TW201737417A - Tsv結構的平坦化工藝和裝置 - Google Patents

Tsv結構的平坦化工藝和裝置 Download PDF

Info

Publication number
TW201737417A
TW201737417A TW105133926A TW105133926A TW201737417A TW 201737417 A TW201737417 A TW 201737417A TW 105133926 A TW105133926 A TW 105133926A TW 105133926 A TW105133926 A TW 105133926A TW 201737417 A TW201737417 A TW 201737417A
Authority
TW
Taiwan
Prior art keywords
wafer
metal layer
tsv structure
layer
barrier
Prior art date
Application number
TW105133926A
Other languages
English (en)
Other versions
TWI774645B (zh
Inventor
yi-nuo Jin
ying-wei Dai
Gui-Pu Yang
Jian Wang
Hui Wang
Original Assignee
Acm Res (Shanghai) Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Acm Res (Shanghai) Inc filed Critical Acm Res (Shanghai) Inc
Publication of TW201737417A publication Critical patent/TW201737417A/zh
Application granted granted Critical
Publication of TWI774645B publication Critical patent/TWI774645B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/7684Smoothing; Planarisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32134Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by liquid etching only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76898Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53228Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
    • H01L23/53238Additional layers associated with copper layers, e.g. adhesion, barrier, cladding layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Supporting Of Heads In Record-Carrier Devices (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Weting (AREA)
  • Medicinal Preparation (AREA)

Abstract

本發明揭示了TSV結構的平坦化工藝和裝置。TSV結構包括晶圓、晶圓上的通孔、晶圓上的氧化層、氧化層上及通孔的底部和側壁上的阻擋層、通孔內及阻擋層上的金屬層。在一種具體實施方式中,TSV結構的平坦化工藝包括:採用無應力抛光工藝去除晶圓的非凹進區域上的全部金屬層;採用化學濕法刻蝕工藝去除非凹進區域上的金屬層殘餘以及阻擋層。

Description

TSV結構的平坦化工藝和裝置
本發明關於半導體器件製造,尤其關於TSV(矽通孔)結構的平坦化工藝和裝置。
隨著電子工業的快速發展,對電子產品提出微型、低功耗、高可靠性的要求是必然。基於摩爾定律,積體電路特徵尺寸的減小接近瓶頸。近年來,晶圓級的垂直小型化3D矽通孔(TSV)和2.5D插件封裝集成成為可選擇的解決方案,透過降低設計、工藝和成本等突破摩爾定律的瓶頸。相應的,由於銅的高導電性、更好的抗電遷移能力,當製造TSV或插件時,銅被廣泛用於填充通孔。
通常,銅金屬層的沈積和平坦化工藝包括以下步驟:PVD(物理氣相沈積)、ECP(電鍍)、退火、CMP(化學機械平坦化)。TSV或插件中的通孔通常具有高深寬比,為了無空隙的填充深通孔,厚的銅覆蓋層將透過電鍍工藝沈積在晶圓表面。因此,大量的銅層需要透過CMP去除,從而使CMP工藝在3D TSV和2.5D插件封裝集成中所占成本最高。例如,在中間通孔工藝中,CMP工藝佔據了總成本的35%。另一方面,Cu和Si之間CTE(熱膨脹 係數)的不匹配產生應力,表現為晶圓級翹曲。應力進一步誘發矽層的微裂紋、載體的移動變化和器件缺陷。經證實,退火溫度越高、銅覆蓋層越厚將導致晶圓級翹曲越高。在CMP工藝中,晶圓將被CMP的研磨頭的下壓力壓平,外部的機械壓力將與晶圓的內部應力衝突,從而導致晶圓裂化或產生缺陷。儘管優化了傳統工藝流程並且在退火前銅覆蓋層的厚度達到最小,可以在CMP工藝之前成功的消除應力並最小化晶圓翹曲,然而,3D TSV或2.5D插件是否可以快速產業化取決於能否解決降低成本和應力的問題。
在一種具體實施方式中,本發明提出一種TSV結構的平坦化工藝。TSV結構包括晶圓、晶圓上的通孔、晶圓上的氧化層、氧化層上及通孔的底部和側壁上的阻擋層、通孔內及阻擋層上的金屬層。TSV結構的平坦化工藝包括:採用無應力抛光工藝去除晶圓的非凹進區域上的全部金屬層;採用化學濕法刻蝕工藝去除非凹進區域上的金屬層殘餘以及阻擋層。
在另一種具體實施方式中,本發明提出一種TSV結構的平坦化工藝。TSV結構包括晶圓、晶圓上的通孔、晶圓上的氧化層、氧化層上及通孔的底部和側壁上的阻擋層、通孔內及阻擋層上的金屬層。TSV結構的平坦化工藝包括:採用無應力抛光工藝去除晶圓的非凹進區域上 的大部分金屬層,並在非凹進區域上保留一定厚度的金屬層;採用金屬層化學濕法刻蝕工藝去除非凹進區域上餘留的金屬層;採用阻擋層化學濕法刻蝕工藝去除非凹進區域上的金屬層殘餘和阻擋層。
在另一種具體實施方式中,本發明提出一種TSV結構的平坦化工藝。TSV結構包括晶圓、晶圓上的通孔、晶圓上的氧化層、氧化層上及通孔的底部和側壁上的阻擋層、通孔內及阻擋層上的金屬層。TSV結構的平坦化工藝包括:採用無應力抛光工藝去除晶圓的非凹進區域上的全部金屬層;採用化學機械平坦化工藝去除非凹進區域上的金屬層殘餘;採用阻擋層化學濕法刻蝕工藝去除非凹進區域上的阻擋層。
在另一種具體實施方式中,本發明提出一種TSV結構的平坦化工藝。TSV結構包括晶圓、晶圓上的通孔、晶圓上的氧化層、氧化層上及通孔的底部和側壁上的阻擋層、通孔內及阻擋層上的金屬層。TSV結構的平坦化工藝包括:去除晶圓的非凹進區域上的大部分金屬層,並在非凹進區域上保留一定厚度的金屬層;採用化學機械平坦化工藝去除非凹進區域上餘留的金屬層;採用阻擋層化學濕法刻蝕工藝去除非凹進區域上的金屬層殘餘和阻擋層。
在一種具體實施方式中,本發明提出一種TSV結構的平坦化裝置。TSV結構包括晶圓、晶圓上的通孔、晶圓上的氧化層、氧化層上及通孔的底部和側壁上的阻擋 層、通孔內及阻擋層上的金屬層。TSV結構的平坦化裝置包括至少一個SFP模組、CMP模組和濕法刻蝕模組。SFP模組用於對晶圓進行無應力抛光工藝以去除晶圓的非凹進區域上的金屬層。CMP模組用於對晶圓進行化學機械平坦化工藝以去除非凹進區域上的金屬層。濕法刻蝕模組用於對晶圓進行化學濕法刻蝕工藝以去除非凹進區域上的金屬層和/或阻擋層。
與傳統的使用CMP工藝去除非凹進區域上的金屬層和阻擋層的TSV結構的平坦化工藝相比,本發明利用無應力抛光工藝和化學濕法刻蝕工藝實現無應力的去除非凹進區域上的金屬層和阻擋層,只保留通孔內的金屬層和阻擋層,改善了金屬層凹陷的均勻性,減少了平坦化過程中的應力,使晶圓微裂紋的可能性降至最低,並縮短了CMP工藝的持續時間,最終降低了平坦化工藝的成本以及減少了化學廢液的排放。
101‧‧‧晶圓
102‧‧‧通孔
103‧‧‧氧化層
104‧‧‧阻擋層
105‧‧‧金屬層(銅層)
1001‧‧‧EFEM(設備前端模組)
1003‧‧‧緩衝位
1005‧‧‧機械手
1007‧‧‧SFP模組
1009‧‧‧CMP模組
1011‧‧‧量測模組
1013‧‧‧刷子清洗模組
1015‧‧‧濕法刻蝕模組
1017‧‧‧清洗模組
圖1是TSV結構在實施平坦化工藝前的截面圖;圖2是已經平坦化的TSV結構的截面圖;圖3是本發明一種具體實施方式的TSV結構的平坦化工藝的流程圖;圖4是本發明另一種具體實施方式的TSV結構的平坦化工藝的流程圖; 圖5是本發明另一種具體實施方式的TSV結構的平坦化工藝的流程圖;圖6是本發明另一種具體實施方式的TSV結構的平坦化工藝的流程圖;圖7是本發明另一種具體實施方式的TSV結構的平坦化工藝的流程圖;圖8是本發明另一種具體實施方式的TSV結構的平坦化工藝的流程圖;圖9是濕法刻蝕脈衝模式處方的一種具體實施方式;圖10是本發明的TSV結構的平坦化裝置的方塊圖;圖11是一種晶圓傳輸順序的方塊圖;圖12是另一種晶圓傳輸順序的方塊圖。
形成TSV結構的工藝步驟通常包括以下步驟:採用刻蝕在晶圓101上形成通孔102,其中,晶圓101的材料可以選用矽;採用等離子體增強化學氣相沈積(PECVD)在晶圓101上沈積氧化層103,其中,氧化層103的材料可以選用二氧化矽(SiO2);採用物理氣相沈積(PVD)在氧化層103上及通孔102的底部和側壁沈積阻擋層104,其中,阻擋層104的材料可以選用鈦(Ti);採用電鍍法在通孔102內沈積金屬層105,其中,金屬層105的材料可以選用銅。
由於TSV結構的通孔102通常具有高深寬 比,因此,為了在通孔102內無空隙的沈積金屬層105,採用電鍍法在阻擋層104上沈積厚的金屬覆蓋層105。如圖1所示是在實施平坦化工藝前的TSV結構的一種具體實施方式,沈積在非凹進區域上的金屬層105的厚度為2μm-4μm,在通孔102內和非凹進區域上沈積金屬層105後,接下來的步驟是去除沈積在非凹進區域上的金屬層105和阻擋層104。
參考圖3所示,圖3是本發明一種具體實施方式的TSV結構的平坦化工藝的流程圖,用於去除非凹進區域上的金屬層105和阻擋層104。該TSV結構的平坦化工藝包括以下步驟:
步驟301:採用無應力抛光工藝(SFP)去除非凹進區域上的全部金屬層105。採用SFP過抛光控制通孔102內的金屬層凹陷。SFP工藝為電化學工藝,晶圓101上的金屬層105作為陽極,電解液噴頭作為陰極。當陽極和陰極之間施加正電壓時,金屬層105被接觸的電解液溶解、抛光。SFP工藝更詳細的描述參見美國專利申請號10/590,460,標題為“Controlling removal rate uniformity of an electropolishing process in integrated circuit fabrication”的專利,申請日為2005年2月23日,這件專利的全部內容都被引用到這裏。
步驟303:採用金屬層化學濕法刻蝕工藝去除非凹進區域上的金屬層殘餘。SFP工藝完成後,非凹進區域上的阻擋層104上可能殘留一些金屬層,為了去除非凹 進區域上的阻擋層104上殘留的金屬層,使用金屬層化學濕法刻蝕工藝去除金屬層殘餘。金屬層105的材料較佳者為銅,相應的,用於去除銅殘餘的刻蝕劑主要包括雙氧水(H2O2)、添加劑和氫氟酸,氫氟酸的濃度在2%-10%。在濕法刻蝕工藝中,刻蝕劑在脈衝模式下被噴到晶圓表面,如圖9所示。一個脈衝模式步驟包括一步刻蝕劑步驟和一步DIW步驟,例如,首先對晶圓進行10秒鐘的化學濕法刻蝕,然後,對晶圓進行5秒鐘的去離子水處理。多個周期性的步驟形成濕法刻蝕工藝處方。周期性的濕法刻蝕工藝優化了凹進區域的銅凹陷,DIW將會填滿凹進區域並降低該區域的刻蝕速率。晶圓固定在卡盤上並與卡盤一起轉動,有利於濕法刻蝕工藝的晶圓轉速為200RPM-600RPM。不同半徑上刻蝕率與轉速有關,轉速越高導致晶圓邊緣去除率越高、晶圓中心去除率越低,相反的,轉速越低導致晶圓邊緣去除率越低、晶圓中心去除率越高。此外,刻蝕劑噴頭在工藝過程中是可移動的,刻蝕率受噴頭的掃描速度和掃描區域位置的影響,最佳的掃描速度為40mm/sec-100mm/sec。
步驟305:採用阻擋層化學濕法刻蝕工藝去除非凹進區域上的阻擋層104。非凹進區域上的阻擋層104的厚度為0.2μm-0.5μm,非凹進區域上的阻擋層104的厚度取決於工藝需求。阻擋層104的材料包含鈦,相應的,用於阻擋層化學濕法刻蝕工藝的化學液主要包括氫氟酸(HF)和添加劑,氫氟酸的濃度為0.1%-1%。與銅濕法刻 蝕工藝相似,在阻擋層濕法刻蝕工藝中,刻蝕劑在脈衝模式下被噴到晶圓表面,如圖9所示。一個脈衝模式步驟包括一步刻蝕劑步驟和一步DIW步驟,例如,首先對晶圓進行10秒鐘的化學濕法刻蝕,然後,對晶圓進行5秒鐘的去離子水處理。多個周期性的步驟形成濕法刻蝕工藝處方。周期性的濕法刻蝕工藝優化了凹進區域側壁上的阻擋層過刻。DIW將會填滿凹進區域並降低該區域的刻蝕速率。晶圓固定在卡盤上並與卡盤一起轉動,有利於濕法刻蝕工藝的晶圓轉速為200RPM-600RPM。不同半徑上刻蝕率與轉速有關,轉速越高導致晶圓邊緣去除率越高、晶圓中心去除率越低,相反的,轉速越低導致晶圓邊緣去除率越低、晶圓中心去除率越高。此外,刻蝕劑噴頭在工藝過程中是可移動的,刻蝕率受噴頭的掃描速度和掃描區域位置的影響,最佳的掃描速度為40mm/sec-100mm/sec。
採用阻擋層化學濕法刻蝕工藝去除非凹進區域上的阻擋層104後,阻擋層104下方的氧化層103暴露出來,氧化層103的材料為SiO2,氧化層103的厚度大約為2μm。為了得到平坦的上表面,應用CMP工藝去除一部分的氧化層103。通常,去除的氧化層103厚度為0.2μm。CMP工藝在氧化層103和銅層105之間具有高選擇比,比如100:1。CMP工藝可以修復通孔102內銅層105的粗糙度。
參考圖4所示,圖4是本發明另一種具體實施方式的TSV結構的平坦化工藝的流程圖,用於去除非凹進 區域上的金屬層105和阻擋層104。該TSV結構的平坦化工藝包括以下步驟:
步驟401:採用無應力抛光工藝(SFP)去除非凹進區域上的全部金屬層105。採用SFP過抛光控制通孔102內的金屬層凹陷。SFP工藝為電化學工藝,晶圓101上的金屬層105作為陽極,電解液噴頭作為陰極。當陽極和陰極之間施加正電壓時,金屬層105被接觸的電解液溶解、抛光。SFP工藝更詳細的描述參見美國專利申請號10/590,460,標題為“Controlling removal rate uniformity of an electropolishing process in integrated circuit fabrication”的專利,申請日為2005年2月23日,這件專利的全部內容都被引用到這裏。
步驟403:採用阻擋層化學濕法刻蝕工藝去除非凹進區域上的金屬層殘餘和阻擋層104。在一種具體實施方式中,金屬層105的材料是銅,阻擋層104的材料包括鈦。用於阻擋層化學濕法刻蝕工藝的化學品主要包括氫氟酸(HF)和添加劑,氫氟酸的濃度為0.1%-1%。在阻擋層濕法刻蝕工藝中,刻蝕劑在脈衝模式下被噴到晶圓表面,如圖9所示。一個脈衝模式步驟包括一步刻蝕劑步驟和一步DIW步驟,例如,首先對晶圓進行10秒鐘的化學濕法刻蝕,然後,對晶圓進行5秒鐘的去離子水處理。多個周期性的步驟形成濕法刻蝕工藝處方。周期性的濕法刻蝕工藝優化了凹進區域側壁上的阻擋層過刻。DIW將會填滿凹進區域並降低該區域的刻蝕速率。晶圓固定在卡盤上 並與卡盤一起轉動,有利於濕法刻蝕工藝的晶圓轉速為200RPM-600RPM。不同半徑上刻蝕率與轉速有關,轉速越高導致晶圓邊緣去除率越高、晶圓中心去除率越低,相反的,轉速越低導致晶圓邊緣去除率越低、晶圓中心去除率越高。此外,刻蝕劑噴頭在工藝過程中是可移動的,刻蝕率受噴頭的掃描速度和掃描區域位置的影響,最佳的掃描速度為40mm/sec-100mm/sec。
採用阻擋層化學濕法刻蝕工藝去除非凹進區域上的金屬層殘餘和阻擋層104後,阻擋層104下方的氧化層103暴露出來,氧化層103的材料為SiO2,氧化層103的厚度大約為2μm。為了得到平坦的上表面,應用CMP工藝去除一部分的氧化層103。通常,去除的氧化層103厚度為0.2μm。CMP工藝在氧化層103和銅層105之間具有高選擇比,比如100:1。CMP工藝可以修復通孔102內銅層105的粗糙度。
參考圖5所示,圖5是本發明另一種具體實施方式的TSV結構的平坦化工藝的流程圖,用於去除非凹進區域上的金屬層105和阻擋層104。該TSV結構的平坦化工藝包括以下步驟:
步驟501:採用無應力抛光工藝去除非凹進區域上的大部分金屬層105,並在非凹進區域上餘留大約0.2μm-0.5μm的金屬層105。SFP工藝為電化學工藝,晶圓101上的金屬層105作為陽極,電解液噴頭作為陰極。當陽極和陰極之間施加正電壓時,金屬層105被接觸的電解 液溶解、抛光。SFP工藝更詳細的描述參見美國專利申請號10/590,460,標題為“Controlling removal rate uniformity of an electropolishing process in integrated circuit fabrication”的專利,申請日為2005年2月23日,這件專利的全部內容都被引用到這裏。
步驟503:採用金屬層化學濕法刻蝕工藝去除非凹進區域上餘留的金屬層105。透過金屬層化學濕法刻蝕工藝的過刻時間長度控制通孔102內的金屬層凹陷。金屬層105的材料為銅,用於銅金屬層化學濕法刻蝕工藝的化學品主要包括雙氧水(H2O2)、添加劑和氫氟酸,氫氟酸的濃度在2%-10%。在濕法刻蝕工藝中,刻蝕劑在脈衝模式下被噴到晶圓表面,如圖9所示。一個脈衝模式步驟包括一步刻蝕劑步驟和一步DIW步驟,例如,首先對晶圓進行10秒鐘的化學濕法刻蝕,然後,對晶圓進行5秒鐘的去離子水處理。多個周期性的步驟形成濕法刻蝕工藝處方。周期性的濕法刻蝕工藝優化了凹進區域內的銅凹陷。DIW將會填滿凹進區域並降低該區域的刻蝕速率。晶圓固定在卡盤上並與卡盤一起轉動,有利於濕法刻蝕工藝的晶圓轉速為200RPM-600RPM。不同半徑上刻蝕率與轉速有關,轉速越高導致晶圓邊緣去除率越高、晶圓中心去除率越低,相反的,轉速越低導致晶圓邊緣去除率越低、晶圓中心去除率越高。此外,刻蝕劑噴頭在工藝過程中是可移動的,刻蝕率受噴頭的掃描速度和掃描區域位置的影響,最佳的掃描速度為40mm/sec-100mm/sec。
步驟505:採用阻擋層化學濕法刻蝕工藝去除非凹進區域上的金屬層殘餘和阻擋層104。阻擋層104的材料包括鈦,用於阻擋層化學濕法刻蝕工藝的化學品主要包括氫氟酸(HF)和添加劑,氫氟酸的濃度為0.1%-1%。在阻擋層濕法刻蝕工藝中,刻蝕劑在脈衝模式下被噴到晶圓表面,如圖9所示。一個脈衝模式步驟包括一步刻蝕劑步驟和一步DIW步驟,例如,首先對晶圓進行10秒鐘的化學濕法刻蝕,然後,對晶圓進行5秒鐘的去離子水處理。多個周期性的步驟形成濕法刻蝕工藝處方。周期性的濕法刻蝕工藝優化了凹進區域側壁上的阻擋層過刻。DIW將會填滿凹進區域並降低該區域的刻蝕速率。晶圓固定在卡盤上並與卡盤一起轉動,有利於濕法刻蝕工藝的晶圓轉速為200RPM-600RPM。不同半徑上刻蝕率與轉速有關,轉速越高導致晶圓邊緣去除率越高、晶圓中心去除率越低,相反的,轉速越低導致晶圓邊緣去除率越低、晶圓中心去除率越高。此外,刻蝕劑噴頭在工藝過程中是可移動的,刻蝕率受噴頭的掃描速度和掃描區域位置的影響,最佳的掃描速度為40mm/sec-100mm/sec。
採用阻擋層化學濕法刻蝕工藝去除非凹進區域上的金屬層殘餘和阻擋層104後,阻擋層104下方的氧化層103暴露出來,氧化層103的材料為SiO2,氧化層103的厚度大約為2μm。為了得到平坦的上表面,較佳的,應用CMP工藝去除一部分的氧化層103。通常,去除的氧化層103厚度為0.2μm。CMP工藝在氧化層103和銅層 105之間具有高選擇比,比如100:1。CMP工藝可以修復通孔102內銅層105的粗糙度。
參考圖6所示,圖6是本發明另一種具體實施方式的TSV結構的平坦化工藝的流程圖,用於去除非凹進區域上的金屬層105和阻擋層104。該TSV結構的平坦化工藝包括以下步驟:
步驟601:採用無應力抛光工藝(SFP)去除非凹進區域上的全部金屬層105。採用SFP過抛光控制通孔102內的金屬層凹陷。SFP工藝為電化學工藝,晶圓101上的金屬層105作為陽極,電解液噴頭作為陰極。當陽極和陰極之間施加正電壓時,金屬層105被接觸的電解液溶解、抛光。SFP工藝更詳細的描述參見美國專利申請號10/590,460,標題為“Controlling removal rate uniformity of an electropolishing process in integrated circuit fabrication”的專利,申請日為2005年2月23日,這件專利的全部內容都被引用到這裏。
步驟603:採用化學機械平坦化(CMP)工藝去除非凹進區域上的金屬層殘餘。SFP工藝完成後,非凹進區域上的阻擋層104上可能還殘留了一些金屬層。為了去除金屬層殘餘,向晶圓101應用化學機械平坦化工藝去除金屬層殘餘。由於採用SFP工藝幾乎去除了非凹進區域上全部的金屬層,因此CMP工藝的工藝時間非常短,節約了成本的同時避免了對晶圓的損傷。
步驟605:採用阻擋層化學濕法刻蝕工藝去除 非凹進區域上的阻擋層104。非凹進區域上的阻擋層104的厚度為0.2μm-0.5μm,非凹進區域上的阻擋層104的厚度取決於工藝需求。阻擋層104的材料包含鈦,相應的,用於阻擋層化學濕法刻蝕工藝的化學品主要包括氫氟酸(HF)和添加劑,氫氟酸的濃度為0.1%-1%。在阻擋層濕法刻蝕工藝中,刻蝕劑在脈衝模式下被噴到晶圓表面,如圖9所示。一個脈衝模式步驟包括一步刻蝕劑步驟和一步DIW步驟,例如,首先對晶圓進行10秒鐘的化學濕法刻蝕,然後,對晶圓進行5秒鐘的去離子水處理。多個周期性的步驟形成濕法刻蝕工藝處方。周期性的濕法刻蝕工藝優化了凹進區域側壁上的阻擋層過刻。DIW將會填滿凹進區域並降低該區域的刻蝕速率。晶圓固定在卡盤上並與卡盤一起轉動,有利於濕法刻蝕工藝的晶圓轉速為200RPM-600RPM。不同半徑上刻蝕率與轉速有關,轉速越高導致晶圓邊緣去除率越高、晶圓中心去除率越低,相反的,轉速越低導致晶圓邊緣去除率越低、晶圓中心去除率越高。此外,刻蝕劑噴頭在工藝過程中是可移動的,刻蝕率受噴頭的掃描速度和掃描區域位置的影響,最佳的掃描速度為40mm/sec-100mm/sec。
採用阻擋層化學濕法刻蝕工藝去除非凹進區域上的阻擋層104後,阻擋層104下方的氧化層103暴露出來,氧化層103的材料為SiO2,氧化層103的厚度大約為2μm。為了得到平坦的上表面,較佳的,應用CMP工藝去除一部分的氧化層103。通常,去除的氧化層103厚 度為0.2μm。CMP工藝在氧化層103和銅層105之間具有高選擇比,比如100:1。CMP工藝可以修復通孔102內銅層105的粗糙度。
參考圖7所示,圖7是本發明另一種具體實施方式的TSV結構的平坦化工藝的流程圖,用於去除非凹進區域上的金屬層105和阻擋層104。該TSV結構的平坦化工藝包括以下步驟:
步驟701:採用無應力抛光工藝去除非凹進區域上的大部分金屬層105,並在非凹進區域上餘留大約0.2μm-0.5μm的金屬層105。SFP工藝為電化學工藝,晶圓101上的金屬層105作為陽極,電解液噴頭作為陰極。當陽極和陰極之間施加正電壓時,金屬層105被接觸的電解液溶解、抛光。SFP工藝更詳細的描述參見美國專利申請號10/590,460,標題為“Controlling removal rate uniformity of an electropolishing process in integrated circuit fabrication”的專利,申請日為2005年2月23日,這件專利的全部內容都被引用到這裏。
步驟703:採用化學機械平坦化工藝去除非凹進區域上餘留的金屬層105。透過化學機械平坦化工藝的過刻時間長度控制通孔102內的金屬層凹陷。金屬層105的材料為銅。
步驟705:採用阻擋層化學濕法刻蝕工藝去除非凹進區域上的金屬層殘餘和阻擋層104。阻擋層104的材料包括鈦,用於阻擋層化學濕法刻蝕工藝的化學品主要 包括氫氟酸(HF)和添加劑,氫氟酸的濃度為0.1%-1%。在阻擋層濕法刻蝕工藝中,刻蝕劑在脈衝模式下被噴到晶圓表面,如圖9所示。一個脈衝模式步驟包括一步刻蝕劑步驟和一步DIW步驟,例如,首先對晶圓進行10秒鐘的化學濕法刻蝕,然後,對晶圓進行5秒鐘的去離子水處理。多個周期性的步驟形成濕法刻蝕工藝處方。周期性的濕法刻蝕工藝優化了凹進區域側壁上的阻擋層過刻。DIW將會填滿凹進區域並降低該區域的刻蝕速率。晶圓固定在卡盤上並與卡盤一起轉動,有利於濕法刻蝕工藝的晶圓轉速為200RPM-600RPM。不同半徑上刻蝕率與轉速有關,轉速越高導致晶圓邊緣去除率越高、晶圓中心去除率越低,相反的,轉速越低導致晶圓邊緣去除率越低、晶圓中心去除率越高。此外,刻蝕劑噴頭在工藝過程中是可移動的,刻蝕率受噴頭的掃描速度和掃描區域位置的影響,最佳的掃描速度為40mm/sec-100mm/sec。
採用阻擋層化學濕法刻蝕工藝去除非凹進區域上的金屬層殘餘和阻擋層104後,阻擋層104下方的氧化層103暴露出來,氧化層103的材料為SiO2,氧化層103的厚度大約為2μm。為了得到平坦的上表面,較佳的,應用CMP工藝去除一部分的氧化層103。通常,去除的氧化層103厚度為0.2μm。CMP工藝在氧化層103和銅層105之間具有高選擇比,比如100:1。CMP工藝可以修復通孔102內銅層105的粗糙度。
參考圖8所示,圖8是本發明另一種具體實施 方式的TSV結構的平坦化工藝的流程圖,用於去除非凹進區域上的金屬層105和阻擋層104。該TSV結構的平坦化工藝包括以下步驟:
步驟801:採用金屬層化學濕法刻蝕工藝去除非凹進區域上的大部分金屬層105,並在非凹進區域上保留大約0.2μm-0.5μm的金屬層。金屬層105的材料較佳者為銅,相應的,用於銅化學濕法刻蝕工藝的化學液主要包括雙氧水(H2O2)、添加劑和氫氟酸,氫氟酸的濃度在2%-10%。
步驟803:採用化學機械平坦化工藝去除非凹進區域上餘留的金屬層105。透過化學機械平坦化工藝的過刻時間長度控制通孔102內的金屬層凹陷。
步驟805:採用阻擋層化學濕法刻蝕工藝去除非凹進區域上的金屬層殘餘和阻擋層104。阻擋層104的材料包括鈦,用於阻擋層化學濕法刻蝕工藝的化學液主要包括氫氟酸(HF)和添加劑,氫氟酸的濃度為0.1%-1%。
採用阻擋層化學濕法刻蝕工藝去除非凹進區域上的金屬層殘餘和阻擋層104後,阻擋層104下方的氧化層103暴露出來,氧化層103的材料為SiO2,氧化層103的厚度大約為2μm。為了得到平坦的上表面,較佳的,應用CMP工藝去除一部分的氧化層103。通常,去除的氧化層103厚度為0.2μm。CMP工藝在氧化層103和銅層105之間具有高選擇比,比如100:1。CMP工藝可以修復通孔102內銅層105的粗糙度。
參考圖10所示,圖10是本發明的TSV結構的平坦化裝置的方塊圖。裝置包括EFEM(設備前端模組)1001、緩衝位元1003、工藝機械手1005、疊放的兩個SFP模組1007、CMP模組1009、測量模組1011、刷子清洗模組1013、濕法刻蝕模組1015和清洗模組1017。測量模組1011和刷子清洗模組1013疊放在一起,濕法刻蝕模組1015和清洗模組1017疊放在一起。該裝置還包括電模組、氣模組和管道模組。SFP模組1007用於對晶圓進行無應力抛光工藝去除晶圓的非凹進區域上的金屬層。CMP模組1009用於對晶圓進行化學機械平坦化工藝去除非凹進區域上的金屬層。濕法刻蝕模組1015用於對晶圓進行化學濕法刻蝕工藝去除非凹進區域上的金屬層和/或阻擋層。化學濕法刻蝕工藝包括金屬層化學濕法刻蝕工藝和/或阻擋層化學濕法刻蝕工藝。濕法刻蝕工藝採取脈衝模式,每個脈衝模式步驟包括一步刻蝕劑步驟和一步DIW步驟。
參考圖11,圖11所示為一種晶圓傳輸順序的方塊圖。設備前端模組機械手從裝載端取走一片未加工的晶圓並將晶圓傳輸到緩衝位1003,工藝機械手1005從緩衝位1003取走晶圓並傳輸到測量模組1011以測量金屬層的厚度。測量模組1011測量完金屬層厚度後,工藝機械手1005從測量模組1011取走晶圓並傳輸到其中一個SFP模組1007。在SFP模組1007中,對晶圓進行SFP工藝去除非凹進區域上全部的金屬層。SFP工藝完成後,工藝機械手1005從SFP模組1007取走晶圓並傳輸到清洗模組1017 清洗晶圓。然後機械手1005從清洗模組1017取走晶圓並傳輸到CMP模組1009。在CMP模組1009中,對晶圓進行CMP工藝去除非凹進區域上的金屬層殘餘。CMP工藝完成後,工藝機械手1005從CMP模組1009取走晶圓並傳輸到刷子清洗模組1013清洗晶圓。然後工藝機械手從刷子清洗模組1013取走晶圓並傳輸到濕法刻蝕模組1015。在濕法刻蝕模組1015,對晶圓進行阻擋層化學濕法刻蝕工藝去除非凹進區域上的阻擋層。阻擋層化學濕法刻蝕工藝完成後,工藝機械手1005從濕法刻蝕模組1015取走晶圓並傳輸到清洗模組1017清洗晶圓,然後工藝機械手1005從清洗模組1017取走晶圓並傳輸到緩衝位元1003,最後,設備前端模組機械手從緩衝位元1003取走晶圓並傳輸到晶圓裝載端。
如果CMP模組1009沒有測量金屬層厚度的功能,在對晶圓進行CMP工藝前,晶圓應當被傳輸到測量模組1011測量SFP工藝後的金屬層厚度,如圖12所示。
除了以上晶圓傳輸順序,使用該裝置的其他傳輸順序可以根據不同的工藝需求實施。
綜上所述,與傳統使用CMP工藝去除非凹進區域上的金屬層、阻擋層和一部分氧化層的TSV結構平坦化工藝相比,本發明利用SFP工藝、金屬層化學濕法刻蝕工藝和阻擋層化學濕法刻蝕工藝無應力的去除非凹進區域上的金屬層105和阻擋層104,僅保留通孔102內的金屬層105和阻擋層104,如圖2所示,改善了TSV結構金屬 層凹陷的均勻性,減少了平坦化工藝過程中的應力,使晶圓產生微裂紋的可能性降至最低,縮短了CMP工藝持續時間,最終降低了平坦化工藝的成本以及減少了化學廢液的排放。
以上所述,僅是本發明的較佳實施例而已,並非對本發明作任何形式上的限制。任何熟悉本領域的技術人員,在不脫離本發明技術方案範圍情況下,都可利用上述揭示的技術內容對本發明技術方案作出許多可能的變動和修飾,或修改為等同變化的等效實施例。因此,凡是未脫離本發明技術方案的內容,依據本發明的技術實質對以上實施例所做的任何簡單修改、等同變化及修飾,均仍屬於本發明技術方案保護的範圍內。
1001‧‧‧EFEM(設備前端模組)
1003‧‧‧緩衝位
1005‧‧‧機械手
1007‧‧‧SFP模組
1009‧‧‧CMP模組
1011‧‧‧量測模組
1013‧‧‧刷子清洗模組
1015‧‧‧濕法刻蝕模組
1017‧‧‧清洗模組

Claims (34)

  1. 一種TSV結構的平坦化工藝,該TSV結構包括晶圓、晶圓上的通孔、晶圓上的氧化層、氧化層上及通孔的底部和側壁上的阻擋層、通孔內及阻擋層上的金屬層,其特徵在於,TSV結構的平坦化工藝包括:採用無應力抛光工藝去除晶圓的非凹進區域上的全部金屬層;以及採用化學濕法刻蝕工藝去除非凹進區域上的金屬層殘餘以及阻擋層。
  2. 根據請求項1所述的TSV結構的平坦化工藝,其特徵在於,化學濕法刻蝕工藝包括阻擋層化學濕法刻蝕工藝。
  3. 根據請求項2所述的TSV結構的平坦化工藝,其特徵在於,金屬層的材料為銅,阻擋層的材料包括鈦,用於阻擋層化學濕法刻蝕工藝的化學品包括氫氟酸和添加劑。
  4. 根據請求項1所述的TSV結構的平坦化工藝,其特徵在於,採用化學濕法刻蝕工藝去除非凹進區域上的金屬層殘餘以及阻擋層的步驟還包括:採用金屬層化學濕法刻蝕工藝去除晶圓的非凹進區域上的金屬層殘餘;以及採用阻擋層化學濕法刻蝕工藝去除非凹進區域上的阻擋層。
  5. 根據請求項4所述的TSV結構的平坦化工藝,其特徵在於,金屬層的材料為銅,用於金屬層化學濕法刻蝕工藝的化學品包括雙氧水、添加劑和氫氟酸。
  6. 根據請求項4所述的TSV結構的平坦化工藝,其特徵在於,阻擋層的材料包括鈦,用於阻擋層化學濕法刻蝕工藝的化學品包括氫氟酸和添加劑。
  7. 根據請求項1所述的TSV結構的平坦化工藝,其特徵在於,化學濕法刻蝕工藝採取脈衝模式。
  8. 根據請求項7所述的TSV結構的平坦化工藝,其特徵在於,每個脈衝模式步驟包括刻蝕劑步驟和DIW步驟。
  9. 根據請求項1所述的TSV結構的平坦化工藝,其特徵在於,採用化學濕法刻蝕工藝去除非凹進區域上的金屬層殘餘和阻擋層後,阻擋層下方的氧化層暴露出來,採用CMP工藝去除一部分氧化層。
  10. 根據請求項1所述的TSV結構的平坦化工藝,其特徵在於,氧化層為SiO2
  11. 一種TSV結構的平坦化工藝,該TSV結構包括晶圓、晶圓上的通孔、晶圓上的氧化層、氧化層上及通孔的底部和側 壁上的阻擋層、通孔內及阻擋層上的金屬層,其特徵在於,TSV結構的平坦化工藝包括:採用無應力抛光工藝去除晶圓的非凹進區域上的大部分金屬層,並在非凹進區域上保留一定厚度的金屬層;採用金屬層化學濕法刻蝕工藝去除非凹進區域上餘留的金屬層;以及採用阻擋層化學濕法刻蝕工藝去除非凹進區域上的金屬層殘餘和阻擋層。
  12. 根據請求項11所述的TSV結構的平坦化工藝,其特徵在於,無應力抛光工藝完成後,保留在非凹進區域上的金屬層的厚度為0.2μm-0.5μm。
  13. 根據請求項11所述的TSV結構的平坦化工藝,其特徵在於,金屬層的材料為銅,用於金屬層化學濕法刻蝕工藝的化學品包括雙氧水、添加劑和氫氟酸。
  14. 根據請求項11所述的TSV結構的平坦化工藝,其特徵在於,阻擋層的材料包括鈦,用於阻擋層化學濕法刻蝕工藝的化學品包括氫氟酸和添加劑。
  15. 根據請求項11所述的TSV結構的平坦化工藝,其特徵在於,金屬層化學濕法刻蝕工藝採取脈衝模式,每個脈衝模式步驟包括刻蝕劑步驟和DIW步驟。
  16. 根據請求項11所述的TSV結構的平坦化工藝,其特徵在於,阻擋層化學濕法刻蝕工藝採取脈衝模式,每個脈衝模式步驟包括刻蝕劑步驟和DIW步驟。
  17. 根據請求項11所述的TSV結構的平坦化工藝,其特徵在於,非凹進區域上的金屬層殘餘和阻擋層被去除後,阻擋層下方的氧化層暴露出來,採用CMP工藝去除一部分氧化層。
  18. 一種TSV結構的平坦化工藝,該TSV結構包括晶圓、晶圓上的通孔、晶圓上的氧化層、氧化層上及通孔的底部和側壁上的阻擋層、通孔內及阻擋層上的金屬層,其特徵在於,TSV結構的平坦化工藝包括:採用無應力抛光工藝去除晶圓的非凹進區域上的全部金屬層;採用化學機械平坦化工藝去除非凹進區域上的金屬層殘餘;以及採用阻擋層化學濕法刻蝕工藝去除非凹進區域上的阻擋層。
  19. 根據請求項18所述的TSV結構的平坦化工藝,其特徵在於,阻擋層的材料包括鈦,用於阻擋層化學濕法刻蝕工藝的化學品包括氫氟酸和添加劑。
  20. 根據請求項18所述的TSV結構的平坦化工藝,其特徵在於,阻擋層化學濕法刻蝕工藝採取脈衝模式,每個脈衝模式步驟包括刻蝕劑步驟和DIW步驟。
  21. 根據請求項18所述的TSV結構的平坦化工藝,其特徵在於,非凹進區域上的阻擋層被去除後,阻擋層下方的氧化層暴露出來,採用CMP工藝去除一部分氧化層。
  22. 一種TSV結構的平坦化工藝,該TSV結構包括晶圓、晶圓上的通孔、晶圓上的氧化層、氧化層上及通孔的底部和側壁上的阻擋層、通孔內及阻擋層上的金屬層,其特徵在於,TSV結構的平坦化工藝包括:去除晶圓的非凹進區域上的大部分金屬層,並在非凹進區域上保留一定厚度的金屬層;採用化學機械平坦化工藝去除非凹進區域上餘留的金屬層;以及採用阻擋層化學濕法刻蝕工藝去除非凹進區域上的金屬層殘餘和阻擋層。
  23. 根據請求項22所述的TSV結構的平坦化工藝,其特徵在於,採用無應力抛光工藝去除晶圓的非凹進區域上的大部分金屬層。
  24. 根據請求項22所述的TSV結構的平坦化工藝,其特徵在於,採用金屬層化學濕法刻蝕工藝去除晶圓的非凹進區域上的大部分金屬層。
  25. 根據請求項24所述的TSV結構的平坦化工藝,其特徵在於,金屬層的材料為銅,用於金屬層化學濕法刻蝕工藝的化學品包括雙氧水、添加劑和氫氟酸。
  26. 根據請求項24所述的TSV結構的平坦化工藝,其特徵在於,金屬層化學濕法刻蝕工藝採取脈衝模式,每個脈衝模式步驟包括刻蝕劑步驟和DIW步驟。
  27. 根據請求項22所述的TSV結構的平坦化工藝,其特徵在於,阻擋層的材料包括鈦,用於阻擋層化學濕法刻蝕工藝的化學品包括氫氟酸和添加劑。
  28. 根據請求項22所述的TSV結構的平坦化工藝,其特徵在於,阻擋層化學濕法刻蝕工藝採取脈衝模式,每個脈衝模式步驟包括刻蝕劑步驟和DIW步驟。
  29. 根據請求項22所述的TSV結構的平坦化工藝,其特徵在於,保留在非凹進區域上的金屬層的厚度為0.2μm-0.5μm。
  30. 根據請求項22所述的TSV結構的平坦化工藝,其特徵在於,非凹進區域上的金屬層殘餘和阻擋層被去除後,阻擋層下方的氧化層暴露出來,採用CMP工藝去除一部分氧化層。
  31. 一種TSV結構的平坦化裝置,該TSV結構包括晶圓、晶圓上的通孔、晶圓上的氧化層、氧化層上及通孔的底部和側 壁上的阻擋層、通孔內及阻擋層上的金屬層,其特徵在於,TSV結構的平坦化裝置包括:至少一個SFP模組,用於對晶圓進行無應力抛光工藝去除晶圓的非凹進區域上的金屬層;CMP模組,用於對晶圓進行化學機械平坦化工藝去除非凹進區域上的金屬層;以及濕法刻蝕模組,用於對晶圓進行化學濕法刻蝕工藝去除非凹進區域上的金屬層和/或阻擋層。
  32. 根據請求項31所述的TSV結構的平坦化裝置,其特徵在於,化學濕法刻蝕工藝包括金屬層化學濕法刻蝕工藝和/或阻擋層化學濕法刻蝕工藝。
  33. 根據請求項31所述的TSV結構的平坦化裝置,其特徵在於,濕法刻蝕工藝採取脈衝模式,每個脈衝模式步驟包括刻蝕劑步驟和DIW步驟。
  34. 根據請求項31所述的TSV結構的平坦化裝置,其特徵在於,進一步包括:測量模組,用於測量金屬層的厚度;刷子清洗模組,用於在化學機械平坦化工藝完成後清洗晶圓;清洗模組,用於在無應力抛光工藝或化學濕法刻蝕工藝完成後清洗晶圓。
TW105133926A 2016-04-07 2016-10-20 Tsv結構的平坦化裝置 TWI774645B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
WOPCT/CN2016/078656 2016-04-07
PCT/CN2016/078656 WO2017173613A1 (en) 2016-04-07 2016-04-07 Tsv structure planarization process and apparatus

Publications (2)

Publication Number Publication Date
TW201737417A true TW201737417A (zh) 2017-10-16
TWI774645B TWI774645B (zh) 2022-08-21

Family

ID=60000123

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105133926A TWI774645B (zh) 2016-04-07 2016-10-20 Tsv結構的平坦化裝置

Country Status (5)

Country Link
KR (1) KR102599825B1 (zh)
CN (1) CN108886016B (zh)
SG (1) SG11201808636TA (zh)
TW (1) TWI774645B (zh)
WO (1) WO2017173613A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113059405A (zh) * 2019-12-30 2021-07-02 盛美半导体设备(上海)股份有限公司 半导体结构的加工方法及清洗装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020192941A1 (en) * 2001-06-19 2002-12-19 Chia-Lin Hsu Method for reducing dishing in copper chemical mechanical polishing process
US8372757B2 (en) * 2003-10-20 2013-02-12 Novellus Systems, Inc. Wet etching methods for copper removal and planarization in semiconductor processing
WO2010020092A1 (en) * 2008-08-20 2010-02-25 Acm Research (Shanghai) Inc. Barrier layer removal method and apparatus
US8415254B2 (en) * 2008-11-20 2013-04-09 Taiwan Semiconductor Manufacturing Company, Ltd. Method for removing dummy poly in a gate last process
CN101882595B (zh) * 2009-05-08 2014-07-09 盛美半导体设备(上海)有限公司 阻挡层的去除方法和装置
US9305865B2 (en) * 2013-10-31 2016-04-05 Micron Technology, Inc. Devices, systems and methods for manufacturing through-substrate vias and front-side structures
US8956974B2 (en) * 2012-06-29 2015-02-17 Micron Technology, Inc. Devices, systems, and methods related to planarizing semiconductor devices after forming openings
KR101976727B1 (ko) * 2012-11-27 2019-05-10 에이씨엠 리서치 (상하이) 인코포레이티드 상호 연결 구조체 형성 방법
KR102024122B1 (ko) * 2013-04-22 2019-09-23 에이씨엠 리서치 (상하이) 인코포레이티드 스루-실리콘 비아 노출을 위한 방법 및 장치
CN103474394B (zh) * 2013-09-11 2015-07-08 华进半导体封装先导技术研发中心有限公司 免金属cmp的tsv工艺方法
CN103474395B (zh) * 2013-09-13 2016-08-24 华进半导体封装先导技术研发中心有限公司 一种tsv平坦化方法
CN105336672A (zh) * 2014-07-24 2016-02-17 中芯国际集成电路制造(上海)有限公司 半导体结构及其形成方法
CN105390384B (zh) * 2015-10-29 2018-05-01 上海集成电路研发中心有限公司 一种无应力电化学抛光铜时去除二氧化硅的方法

Also Published As

Publication number Publication date
CN108886016A (zh) 2018-11-23
SG11201808636TA (en) 2018-10-30
KR102599825B1 (ko) 2023-11-08
KR20180133433A (ko) 2018-12-14
TWI774645B (zh) 2022-08-21
WO2017173613A1 (en) 2017-10-12
CN108886016B (zh) 2023-03-10

Similar Documents

Publication Publication Date Title
JP5168966B2 (ja) 研磨方法及び研磨装置
KR101615454B1 (ko) 화학 기계적 폴리싱 및 세정을 위한 시스템 및 방법
US10008391B2 (en) Method of forming copper interconnects
KR20000004840A (ko) 반도체소자의 제조방법, 이를 위한 반도체소자 제조용 식각액조성물 및 반도체소자
KR100899060B1 (ko) 평탄화 방법 및 전해 연마의 조합을 이용한 반도체 구조형성 방법
US20040253809A1 (en) Forming a semiconductor structure using a combination of planarizing methods and electropolishing
TWI774645B (zh) Tsv結構的平坦化裝置
US20030129846A1 (en) Method for achieving a uniform material removal rate in a CMP process
US6395635B1 (en) Reduction of tungsten damascene residue
KR20070054932A (ko) 반도체 소자의 제조방법
CN105742229B (zh) 半导体结构的形成方法
US6211060B1 (en) Method for planarizing a damascene structure
TW201736646A (zh) 阻擋層的去除方法和半導體結構的形成方法
KR100814259B1 (ko) 반도체 소자의 제조 방법
JP2005158947A (ja) 半導体装置の製造方法
KR20010058992A (ko) 화학적기계적 연마 방법을 이용한 반도체 소자 제조 방법
KR100403197B1 (ko) 반도체 소자의 금속 배선 형성 방법
US20100062693A1 (en) Two step method and apparatus for polishing metal and other films in semiconductor manufacturing
JP2006147655A (ja) 半導体装置の製造方法
JP2005260032A (ja) 半導体装置の製造方法
JP2004047676A (ja) 半導体装置の製造方法
JP2003326418A (ja) 研磨方法および研磨装置、並びに半導体装置の製造方法
KR20080024641A (ko) 반도체 소자의 도전 패턴 형성방법
CN105742182A (zh) 半导体结构的形成方法
KR20050002444A (ko) 반도체소자의 제조방법

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent