TW200811935A - Method for fabricating a semiconductor device comprising surface cleaning - Google Patents

Method for fabricating a semiconductor device comprising surface cleaning Download PDF

Info

Publication number
TW200811935A
TW200811935A TW096125497A TW96125497A TW200811935A TW 200811935 A TW200811935 A TW 200811935A TW 096125497 A TW096125497 A TW 096125497A TW 96125497 A TW96125497 A TW 96125497A TW 200811935 A TW200811935 A TW 200811935A
Authority
TW
Taiwan
Prior art keywords
layer
etchant
fluorine
alcohol
substance
Prior art date
Application number
TW096125497A
Other languages
English (en)
Inventor
Sang-Ho Lee
Original Assignee
Hynix Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hynix Semiconductor Inc filed Critical Hynix Semiconductor Inc
Publication of TW200811935A publication Critical patent/TW200811935A/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/10Other heavy metals
    • C23G1/103Other heavy metals copper or alloys of copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/10Other heavy metals
    • C23G1/106Other heavy metals refractory metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/12Light metals
    • C23G1/125Light metals aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/0206Cleaning during device manufacture during, before or after processing of insulating layers
    • H01L21/02063Cleaning during device manufacture during, before or after processing of insulating layers the processing being the formation of vias or contact holes

Description

200811935 九、發明說明: 【發明所屬之技術領域】 本發明主張於2006年8月18日申請·之韓國專利申請 案第1 0-2 006-0 078 3 5 1號的優先權,該專利申請案之內容 以參考的方式全部倂入。 本發明關於一種製造半導體元件之方法。更具體而 言,本發明關於包含表面清潔步驟以自半導體元件層表面 除去污染物(例如原生氧化物(Native Oxide))之製造半導 體元件的方法。 【先前技術】 隨著半導體元件設計規則的縮減,已將具有80nm以下 的微細線條關鍵尺寸(CD )之超短通道型金氧半導體 (MOS )電晶體整合至半導體基材上。此外,在形成連接 、線路結構或元件期間,設計規則的縮減已造成製程餘裕 (process margin)之限制及移除表面污染物(例如原生氧 化物)之限制。 例如,連接觸點與如電晶體之源極及/或汲極之接面接 觸,因而連接至接面。爲確保連接觸點之接觸面積,藉由 使用閘極堆疊作爲蝕刻阻障之自動對準接觸孔(self aligned contact ( SAC ))來形成連接觸點。爲減少當使用 SAC時接面與連接觸點間的電阻,必須在沉積導電插塞. (plug )層之前移除存在於接面表面之污染物(例如原生 氧化物)。 一般藉由使用具緩衝效果的氧化物蝕刻劑(buffered 200811935 oxide etchant(BOE))或稀釋的氫氟酸(HF)溶液作爲 濕式蝕刻劑來進行移除原生氧化物製程。在濕式清潔期 間,構成接觸孔側壁之絕緣層會發生不良的腐鈾損失 (corrosion loss )。腐蝕損失爲濕式清潔之限制或限制因 素。 更具體而言,半導體元件設計規則之縮減造成用以將 鄰近的接觸孔相互分離之絕緣層線寬小尺寸化。因此,在 習知的濕式清潔期間內,絕緣層之損失會難以確保鄰近的 接觸孔間之預定間隔。導致塡補接觸孔之連接觸點間可能 發生電短路。此外,連接於連接觸點之電晶體中可能發生 漏電。 因此,必須發展一種表面清潔方法能夠充分地移除原 生氧化物,同時防止相鄰層(如絕緣層、導電層或半導體 層)之腐蝕。 【發明內容】 本發明之一態樣係提供一種用於製造半導體元件之方 法,其包括能有效移除原生氧化物並且防止層間介電層之 腐蝕損失的表面清潔。 根據本發明之一態樣,本發明提供一種用於製造半導 體元件之方法,該方法包括使用含有將含氟(F)物質分散 於醇之蝕刻劑以清潔存在於清潔目標層表面上污染物。 根據本發明之另一態樣,本發明提供一種用於製造半 導體元件之方法,其包括:在下方層(underlying layer) 上形成絕緣層;選擇性地蝕刻絕緣層以形成接觸孔而曝露 200811935 出下方層表面’並在下方層表面上造成污染物;使用含有 將含氟(F )物質分散於醇之蝕刻劑以清潔存在於透過接觸 孔而曝露之下方層表面上的污染物;及以導電層塡補接觸 孔以形成連接觸點。 根據本發明之另一態樣,本發明提供一種用於製造半 導體元件之方法,其包括:在半導體基材上形成複數個閘 極堆疊,每一閘極堆疊包括第一導電層、在閘極堆疊側上 之間隔物(spacer)、及在閘極堆疊頂端之覆蓋層(capping layer);在閘極堆疊上方形成絕緣層以塡補鄰近閘極堆疊 間的區域;使用間隔物及覆蓋層作爲蝕刻阻障而蝕刻絕緣 層以形成接觸孔及於半導體基材表面上造成污染物;使用 含有將含氟(F )物質分散於醇之蝕刻劑以清潔存在於透過 接觸孔而曝露之半導體基材表面上的污染物;於合成結構 ( resulting structure)上方形成第二導電層,以使第二導 電層塡補接觸孔;及將第二導電層平面化,藉此曝露覆蓋 層及利用閘極堆疊與殘留的絕緣層形成相互分隔的連接觸 點。 清潔目標層較佳爲矽基材、多晶矽層、非晶矽層、鎢 (W)層、氮化鎢(WN)層、矽化鎢(WSix)層、鈦(Ti) 層、氮化鈦(TiN)層、銅(Cu)層、鋁(A1)層或鋅(Zn) 層。 醇較佳爲含有異丙醇(IPA ),且含氟(F )物質較佳 爲含有氫氟酸(HF)、氟離子(F1及/或二氟氫離子(HF2·), 且蝕刻劑較佳爲不少於8 0重量%之醇及低於2 0重量%之 200811935 含氟(F )物質。 醇亦能含有二醇,在此情況下含氟(F )物質較佳地含 有氫氟酸(HF )、氟離子(F·)及/或二氟氫離子(HF2·), 且鈾刻劑較佳爲不少於80重量%之醇類及低於20重量% 之含氟(F )物質。 蝕刻劑較佳爲含有界面活性劑作爲含氟(F )物質的分 散劑。 蝕刻劑中的含水量較佳爲少於1 0重量%。 鈾刻劑較佳爲藉由將醇與氫氟酸(HF )溶液混合來製 備。 較佳爲使用蝕刻劑移除存在於清潔目標層或半導體基 材表面上之原生氧化物或蝕刻殘留物來進行清潔。 較佳地,絕緣層係由硼磷矽酸鹽玻璃(B P S G )、磷矽 酸鹽玻璃(P S G )、硼矽酸鹽玻璃(B S G )、低壓正矽酸四 乙酯(LP-TEOS)、電漿輔助正矽酸四乙酯(PE-TEOS)、 高密度電漿(HDP )氧化矽、未掺雜矽酸鹽玻璃(USG )、 低壓(LP )氮化物、電漿輔助(PE )氮化物、氮氧化矽、 旋轉塗佈的介電材料(s p i η ο η - d i e 1 e c t r i c ( S Ο D ))及熱氧 化物(thermal oxide )之至少一種所製成。 第一導電層較佳爲含有具有下方閘極介電層 (underlying gate dielectric layer)之閜層,間隔物及覆蓋 層較佳爲含有氮化矽層,絕緣層較佳爲含有硼磷矽酸鹽玻 璃(BPSG)層。該方法較佳爲進一步包括形成含有未掺雜 矽酸鹽玻璃(U S G )層之間隔物絕緣層以使間隔物絕緣層 200811935 覆蓋間隔物及覆蓋層。 較佳地,蝕刻劑中含氟(F )物質的含有量被選擇成將 絕緣層、間隔物及覆蓋層對原生氧化物之各蝕刻比調整爲 3或以下。 本發明提供一種包含表面清潔之製造半導體元件之方 法,能有效地移除原生氧化物且防止層間介電層之腐蝕損 失。 【實施方式】 本發明針對使用含有將含氟(F )物質分散於醇之蝕刻 劑來將清潔目標層表面污染物進行清潔的方法。清潔目標 層可爲非氧化層(例如:如矽基材之單晶矽層或多晶矽 層)。清潔目標可爲由清潔目標層表面上自發性氧化作用 所產生的原生氧化物。清潔目標層可舉例如爲矽基材、多 晶矽層、非晶矽層、鎢(W )層、氮化鎢(WN )層、矽化 鎢(WSix)層、鈦(Ti)層、氮化欽(TiN)層、銅(Cu) 層、鋁(A1 )層或鋅(Zn)層。 氧化矽爲原生氧化物之一例。當與利用如化學氣相沉積 (CVD )或旋轉塗佈之沉積法所形成的氧化矽比較時,原 生氧化物具有高度緻密的共價鍵(highly densified covalent bond )。因此,當與沉積的氧化砍相比較時,原 生氧化物顯現對於蝕刻劑(例如稀釋的HF溶液)之低鈾刻 速率。在從透過氧化矽沉積層而曝露之清潔目標層表面移 除原生氧化物之製程中,可能會發生非預期的氧化矽沉積 層之嚴重損失。當形成自動對準接觸孔(SACs )時,發生 200811935 不良現象,例如連接觸點間發生短路或連接於連接觸點之 電晶體發生漏電。 在一具體實施例中,本發明係針對一種用於移.除清潔目 標層表面上污染物之方法,該方法能夠藉由使用含有將含 氟(F )物質分散於醇之飩刻劑來防止其他沉積層之非計畫 的損失。 含氟(F )物質能包括氫氟酸(HF )、氟離子(F -)、 及/或二氟氫離子(HF厂)。含氟(ρ )物質係以分散狀態 存在於醇中。爲了促進分散,蝕刻劑可進一步包含界面活 性劑。藉由混合氫氟酸(HF )溶液與醇來分散含氟(f ) 物質。此時,較佳爲將飩刻劑中的含水(Η2 Ο )量調整爲少 於 1 0 % 〇 醇通常爲每個分子具有至少一羥基之有機液體。適合的 醇之例子包括異丙醇(IPA: (CH3) 2CHOH)及有機化合 物的二醇(兩個經基係鍵結於不同的碳)。二醇包括具有 碳(C )、氫(Η )及羥基(Ο Η )之有機化合物,例如乙二 醇(CH2OHCH2OH)。 當醇含有乙二醇時,以足以調整蝕刻劑之物性而適用於 半導體製程之化學計量來使用乙二醇。 一醇被δ忍爲Bb有效降低、?几積層相對於原生氧化物之飩 刻選擇比(例如降至約3或以下,較佳爲1或以下)。這 考慮下列事實:當使用稀釋H F溶液作爲飩刻劑時,例如硼 磷政酸鹽玻璃(B P S G )製之沉積絕緣層,相對於原生氧化 物具有非常大的鈾刻比。根據本發明之一具體實施例之餓 200811935 刻劑爲低選擇性蝕刻劑,其使沉積層相對於原生氧化物之 蝕刻比被調整爲低水準。 實驗證明本發明之蝕刻劑減少沉積氧化層與原生氧化 物間蝕刻選擇性之差異。尤其是,該蝕刻劑對BPSG層具 有低鈾刻速率,在半導體元件中通常使用BPSG層作爲層 間介電層。因此,當形成接觸時鈾刻劑係有效地將污染物 自下方接面(underlying junction)或導電層表面移除而不 會損傷層間介電層。 因此,能在清潔步驟中使用本發明之清潔方法而在飩刻 製程期間(例如SAC )移除原生氧化物,有益於在飩刻製 程期間防止層間介電層損失。進一步,本發明之清潔方法 亦能被用於多種應用,包括其他牽涉到移除原生氧化物之 半導體生產製程,及移除其他表面污染物(例如蝕刻殘留 物)之製程。 第1至3圖係圖示說明包含根據本發明之一具體實施例 0 之表面清潔的製造半導體元件方法剖面圖。在一具體實施 例中,說明用於將透過絕緣層而曝露之清潔目標層表面加 以清潔的製程。 參照第1圖,導入作爲清潔目標層之半導體基材110。 此時,將具有淺溝槽隔離(shallow trench is olation( STI)) 結構之元件隔離層1 2 0形成於半導體基材1 1 〇上。元件隔 離層1 2 0 —般包括氧化矽層。將具有接觸孔1 3 5或開口之 絕緣層1 3 0形成於半導體基材1 1 〇上,使半導體基材1 1 〇 表面透過接觸孔1 3 5或開口而部份地露出。絕緣層1 3 0較 -11- 200811935 佳爲包括氧化矽層。由矽之自發性氧化而產生之 物1 40 (例如原生氧化物),可被形成於透過絕 之接觸孔135而露出之半導體基材110表面上。 物1 40可進一步包括關於飩刻接觸孔1 3 5之蝕刻 參照第2圖,使用含有將含氟(F)物質分散 刻劑來使表面污染物1 40接受溼式清潔。以蝕刻 爲基準計,醇(例如包括異丙醇(IP A )及/或二 佳使用量係不低於8 0 %。以鈾刻劑總重量爲基準 (F )物質(例如包括氫氟酸(HF )、氟離子( 二氟氫離子(HF厂))的使用量係低於20%。尤 證明二醇能有效降低絕緣層的蝕刻速率。代表餓 分組成之量的百分比(% )係重量百分比(wt% 絕緣層130可包括硼磷砂酸鹽玻璃(BPSG) 有約20 mol%或以下之硼及約30mol%或以下之 具有一結構,其中由於存.在著硼及磷原子,所以 氧原子間之共價鍵係不夠緻密。更具體而言,原 具有以矽原子與氧原子間共價鍵爲基礎之結構,丨 具有一結構,其中由於存在著硼及磷原子,所以 零星地斷裂。因此,BPSG具有相當不緻密的氧{ 因此,當藉由使用稀釋的HF溶液之習知清潔 除表面污染物1 40時,相較於原生氧化物的触刻g 鈾刻速率爲大的。造成接觸孔1 3 5寬度增加,且 少絕緣層1 3 0之剩餘部分1 3 1。此外,接觸孔1 著其間形成的橋(bridge)而消失。 表面污染 緣層 1 3 0 表面污染 殘留物。 於醇之蝕 劑總重量 醇)的較 計,含氟 F1及/或 其是實驗 刻劑各成 )° 。BPSG 含 磷。BPSG 矽原子與 生氧化物 司時BPSG ,共價鍵被 匕矽結構。 〖方法而移 g 率,B P S G .相當地減 3 5可能延 200811935 另一方面,在使用本發明之飩刻劑來蝕刻的情況 物質打斷氧化矽的共價鍵,但是醇(例如二醇)會蔣 中斷裂的官能基鈍化,因而減少官能基間電負度的 因此蝕刻劑中的醇會減少B P S G相對於原生氧化物 比。因此,本發明之蝕刻劑有效降低BPSG相對於 化物的鈾刻選擇比(例如約3或以下)。 在習知之使用稀釋的HF或3 00 : 1 BOE (緩衝氧 刻)溶液(例如LAL1 5 )之濕式清潔方法中,已知 相對於原生氧化物之蝕刻比爲不低於5,更具體而 7〜8 ’進一步具體而言爲9或以上。換言之,估計係 生氧化物快7〜8倍的蝕刻速率來移除B P S G。 另一方面,在使用根據本發明之含二醇及氟物質 齊!1來蝕刻的情況下,實驗證明可實現蝕刻選擇比低 換言之,沉積氧化物(例如B P S G )之蝕刻速率大約 低於原生氧化物之飩刻速率。因此,可更有效地防 φ 除原生氧化物所造成的絕緣層1 3 0 (例如BPS G )之 的腐蝕損失。因此能解決關於絕緣層1 3 〇損失的問 參照第3圖,形成導電層以塡補已移除表面污綠 (包括原生氧化物)之接觸孔i 3 5。藉由化學機 (CMP)或回蝕(etch-back )製程而將導電層平面 成連接觸點1 5 0或插塞。此時不會發生絕緣層1 3 0白 因而能充分地維持相鄰的連接觸點1 5 0間之預定間 如上述可明白,雖然提及半導體基材110中的單 域(或形成於區域之接面)作爲清潔目標層,根據 -1 3 - 下,氟 F BPSG 差異。 之蝕刻 原生氧 化物鈾 BPSG 言爲約 以比原 之蝕刻 於1。 等於或 止由移 非計畫 題。 g 物 14 0 械硏磨 化以形 勺損失, 隔。 晶矽區 本發明 200811935 之清潔方法能應用於清潔其他層的表面,例如:導 矽層或半導體基材層。例如,清潔目標層可爲矽基 晶矽層、非晶矽層、鎢(W )層、氮化鎢(WN )層 鎢(WSix)層、鈦(Ti)層、氮化鈦(TiN)層、鍊 層、鋁(A1 )層或鋅(Zn )層。本發明之蝕刻劑具 目標層相對於原生氧化物之低蝕刻選擇比(例如約 下)。原生氧化物能從清潔目標層之表面移除,同 清潔目標層之腐蝕損失。 如上述,舉出BPSG作爲用於絕緣層的材料。然 常絕緣層能包括硼磷矽酸鹽玻璃(BPSG)、磷矽酸 (PSG )、硼矽酸鹽玻璃(B S G )、低壓正矽酸 (LP-TEOS)、電漿輔助正矽酸四乙酯(PE-TEOS) 度電漿(HDP )氧化矽、未掺雜矽酸鹽玻璃(USG) (LP )氮化物、電漿輔助(PE )氮化物、氮氧化矽 塗佈的介電材料(SOD )及熱氧化物。本發明之蝕 A 有絕緣層材料相對於原生氧化物之低蝕刻選擇比( 3或以下,較佳爲1或以下)。 能使用根據本發明之一具體實施例之飩刻劑作 以移除如原生氧化物之表面清潔物1 40及清潔以移 氧化物以外之蝕刻殘留物。另外,能將蝕刻劑用於 用,其包括在形成如上述接點1 5 0前之清潔製程、 程及關於移除原生氧化物之半導體製造製程。 第4至9圖係圖示說明包含根據本發明之另一具 例之表面清潔的製造半導體元件之另一方法剖面圖 電層、 材、多 、矽化 3 ( Cu) 有清潔 3或以 時抑制 而,通 鹽玻璃 四乙酯 、高密 、低壓 、旋轉 刻劑具 例如約 爲清潔 除原生 各種應 SAC製 體實施 -14- 200811935 參照第4圖,能將根據本發明之表面清潔溶液及清潔方 法應用於SAC製程。因此,能藉由防止因層間介電層之損 失或損傷所造成之超短通道型MOS電晶體性能惡化來改 善電路可靠性。 首先,使半導體基材210承受淺溝槽隔離(STI)。將 閘極堆疊220形成在半導體基材210上。每一閘極堆疊220 包括閘極介電層221、作爲閘極層之第一導電層222及 223、配置於閘極堆疊220側邊之氮化矽(SiN )間隔物224 及位在閘極堆疊220頂端之作爲氮化矽遮罩層之覆蓋層 225 〇 間隔物224可含有具有厚度約5A〜3 00 A之氮化矽(SiN) 層。或者,間隔物2 2 4可包含具有氮化砂層及氧化砂層之 雙層結構。第一導電層222、223具有多層結構,其包括由 阻障金屬層或多晶矽層製成之下部導電層222、及由鎢層 或矽化鎢層製成之上部導電層223。將由未掺雜矽酸鹽玻 璃(USG)層製成之間隔物絕緣層23 0形成爲厚度1 000人 或以下。藉由常壓化學機械沉積(ambient pressure chemical mechanical deposition ( APCMD))、低壓化學 機械沉積(LPCMD)或原子層沉積(atomic layer deposition (ALD))來沉積未掺雜矽酸鹽玻璃(USG)層。 參照第5圖,以覆蓋閘極堆疊220的方式將層間介電層 240形成於間隔物絕緣層23 0上。層間介電層240較佳爲 包括BPSG層。BPSG層含有約20 mol%或以下之硼及約 30 mol%或以下之磷。接著,將BPSG層平坦化。 200811935 參照第6圖,使用間隔物及覆蓋層作爲飩刻阻 層間介電層240以形成接觸孔241或開口( openi 複數個閘極堆疊220曝露於外面。此製程係根據 執行。覆蓋層225可被部分地鈾刻因而形成遺失部 part ) 2 4 5。 參照第7圖,使用含有將含氟(F )物質分散 刻劑,以清潔存在於透過接觸孔24 1而曝露之半 200表面之污染物250。此種清潔能使污染物250 ® 生氧化物)自半導體基材210表面移除,同時較 層間介電層之損失,如參照第2圖所述。 參照第8圖,於合成結構上方形成第二導電層 其塡補已清潔的接觸孔2 4 1。較佳爲藉由沉積已 晶矽層來形成第二導電層260。 參照第9圖,藉由CMP將第二導電層260平 覆蓋層225曝露於外部。因此,將連接觸點261 0 該些連接觸點藉由閘極堆疊220及殘留的層間介 而相互分離。可將連接觸點26 1視爲具有作爲連 接面之插塞的功能。 * 如前述可清楚明白,根據本發明,具有沉積層 間介電層)相對於原生氧化物之低飩刻選擇比 驟,能藉由使用含有含氟(F )物質及醇之蝕刻齊 本發明之清潔能防止在清潔期間內曝露於蝕刻劑 的損失。換言之,該蝕刻劑使得沉積層(例如絕 電層或半導體基材)相對於原生氧化物之蝕刻 障而蝕刻 ng )而將 SAC製程 分(a lost 於醇之蝕 導體基材 (例如原 佳地防止 260 ,使 掺雜的多 坦化以使 形成爲使 電層240 接電晶體 (例如層 的清潔步 !而實現。 之其他層 緣層、導 選擇比減 -16- 200811935 少,因而移除原生氧化物同時有效地防止由蝕刻劑引起的 沉積層之腐鈾損失。 因此,在具有80nm或以下微細線寬之高積體化元件 中,能防止當清潔以移除原生氧化物時,由沉積層(例如 層間介電層)之非計畫損失所造成的MOS電晶體性能惡 化。此外,在SAC製程期間,能避免不良的現象,例如具 有確保鄰接的接觸孔間之預定間隔功能的層間介電層之損 失所造成的連接觸點間短路或漏電。 雖然爲了說明而已揭露本發明之較佳具體實施例,但是 熟習技藝者將可察知在不背離如隨附之申請專利範圍所定 義的本發明之範疇及精神的情況下,進行各種變更、添加 及替代。 【圖式簡單說明】 弟1至3圖係圖不說明包含根據本發明之一旦體實施 例之表面清潔的製造半導體元件方法之剖面圖;及 φ 第4至9圖係圖示說明包含根據本發明之另一具體實 施例之表面清潔的製造半導體元件之另一方法剖面圖。 【主要元件符號說明】 1 10 半 導 體 基 材 120 元 件 隔 離 層 130 絕 緣 層 1 3 1 剩 餘 部 分 135 接 /rim 觸 孔 140 表 面 污 染 物 -17-
200811935 150 20 0 2 10 220 22 1 222 223 2 24 225 230 240 241 245 250 260 連接觸點 半導體基材 半導體基材 閘極堆疊 閘極介電層/ 第一導電層 第一導電層 間隔物 覆蓋層 間隔物絕緣層 層間介電層 接觸孔 遺失部分 污染物 第二導電層 26 1 連接觸點

Claims (1)

  1. 200811935 十、申請專利範圍: 1. 一種用於製造半導體元件之方法,該方法包括使用含有 將含氟(F )物質分散於醇之蝕刻劑以清潔在清潔目標 層表面上之污染物。 2·如申請專利範圍第1項之方法,其中該清潔目標層係選 自由砂基材、多晶砂層、非晶砂層、鎢(W )層、氮化 鎢(WN )層、矽化鎢(WSix )層、鈦(Ti )層、氮化 鈦(TiN )層、銅(Cu )層、鋁(八1)層及鋅(冗11)層 所構成之群組。 3.如申請專利範圍第1項之方法,其中: 該醇包括異丙醇(IPA), 該含氟(F )物質包括氫氟酸(HF )、氟離子(F·) 及二氟氫離子(HF2_)之至少一種,及 該蝕刻劑包括不低於8 0重量%之醇及低於2 〇重量% 之該含氟(F )物質。 0 4.如申請專利範圍第1項之方法,其中: 該醇包括二醇, 該含氟(F)物質包括氫氟酸(HF)、氟離子(F_) 及二氟氫離子(HF^)之至少一種,及 該蝕刻劑包括不低於80重量%之醇及低於20重量% 之該含氟(F )物質。 5 .如申請專利範圍第1項之方法,其中該蝕刻劑進一步包 括界面活性劑,以作爲該含氟(F )物質用之分散劑。 6.如申請專利範圍第1項之方法,其中該蝕刻劑包括低於 -19- 200811935 1 0重量%之水。 7 .如申請專利範圍第1項之方法,其中藉由混合該醇與氫 氟酸(HF )溶液而製備該飩刻劑。 8 .如申請專利範圍第1項之方法,其中清潔污染物之步驟 包括使用該飩刻劑以移除存在於該清潔目標層表面上 之原生氧化物。 9. 一種用於製造半導體元件之方法,該方法包括使用含有 將含氟(F )物質分散於醇之蝕刻劑以清潔透過絕緣層 ^ 而曝露之清潔目標層表面上之污染物。 10. 如申請專利範圍第9項之方法,其中: 該醇包括異丙醇(IP A )及二醇之至少一種, 該含氟(F )物質包括氫氟酸(HF )、氟離子(F_ ) 及二氟氫離子(HF2_)之至少一種,及 該蝕刻劑包括不低於80重量%之醇及低於20重量% 之該含氟(F )物質。 1 1 ·如申請專利範圍第9項之方法,其中該絕緣層係選自硼 磷矽酸鹽玻璃(BPSG )、磷矽酸鹽玻璃(PSG )、硼矽 酸鹽玻璃(BSG )、低壓正矽酸四乙酯(LP-TEOS )、 電漿輔助正矽酸四乙酯(PE-TEOS )、高密度電漿(HDP ) 氧化矽、未掺雜矽酸鹽玻璃(USG)、低壓(LP)氮化 物、電漿輔助(PE )氮化物、氮氧化矽、旋轉塗佈的介 電材料(spin -on-dielect rie( SOD ))、熱氧化物(thermal oxide )及此等組合。 1 2 ·—種用於製造半導體元件之方法,該方法包括: -20- 200811935 在下方層(underlying layer)上形成絕緣層; 選擇性地飩刻該絕緣層以形成接觸孔而曝露出下方 層表面; 使用含有將含氟(F )物質分散於醇之蝕刻劑以清潔 該接觸孔;及 以導電層塡補接觸孔。 1 3 .如申請專利範圍第1 2項之方法,其中: 該醇包括異丙醇(IP A )及二醇之至少一種, 該含氟(F)物質包括氫氟酸(HF)、氟離子(F·) 及二氟氫離子(HF2_)之至少一種,及 該蝕刻劑包括不低於80重量%之醇及低於20重量% 之該含氟(F )物質。 1 4. 一種用於製造半導體元件之方法,該方法包括: 將複數個閘極堆疊形成在半導體基材上,.每一閘極堆 疊包括第一導電層、於閘極堆疊側邊之間隔物及位在閘 極堆疊頂端之覆蓋層; 於該等閘極堆疊上形成絕緣層,藉此塡補相鄰閘極堆 疊間的區域; 藉由使用該間隔物及該覆蓋層作爲蝕刻阻障而鈾刻 該絕緣層以形成接觸孔; 使用含有將含氟(F )物質分散於醇之蝕刻劑以清潔 該接觸孔; 於該絕緣層上形成第二導電層以塡補該接觸孔;及 將該第二導電層平坦化以曝露出該覆蓋層。 -2 1 - 200811935 1 5 ·如申請專利範圍第1 4項之方法,其中該第一導電層包 括含有下方閘極介電層之閘極層,該間隔物及該覆蓋層 含有氮化矽層’該絕緣層含有硼磷矽酸鹽玻璃(BPS G) 層’且該方法進一步包括形成含有未掺雜矽酸鹽玻璃 (USG)層之間隔物絕緣層以覆蓋該間隔物及該覆蓋層。 1 6 ·如申請專利範圍第1 4項之方法,其中該方法包括選擇 該蝕刻劑中該含氟(F )物質的含有量,以使該蝕刻劑 0 具有該絕緣層、該間隔物及該覆蓋層之每一者相對於污 染物之蝕刻比爲3或以下。 1 7 ·如申請專利範圍第1 4項之方法,其中該方法包括選擇 該蝕刻劑中該含氟(F )物質的含有量,以使該蝕刻劑 具有該絕緣層、該間隔物及該覆蓋層之每一者相對於污 染物之鈾刻比爲1或以下。 1 8 ·如申請專利範圍第1 4項之方法,其中: 該蝕刻劑具有該絕緣層、該間隔物及該覆蓋層之每一 φ 者相對於污染物之蝕刻比爲不大於3, 該醇包括異丙醇(IPA), 該含氟(F )物質包括氫氟酸(HF )、氟離子(F·) 及二氟氫離子(HF2_ )之至少一種,及 該蝕刻劑包括不低於80重量%之醇及低於20重量% 之該含氟(F )物質。 19.如申請專利範圍第14項之方法,其中該醇包栝二醇, 該含氟(F)物質包括氫氟酸(HF)、氟離子(F·) 及二氟氫離子(HF2_ )之至少一種,及 -22- 200811935 該蝕刻劑包括不低於80重量%之醇及低於20重量% 之該含氟(F )物質。 2 0 .如申請專利範圍第1 4項之方法,其中該蝕刻劑進一步 包括界面活性劑,以作爲該含氟(F )物質用之分散劑。 2 1 ·如申請專利範圍第1 4項之方法,其中該蝕刻劑包括低 於1 〇重量%之水。 2 2 ·如申請專利範圍第1 4項之方法,其中清潔接觸孔之步 φ 驟包括使用該蝕刻劑以移除存在於該半導體基材表面 上之蝕刻殘留物及/或原生氧化物。
    -23-
TW096125497A 2006-08-18 2007-07-13 Method for fabricating a semiconductor device comprising surface cleaning TW200811935A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060078351A KR100818708B1 (ko) 2006-08-18 2006-08-18 표면 세정을 포함하는 반도체소자 제조방법

Publications (1)

Publication Number Publication Date
TW200811935A true TW200811935A (en) 2008-03-01

Family

ID=39095284

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096125497A TW200811935A (en) 2006-08-18 2007-07-13 Method for fabricating a semiconductor device comprising surface cleaning

Country Status (5)

Country Link
US (1) US20080044990A1 (zh)
JP (1) JP2008047898A (zh)
KR (1) KR100818708B1 (zh)
CN (1) CN100561665C (zh)
TW (1) TW200811935A (zh)

Families Citing this family (181)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT2347775T (pt) 2005-12-13 2020-07-14 The President And Fellows Of Harvard College Estruturas em andaime para transplante celular
US9770535B2 (en) 2007-06-21 2017-09-26 President And Fellows Of Harvard College Scaffolds for cell collection or elimination
KR101406888B1 (ko) * 2007-12-13 2014-06-30 삼성전자주식회사 반도체 소자의 제조 방법
JP5690143B2 (ja) 2008-02-13 2015-03-25 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ 持続的細胞プログラミング装置
US9370558B2 (en) 2008-02-13 2016-06-21 President And Fellows Of Harvard College Controlled delivery of TLR agonists in structural polymeric devices
WO2009146456A1 (en) 2008-05-30 2009-12-03 President And Fellows Of Harvard College Controlled release of growth factors and signaling molecules for promoting angiogenesis
US8252119B2 (en) * 2008-08-20 2012-08-28 Micron Technology, Inc. Microelectronic substrate cleaning systems with polyelectrolyte and associated methods
US8398779B2 (en) * 2009-03-02 2013-03-19 Applied Materials, Inc. Non destructive selective deposition removal of non-metallic deposits from aluminum containing substrates
US9297005B2 (en) 2009-04-13 2016-03-29 President And Fellows Of Harvard College Harnessing cell dynamics to engineer materials
CA2768552A1 (en) 2009-07-31 2011-02-03 President And Fellows Of Harvard College Programming of cells for tolerogenic therapies
CN102082091B (zh) * 2009-11-30 2012-07-11 上海华虹Nec电子有限公司 改善高密度等离子体化学气相淀积的磷硅玻璃形貌的方法
CN102087963B (zh) * 2009-12-04 2013-08-14 无锡华润上华半导体有限公司 多晶硅层的蚀刻方法
CN102157435B (zh) * 2010-02-11 2013-01-30 中芯国际集成电路制造(上海)有限公司 接触孔形成方法
WO2011109834A2 (en) 2010-03-05 2011-09-09 President And Fellows Of Harvard College Enhancement of skeletal muscle stem cell engrafment by dual delivery of vegf and igf-1
US9324576B2 (en) 2010-05-27 2016-04-26 Applied Materials, Inc. Selective etch for silicon films
WO2011163669A2 (en) 2010-06-25 2011-12-29 President And Fellows Of Harvard College Co-delivery of stimulatory and inhibitory factors to create temporally stable and spatially restricted zones
WO2012002440A1 (ja) * 2010-06-29 2012-01-05 京セラ株式会社 半導体基板の表面処理方法、半導体基板、および太陽電池の製造方法
US8859411B2 (en) 2010-08-20 2014-10-14 Mitsubishi Gas Chemical Company, Inc. Method for producing transistor
WO2012048165A2 (en) 2010-10-06 2012-04-12 President And Fellows Of Harvard College Injectable, pore-forming hydrogels for materials-based cell therapies
US9603894B2 (en) 2010-11-08 2017-03-28 President And Fellows Of Harvard College Materials presenting notch signaling molecules to control cell behavior
US10283321B2 (en) 2011-01-18 2019-05-07 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
US8999856B2 (en) 2011-03-14 2015-04-07 Applied Materials, Inc. Methods for etch of sin films
US9064815B2 (en) 2011-03-14 2015-06-23 Applied Materials, Inc. Methods for etch of metal and metal-oxide films
EP2701753B1 (en) 2011-04-27 2018-12-26 President and Fellows of Harvard College Cell-friendly inverse opal hydrogels for cell encapsulation, drug and protein delivery, and functional nanoparticle encapsulation
EP2701745B1 (en) 2011-04-28 2018-07-11 President and Fellows of Harvard College Injectable preformed macroscopic 3-dimensional scaffolds for minimally invasive administration
US9675561B2 (en) 2011-04-28 2017-06-13 President And Fellows Of Harvard College Injectable cryogel vaccine devices and methods of use thereof
EP2714073B1 (en) 2011-06-03 2021-03-10 President and Fellows of Harvard College In situ antigen-generating cancer vaccine
KR20130010362A (ko) * 2011-07-18 2013-01-28 삼성전자주식회사 반도체 장치의 제조방법
US8771536B2 (en) 2011-08-01 2014-07-08 Applied Materials, Inc. Dry-etch for silicon-and-carbon-containing films
US20130260564A1 (en) * 2011-09-26 2013-10-03 Applied Materials, Inc. Insensitive dry removal process for semiconductor integration
US8927390B2 (en) 2011-09-26 2015-01-06 Applied Materials, Inc. Intrench profile
US8808563B2 (en) 2011-10-07 2014-08-19 Applied Materials, Inc. Selective etch of silicon by way of metastable hydrogen termination
CN103178049B (zh) * 2011-12-22 2015-10-14 上海华虹宏力半导体制造有限公司 自对准接触孔绝缘层的结构及制备方法
JP5548225B2 (ja) 2012-03-16 2014-07-16 富士フイルム株式会社 半導体基板製品の製造方法及びエッチング液
CA2870309C (en) 2012-04-16 2024-02-20 President And Fellows Of Harvard College Mesoporous silica compositions for modulating immune responses
US9267739B2 (en) 2012-07-18 2016-02-23 Applied Materials, Inc. Pedestal with multi-zone temperature control and multiple purge capabilities
US9373517B2 (en) 2012-08-02 2016-06-21 Applied Materials, Inc. Semiconductor processing with DC assisted RF power for improved control
US9034770B2 (en) 2012-09-17 2015-05-19 Applied Materials, Inc. Differential silicon oxide etch
US9023734B2 (en) 2012-09-18 2015-05-05 Applied Materials, Inc. Radical-component oxide etch
US9390937B2 (en) 2012-09-20 2016-07-12 Applied Materials, Inc. Silicon-carbon-nitride selective etch
US9132436B2 (en) 2012-09-21 2015-09-15 Applied Materials, Inc. Chemical control features in wafer process equipment
US8969212B2 (en) 2012-11-20 2015-03-03 Applied Materials, Inc. Dry-etch selectivity
US8980763B2 (en) 2012-11-30 2015-03-17 Applied Materials, Inc. Dry-etch for selective tungsten removal
US9064816B2 (en) 2012-11-30 2015-06-23 Applied Materials, Inc. Dry-etch for selective oxidation removal
US9111877B2 (en) 2012-12-18 2015-08-18 Applied Materials, Inc. Non-local plasma oxide etch
US8921234B2 (en) 2012-12-21 2014-12-30 Applied Materials, Inc. Selective titanium nitride etching
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US9362130B2 (en) 2013-03-01 2016-06-07 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US9040422B2 (en) 2013-03-05 2015-05-26 Applied Materials, Inc. Selective titanium nitride removal
US8801952B1 (en) 2013-03-07 2014-08-12 Applied Materials, Inc. Conformal oxide dry etch
US10170282B2 (en) 2013-03-08 2019-01-01 Applied Materials, Inc. Insulated semiconductor faceplate designs
US20140271097A1 (en) 2013-03-15 2014-09-18 Applied Materials, Inc. Processing systems and methods for halide scavenging
WO2014178426A1 (ja) * 2013-05-02 2014-11-06 富士フイルム株式会社 エッチング方法、これに用いるエッチング液およびエッチング液のキット、ならびに半導体基板製品の製造方法
US8895449B1 (en) 2013-05-16 2014-11-25 Applied Materials, Inc. Delicate dry clean
US9114438B2 (en) 2013-05-21 2015-08-25 Applied Materials, Inc. Copper residue chamber clean
US9493879B2 (en) 2013-07-12 2016-11-15 Applied Materials, Inc. Selective sputtering for pattern transfer
US9773648B2 (en) 2013-08-30 2017-09-26 Applied Materials, Inc. Dual discharge modes operation for remote plasma
US8956980B1 (en) 2013-09-16 2015-02-17 Applied Materials, Inc. Selective etch of silicon nitride
US8951429B1 (en) 2013-10-29 2015-02-10 Applied Materials, Inc. Tungsten oxide processing
US9236265B2 (en) 2013-11-04 2016-01-12 Applied Materials, Inc. Silicon germanium processing
US9576809B2 (en) 2013-11-04 2017-02-21 Applied Materials, Inc. Etch suppression with germanium
US9520303B2 (en) 2013-11-12 2016-12-13 Applied Materials, Inc. Aluminum selective etch
US9245762B2 (en) 2013-12-02 2016-01-26 Applied Materials, Inc. Procedure for etch rate consistency
US9117855B2 (en) 2013-12-04 2015-08-25 Applied Materials, Inc. Polarity control for remote plasma
US9263278B2 (en) 2013-12-17 2016-02-16 Applied Materials, Inc. Dopant etch selectivity control
US9287095B2 (en) 2013-12-17 2016-03-15 Applied Materials, Inc. Semiconductor system assemblies and methods of operation
US9190293B2 (en) 2013-12-18 2015-11-17 Applied Materials, Inc. Even tungsten etch for high aspect ratio trenches
US9287134B2 (en) 2014-01-17 2016-03-15 Applied Materials, Inc. Titanium oxide etch
US9396989B2 (en) 2014-01-27 2016-07-19 Applied Materials, Inc. Air gaps between copper lines
US9293568B2 (en) 2014-01-27 2016-03-22 Applied Materials, Inc. Method of fin patterning
US9385028B2 (en) 2014-02-03 2016-07-05 Applied Materials, Inc. Air gap process
US9499898B2 (en) 2014-03-03 2016-11-22 Applied Materials, Inc. Layered thin film heater and method of fabrication
US9299575B2 (en) 2014-03-17 2016-03-29 Applied Materials, Inc. Gas-phase tungsten etch
US9299538B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9299537B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9136273B1 (en) 2014-03-21 2015-09-15 Applied Materials, Inc. Flash gate air gap
US9903020B2 (en) 2014-03-31 2018-02-27 Applied Materials, Inc. Generation of compact alumina passivation layers on aluminum plasma equipment components
US9269590B2 (en) 2014-04-07 2016-02-23 Applied Materials, Inc. Spacer formation
US10682400B2 (en) 2014-04-30 2020-06-16 President And Fellows Of Harvard College Combination vaccine devices and methods of killing cancer cells
US9309598B2 (en) 2014-05-28 2016-04-12 Applied Materials, Inc. Oxide and metal removal
US9847289B2 (en) 2014-05-30 2017-12-19 Applied Materials, Inc. Protective via cap for improved interconnect performance
US9406523B2 (en) 2014-06-19 2016-08-02 Applied Materials, Inc. Highly selective doped oxide removal method
US9378969B2 (en) 2014-06-19 2016-06-28 Applied Materials, Inc. Low temperature gas-phase carbon removal
US20150371925A1 (en) * 2014-06-20 2015-12-24 Intel Corporation Through array routing for non-volatile memory
US9425058B2 (en) 2014-07-24 2016-08-23 Applied Materials, Inc. Simplified litho-etch-litho-etch process
US9378978B2 (en) 2014-07-31 2016-06-28 Applied Materials, Inc. Integrated oxide recess and floating gate fin trimming
US9496167B2 (en) 2014-07-31 2016-11-15 Applied Materials, Inc. Integrated bit-line airgap formation and gate stack post clean
US9159606B1 (en) 2014-07-31 2015-10-13 Applied Materials, Inc. Metal air gap
US9165786B1 (en) 2014-08-05 2015-10-20 Applied Materials, Inc. Integrated oxide and nitride recess for better channel contact in 3D architectures
US9659753B2 (en) 2014-08-07 2017-05-23 Applied Materials, Inc. Grooved insulator to reduce leakage current
US9553102B2 (en) 2014-08-19 2017-01-24 Applied Materials, Inc. Tungsten separation
US9355856B2 (en) 2014-09-12 2016-05-31 Applied Materials, Inc. V trench dry etch
US9368364B2 (en) 2014-09-24 2016-06-14 Applied Materials, Inc. Silicon etch process with tunable selectivity to SiO2 and other materials
US9478434B2 (en) 2014-09-24 2016-10-25 Applied Materials, Inc. Chlorine-based hardmask removal
US9613822B2 (en) 2014-09-25 2017-04-04 Applied Materials, Inc. Oxide etch selectivity enhancement
US9355922B2 (en) 2014-10-14 2016-05-31 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
US9966240B2 (en) 2014-10-14 2018-05-08 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US11637002B2 (en) 2014-11-26 2023-04-25 Applied Materials, Inc. Methods and systems to enhance process uniformity
US9299583B1 (en) 2014-12-05 2016-03-29 Applied Materials, Inc. Aluminum oxide selective etch
US10573496B2 (en) 2014-12-09 2020-02-25 Applied Materials, Inc. Direct outlet toroidal plasma source
US10224210B2 (en) 2014-12-09 2019-03-05 Applied Materials, Inc. Plasma processing system with direct outlet toroidal plasma source
US9502258B2 (en) 2014-12-23 2016-11-22 Applied Materials, Inc. Anisotropic gap etch
US9343272B1 (en) 2015-01-08 2016-05-17 Applied Materials, Inc. Self-aligned process
US11257693B2 (en) 2015-01-09 2022-02-22 Applied Materials, Inc. Methods and systems to improve pedestal temperature control
US9373522B1 (en) 2015-01-22 2016-06-21 Applied Mateials, Inc. Titanium nitride removal
US9449846B2 (en) 2015-01-28 2016-09-20 Applied Materials, Inc. Vertical gate separation
WO2016123573A1 (en) 2015-01-30 2016-08-04 President And Fellows Of Harvard College Peritumoral and intratumoral materials for cancer therapy
US9728437B2 (en) 2015-02-03 2017-08-08 Applied Materials, Inc. High temperature chuck for plasma processing systems
US20160225652A1 (en) 2015-02-03 2016-08-04 Applied Materials, Inc. Low temperature chuck for plasma processing systems
US9881805B2 (en) 2015-03-02 2018-01-30 Applied Materials, Inc. Silicon selective removal
US11150242B2 (en) 2015-04-10 2021-10-19 President And Fellows Of Harvard College Immune cell trapping devices and methods for making and using the same
US9741593B2 (en) 2015-08-06 2017-08-22 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US9691645B2 (en) 2015-08-06 2017-06-27 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US9349605B1 (en) 2015-08-07 2016-05-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
US10504700B2 (en) 2015-08-27 2019-12-10 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
US9460959B1 (en) * 2015-10-02 2016-10-04 Applied Materials, Inc. Methods for pre-cleaning conductive interconnect structures
CN115531609A (zh) 2016-02-06 2022-12-30 哈佛学院校长同事会 重塑造血巢以重建免疫
US10522371B2 (en) 2016-05-19 2019-12-31 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10504754B2 (en) 2016-05-19 2019-12-10 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US9865484B1 (en) 2016-06-29 2018-01-09 Applied Materials, Inc. Selective etch using material modification and RF pulsing
CN115305229A (zh) 2016-07-13 2022-11-08 哈佛学院院长等 抗原呈递细胞模拟支架及其制备和使用方法
US10629473B2 (en) 2016-09-09 2020-04-21 Applied Materials, Inc. Footing removal for nitride spacer
US10062575B2 (en) 2016-09-09 2018-08-28 Applied Materials, Inc. Poly directional etch by oxidation
US9934942B1 (en) 2016-10-04 2018-04-03 Applied Materials, Inc. Chamber with flow-through source
US10546729B2 (en) 2016-10-04 2020-01-28 Applied Materials, Inc. Dual-channel showerhead with improved profile
US9721789B1 (en) 2016-10-04 2017-08-01 Applied Materials, Inc. Saving ion-damaged spacers
US10062585B2 (en) 2016-10-04 2018-08-28 Applied Materials, Inc. Oxygen compatible plasma source
US10062579B2 (en) 2016-10-07 2018-08-28 Applied Materials, Inc. Selective SiN lateral recess
US9947549B1 (en) 2016-10-10 2018-04-17 Applied Materials, Inc. Cobalt-containing material removal
US10163696B2 (en) 2016-11-11 2018-12-25 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
US9768034B1 (en) 2016-11-11 2017-09-19 Applied Materials, Inc. Removal methods for high aspect ratio structures
US10026621B2 (en) 2016-11-14 2018-07-17 Applied Materials, Inc. SiN spacer profile patterning
US10242908B2 (en) 2016-11-14 2019-03-26 Applied Materials, Inc. Airgap formation with damage-free copper
US10566206B2 (en) 2016-12-27 2020-02-18 Applied Materials, Inc. Systems and methods for anisotropic material breakthrough
US10431429B2 (en) 2017-02-03 2019-10-01 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
US10403507B2 (en) 2017-02-03 2019-09-03 Applied Materials, Inc. Shaped etch profile with oxidation
US10043684B1 (en) 2017-02-06 2018-08-07 Applied Materials, Inc. Self-limiting atomic thermal etching systems and methods
US10319739B2 (en) 2017-02-08 2019-06-11 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10943834B2 (en) 2017-03-13 2021-03-09 Applied Materials, Inc. Replacement contact process
US10319649B2 (en) 2017-04-11 2019-06-11 Applied Materials, Inc. Optical emission spectroscopy (OES) for remote plasma monitoring
US11276590B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US11276559B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US10049891B1 (en) 2017-05-31 2018-08-14 Applied Materials, Inc. Selective in situ cobalt residue removal
US10497579B2 (en) 2017-05-31 2019-12-03 Applied Materials, Inc. Water-free etching methods
US10920320B2 (en) 2017-06-16 2021-02-16 Applied Materials, Inc. Plasma health determination in semiconductor substrate processing reactors
US10541246B2 (en) 2017-06-26 2020-01-21 Applied Materials, Inc. 3D flash memory cells which discourage cross-cell electrical tunneling
US10727080B2 (en) 2017-07-07 2020-07-28 Applied Materials, Inc. Tantalum-containing material removal
US10541184B2 (en) 2017-07-11 2020-01-21 Applied Materials, Inc. Optical emission spectroscopic techniques for monitoring etching
US10354889B2 (en) 2017-07-17 2019-07-16 Applied Materials, Inc. Non-halogen etching of silicon-containing materials
US10170336B1 (en) 2017-08-04 2019-01-01 Applied Materials, Inc. Methods for anisotropic control of selective silicon removal
US10043674B1 (en) 2017-08-04 2018-08-07 Applied Materials, Inc. Germanium etching systems and methods
US10297458B2 (en) 2017-08-07 2019-05-21 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
US10283324B1 (en) 2017-10-24 2019-05-07 Applied Materials, Inc. Oxygen treatment for nitride etching
US10128086B1 (en) 2017-10-24 2018-11-13 Applied Materials, Inc. Silicon pretreatment for nitride removal
US10256112B1 (en) 2017-12-08 2019-04-09 Applied Materials, Inc. Selective tungsten removal
US10903054B2 (en) 2017-12-19 2021-01-26 Applied Materials, Inc. Multi-zone gas distribution systems and methods
US11328909B2 (en) 2017-12-22 2022-05-10 Applied Materials, Inc. Chamber conditioning and removal processes
US10854426B2 (en) 2018-01-08 2020-12-01 Applied Materials, Inc. Metal recess for semiconductor structures
US10679870B2 (en) 2018-02-15 2020-06-09 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
US10964512B2 (en) 2018-02-15 2021-03-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus and methods
TWI716818B (zh) 2018-02-28 2021-01-21 美商應用材料股份有限公司 形成氣隙的系統及方法
US10593560B2 (en) 2018-03-01 2020-03-17 Applied Materials, Inc. Magnetic induction plasma source for semiconductor processes and equipment
US10319600B1 (en) 2018-03-12 2019-06-11 Applied Materials, Inc. Thermal silicon etch
US10497573B2 (en) 2018-03-13 2019-12-03 Applied Materials, Inc. Selective atomic layer etching of semiconductor materials
US10573527B2 (en) 2018-04-06 2020-02-25 Applied Materials, Inc. Gas-phase selective etching systems and methods
US10490406B2 (en) 2018-04-10 2019-11-26 Appled Materials, Inc. Systems and methods for material breakthrough
US10699879B2 (en) 2018-04-17 2020-06-30 Applied Materials, Inc. Two piece electrode assembly with gap for plasma control
US10886137B2 (en) 2018-04-30 2021-01-05 Applied Materials, Inc. Selective nitride removal
US10872778B2 (en) 2018-07-06 2020-12-22 Applied Materials, Inc. Systems and methods utilizing solid-phase etchants
US10755941B2 (en) 2018-07-06 2020-08-25 Applied Materials, Inc. Self-limiting selective etching systems and methods
US10672642B2 (en) 2018-07-24 2020-06-02 Applied Materials, Inc. Systems and methods for pedestal configuration
US10892198B2 (en) 2018-09-14 2021-01-12 Applied Materials, Inc. Systems and methods for improved performance in semiconductor processing
US11049755B2 (en) 2018-09-14 2021-06-29 Applied Materials, Inc. Semiconductor substrate supports with embedded RF shield
US11062887B2 (en) 2018-09-17 2021-07-13 Applied Materials, Inc. High temperature RF heater pedestals
US11417534B2 (en) 2018-09-21 2022-08-16 Applied Materials, Inc. Selective material removal
US11682560B2 (en) 2018-10-11 2023-06-20 Applied Materials, Inc. Systems and methods for hafnium-containing film removal
US11121002B2 (en) 2018-10-24 2021-09-14 Applied Materials, Inc. Systems and methods for etching metals and metal derivatives
US11437242B2 (en) 2018-11-27 2022-09-06 Applied Materials, Inc. Selective removal of silicon-containing materials
US11721527B2 (en) 2019-01-07 2023-08-08 Applied Materials, Inc. Processing chamber mixing systems
US10920319B2 (en) 2019-01-11 2021-02-16 Applied Materials, Inc. Ceramic showerheads with conductive electrodes
US11443936B2 (en) * 2020-06-19 2022-09-13 Applied Materials, Inc. Methods and apparatus for aluminum oxide surface recovery

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1050647A (ja) * 1996-05-14 1998-02-20 Samsung Electron Co Ltd 洗浄溶液およびそれを用いた洗浄方法
US6240933B1 (en) * 1997-05-09 2001-06-05 Semitool, Inc. Methods for cleaning semiconductor surfaces
JPH11323394A (ja) * 1998-05-14 1999-11-26 Texas Instr Japan Ltd 半導体素子製造用洗浄剤及びそれを用いた半導体素子の製造方法
DE19844102C2 (de) * 1998-09-25 2000-07-20 Siemens Ag Herstellverfahren für eine Halbleiterstruktur
KR100307287B1 (ko) * 1998-11-20 2001-12-05 윤종용 반도체장치의패드제조방법
JP2001305752A (ja) 2000-04-26 2001-11-02 Daikin Ind Ltd 微細パターン用ポリマー剥離液組成物
TW518719B (en) * 2001-10-26 2003-01-21 Promos Technologies Inc Manufacturing method of contact plug
KR100827684B1 (ko) * 2001-10-30 2008-05-07 에이펫(주) 반도체 소자의 세정액 및 이를 이용한 세정 방법
US7223352B2 (en) * 2002-10-31 2007-05-29 Advanced Technology Materials, Inc. Supercritical carbon dioxide/chemical formulation for ashed and unashed aluminum post-etch residue removal
US7045073B2 (en) * 2002-12-18 2006-05-16 Intel Corporation Pre-etch implantation damage for the removal of thin film layers
JP2004277576A (ja) * 2003-03-17 2004-10-07 Daikin Ind Ltd エッチング用又は洗浄用の溶液の製造法
KR100645458B1 (ko) * 2003-10-02 2006-11-13 주식회사 하이닉스반도체 습식 세정에 의한 어택을 방지할 수 있는 반도체 장치제조 방법
US7253094B1 (en) * 2003-12-22 2007-08-07 Cypress Semiconductor Corp. Methods for cleaning contact openings to reduce contact resistance
KR100606187B1 (ko) * 2004-07-14 2006-08-01 테크노세미켐 주식회사 반도체 기판 세정용 조성물, 이를 이용한 반도체 기판세정방법 및 반도체 장치 제조 방법

Also Published As

Publication number Publication date
KR100818708B1 (ko) 2008-04-01
CN101127299A (zh) 2008-02-20
CN100561665C (zh) 2009-11-18
US20080044990A1 (en) 2008-02-21
KR20080016338A (ko) 2008-02-21
JP2008047898A (ja) 2008-02-28

Similar Documents

Publication Publication Date Title
TW200811935A (en) Method for fabricating a semiconductor device comprising surface cleaning
US9543308B2 (en) Semiconductor device
US7741222B2 (en) Etch stop structure and method of manufacture, and semiconductor device and method of manufacture
KR100692466B1 (ko) 반도체 장치와 그 제조 방법
US8174064B2 (en) Semiconductor device and method for forming the same
US8309448B2 (en) Method for forming buried word line in semiconductor device
KR101670451B1 (ko) 도전막 매립형 기판, 그 형성 방법, 반도체 소자 및 그 제조 방법
TW202002113A (zh) 半導體裝置的製造方法
US7670946B2 (en) Methods to eliminate contact plug sidewall slit
KR100722988B1 (ko) 반도체 소자 및 그 제조방법
US9269663B2 (en) Single pattern high precision capacitor
TW201546951A (zh) 半導體結構及其形成方法
KR100799125B1 (ko) 캐패시터를 구비한 반도체 소자의 제조방법
US20120098132A1 (en) Semiconductor device and method of manufacturing the same
US8598012B2 (en) Method for fabricating semiconductor device with buried gates
JP6510678B2 (ja) 予備パターン化された底部電極及び酸化障壁上に強誘電体ランダムアクセスメモリを製造する方法
US7649218B2 (en) Lateral MOS transistor and method for manufacturing thereof
KR100827498B1 (ko) 다마신을 이용한 금속 배선의 제조 방법
TWI240369B (en) ILD and LI dielectric layer stack forming method and LI dielectric stack
KR20070000776A (ko) 반도체 소자의 캐패시터 형성방법
CN115602542A (zh) 一种防止漏电的半导体sab制作方法及半导体器件
KR100689678B1 (ko) 캐패시터 및 그의 제조 방법
CN117238759A (zh) 改善金属铝栅损耗的方法
CN117525024A (zh) 一种硅基电容结构及其形成方法
TWI470700B (zh) Semiconductor device and manufacturing method thereof