TW201605095A - 用於oled的透明支撐電極 - Google Patents

用於oled的透明支撐電極 Download PDF

Info

Publication number
TW201605095A
TW201605095A TW104110455A TW104110455A TW201605095A TW 201605095 A TW201605095 A TW 201605095A TW 104110455 A TW104110455 A TW 104110455A TW 104110455 A TW104110455 A TW 104110455A TW 201605095 A TW201605095 A TW 201605095A
Authority
TW
Taiwan
Prior art keywords
layer
refractive index
electrode
oled
tco
Prior art date
Application number
TW104110455A
Other languages
English (en)
Other versions
TWI663761B (zh
Inventor
李榮盛
韓鎮宇
Original Assignee
法國聖戈本玻璃公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 法國聖戈本玻璃公司 filed Critical 法國聖戈本玻璃公司
Publication of TW201605095A publication Critical patent/TW201605095A/zh
Application granted granted Critical
Publication of TWI663761B publication Critical patent/TWI663761B/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/02Surface treatment of glass, not in the form of fibres or filaments, by coating with glass
    • C03C17/04Surface treatment of glass, not in the form of fibres or filaments, by coating with glass by fritting glass powder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/814Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/102Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising tin oxides, e.g. fluorine-doped SnO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electroluminescent Light Sources (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

本發明係關於用於OLED的支撐透明電極,其依序包括:(i)由無機玻璃製成之透明基板;(ii)由含有至少30重量% Bi2O3的高折射率琺瑯形成之散射層;(iii)選自Al2O3、TiO2、ZrO2和HfO2所組成之群組的至少一介電金屬氧化物的阻障層,係藉由ALD沉積;以及(iv)透明導電氧化物(TCO)層。 亦關於此電極之製法以及關於包含此電極之OLED。

Description

用於OLED的透明支撐電極
本發明係關於欲用於有機發光二極體中較佳作為陽極的支撐電極(supported electrode)。
有機發光二極體(OLED)係包括兩電極(其中至少一者係對可見光為透明的)、及薄膜多層(包含至少一發光層(LE layer))的光電裝置。此發光層至少夾置在一側之電子注入或傳輸層(EIL或ETL)(位於LE層和陰極間)、和另一側之電洞注入或傳輸層(HIL或HTL)(位於LE層和陽極間)之間。
包括透明電極載體(transparent electrode carrier)和與其接觸之透明電極的OLED慣稱為基板發光型(substrate-emitting)OLED或底部發光型(bottom-emitting)OLED。於此例中,透明電極通常為陽極。
類似地,包括不透明電極載體(opaque electrode carrier)的OLED則稱為頂部發光型(top-emitting)OLED,由於之後係經由透明電極(通常為陰極)產生發 光,此電極並不與載體接觸。
在給定之位能臨限(potential threshold)以上,OLED之發光率(luminous power)係直接取決於陽極和陰極間之電位差(potential difference)。為了製造於其整個面積具一致發光率(luminous power)的大型OLED,必須盡可能地限制在電流輸入端(其通常位於OLED邊緣)和OLED中心之間的電阻電壓降(ohmic drop)。限制此電阻電壓降(ohmic drop)之一已知方式為降低電極之片電阻(sheet resistance)(R或Rs),通常是藉由增加其厚度。
然而,此電極厚度之增加,在涉及透明電極時,造成顯著問題。具言之,此等電極(例如ITO(銦錫氧化物))所用之材料,其透光性不足且成本過高,這意謂著大於500奈米(nm)之厚度是完全不利的。實際上,ITO層不會超過約150nm。
已知藉由在陽極佈入金屬柵格(metal grid)來減輕或克服此ITO傳導性不足的問題。因此,金屬柵格(metal grid),例如由銅或更常由Mo/Al/Mo或Cr/Al/Cr三層所製之柵格(MAM柵格,MAM表示金屬/鋁/金屬),常用於限制如OLED之光電裝置中由ITO製成之透明陽極的電阻率(resistivity)(US 2006/0154550、US 2010/0079062、WO2005/053053)。
此等金屬柵格(metal grid)之形成通常係藉由利用陰極濺射(cathode sputtering)沉積連續薄金屬膜,該膜 隨後利用光微影技術(photolithography)圖案化,此圖案化係包括於適當之弱酸與強酸之混合物(通常為H3PO4、HNO3及CH3COOH)中蝕刻的步驟,以移除孔中之金屬。亦可使用通常用來蝕刻ITO之強酸混合物,如王水(HCl+HNO3)。然而,當金屬柵格(metal grid)在ITO上時,控制蝕刻且避免ITO表面受損是有難度的。
當申請人在承載有內部光取出層(internal extraction layer)(建基於含有高含量鉍之高折射率琺瑯(high-index enamel))的OLED之基板上執行此酸蝕刻(acid etching)步驟時,申請人不悅地於最終的產品中意外觀察到,高漏電流(leakage current)及進而形成暗點(針孔)。在OLED領域極普遍之此漏電流問題,是起因於陽極過於接近陰極處之短路。其通常由具有相對於有機膜多層(ETL/LE/HTL)之厚度而言非可忽略之起伏的表面不平整所導致。
包含IEL(建基於具有高含量鉍之高折射率琺瑯(high-index enamel))之基板的電子顯微鏡分析顯示此等表面不平整之起因為小坑口(miniscule crater),這是由於存在之氣泡於彼在琺瑯層表面爆開固化(在藉由熔融玻璃料(glass frit)形成後者期間)後所致(參見圖1)。此等小坑口(miniscule crater)之數量有限且因其尺寸極小而使於此等基板上製造之OLED中產生的任何漏電流應仍在可接受的範圍內。故而認為在蝕刻期間此等坑口相當地被挖空且擴大,這是因具有高含量鉍之琺瑯對酸 的中等抗性所致。
頗令人驚訝的是,不僅僅是在直接接觸內部光取出層(IEL)之高折射率琺瑯(high-index enamel)的金屬層被蝕刻時觀察到此作用,在金屬層被沉積於ITO(陽極)層上時亦可見。同樣的作用亦於化學蝕刻TCO層(無金屬柵格(metal grid))期間見到(雖然較少)且被認為是由(光阻)遮罩對大量起伏(坑口)區之不足保護所致。
再者,於IEL和陽極之間,利用陰極濺射(cathode sputtering)沉積已知能抗酸之阻障層(barrier layer),例如TiO2、SnO2、SiO2、Si3N4或氮氧化矽(SiON)之層(厚度為20至150μm),無法顯著減少在由此等基板製成之OLED中所觀察到的漏電流及針孔數量。
圖3顯示利用磁控管陰極濺射(magnetron cathode sputtering)於ITO陽極(厚度約150μm)(其本身係利用磁控管陰極濺射於100nm厚之SiON阻障層上沉積)上沉積之金屬層的酸蝕刻後所觀察到的表面缺陷。
本發明係基於發現可藉由某些金屬氧化物之極薄層(前提是,此層係藉由原子層沉積(atomic layer deposition)(ALD)所形成)來有效保護具有高含量鉍之琺瑯層的表面中的小缺陷(坑口,圖1)免於酸蝕刻所致之劣化。
此薄保護層須位於一側之琺瑯散射層(enamel scattering layer)(IEL)、與另一側之陽極的金屬柵格(metal grid)之間。其係形成於陽極(由TCO和金屬柵格(metal grid)製成)下方,較佳係直接在琺瑯層上。
因此本發明之一標的為用於OLED的支撐透明電極,其依序包括:(i)由無機玻璃(mineral glass)製成之透明基板;(ii)由含有至少30重量% Bi2O3的高折射率琺瑯(high-index enamel)形成之散射層;(iii)選自Al2O3、TiO2、ZrO2和HfO2所組成之群組的至少一介電金屬氧化物(dielectric metal oxide)的阻障層(barrier layer),係藉由原子層沉積(atomic layer deposition)(ALD)而沉積;以及(iv)透明導電氧化物(transparent conductive oxide)(TCO)層。
本發明之其他標的為,製造此透明電極的方法,其包括藉由ALD沉積阻障層(barrier layer);以及,含有此透明電極的OLED(有機發光二極體)。
會注意到,例如前文所定義之透明電極並非必包含金屬柵格(metal grid)。具言之,申請人設想銷售例如前文所定義之支撐電極,其之TCO陽極會後續由OLED製造者藉由蝕刻而建構且具備有金屬柵格。在酸蝕刻TCO之步驟中及形成金屬柵格(metal grid)期間(其亦包括 酸蝕刻步驟),藉由ALD沉積之保護層會有效保護富含鉍之琺瑯免於受酸腐蝕且避免於最終的OLED中形成針孔。
本發明當然亦關於完整透明支撐電極,其除了上述層(i)至(iv)外還包括金屬柵格(metal grid),欲以提高電極之傳導性(conductivity)。此金屬柵格可位於TCO層下方或上方且需與其直接電性接觸。
因此,於第一實施態樣中,本發明之透明電極係依序包括:○由無機玻璃(mineral glass)製成之透明基板;○由含有至少30重量% Bi2O3的高折射率琺瑯(high-index enamel)形成之散射層;○選自Al2O3、TiO2、ZrO2和HfO2所組成之群組的至少一介電金屬氧化物(dielectric metal oxide)的阻障層(barrier layer),係藉由ALD沉積;○透明導電氧化物(transparent conductive oxide)(TCO)層;以及○與TCO層直接接觸的金屬柵格(metal grid)。
於第二實施態樣中,最後兩層之順序係與第一實施態樣者相反,本發明之透明電極係依序包括:○由無機玻璃(mineral glass)製成之透明基板;○由含有至少30重量% Bi2O3的高折射率琺瑯(high-index enamel)形成之散射層;○選自Al2O3、TiO2和ZrO2所組成之群組的至少一 介電金屬氧化物(dielectric metal oxide)的阻障層(barrier layer),係藉由ALD沉積;○與TCO層直接接觸的金屬柵格(metal grid);以及○透明導電氧化物(TCO)層。
由無機玻璃(mineral glass)製成之基板可為適合所欲用途之任何厚度。一般而言,係使用厚度為介於0.3至5mm、尤其是介於0.7至3mm的玻璃板。然而,也可使用具有較小厚度(通常介於50nm至300nm)的超薄玻璃板,前提是要解決在如此小厚度之玻璃板上形成琺瑯層(於此例中為高折射率琺瑯(high-index enamel)層)所涉及之機構問題。
基板上覆有由含有至少30重量% Bi2O3的高折射率琺瑯(high-index enamel)形成之散射層。文中之表述“高折射率”係理解為意指其折射率(於λ=550nm)為至少等於1.7且較佳介於1.8至2.2的琺瑯。
散射層(ii)係扮演內部光取出層(internal light-extraction layer)(IEL)的角色。
長期以來,在OLED領域中已知僅小部份發光層產生之光係朝外部發射(經由透明陽極和玻璃基版)。具言之,由於玻璃基板之光折射率(n玻璃=1.5)係低於有機層之光折射率(n=1.7-1.8)及透明陽極之光折射率(n=1.9至2.1),大部分(約50%)的光係陷於此等高折射率層中(如為波導(waveguide))且於某些次數反射後被吸 收。類似作用發生在基板之玻璃(n玻璃=1.5)和周圍空氣(n空氣=1.0)間之介面,陷住約20%之發光層發射的光。
已知藉由在玻璃基板和透明陽極之間插入用於光取出(extracting light)之元件,例如由含有散射粒子之高折射率琺瑯或由夠粗糙以能散射之介面(該介面係以高折射率琺瑯層平坦化)所形成者,以降低OLED之高折射率層中的此陷光(trapping of the light)(全內反射(total internal reflection))。
因此,表述“散射層”在本發明中係含括:- 其中散布有散射成份(scattering element)的高折射率之琺瑯層;以及- 於兩不同折射率之介質間的粗糙介面,通常有某些粗糙度之具起伏的玻璃表面係以高折射率琺瑯層覆蓋。
因此,於一實施態樣中,形成散射層之高折射率琺瑯(high-index enamel)係含有能散射光的成分,其係遍及該層之厚度而散布。此等散射成分具有比琺瑯之折射率還高或低之折射率。為了能散射光,此等成分需具有相對於欲取出之光的波長而言為非可忽略之尺寸,例如,介於0.1至5μm、較佳介於0.4至3μm之尺寸。此等散射成分可為例如在玻璃料熔融前加至其中的固體粒子、玻璃料熔融時形成之結晶或甚至是在熔融玻璃料步驟期間形成且陷於固化之琺瑯中的氣泡。
於另一實施態樣中,散射效果係由高折射率琺瑯(n 1.7)和下方的較低折射率介質(玻璃基板或形成於玻璃表面之低折射率層)間之介面的粗糙度所造成。高折射率琺瑯(high-index enamel)和下方的較低折射率介質(基板)間的介面,較佳具有其算數平均數偏差(arithmetic mean deviation)Ra為至少等於0.1μm、較佳介於0.2至5μm、尤其是介於0.3至3μm的粗糙度輪廓(roughness profile)。
在於玻璃基板和琺瑯之間提供低折射率(n<1.6)中間層的情況中,例如保護高折射率琺瑯(high-index enamel)免於源自基板之鹼金屬離子之擴散的阻障層(barrier layer),其係在此低折射率層和高折射率琺瑯之間的介面,其含有具此粗糙度輪廓的起伏(relief)。
當然,也可組合此兩實施態樣之散射層,例如,藉由將散射成分如氣泡導入沉積於粗糙玻璃表面之高折射率琺瑯(high-index enamel)中,其重點為IEL之頂面需與高折射率琺瑯之頂面一致。
有一些玻璃組成物能獲得高折射率琺瑯(high-index enamel)。本發明尤關注具高含量鉍之琺瑯,其對酸的化學抗性(chemical resistance)相當低,導致如引言中所闡釋之漏電流(leakage current)和針孔。
本發明之高折射率琺瑯(high-index enamel)係含有至少30重量%、較佳至少50重量%、尤其是至少65重量%的Bi2O3。此等琺瑯係已知的且述於例如下列者中:世界專利申請案WO2013/187736、及專利申請案PCT/FR 2014/050370和FR 1 360 522(為本案申請人所有,其在本申請案申請時仍未公開)。
例如,高折射率琺瑯係含有55至84重量% Bi2O3、多至約20重量% BaO、5至20重量% ZnO、1至7重量% Al2O3、5至15重量% SiO2、5至20重量% B2O3以及多至0.3重量% CeO2
於本發明中,介電金屬氧化物(dielectric metal oxide)層(層(iii))係藉由ALD(原子層沉積)沉積於前文所述之高折射率琺瑯。此沉積較佳係直接於高折射率琺瑯(high-index enamel)的表面進行。原子層沉積(atomic layer deposition)係能夠形成極薄、均勻且不可通透之層的已知方法。
氣態前驅物(precursor),與表面接觸,藉由化學吸附(chemisorption)或物理吸附(physisorption)而吸附於其上呈單層之形式。將前驅物氣體除氣後,將能與已吸附之前驅物反應之第二氣態組分供入室中。反應之後,室再次進行除氣且可再開始“吸附-除氣-反應-除氣”循環。
下表提供能形成本發明之層(iii)之介電金屬氧化物(dielectric metal oxide)的前驅物和反應物的一些實例。
讀者亦可參見回顧文獻如:Markku Leskelä et al.“Atomic layer deposition(ALD):from precursors to thin film structures”,Thin Solid Films,409(2002)138-146,以及Steven M.George entitled“Atomic Layer Deposition:An Overview”,Chem.Rev.2010,110,111-131,其提供許多前驅物/反應物系統之實例。
阻障層(barrier layer)可為由單一金屬氧化物構成的簡單層(simple layer),或甚而為由各種金屬氧化物之多個連續子層所形成的複合層,其皆藉由ALD沉積。
於本發明之一較佳實施態樣中,ALD阻障層係包含多個Al2O3層(n1.7)與較佳選自TiO2、ZrO2、及HfO2的較高折射率(n>2)之氧化物的層交替。具言之,氧化鋁具有對用於蝕刻金屬之強酸(如王水)極有抗性之優點。然其折射率與OLED之有機層者相比則較低且由此導致之光損失(optical loss)使得無法使用厚Al2O3單層。藉由使Al2O3層與TiO2、ZrO2或HfO2之層交替,可增加ALD層之整體厚度而不會提高光損失。
ALD層(無論其為簡單或複合的)之整體厚度較佳介於5至200nm、尤其是介於10至100nm。當其屬於包含交替之Al2O3子層和較高折射率子層(如TiO2、ZrO2及HfO2之子層)的複合層時,各子層之厚度較佳介於1至50nm、尤其是介於2至10nm。子層之數量可介於2至200、較佳介於3至100、尤其是介於5至10。Al2O3子層之數量較佳介於2至5,其尤其係等於2或3。
於一較佳實施態樣中,子層堆疊之兩外層為Al2O3層,其確保與相鄰材料之良好接觸。
於電子顯微鏡下,利用ALD沉積的介電金屬氧化物(dielectric metal oxide)層可容易地與利用陰極濺射(cathode sputtering)沉積的層區別。已知其特徵在於極均勻之厚度;完美的連續性(continuity),即使是小厚度亦然;以及與下方基板之起伏的高相符性(conformity),即使是在具極顯著起伏的表面上亦然。
實際透明電極係位於由ALD形成之層上。此電極是由TCO層(通常是利用陰極濺射(cathode sputtering)沉積)、及金屬柵格(metal grid)所組成,此兩結構彼此接觸。如前文中所闡述,金屬柵格(metal grid)可於TCO層下方-於TCO層和ALD層之間-或者於TCO層上方。
本發明並未特別限於某些柵格(grid)結構或柵格尺寸。形成柵格之金屬的性質亦不緊要。不過,柵格必須利用包含酸蝕刻金屬層(通常透過遮罩(mask))之步驟的方法形成。具言之,如引言中所闡述,本案申請人已觀察到,此酸蝕刻步驟看來就是造成在完成產品中所見之缺陷(漏電流(leakage current)、針孔(pinhole))的根源。藉由光微影技術(photolithography)及酸蝕刻形成此等柵格之方法為已知的。
本案申請人很少觀察到針孔引起漏電流(leakage current),即使是在OLED不包含金屬柵格(metal grid)時。於電子顯微鏡下檢查此等針孔之外觀時顯示彼等亦顯然對應於挖空(hollowed-out)之坑口(crater)(參見圖4)。本案申請人認為此等表面缺陷之化學蝕刻發生於酸蝕刻TCO層期間、在表面起伏(surface relief)太顯著而無法以薄(1至2μm)層的光阻適當保護的區域。在IEL層之琺瑯和TCO間使用由ALD沉積之阻障層(barrier layer)有效地避免此類針孔。
TCO層係利用慣用沉積法如磁控管陰極濺射(magnetron cathode sputtering)、溶膠-凝膠法(sol-gel process)或熱解(pyrolysis)(CVD)而沉積於由介電金屬氧化物(dielectric metal oxide)層保護之高折射率琺瑯(high-index enamel)。
原則上,任何具夠高折射率(接近於OLED之有機多層(HTL/LE/ITL)的平均折射率)之透明或半透明導電氧化物,係可用於此電極層。可提及之透明導電氧化物(transparent conductive oxide)之此等材料的實例為例如鋁-摻雜之氧化鋅(AZO)、銦-摻雜之氧化錫(ITO)、錫鋅氧化物(tin zinc oxide)(SnZnO)或二氧化錫(SnO2)。此等材料有利地具有比形成HTL/LE/ITL多層之有機材料者低得多的吸收係數(absorption coefficient),較佳為吸收係數低於0.005、尤其是低於0.0005。較佳使用ITO。透明導電氧化物層之厚度通常介於50至200nm。
本發明之製造用於OLED的透明支撐電極的方法,係至少包括下列三依序步驟: (a)提供於其一表面承載由含有至少30重量% Bi2O3的高折射率琺瑯(high-index enamel)形成之散射層的透明基板;(b)藉由原子層沉積(ALD)於高折射率琺瑯上形成與其直接接觸之選自Al2O3、TiO2、ZrO2和HfO2所組成之群組的至少一介電金屬氧化物(dielectric metal oxide)層(阻障層);以及(c)於介電金屬氧化物層(b)上形成TCO層。
根據本發明之方法僅包括此三步驟時,係獲得中間產物(基板/高折射率琺瑯/ALD層/TCO層),其係欲於後續接受金屬柵格(metal grid)。
根據本發明之製造完整支撐透明電極的方法當然進一步包括一另外的步驟(步驟(d)):形成與透明導電氧化物層直接接觸之金屬柵格(metal grid),此步驟(d)包含至少一酸蝕刻步驟。
此酸蝕刻步驟係於以遮罩(利用例如網印(screen printing)或光微影技術(photolithography)製作)覆蓋之連續金屬層上進行,酸係用來移除於未被遮罩覆蓋之某些區域中的金屬,以形成柵格之孔(aperture)。
金屬層之厚度以及因而所得柵格之高度,其約為數百奈米,通常為0.5至1μm、較佳為0.6至0.8μm。柵格之股(strand)的寬度一般係介於10μm至約100μm。
於根據本發明之方法的第一實施態樣中,步驟(d)係於步驟(c)之後進行以使得金屬柵格(metal grid)與 TCO層接觸但不與金屬氧化物阻障層接觸。
於第二實施態樣中,步驟(d)係於步驟(b)之後且於步驟(c)之前進行以使得金屬柵格(metal grid)與介電金屬氧化物阻障層和TCO層兩者接觸。
金屬柵格(metal grid)總會形成起伏(relief),這是由於即使在TCO層係沉積於金屬柵格上時(如於第二實施態樣中),顯然地,因為此兩結構之各別厚度(TCO層為0.05至0.2μm,柵格為0.5至1μm),使得TCO層不會覆蓋且平坦化(planarize)此起伏。
因此,於任何情況下,金屬柵格(metal grid)需以鈍化層(passivating layer)(其當然避開由酸所蝕刻之孔)覆蓋,其形成最終之OLED的發光區(未阻塞)。以鈍化層來鈍化電極柵格亦為OLED製造領域中習此技藝之人士的通常知識。
在施加發光層之前,最好是用習知方式以有機電洞注入材料覆蓋OLED基板,該有機電洞注入材料為例如PEDOT/PSS(聚伸乙二氧基噻吩/聚(苯乙烯磺酸酯)(polyethylenedioxythiophene/poly(styrene sulfonate))),其使得如前文所述之基板的起伏(relief)能被平坦化。
圖1為由在琺瑯層表面爆開之氣泡於固化後所形成之小針孔的照片。
圖2顯示在以Al2O3 ALD層保護之琺瑯上觀察到的 兩表面缺陷(氣泡,於彼等爆開固化後),在酸蝕刻之前(左)之後(右)的SEM顯微照片。
圖3顯示在酸蝕刻沉積於ITO陽極(約150μm厚)(沉積於琺瑯上之100nm厚濺射(sputter)之SiON阻障層上)上的金屬層之後觀察到的表面缺陷之兩SEM顯微照片。
圖4顯示由化學蝕刻小針孔所形成之坑口(crater)。
實施例
於0.7mm厚之無機玻璃(mineral glass)板上,利用熔融具下列組成之玻璃料而沉積高折射率琺瑯(high-index enamel)層:65% Bi2O3、12.6% ZnO、12.9% SiO2、2.6% Al2O3、及6.9% B2O3(為重量%)。
於有機介質中之玻璃料糊(75重量%玻璃料、22重量%揮發性有機溶劑以及3%乙基纖維素)係利用網印(screen printing)沉積並乾燥(約20分鐘,於130℃);乙基纖維素係以20分鐘長、於430℃之熱處理移除然後將玻璃料加熱至540℃,10分鐘。此熔融步驟係於大氣壓力下進行,其使得於琺瑯層中形成許多氣泡。如此形成的高折射率琺瑯層係含有因氣泡於其爆開固化後所致之表面缺陷。
圖1顯示於琺瑯表面上的部分敞開之泡泡(泡泡部分敞開)以及完全敞開之泡泡(敞開泡泡(open bubble)) 的兩掃描電子顯微鏡(SEM)照片。
接著,載有此高折射率琺瑯(high-index enamel)之兩基板樣品上,沉積厚度分別為10nm和50nm之Al2O3層。圖2(左側)顯示,在以ALD層保護之此等琺瑯上觀察到的兩表面缺陷(氣泡,於其爆開固化後)的SEM照片。
接著,對相同基板進行酸蝕刻步驟,於45℃之溫度在pH<1的磷酸溶液中進行100秒。
圖2(右側)顯示,相同之表面缺陷於蝕刻步驟後之SEM照片。可以看到彼等之外觀係與蝕刻前完全相同。
用於比較,圖3顯示沉積於ITO陽極(約150μm厚)(其本身沉積於和前述者相同組成之琺瑯上之100nm厚SiON阻障層上,ITO陽極和阻障層係利用磁控管陰極濺射沉積)上之金屬層中之酸蝕刻(於45℃之溫度在pH<1的磷酸溶液中進行100秒)後所觀察到之表面缺陷的兩SEM照片。
此等缺陷(與圖2相同放大率)頗大於原氣泡。

Claims (11)

  1. 一種用於OLED的支撐透明電極,其依序包括:(i)由無機玻璃(mineral glass)製成之透明基板;(ii)由含有至少30重量% Bi2O3的高折射率琺瑯(high-index enamel)形成之散射層;(iii)選自Al2O3、TiO2、ZrO2和HfO2所組成之群組的至少一介電金屬氧化物(dielectric metal oxide)的阻障層(barrier layer),係藉由原子層沉積(ALD)而沉積;以及(iv)透明導電氧化物(TCO)層。
  2. 如申請專利範圍第1項之電極,其中,藉由ALD沉積之該阻障層係包含多個Al2O3層與選自TiO2、ZrO2、及HfO2的較高折射率(n>2)之氧化物的層交替。
  3. 如申請專利範圍第1或2項之電極,其中,其進一步包括金屬柵格(metal grid),係於TCO層下方或上方並且與彼直接接觸。
  4. 如申請專利範圍第1或2項之電極,其中,藉由ALD沉積之該阻障層的厚度係介於5至200nm,較佳為厚度係介於10至100nm。
  5. 如申請專利範圍第1或2項之電極,其中,形成該散射層之該高折射率琺瑯係含有能散射光、遍及該層之厚度而散布的成分。
  6. 如申請專利範圍第1或2項之電極,其中,該高折 射率琺瑯和下方的較低折射率介質間的介面係具有算數平均數偏差(arithmetic mean deviation)Ra為至少等於0.1μm、較佳介於0.2至5μm、尤其是介於0.3至3μm的粗糙度輪廓(roughness profile)。
  7. 一種OLED,其包括如申請專利範圍第1至6項中任一項之電極。
  8. 一種製造如前述申請專利範圍中任一項之用於OLED的支撐透明電極之方法,其包括下列依序步驟:(a)提供於其一表面承載由含有至少30重量% Bi2O3的高折射率琺瑯形成之散射層的透明基板;(b)藉由原子層沉積(ALD)於高折射率琺瑯上形成與其直接接觸之選自Al2O3、TiO2、ZrO2和HfO2所組成之群組的至少一介電金屬氧化物阻障層;以及(c)於介電金屬氧化物層(b)上形成透明導電氧化物(TCO)層。
  9. 如申請專利範圍第8項之方法,其中,其進一步包括步驟(d)為形成與透明導電氧化物層直接接觸之金屬柵格,此步驟(d)包含至少一酸蝕刻步驟。
  10. 如申請專利範圍第9項之方法,其中,步驟(d)係於步驟(b)之後且於步驟(c)之前進行以使得金屬柵格與介電金屬氧化物阻障層和TCO層兩者接觸。
  11. 如申請專利範圍第9項之方法,其中,步驟(d) 係於步驟(c)之後進行以使得金屬柵格與TCO層接觸但不與金屬氧化物阻障層接觸。
TW104110455A 2014-04-22 2015-03-31 用於oled的透明支撐電極與其製造方法 TWI663761B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
??1453584 2014-04-22
FR1453584A FR3020179B1 (fr) 2014-04-22 2014-04-22 Electrode supportee transparente pour oled

Publications (2)

Publication Number Publication Date
TW201605095A true TW201605095A (zh) 2016-02-01
TWI663761B TWI663761B (zh) 2019-06-21

Family

ID=50976932

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104110455A TWI663761B (zh) 2014-04-22 2015-03-31 用於oled的透明支撐電極與其製造方法

Country Status (10)

Country Link
US (1) US10319934B2 (zh)
EP (1) EP3134929B1 (zh)
JP (1) JP6684225B2 (zh)
KR (1) KR20160145596A (zh)
CN (1) CN106463641B (zh)
ES (1) ES2702210T3 (zh)
FR (1) FR3020179B1 (zh)
RU (1) RU2685086C2 (zh)
TW (1) TWI663761B (zh)
WO (1) WO2015162367A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3082172A1 (en) 2015-04-16 2016-10-19 Saint-Gobain Glass France Layered structure for an oled and a method for producing such a structure
CN112876078A (zh) * 2021-04-14 2021-06-01 亚细亚建筑材料股份有限公司 一种高透感面釉
US11527732B1 (en) * 2022-05-31 2022-12-13 Applied Materials, Inc. OLED anode structures including amorphous transparent conducting oxides and OLED processing method comprising the same

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1360522A (fr) 1962-06-15 1964-05-08 Automotive Prod Co Ltd Système de freinage fonctionnant par une pression de liquide pour véhicules
JP2000231985A (ja) * 1999-02-12 2000-08-22 Denso Corp 有機el素子
JP2002343562A (ja) * 2001-05-11 2002-11-29 Pioneer Electronic Corp 発光ディスプレイ装置及びその製造方法
US20060154550A1 (en) 2002-10-16 2006-07-13 Nellissen Antonius J M Method for manufacturing a light emitting display
WO2005053053A1 (en) 2003-11-26 2005-06-09 Koninklijke Philips Electronics N.V. Light-emitting device comprising an etch-protective layer
US7508130B2 (en) * 2005-11-18 2009-03-24 Eastman Kodak Company OLED device having improved light output
EP1916725A1 (en) 2006-10-27 2008-04-30 Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO Organic light emitting diode device with multilayer seal
JP5195755B2 (ja) * 2007-07-27 2013-05-15 旭硝子株式会社 透光性基板、その製造方法、有機led素子及びその製造方法
EP2278852A4 (en) * 2008-03-18 2011-08-03 Asahi Glass Co Ltd ELECTRONIC DEVICE SUBSTRATE, LAYERED BODY FOR ORGANIC ELECTROLUMINESCENT DIODE ELEMENT, MANUFACTURING METHOD THEREOF, ORGANIC ELECTROLUMINESCENT DIODE ELEMENT, AND MANUFACTURING METHOD THEREOF
DE102009024411A1 (de) * 2009-03-24 2010-09-30 Osram Opto Semiconductors Gmbh Dünnschichtverkapselung für ein optoelektronisches Bauelement, Verfahren zu dessen Herstellung und optoelektronisches Bauelement
DE102009022900A1 (de) * 2009-04-30 2010-11-18 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement und Verfahren zu dessen Herstellung
CA2777649A1 (en) * 2009-10-15 2011-04-21 Asahi Glass Company, Limited Organic led element, glass frit for diffusion layer for use in organic led element, and method for production of diffusion layer for use in organic led element
BR112012008773A2 (pt) * 2009-10-15 2019-09-24 Asahi Glass Co Ltd vidro para camada de difusão em elemento de led orgânico, e elemento de led orgânico usando o mesmo.
RU2408957C1 (ru) * 2009-11-25 2011-01-10 Российская Федерация, от имени которой выступает государственный заказчик - Министерство промышленности и торговли Российской Федерации (Минпромторг России) Органический светоизлучающий диод
FR2955575B1 (fr) * 2010-01-22 2012-02-24 Saint Gobain Substrat verrier revetu d'une couche haut indice sous un revetement electrode et dispositif electroluminescent organique comportant un tel substrat.
JP5742838B2 (ja) * 2010-04-08 2015-07-01 旭硝子株式会社 有機led素子、透光性基板、および有機led素子の製造方法
KR20130143547A (ko) * 2010-07-16 2013-12-31 에이쥐씨 글래스 유럽 유기발광소자용 반투명 전도성 기재
WO2012014812A1 (ja) * 2010-07-26 2012-02-02 旭硝子株式会社 有機led素子の散乱層用ガラス及び有機led素子
FR2963705B1 (fr) * 2010-08-06 2012-08-17 Saint Gobain Support a couche diffusante pour dispositif a diode electroluminescente organique, dispositif electroluminescent organique comportant un tel support
JP5938757B2 (ja) * 2011-11-25 2016-06-22 三星電子株式会社Samsung Electronics Co.,Ltd. 発光素子基板とその製造方法、面発光素子、照明器具およびバックライト
EP2693839A4 (en) * 2011-03-31 2014-11-26 Asahi Glass Co Ltd ORGANIC LED ELEMENT, TRANSLUCENT SUBSTRATE AND METHOD FOR PRODUCING THE LIGHT TRACEABLE SUBSTRATE
WO2012147685A1 (ja) * 2011-04-28 2012-11-01 旭硝子株式会社 有機el素子、透光性基板および有機led素子の製造方法
EP2767518A4 (en) * 2011-10-14 2016-01-06 Asahi Glass Co Ltd GLASS FOR USE IN THE SPREADING LAYER OF AN ORGANIC LED ELEMENT, MULTILAYER SUBSTRATE FOR USE IN THE ORGANIC LED ELEMENT AND METHOD FOR PRODUCING THIS MULTILAYER SUBSTRATE, AND ORGANIC LED ELEMENT AND METHOD FOR THE PRODUCTION THEREOF
CN103891404B (zh) * 2011-10-28 2016-11-09 旭硝子株式会社 有机led元件用层叠基板及有机led元件
FR2986909B1 (fr) * 2012-02-10 2014-11-21 Saint Gobain Electrode supportee transparente pour oled
KR20130111156A (ko) * 2012-03-30 2013-10-10 주식회사 엘지화학 유기전자소자용 기판
KR101715112B1 (ko) 2012-06-14 2017-03-10 쌩-고벵 글래스 프랑스 Oled 소자용 적층체, 그 제조방법 및 이를 구비한 oled 소자
FR2993707B1 (fr) * 2012-07-17 2015-03-13 Saint Gobain Electrode supportee transparente pour oled
EP2712851B1 (en) * 2012-09-28 2015-09-09 Saint-Gobain Glass France Method of producing a transparent diffusive oled substrate
EP2958867A1 (fr) 2013-02-25 2015-12-30 Saint-Gobain Glass France Substrat pour dispositif a diode electroluminescente organique

Also Published As

Publication number Publication date
EP3134929B1 (fr) 2018-09-19
RU2016145417A3 (zh) 2018-11-19
US20170040565A1 (en) 2017-02-09
WO2015162367A1 (fr) 2015-10-29
RU2016145417A (ru) 2018-05-23
TWI663761B (zh) 2019-06-21
KR20160145596A (ko) 2016-12-20
JP6684225B2 (ja) 2020-04-22
ES2702210T3 (es) 2019-02-27
CN106463641B (zh) 2018-09-28
RU2685086C2 (ru) 2019-04-16
FR3020179B1 (fr) 2017-10-06
CN106463641A (zh) 2017-02-22
FR3020179A1 (fr) 2015-10-23
JP2017514279A (ja) 2017-06-01
EP3134929A1 (fr) 2017-03-01
US10319934B2 (en) 2019-06-11

Similar Documents

Publication Publication Date Title
US9222641B2 (en) Translucent conductive substrate for organic light emitting devices
JP5742838B2 (ja) 有機led素子、透光性基板、および有機led素子の製造方法
TWI569191B (zh) A substrate having a transparent electrode, a method for manufacturing the same, and a touch panel
TWI533488B (zh) 用於有機發光裝置的反射陽極電極及其製造方法
JP6582981B2 (ja) 透光性基板、有機led素子、透光性基板の製造方法
WO2012057043A1 (ja) 有機el素子、透光性基板、および有機el素子の製造方法
TW201345015A (zh) 用於oled之透明陽極
US10367142B2 (en) Layered structure for an OLED and a method for producing such a structure
TWI663761B (zh) 用於oled的透明支撐電極與其製造方法
TWI666804B (zh) 透明擴散性oled基材及製造此種基材之方法
JP6608932B2 (ja) 透明拡散性oled基材及び該基材の製造方法
CN104685658A (zh) 用于oled装置的散射导电载体和包括它的oled装置
WO2014112414A1 (ja) 透光性基板の製造方法、透光性基板、および有機led素子
EP2593979A1 (en) Transluscent conductive substrate for organic light emitting devices

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees