu )種子層44接著使用物理蒸汽 沉積(PVD)、化學蒸汽沉積(CVD)或是離子金屬電漿(IMP) 技術沉積在淺槽38與通道40中。如果使用物理蒸汽沉積 (PVD)或是離子金屬電漿(IMp)技術來沉積銅(Cu)種子層 44,將形成該銅(Cu)種子層,作為電鍍該金屬鑲嵌位元 線,並被定義為一金屬系統2 9的一部分。接下來,一銅 (Cu)材料被電鍍以形成電鍍銅(Cu)材料46。種子層以與電 鍍銅(Cu)材料46 —起形成一銅系統48。在淺槽38之上區= :多餘的銅(Cu)以化學機械研磨法(CMp)或類似的技術來 $在苓考圖β,介電層3 6被移除至蝕刻停止層Μ。介 盾3 6以一使用以氟為主所 刻處理。 勹主之化學物貝或疋濕化學物質做乾蝕 接下來 統4 8之上
第14頁 492156 五、發明說明(9) (C〇)、鈷鐵(CoFe)、妲(Ta)、氮化妲(TaN),或是其他合 適的材料所形成。一磁通量集中層5 2接著被沉積在第一外 障蔽層5 0之表面上。磁通量集中層5 2以一高穿透性磁性材 料形成。磁通量集中層5 2具有集中由流動於該導體之電流 所產生磁通量的特性,因此,降低產生所想要的動作所g 之電流量。磁通量集中層52為一電導磁性材料,直呈古;; 透性,如鎳鐵合金(NlFe),或是其他合適、具高穿透 材料,以於所想要的區域集中該磁通量,並與其餘的材料 結構在冶金上相容。 接者,一第二外障蔽層54沉積於磁通量集中層5 2的表-面 上。第二外障蔽層54較佳以妲(Ta)、氮化妲(TaN)、氮矽 钽(TaS i N ),或是其他類似的材料所形成。如圖8所示^, :外障蔽層50、磁通量集中層52與第二外障蔽層“接下來 5:圖案化亚被蝕刻’以定義一包覆之銅(Cu)鑲嵌位元線 最後,如圖9所示,一鈍化層58沉積於材料堆聂 包括磁通量集中層52。任何之傳統鈍化層可以被:’ 58。視情況,可以用—層高穿透性磁二 層60沉積於鈍化層58之上。以一厚古 =又形成一遮敝 成-遮蔽層60 ’包括形成—層鎳性材料來形 金、。同時,可以在鈍化㈣及遮蔽層A 不)’做為板測及與不同電路來做電接觸q (圖未 的目的為提供額外的保護,不致 遮蔽層60 於由磁通量集中層52所提供的保護。 劳的影響,高
第15頁 492156 五、發明說明(ίο)
根據如此,本發明所揭示一種改善磁通量集中層用於磁 阻隨機存取記憶體之製造方法。還有,本發明提供製造一 包括磁通量集中性質與障蔽層性質之銅(Cu)鑲嵌數位線, 其中該數位線形成於該磁性記憶體元件之下,以及製造一 材料堆疊,用來將磁通量集中性質加入銅(C u )鑲寂數位 線,其中該位元線形成於該次磁性記憶體元件之上。該新 穎及改良製造記憶體的方法,包括併入一高穿透性包覆材 料於每一導線的外面上,使得以集中該磁通量來朝向該磁 性位元。該等使用磁通量集中材料之包覆層,與非包覆之 線相較,可以約降低程式電流兩倍。此外,該等包覆層可 以提供遮蔽s t r a y的外場。 雖然申請人已示範並說明本發明特定之具體實施例,然 熟知此項技術之人士可以做進一步之修正並改良。因此, 本申請人等想要本發明不受限於所示之特定的形式,並盼 望在所附之申請專利範圍中,以覆蓋所有不脫離本發明之 精神與範圍的修正案。
第16頁 492156 圖式簡單說明
第17頁

Claims (1)

  1. 492156 六、申請專利範圍 1. 一種製造用於磁性記憶裝置中之磁通量集中器的方 法,包含以下的步驟: 形成一包覆的數位線,包括一第一障蔽層、一磁通量 集中層、一第二障蔽層及一銅(Cu)導線; 沉積一介電層於該包覆的數位線之最上表面; 提供至少一磁性記憶位元於該介電層上;及 形成一包覆的位元線,包括一銅(C u)導線、一第一外 障蔽層、一磁通量集中層及一第二外障蔽層。
    2. 如申請專利範圍第1項之方法,其中形成包覆數位線 的步驟,包括以一耐火金屬材料形成該第一障蔽層的步— 驟,及以钻(C 〇 )或' 钻鐵(C 〇 F e )合金材料形成該弟 >一卩早献 層,並以鎳鐵(N i F e )材料形成該磁通量集中層。 3. 如申請專利範圍第2項之方法,其中形成包覆數位線 的步驟,包括以下步驟,以一耐火金屬材料形成該第一外 障蔽層,並以鈷(Co)或一鈷鐵(CoFe)合金材料形成該第一 外障蔽層的步驟,及以錄鐵(N i F e )材料形成該磁通量集中 層。
    4. 如申請專利範圍第1項之方法,其中形成包覆數位線 的步驟,包括使用一單一金屬鑲嵌處理來形成該包覆位元 線。 5. 如申請專利範圍第1項之方法,其中形成包覆數位線 的步驟,包括使用一雙重金屬鑲嵌處理來形成該包覆位元 線。 6. 如申請專利範圍第1項之方法,其中形成包覆數位線
    第18頁 492156 六、申請專利範圍 的步驟,包括使用一單一金屬鑲嵌處理來形成該包覆數位 線。 7. 如申請專利範圍第1項之方法,其中形成包覆數位線 的步驟,包括使用一雙重金屬鑲嵌處理來形成該包覆數位 線。 8. —種製造用於磁性記憶裝置中磁通量集中器的方法, 包含以下的步驟: 提供至少一個磁性記憶位元; 沉積一下介電層及一上介電層幾近該至少一個磁性記 憶位元; 在該上介電層與下介電層中形成至少一個淺槽; 在該至少一個淺槽中沉積一第一障蔽層; 在該第一障蔽層一表面上沉積一金屬系統,該金屬系 統包括一磁通量集中層;及 圖案化該金屬系統以定義一銅(Cu)鑲嵌位元線。 9. 一種製造用於磁性記憶裝置中磁通量集中器的方法, 包含以下的步驟: 提供一介電材料; 形成一包覆之數位線,包括一第一障蔽層、一磁通量 集中層、一第二障蔽層及一銅(C u)導線於該介電材料中之 一部分; 沉積一介電層於該包覆之數位線最上表面; 提供至少一磁性記憶位元於該介電層上;及 形成一包覆之位元線,包括一第一外障蔽層、一磁通
    第19頁 492156 々、申請專利範圍 量集中層、一第二外障 覆之位元線的步驟包括 沉積一下介電層 一上表面上,該下介電 層以一絕緣材料形成; 在該上介電層中 以形成一淺槽用來形成 在該下介電層中 元,以與該磁性記憶位 在該至少一個淺 蔽層及一銅(C u )線,其中形成該包 以下步驟: 及一上介電層於該磁性記憶位元的 層以一絕緣材料形成,且該上介電 蝕刻至少一個淺槽至該下介電層, 一鑲嵌位元線; 少一個通道至該磁性記憶位 際之接觸; 形成至 元有實 槽及該至少一個通道中,沉積一第 一障蔽層至該 沉積一金 屬系統 少一個 種子材 銅糸統 層、該 圖 的步驟 淺槽及 料的表 的上介 第二外 案化該 磁性記憶 屬系統於 包括的步 通道中、 面上、並 電層、沉 障蔽層於 金屬系統 位元; 該第一障蔽層的表面上, 驟為沉積一銅(C u )種子材 沉積一電鍍銅(Cu )材料在 研磨該電鍍銅(Cu ) 緩衝與 積該第 該電鐘 ,以定 一外障蔽層、該磁 銅(Cu) —表面上; 義一銅(Cu)鎮散位 沉積該金 料在該至 該銅(C u) 、移除該 通量集中 及 元線。
    11
    第20頁
TW090106479A 2000-03-21 2001-03-20 Method of fabricating flux concentrating layer for use with magnetoresistive random access memories TW492156B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/528,971 US6211090B1 (en) 2000-03-21 2000-03-21 Method of fabricating flux concentrating layer for use with magnetoresistive random access memories

Publications (1)

Publication Number Publication Date
TW492156B true TW492156B (en) 2002-06-21

Family

ID=24107980

Family Applications (1)

Application Number Title Priority Date Filing Date
TW090106479A TW492156B (en) 2000-03-21 2001-03-20 Method of fabricating flux concentrating layer for use with magnetoresistive random access memories

Country Status (7)

Country Link
US (1) US6211090B1 (zh)
EP (1) EP1284010A2 (zh)
JP (1) JP2003528458A (zh)
KR (1) KR100801455B1 (zh)
AU (1) AU2001247628A1 (zh)
TW (1) TW492156B (zh)
WO (1) WO2001071777A2 (zh)

Families Citing this family (138)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6420262B1 (en) * 2000-01-18 2002-07-16 Micron Technology, Inc. Structures and methods to enhance copper metallization
WO2001099099A2 (en) * 2000-06-21 2001-12-27 Koninklijke Philips Electronics N.V. Magnetic multilayer structure with improved magnetic field range
US6392922B1 (en) * 2000-08-14 2002-05-21 Micron Technology, Inc. Passivated magneto-resistive bit structure and passivation method therefor
US6515352B1 (en) * 2000-09-25 2003-02-04 Micron Technology, Inc. Shielding arrangement to protect a circuit from stray magnetic fields
US6979586B2 (en) * 2000-10-06 2005-12-27 Headway Technologies, Inc. Magnetic random access memory array with coupled soft adjacent magnetic layer
US6555858B1 (en) * 2000-11-15 2003-04-29 Motorola, Inc. Self-aligned magnetic clad write line and its method of formation
US6511609B2 (en) * 2001-02-20 2003-01-28 Industrial Technology Research Institute Cu seed layer deposition for ULSI metalization
US6413788B1 (en) * 2001-02-28 2002-07-02 Micron Technology, Inc. Keepers for MRAM electrodes
US6475812B2 (en) * 2001-03-09 2002-11-05 Hewlett Packard Company Method for fabricating cladding layer in top conductor
JP5013494B2 (ja) * 2001-04-06 2012-08-29 ルネサスエレクトロニクス株式会社 磁性メモリの製造方法
JP2002367998A (ja) * 2001-06-11 2002-12-20 Ebara Corp 半導体装置及びその製造方法
US6510080B1 (en) 2001-08-28 2003-01-21 Micron Technology Inc. Three terminal magnetic random access memory
US6545906B1 (en) * 2001-10-16 2003-04-08 Motorola, Inc. Method of writing to scalable magnetoresistance random access memory element
US6720597B2 (en) * 2001-11-13 2004-04-13 Motorola, Inc. Cladding of a conductive interconnect for programming a MRAM device using multiple magnetic layers
KR100452618B1 (ko) * 2001-11-20 2004-10-15 한국과학기술연구원 자기 메모리 및 센서에 응용 가능한 워드선 제조방법
TW569442B (en) * 2001-12-18 2004-01-01 Toshiba Corp Magnetic memory device having magnetic shield layer, and manufacturing method thereof
US6743641B2 (en) 2001-12-20 2004-06-01 Micron Technology, Inc. Method of improving surface planarity prior to MRAM bit material deposition
US6525957B1 (en) * 2001-12-21 2003-02-25 Motorola, Inc. Magnetic memory cell having magnetic flux wrapping around a bit line and method of manufacturing thereof
JP2003197875A (ja) * 2001-12-28 2003-07-11 Toshiba Corp 磁気記憶装置
US7167372B2 (en) * 2003-08-26 2007-01-23 Belkin Corporation Universal serial bus hub and method of manufacturing same
US6906305B2 (en) * 2002-01-08 2005-06-14 Brion Technologies, Inc. System and method for aerial image sensing
US6906396B2 (en) * 2002-01-15 2005-06-14 Micron Technology, Inc. Magnetic shield for integrated circuit packaging
TWI266443B (en) * 2002-01-16 2006-11-11 Toshiba Corp Magnetic memory
JP4053825B2 (ja) * 2002-01-22 2008-02-27 株式会社東芝 半導体集積回路装置
US6548849B1 (en) * 2002-01-31 2003-04-15 Sharp Laboratories Of America, Inc. Magnetic yoke structures in MRAM devices to reduce programming power consumption and a method to make the same
US6927072B2 (en) * 2002-03-08 2005-08-09 Freescale Semiconductor, Inc. Method of applying cladding material on conductive lines of MRAM devices
US6812040B2 (en) 2002-03-12 2004-11-02 Freescale Semiconductor, Inc. Method of fabricating a self-aligned via contact for a magnetic memory element
JP3596536B2 (ja) * 2002-03-26 2004-12-02 ソニー株式会社 磁気メモリ装置およびその製造方法
JP3993522B2 (ja) * 2002-03-29 2007-10-17 株式会社東芝 磁気記憶装置の製造方法
US6903396B2 (en) * 2002-04-12 2005-06-07 Micron Technology, Inc. Control of MTJ tunnel area
US6815248B2 (en) * 2002-04-18 2004-11-09 Infineon Technologies Ag Material combinations for tunnel junction cap layer, tunnel junction hard mask and tunnel junction stack seed layer in MRAM processing
US6783995B2 (en) * 2002-04-30 2004-08-31 Micron Technology, Inc. Protective layers for MRAM devices
US6724652B2 (en) * 2002-05-02 2004-04-20 Micron Technology, Inc. Low remanence flux concentrator for MRAM devices
WO2003098632A2 (en) * 2002-05-16 2003-11-27 Nova Research, Inc. Methods of fabricating magnetoresistive memory devices
US6780653B2 (en) 2002-06-06 2004-08-24 Micron Technology, Inc. Methods of forming magnetoresistive memory device assemblies
US6778433B1 (en) 2002-06-06 2004-08-17 Taiwan Semiconductor Manufacturing Company High programming efficiency MRAM cell structure
JP2004040006A (ja) * 2002-07-08 2004-02-05 Sony Corp 磁気メモリ装置およびその製造方法
US6806523B2 (en) * 2002-07-15 2004-10-19 Micron Technology, Inc. Magnetoresistive memory devices
US7095646B2 (en) * 2002-07-17 2006-08-22 Freescale Semiconductor, Inc. Multi-state magnetoresistance random access cell with improved memory storage density
US6770491B2 (en) * 2002-08-07 2004-08-03 Micron Technology, Inc. Magnetoresistive memory and method of manufacturing the same
US6914805B2 (en) * 2002-08-21 2005-07-05 Micron Technology, Inc. Method for building a magnetic keeper or flux concentrator used for writing magnetic bits on a MRAM device
US6831312B2 (en) * 2002-08-30 2004-12-14 Freescale Semiconductor, Inc. Amorphous alloys for magnetic devices
US6740948B2 (en) * 2002-08-30 2004-05-25 Hewlett-Packard Development Company, L.P. Magnetic shielding for reducing magnetic interference
JP3866641B2 (ja) * 2002-09-24 2007-01-10 株式会社東芝 磁気記憶装置およびその製造方法
KR100515053B1 (ko) * 2002-10-02 2005-09-14 삼성전자주식회사 비트라인 클램핑 전압 레벨에 대해 안정적인 독출 동작이가능한 마그네틱 메모리 장치
JP3906139B2 (ja) * 2002-10-16 2007-04-18 株式会社東芝 磁気ランダムアクセスメモリ
US7183120B2 (en) * 2002-10-31 2007-02-27 Honeywell International Inc. Etch-stop material for improved manufacture of magnetic devices
JP3935049B2 (ja) * 2002-11-05 2007-06-20 株式会社東芝 磁気記憶装置及びその製造方法
US6660568B1 (en) 2002-11-07 2003-12-09 International Business Machines Corporation BiLevel metallization for embedded back end of the line structures
US6740947B1 (en) * 2002-11-13 2004-05-25 Hewlett-Packard Development Company, L.P. MRAM with asymmetric cladded conductor
EP1563117B1 (en) * 2002-11-15 2010-01-06 President And Fellows Of Harvard College Atomic layer deposition using metal amidinates
US6885074B2 (en) * 2002-11-27 2005-04-26 Freescale Semiconductor, Inc. Cladded conductor for use in a magnetoelectronics device and method for fabricating the same
US6909630B2 (en) * 2002-12-09 2005-06-21 Applied Spintronics Technology, Inc. MRAM memories utilizing magnetic write lines
US6870759B2 (en) * 2002-12-09 2005-03-22 Applied Spintronics Technology, Inc. MRAM array with segmented magnetic write lines
US6909633B2 (en) * 2002-12-09 2005-06-21 Applied Spintronics Technology, Inc. MRAM architecture with a flux closed data storage layer
US6943038B2 (en) * 2002-12-19 2005-09-13 Freescale Semiconductor, Inc. Method for fabricating a flux concentrating system for use in a magnetoelectronics device
US6864551B2 (en) * 2003-02-05 2005-03-08 Applied Spintronics Technology, Inc. High density and high programming efficiency MRAM design
US6812538B2 (en) * 2003-02-05 2004-11-02 Applied Spintronics Technology, Inc. MRAM cells having magnetic write lines with a stable magnetic state at the end regions
US7002228B2 (en) * 2003-02-18 2006-02-21 Micron Technology, Inc. Diffusion barrier for improving the thermal stability of MRAM devices
US6940749B2 (en) * 2003-02-24 2005-09-06 Applied Spintronics Technology, Inc. MRAM array with segmented word and bit lines
US6759297B1 (en) 2003-02-28 2004-07-06 Union Semiconductor Technology Corporatin Low temperature deposition of dielectric materials in magnetoresistive random access memory devices
US20040175845A1 (en) * 2003-03-03 2004-09-09 Molla Jaynal A. Method of forming a flux concentrating layer of a magnetic device
JP2004273969A (ja) * 2003-03-12 2004-09-30 Sony Corp 磁気記憶装置の製造方法
US6963500B2 (en) * 2003-03-14 2005-11-08 Applied Spintronics Technology, Inc. Magnetic tunneling junction cell array with shared reference layer for MRAM applications
US6933550B2 (en) * 2003-03-31 2005-08-23 Applied Spintronics Technology, Inc. Method and system for providing a magnetic memory having a wrapped write line
US7067866B2 (en) * 2003-03-31 2006-06-27 Applied Spintronics Technology, Inc. MRAM architecture and a method and system for fabricating MRAM memories utilizing the architecture
US6921953B2 (en) * 2003-04-09 2005-07-26 Micron Technology, Inc. Self-aligned, low-resistance, efficient MRAM read/write conductors
US6982445B2 (en) * 2003-05-05 2006-01-03 Applied Spintronics Technology, Inc. MRAM architecture with a bit line located underneath the magnetic tunneling junction device
KR100552682B1 (ko) * 2003-06-02 2006-02-20 삼성전자주식회사 고밀도 자기저항 메모리 및 그 제조방법
JP2005005605A (ja) * 2003-06-13 2005-01-06 Fujitsu Ltd 半導体装置
US7477538B2 (en) * 2003-06-20 2009-01-13 Nec Corporation Magnetic random access memory
US6956763B2 (en) * 2003-06-27 2005-10-18 Freescale Semiconductor, Inc. MRAM element and methods for writing the MRAM element
US7220665B2 (en) * 2003-08-05 2007-05-22 Micron Technology, Inc. H2 plasma treatment
KR100555514B1 (ko) * 2003-08-22 2006-03-03 삼성전자주식회사 저 저항 텅스텐 배선을 갖는 반도체 메모리 소자 및 그제조방법
US6967366B2 (en) * 2003-08-25 2005-11-22 Freescale Semiconductor, Inc. Magnetoresistive random access memory with reduced switching field variation
US7329152B2 (en) * 2003-08-26 2008-02-12 Belkin International, Inc. Universal serial bus hub and method of manufacturing same
US8014170B2 (en) 2003-08-26 2011-09-06 Belkin International, Inc. Cable management device and method of cable management
US7078239B2 (en) * 2003-09-05 2006-07-18 Micron Technology, Inc. Integrated circuit structure formed by damascene process
US6990012B2 (en) * 2003-10-07 2006-01-24 Hewlett-Packard Development Company, L.P. Magnetic memory device
US20050095855A1 (en) * 2003-11-05 2005-05-05 D'urso John J. Compositions and methods for the electroless deposition of NiFe on a work piece
US7053429B2 (en) * 2003-11-06 2006-05-30 Honeywell International Inc. Bias-adjusted giant magnetoresistive (GMR) devices for magnetic random access memory (MRAM) applications
US7114240B2 (en) * 2003-11-12 2006-10-03 Honeywell International, Inc. Method for fabricating giant magnetoresistive (GMR) devices
WO2009105668A1 (en) 2008-02-20 2009-08-27 President And Fellows Of Harvard College Bicyclic guanidines, metal complexes thereof and their use in vapor deposition
US7072209B2 (en) * 2003-12-29 2006-07-04 Micron Technology, Inc. Magnetic memory having synthetic antiferromagnetic pinned layer
US7211874B2 (en) * 2004-04-06 2007-05-01 Headway Technologies, Inc. Magnetic random access memory array with free layer locking mechanism
US7105879B2 (en) * 2004-04-20 2006-09-12 Taiwan Semiconductor Manufacturing Co., Ltd. Write line design in MRAM
US7112861B2 (en) * 2004-05-14 2006-09-26 International Business Machines Corporation Magnetic tunnel junction cap structure and method for forming the same
JP3863536B2 (ja) * 2004-05-17 2006-12-27 株式会社東芝 磁気ランダムアクセスメモリ及びその磁気ランダムアクセスメモリのデータ書き込み方法
US7067330B2 (en) 2004-07-16 2006-06-27 Headway Technologies, Inc. Magnetic random access memory array with thin conduction electrical read and write lines
US7132707B2 (en) * 2004-08-03 2006-11-07 Headway Technologies, Inc. Magnetic random access memory array with proximate read and write lines cladded with magnetic material
US7344896B2 (en) * 2004-07-26 2008-03-18 Infineon Technologies Ag Ferromagnetic liner for conductive lines of magnetic memory cells and methods of manufacturing thereof
US7576956B2 (en) * 2004-07-26 2009-08-18 Grandis Inc. Magnetic tunnel junction having diffusion stop layer
US7072208B2 (en) * 2004-07-28 2006-07-04 Headway Technologies, Inc. Vortex magnetic random access memory
US20060022286A1 (en) 2004-07-30 2006-02-02 Rainer Leuschner Ferromagnetic liner for conductive lines of magnetic memory cells
US7075807B2 (en) * 2004-08-18 2006-07-11 Infineon Technologies Ag Magnetic memory with static magnetic offset field
CN1328781C (zh) * 2004-09-08 2007-07-25 中芯国际集成电路制造(上海)有限公司 半导体装置的制造方法
US7129098B2 (en) * 2004-11-24 2006-10-31 Freescale Semiconductor, Inc. Reduced power magnetoresistive random access memory elements
TWI297928B (en) * 2005-01-20 2008-06-11 Macronix Int Co Ltd Memory cell
US7083990B1 (en) * 2005-01-28 2006-08-01 Infineon Technologies Ag Method of fabricating MRAM cells
US7087972B1 (en) * 2005-01-31 2006-08-08 Freescale Semiconductor, Inc. Magnetoelectronic devices utilizing protective capping layers and methods of fabricating the same
US7444740B1 (en) 2005-01-31 2008-11-04 Western Digital (Fremont), Llc Damascene process for fabricating poles in recording heads
US20060258195A1 (en) * 2005-05-11 2006-11-16 Ameriwood Industries, Inc. Connectivity system, method of assembling same, and desk containing same
US7806723B2 (en) * 2007-01-05 2010-10-05 Belkin International, Inc. Electrical grommet device
US7381095B2 (en) * 2005-06-20 2008-06-03 Belkin International, Inc. Multi-standard connection hub and method of manufacturing same
KR100744672B1 (ko) * 2005-06-24 2007-08-01 주식회사 하이닉스반도체 반도체 소자의 콘택홀 형성 방법
US7973349B2 (en) * 2005-09-20 2011-07-05 Grandis Inc. Magnetic device having multilayered free ferromagnetic layer
US7859034B2 (en) * 2005-09-20 2010-12-28 Grandis Inc. Magnetic devices having oxide antiferromagnetic layer next to free ferromagnetic layer
US7777261B2 (en) * 2005-09-20 2010-08-17 Grandis Inc. Magnetic device having stabilized free ferromagnetic layer
US7430135B2 (en) * 2005-12-23 2008-09-30 Grandis Inc. Current-switched spin-transfer magnetic devices with reduced spin-transfer switching current density
UA90089C2 (ru) * 2006-02-08 2010-04-12 Григорий БЕРЕЗИН Способ производства кокса из неспекающихся марок угля и устройство для его осуществления
US7432150B2 (en) * 2006-02-10 2008-10-07 Everspin Technologies, Inc. Method of manufacturing a magnetoelectronic device
US20070246787A1 (en) * 2006-03-29 2007-10-25 Lien-Chang Wang On-plug magnetic tunnel junction devices based on spin torque transfer switching
US8141235B1 (en) 2006-06-09 2012-03-27 Western Digital (Fremont), Llc Method for manufacturing a perpendicular magnetic recording transducers
US7532505B1 (en) 2006-07-17 2009-05-12 Grandis, Inc. Method and system for using a pulsed field to assist spin transfer induced switching of magnetic memory elements
US7502249B1 (en) 2006-07-17 2009-03-10 Grandis, Inc. Method and system for using a pulsed field to assist spin transfer induced switching of magnetic memory elements
KR100744419B1 (ko) 2006-08-03 2007-07-30 동부일렉트로닉스 주식회사 반도체 소자 및 반도체 소자의 제조 방법
US7851840B2 (en) * 2006-09-13 2010-12-14 Grandis Inc. Devices and circuits based on magnetic tunnel junctions utilizing a multilayer barrier
US7738287B2 (en) * 2007-03-27 2010-06-15 Grandis, Inc. Method and system for providing field biased magnetic memory devices
US20080296711A1 (en) * 2007-05-30 2008-12-04 Freescale Semiconductor, Inc. Magnetoelectronic device having enhanced permeability dielectric and method of manufacture
US7957179B2 (en) * 2007-06-27 2011-06-07 Grandis Inc. Magnetic shielding in magnetic multilayer structures
US7982275B2 (en) * 2007-08-22 2011-07-19 Grandis Inc. Magnetic element having low saturation magnetization
US8015692B1 (en) 2007-11-07 2011-09-13 Western Digital (Fremont), Llc Method for providing a perpendicular magnetic recording (PMR) head
US7894248B2 (en) * 2008-09-12 2011-02-22 Grandis Inc. Programmable and redundant circuitry based on magnetic tunnel junction (MTJ)
US7833806B2 (en) * 2009-01-30 2010-11-16 Everspin Technologies, Inc. Structure and method for fabricating cladded conductive lines in magnetic memories
US9099118B1 (en) * 2009-05-26 2015-08-04 Western Digital (Fremont), Llc Dual damascene process for producing a PMR write pole
US8486285B2 (en) 2009-08-20 2013-07-16 Western Digital (Fremont), Llc Damascene write poles produced via full film plating
JP5527649B2 (ja) * 2009-08-28 2014-06-18 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
US8169816B2 (en) * 2009-09-15 2012-05-01 Magic Technologies, Inc. Fabrication methods of partial cladded write line to enhance write margin for magnetic random access memory
US8390283B2 (en) * 2009-09-25 2013-03-05 Everspin Technologies, Inc. Three axis magnetic field sensor
US8518734B2 (en) 2010-03-31 2013-08-27 Everspin Technologies, Inc. Process integration of a single chip three axis magnetic field sensor
US8411497B2 (en) 2010-05-05 2013-04-02 Grandis, Inc. Method and system for providing a magnetic field aligned spin transfer torque random access memory
US8976577B2 (en) 2011-04-07 2015-03-10 Tom A. Agan High density magnetic random access memory
US9070456B2 (en) 2011-04-07 2015-06-30 Tom A. Agan High density magnetic random access memory
US9297959B2 (en) * 2011-09-29 2016-03-29 Seagate Technology Llc Optical articles and methods of making same
ITTO20121080A1 (it) * 2012-12-14 2014-06-15 St Microelectronics Srl Dispositivo a semiconduttore con elemento magnetico integrato provvisto di una struttura di barriera da contaminazione metallica e metodo di fabbricazione del dispositivo a semiconduttore
US10043967B2 (en) * 2014-08-07 2018-08-07 Qualcomm Incorporated Self-compensation of stray field of perpendicular magnetic elements
US9614143B2 (en) * 2015-06-09 2017-04-04 Qualcomm Incorporated De-integrated trench formation for advanced MRAM integration
US9917027B2 (en) * 2015-12-30 2018-03-13 Globalfoundries Singapore Pte. Ltd. Integrated circuits with aluminum via structures and methods for fabricating the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2601022B2 (ja) * 1990-11-30 1997-04-16 日本電気株式会社 半導体装置の製造方法
JP3076244B2 (ja) * 1996-06-04 2000-08-14 日本電気株式会社 多層配線の研磨方法
US5861328A (en) 1996-10-07 1999-01-19 Motorola, Inc. Method of fabricating GMR devices
US5902690A (en) 1997-02-25 1999-05-11 Motorola, Inc. Stray magnetic shielding for a non-volatile MRAM
US5990011A (en) * 1997-09-18 1999-11-23 Micron Technology, Inc. Titanium aluminum alloy wetting layer for improved aluminum filling of damescene trenches
US5956267A (en) * 1997-12-18 1999-09-21 Honeywell Inc Self-aligned wordline keeper and method of manufacture therefor
DE19836567C2 (de) * 1998-08-12 2000-12-07 Siemens Ag Speicherzellenanordnung mit Speicherelementen mit magnetoresistivem Effekt und Verfahren zu deren Herstellung
US5940319A (en) * 1998-08-31 1999-08-17 Motorola, Inc. Magnetic random access memory and fabricating method thereof
US6165803A (en) * 1999-05-17 2000-12-26 Motorola, Inc. Magnetic random access memory and fabricating method thereof
US6872993B1 (en) * 1999-05-25 2005-03-29 Micron Technology, Inc. Thin film memory device having local and external magnetic shielding

Also Published As

Publication number Publication date
JP2003528458A (ja) 2003-09-24
AU2001247628A1 (en) 2001-10-03
WO2001071777A3 (en) 2002-11-07
WO2001071777A2 (en) 2001-09-27
EP1284010A2 (en) 2003-02-19
KR100801455B1 (ko) 2008-02-11
US6211090B1 (en) 2001-04-03
KR20030014372A (ko) 2003-02-17

Similar Documents

Publication Publication Date Title
TW492156B (en) Method of fabricating flux concentrating layer for use with magnetoresistive random access memories
TW519680B (en) Self-aligned magnetic clad write line and its method of formation
US6784510B1 (en) Magnetoresistive random access memory device structures
US7105363B2 (en) Cladded conductor for use in a magnetoelectronics device and method for fabricating the same
US7402529B2 (en) Method of applying cladding material on conductive lines of MRAM devices
US12063865B2 (en) Method of manufacturing integrated circuit using encapsulation during an etch process
KR100544085B1 (ko) 프로그래밍 소비 전력을 감소시키기 위한 mram 장치의자기 요크 구조체 및 그 제조 방법
TWI243430B (en) MRAM and the method for fabricating the same
TWI279886B (en) Semiconductor structure and integrated circuit
TWI462233B (zh) 磁性記憶裝置之製造方法及磁性記憶裝置
TWI271739B (en) Magnetic memory cells and manufacturing methods
JP7196289B2 (ja) 磁気トンネル接合部への上部接点を形成する方法
TW200905796A (en) Interconnection process

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent