RU2678585C2 - Способ непрерывной подготовки кристаллов метионина высокой насыпной плотности - Google Patents

Способ непрерывной подготовки кристаллов метионина высокой насыпной плотности Download PDF

Info

Publication number
RU2678585C2
RU2678585C2 RU2017121649A RU2017121649A RU2678585C2 RU 2678585 C2 RU2678585 C2 RU 2678585C2 RU 2017121649 A RU2017121649 A RU 2017121649A RU 2017121649 A RU2017121649 A RU 2017121649A RU 2678585 C2 RU2678585 C2 RU 2678585C2
Authority
RU
Russia
Prior art keywords
methionine
crystals
neutralization
solution
crystallizer
Prior art date
Application number
RU2017121649A
Other languages
English (en)
Other versions
RU2017121649A (ru
RU2017121649A3 (ru
Inventor
Чжирон ЧЕН
Чжисюан ВАН
Кон ЧЕН
Чженцзиан ВАН
Кунчао ВАН
Инь ЛИ
Чжисян ЧЖАН
Original Assignee
Шаньдун Нху Амино Ацид Ко., Лтд
Чжэцзян Юнивёсити
Чжэцзян Нху Ко., Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Шаньдун Нху Амино Ацид Ко., Лтд, Чжэцзян Юнивёсити, Чжэцзян Нху Ко., Лтд. filed Critical Шаньдун Нху Амино Ацид Ко., Лтд
Publication of RU2017121649A publication Critical patent/RU2017121649A/ru
Publication of RU2017121649A3 publication Critical patent/RU2017121649A3/ru
Application granted granted Critical
Publication of RU2678585C2 publication Critical patent/RU2678585C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0036Crystallisation on to a bed of product crystals; Seeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0004Crystallisation cooling by heat exchange
    • B01D9/0013Crystallisation cooling by heat exchange by indirect heat exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0018Evaporation of components of the mixture to be separated
    • B01D9/0027Evaporation of components of the mixture to be separated by means of conveying fluid, e.g. spray-crystallisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/005Selection of auxiliary, e.g. for control of crystallisation nuclei, of crystal growth, of adherence to walls; Arrangements for introduction thereof
    • B01D9/0054Use of anti-solvent
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/26Separation; Purification; Stabilisation; Use of additives
    • C07C319/28Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/50Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton
    • C07C323/51Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C323/57Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being further substituted by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C323/58Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being further substituted by nitrogen atoms, not being part of nitro or nitroso groups with amino groups bound to the carbon skeleton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D2009/0086Processes or apparatus therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Изобретение относится к способу непрерывной подготовки кристаллов метионина высокой насыпной плотности. Процесс заключается в следующем: смешивают раствор гидролизата, содержащий калий и метионин и полученный в результате реакции 5-(β-метилмеркаптоэтил)гидантоина и раствора карбоната калия с материалом внешней циркуляции из нейтрализационного кристаллизатора с циркуляционной трубкой и перегородкой (ЦТиП), имеющего секцию газофазной нейтрализации; после охлаждения вводят материал смеси в распределитель жидкости области нейтрализации в верхней части кристаллизатора и распыляют в виде капель или тонких струек жидкости в зону контакта газа и жидкости для проведения реакции нейтрализации, после чего падение нейтрализационного раствора естественным образом в область кристаллизации в нижней части, где он смешивается с материалом в упомянутой области; обеспечивают выращивание полученной смеси на мелких кристаллах в системе для образования кристаллов, имеющих частицы большего диаметра, и при этом образуются новые центры кристаллизации; в зоне осаждения в средней части области кристаллизации осуществляют осаждение кристаллов, имеющих частицы большего диаметра, в патрубок для отмучивания кристаллов, при этом мелкие кристаллы циркулируют с материалом внешней циркуляции, а часть материала внешней циркуляции используют для отмучивания кристаллов в патрубке для отмучивания кристаллов, тогда как другую часть этого материала смешивают с раствором гидролизата; а кристаллы в патрубке для отмучивания кристаллов подвергают сепарации, промывают и сушат, чтобы получить продукт метионина высокой насыпной плотности. 2 н. и 10 з.п. ф-лы, 1 ил., 1 табл., 5 пр.

Description

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Данное изобретение относится к технической области химической обработки. Конкретно, данное изобретение относится к способу непрерывной подготовки кристаллов метионина высокой насыпной плотности, а главным образом - к новому способу кристаллизации метионина и усовершенствованной кристаллизационной установке.
УРОВЕНЬ ТЕХНИКИ
Метионин представляет собой одну из аминокислот, существенных для роста животных и - в настоящее время - единственную серосодержащую аминокислоту. Он является важной пищевой добавкой. Продукты метионина имеют две формы: твердую и жидкую. В настоящее время, на мировом рынке метионина доминирует твердый метионин.
В настоящее время, метионин синтезируют главным образом химическими способами. В зависимости от сырья, способы включают в себя главным образом малонатный способ, акролеиновый способ и аминолактоновый способ, и т.п. Основные производители метионина, такие, как Adisseo, Soda, Sumimoto и Degussa, внедрили акролеиновый способ. Этот способ предусматривает использование акролеина и метилмеркатана в качестве сырья для производства метилтиопропаналя и дальнейшего проведения конденсации, гидролиза и подкислительной кристаллизации для производства метионина. Вместе с тем, у разных производителей разные пути гидролиза и подкислительной кристаллизации. Adisseo использует NaOH для гидролиза с целью производства натриевой соли метионина и проводит кристаллизацию с помощью серной кислоты, получая метионин и побочный продукт - сульфат натрия. Soda использует гидроксид кальция для гидролиза и проводит подкисление соляной кислотой, получая метионин и побочные продукты - хлорид натрия и карбонат кальция. Кристаллы, производство который ведут вышеупомянутыми способами гидролиза и подкислительной кристаллизации, получаются в форме порошка из-за побочных продуктов и нежелательных примесей. Такие кристаллы невозможно легко отделить, и они будут легко образовывать пыль во время процесса сушки и упаковки, а также при использовании.
В отличие от этого, гидролиз и подкислительная кристаллизация, внедренные фирмой Degussa, выгоднее. Процесс предусматривает использование синильной кислоты и метилтиопропаналя для конденсации с целью производства метилтиоэтилгидантоина, с последующим использованием карбоната калия для гидролиза и диоксида углерода для подкислительной кристаллизации с целью получения метионина, а также возможность оборотного использования диоксида углерода и бикарбоната калия в качестве побочных продуктов. Таким образом, количество твердых отходов значительно снижается, что делает способ относящимся к экологически чистому производству.
В процессе подготовки метионина с помощью вышеупомянутых способов, основное внимание уделяется исследованию процесса подкислительной кристаллизации. Из-за использования газообразного диоксида углерода в процессе подкисления, суспензия метионина обладает интенсивным пенообразованием, что приводит к избыточным центрам кристаллизации и очень мелким кристаллам в процессе кристаллизации. В общем случае, кристаллы являются пластинчатыми кристаллами, которые исключительно легко разрушаются. Поэтому разделение «твердое вещество - жидкость» является весьма неудовлетворительным. Интенсивное пенообразование часто прерывает технологический процесс, вызывая ситуацию, в которой нормальное производство неосуществимо.
В настоящее время проводятся различные исследования, предусматривающие использование усовершенствованного оборудования, усовершенствованных процессов, или добавление специальных вспомогательных веществ во избежание пенообразования.
В патентном документе 1, рассматриваемом в качестве более раннего патента, описан процесс кристаллизации метионина. Этот процесс представляет собой процесс гидролиза, в ходе которого гидролизуют 5-(β-метилмеркаптоэтил)гидантоин в присутствии карбоната калия, после чего проводят нейтрализацию и кристаллизацию путем введения диоксида углерода в раствор гидролизата и отделение осажденного метионина, причем для гидролиза 5-(β-метилмеркаптоэтил)гидантоина можно применять концентрированный фильтрат. Однако нейтрализация и кристаллизация в условиях, описанных в вышеупомянутом патенте, дает явление интенсивного пенообразования. В результате, кристалл метионина, получаемый в конце, оказывается чешуйчатым и имеет низкую насыпную плотность. Если надо улучшить форму кристалла метионина посредством перекристаллизации, потребуются дополнительное оборудование и дополнительная энергия, что неэкономично.
Чтобы решить проблему пенообразования, возникающую из-за нейтрализации газообразным диоксидом углерода, в патентном документе 2 предложено использовать способ добавления противопенного агента в водный раствор солей метионина со щелочными металлами до достижения концентрации противопенного агента, составляющей 1000-10000 частей на миллион (ч.н.м.). Таким образом, полученные кристаллы метионина представляют собой пористые сферические кристаллы с диаметрами частиц в пределах диапазона 100-200 мкм. В микропорах есть прилипающие вещества и остатки маточного раствора. Чтобы получить продукт, удовлетворяющий рыночным требованиям качества, необходимо большое количество воды для промывки, что увеличивает энергопотребление и снижает экономичность процесса.
В патентном документе 3 тоже предусматривается использование добавок (глутенина, поливинилового спирта, метилцеллюлозы, и т.п.) для борьбы с пенообразованием. Подчеркивается, что часть метионина, растворенная в маточном растворе во время процесса гидролиза, образует полимер метионина, который негативно влияет на форму кристаллов, присущую кристаллам, выпадающим в осадок во время кристаллизации и перекристаллизации. Полимер метионина разлагается за счет нагрева раствора гидролизата при температуре 160-200°С в течение 1-5 часов, так что количеством полимера можно управлять. В вышеописанном способе получения кристаллом метионина, получаемые кристаллы принимают форму гранул или толстых пластинок, имеющих насыпную плотность 625 кг/м3. В этом документе сказано, что, хотя полимер метионина гидролизуют за счет нагрева раствора гидролизата, насыпная плотность полученных кристаллических частиц по-прежнему невысока. Помимо этого, нагрев раствора гидролизата в течение длительного времени увеличивает энергопотребление и снижает производительность производственной установки.
В патентном документе 4 предложено использовать кристаллизационный сосуд с отводящей трубой для получения кристаллов метионина посредством полунепрерывной кристаллизации. Процесс включает в себя нейтрализацию и кристаллизацию 15-40% водного раствора метионина вместе с коагулянтом (сорбитанлауратом, поливиниловым спиртом или гидроксипропилметилцеллюлозой) отдельными порциями в течение 20-40 мин с целью выращивания затравочных кристаллов, с последующей добавкой остальных 60-85% водного раствора метионина для непрерывной нейтрализации и кристаллизации в течение 40-90 мин с целью выращивания кристаллов. Насыпная плотность кристаллов метионина, полученных в условиях, описанных в этом документе, составляет 550 кг/м3, то есть по-прежнему невысока.
В патентном документе 5 предложена возможность уменьшения количества побочного продукта - полимера метионина - в растворе гидролизата за счет гидролиза без перемешивания в первом реакторе и нагрева во втором реакторе; поливиниловый спирт используют в качестве флоккулирующего агента, а в раствор гидролизата с целью его оборотного использования подают маточный раствор для первичной кристаллизации, получая тем самым кристаллы метионина, имеющие высокую насыпную плотность. Насыпная плотность полученных кристаллов метионина составляет 703 кг/м3 при температуре кристаллизации, составляющей 10-30°С, и при давлении диоксида углерода, составляющем 0,1-1 МПа. В этом процессе, за счет двукратного нагрева раствора гидролизата, насыпная плотность кристаллов увеличивается лишь на 5% по сравнению со сравнительными примерами, а номенклатура необходимого оборудования и энергопотребление увеличивается.
В патентном документе 6 предусматривается использование способа кристаллизации в вакууме с целью перекристаллизации необработанного метионина для увеличения насыпной плотности кристаллов. Процесс включает в себя растворение необработанного метионина растворителем и в присутствии добавки при 100°С, подачу растворенных веществ в вакуумный кристаллизатор, управление температурой кристаллизатора посредством степени вакуума, причем температурой для первой кристаллизации управляют так, что она оказывается на уровне 60-70°С, а температурой для второй кристаллизации управляют так, что она оказывается на уровне 30-50°C. Кристаллы метионина, получаемые в конце, имеют насыпную плотность 640 кг/м3. Вместе с тем, на этапе перекристаллизации нужно подогревать необработанный метионин для растворения и охлаждения, из чего вытекает значительный объем циркуляции жидкости, что увеличивает энергопотребление и снижает экономичность процесса.
Кроме того, многие другие патенты предусматривают использование добавок для исключения явления пенообразования во время кристаллизации метионина. В патенте JP 10306071 предложен способ исключения пенообразования, в котором метионин кристаллизуются, когда раствор калиевой соли метионина нейтрализуется кислотой, в сосуществовании с глутенином. В документе JPS43-22285 предусматривается использование способа кристаллизации, в котором раствор соли метионина нейтрализуют и кристаллизуют в сосуществовании с растворимыми производными целлюлозы, чтобы исключить пенообразование. В документе JPS43-24890 предусматривается использование способа, в котором раствор соли метионина нейтрализуют и кристаллизуют в сосуществовании со спиртами, фенолами и кетонами, чтобы исключить пенообразование. В документе JPS46-19610 предусматривается использование способа, в котором раствор соли метионина нейтрализуют и кристаллизуют в растворе добавляемых анионогенных и неионогенных поверхностно-активных веществ, чтобы исключить пенообразование. В документе JP 2921097 предложен способ, в котором раствор калиевой соли метионина нейтрализуют и кристаллизуют в сосуществовании с поливиниловым спиртом за счет поглощения газообразного диоксида углерода, чтобы исключить пенообразование.
Как показано выше, когда раствор соли метионина нейтрализуют и кристаллизуют диоксидом углерода, явление пенообразования является значимым фактором, негативно влияющим на результаты нейтрализации и кристаллизации во время процесса кристаллизации. Чтобы избежать явления пенообразования или снизить его интенсивность с целью получения идеальных кристаллов, большинство известных технических решений предусматривают внесение противопенных агентов, флоккулирующих агентов и других добавок во время процесса кристаллизации. Часть этих добавок прилипают к поверхности кристаллов и образуются продуктами метионина, а остальная часть остается в маточном растворе и подлежит оборотному использованию вместе с маточным раствором. Оборотное использование этой последней части добавок изменит долю добавок в маточном растворе или испортится, превращаясь в неизвестный материал из-за нагрева и тем самым негативно влияя на последующий процесс нейтрализации и кристаллизации и увеличивая нестабильность в процессе нейтрализации и кристаллизации. Кроме того, обладающие высокой насыпной плотностью кристаллические продукты метионина нельзя получить лишь путем внесения добавок. В некоторых патентных документах описано использование этапов перекристаллизации для повышения насыпной плотности кристаллов метионина. Но процесс перекристаллизации требует дополнительного оборудования и энергопотребления, что снижает экономичность технологического процесса.
Документы известного уровня техники:
Патентный документ 1: JPS54-9174
Патентный документ 2: DE 19547236
Патентный документ 3: CN 1589259
Патентный документ 4: CN 1274717
Патентный документ 5: CN 101602701
Патентный документ 6: WO 2013139562
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Решаемая задача
Данное изобретение имеет целью найти техническое решение следующей проблемы, существующей в различных способах производства кристаллов метионина согласно известному уровню техники: происходит легко пенообразование, насыпная плотность невысока, а использование добавок негативно влияет на процесс кристаллизации. За счет использования нейтрализационного кристаллизатора с циркуляционной трубкой и перегородкой (ЦТиП), имеющего секция газофазной нейтрализации, нейтрализация в жидкой фазе, при которой легко возникает явление пенообразования, переносится так, что происходит в газовой фазе, по существу, исключая проблему пенообразования в процессе нейтрализации. Кстати, борясь с перенасыщением в процессе кристаллизации, эффективно борются и с образованием центров кристаллизации, тем самым получая обладающие высокой насыпной плотностью продукты метионина.
Средства решения задачи
Одно из технических решений согласно данному изобретению, заключается в способе непрерывной подготовки кристаллов метионина высокой насыпной плотности, включающем в себя следующие этапы, на которых:
(1) смешивают раствор гидролизата, содержащий калий и метионин и полученный в результате реакции 5-(β-метилмеркаптоэтил)гидантоина и раствора карбоната калия с материалом внешней циркуляции из нейтрализационного кристаллизатора с циркуляционной трубкой и перегородкой (ЦТиП), имеющего секцию газофазной нейтрализации, для формирования материала смеси; вводят материал смеси в распределитель жидкости области нейтрализации в верхней части кристаллизатора после охлаждения и распыляют в виде капель или тонких струек жидкости в зону контакта газа и жидкости для проведения реакции нейтрализации газообразным диоксидом углерода с получением нейтрализационного раствора, содержащего метионин;
(2) обеспечивают естественное падение нейтрализационного раствора в область кристаллизации в нижней части кристаллизатора для образования кристаллов в области кристаллизации с последующим обеспечением осаждения кристаллов, имеющих частицы большего диаметра, в патрубок для отмучивания кристаллов в зоне осаждения в средней части области кристаллизации;
(3) подают кристаллы метионина в патрубок для отмучивания кристаллов через насос кристаллической «каши» во вращающийся барабанный фильтр, подвергая сепарации, промывке и сушке для получения продуктов метионина;
причем материал внешней циркуляции изначально представляет собой насыщенный раствор метионина.
Насыпная плотность кристаллов метионина высокой насыпной плотности составляет, по меньшей мере, 800 кг/м3.
В предпочтительном варианте, раствор гидролизата, содержащий калий и метионин и полученный в результате реакции 5-(β-метилмеркаптоэтил)гидантоина с раствором карбоната калия, предварительно охлаждают, а потом смешивают с материалом внешней циркуляции, имеющим такую же температуру, из нейтрализационного кристаллизатора для формирования материала смеси.
Кроме того, формирование кристаллов предпочтительно включает в себя следующий этап, на котором: вводят нейтрализационный раствор в область кристаллизации и перемешивают в кристаллизаторе, чтобы смешать с материалом, находящимся в области кристаллизации, и мелкими кристаллами, образующимися в процессе роста системы, для формирования кристаллов, имеющих больший диаметр частиц; кстати, поскольку раствор метионина находится в состоянии перенасыщения, оказывается возможным образование нового центра кристаллизации.
Кроме того, в предпочтительном варианте, в зоне осаждения области кристаллизации вводят мелкие кристаллы и часть раствора метионина в трубу внешней циркуляции для охлаждения и циркуляции; используют часть материала внешней циркуляции для промывки кристаллов в патрубке для отмучивания кристаллов, используя другую часть этого материала для смешивания с раствором гидролизата, содержащим калий и метионин.
Кроме того, в предпочтительном варианте, нейтрализационный кристаллизатор с ЦТиП, имеющий секцию газофазной нейтрализации, имеет газофазное пространство в верхней части, а распределитель жидкости и распределитель газа выполнены так, что жидкость как дисперсная фаза подвергается реакции газожидкостной нейтрализации в газообразном диоксиде углерода в качестве непрерывной фазы.
Объемное соотношение реакционного раствора (раствора гидролизата), содержащего калий и метионин и вводимого в трубу внешней циркуляции нейтрализационного кристаллизатора с ЦТиП, имеющего секцию газофазной нейтрализации, с раствором внешней циркуляции составляет 1:5-50, предпочтительно 1:10-30, а температуру смешанного материала уменьшают посредством охладителя на 0,5-5°C, предпочтительно - на 1-3°C, и стабилизируют при 20-40°C после циклического охлаждения.
Объемное соотношение раствора внешней циркуляции, вводимого в патрубок для отмучивания кристаллов нейтрализационного кристаллизатора с ЦТиП, имеющего секцию газофазной нейтрализации, с выходным объемом кристаллической «каши» составляет 1-5:1, а предпочтительно - 1,5-4:1.
Скорость перемешивания в области кристаллизации нейтрализационного кристаллизатора с ЦТиП, имеющего секцию газофазной нейтрализации, составляет 50-500 об/мин, предпочтительно - 100-300 об/мин.
Температура области кристаллизации нейтрализационного кристаллизатора с ЦТиП, имеющего секцию газофазной нейтрализации, составляет 10-40°C, предпочтительно - 20-30°C.
Раствор гидролизата, содержащего калий и метионин, остается в нейтрализационном кристаллизаторе с ЦТиП, имеющем секцию газофазной нейтрализации, в течение 0,3-3 часов, предпочтительно - 0,5-2 часов. Расход раствора гидролизата, содержащего калий и метионин, вводимого в нейтрализационный кристаллизатор, составляет 0,333-3,33 м3/ч и предпочтительно 0,5-2 м3/ч.
Давление диоксида углерода газовой фазы в нейтрализационном кристаллизаторе с ЦТиП, имеющем секцию газофазной нейтрализации, составляет 0,3-1,2 МПа, а предпочтительно - 0,4-1,0 МПа.
В данном изобретении дополнительно предложен нейтрализационный кристаллизатор с циркуляционной трубкой и перегородкой (ЦТиП), имеющий секцию газофазной нейтрализации, для непрерывной подготовки кристаллов метионина высокой насыпной плотности, содержащий:
(1) распределитель жидкости, предназначенный для формирования капель или мелких струек жидкости смешанного раствора, содержащего калий и метионин, и распределитель газа, предназначенный для подачи газообразного диоксида углерода, которые предусмотрены в области нейтрализации в верхней части;
(2) направляющую оболочку для жидкости и мешалку, предусмотренные в средней части;
(3) зону осаждения кристаллов, предусмотренную в нижней части, которая включает в себя патрубок для отмучивания кристаллов, предназначенный для осаждения кристаллов;
(4) систему внешней циркуляции, предназначенную частично для подачи в патрубок для отмучивания кристаллов, а частично - для смешивания с раствором гидролизата, содержащим калий и метионин, и последующей циркуляционной подачи в направляющую оболочку с перегородкой на входе для материала нейтрализационного кристаллизатора.
Кроме того, нейтрализационный кристаллизатор с ЦТиП, имеющий секцию газофазной нейтрализации, дополнительно содержит вращающийся барабанный фильтр для отделения и промывания кристаллической «каши» из патрубка для отмучивания кристаллов.
Техническое решение, предлагаемое в данной заявке, отличается тем, что: осуществляют перенос реакции нейтрализации, обуславливающей легкое вспенивание раствора гидролизата, содержащего калий и метионин, с диоксидом углерода из жидкой фазы в газовую фазу, чем и достигается фундаментальное решение проблемы легкого вспенивания при нейтрализации в жидкой фазе. Кстати, с перенасыщением метионина в нейтрализационном растворе можно эффективно бороться, смешивая и разбавляя раствор гидролизата, содержащий калий и метионин, и раствор внешней циркуляции с последующей нейтрализацией диоксидом углерода газовой фазы, чем и достигается управление величиной образуемого нового центра кристаллизации метионина и гарантируется рост кристаллов метионина для получения кристаллических продуктов метионина высокой насыпной плотности, у которых диаметры частиц больше.
Эффект изобретения
Данное изобретение обладает следующими преимуществами: данное изобретение предусматривает использование реакционного раствора, содержащего калий и метионин, для проведения непрерывной нейтрализационной кристаллизации в нейтрализационном кристаллизаторе с ЦТиП, имеющем секцию газофазной нейтрализации. Технологический процесс обладает приемлемой стабильностью и высокой эффективностью. Получаемые продукты имеют стабильное качество. Поэтому данное изобретение пригодно для воплощения в промышленном производстве.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖА
На фиг. 1 представлена иллюстрация одного варианта осуществления нейтрализационного кристаллизатора с ЦТиП, имеющего секцию газофазной нейтрализации, в соответствии с данным изобретением.
Позиции чертежа
1 - распределитель жидкости,
2 - распределитель газа,
3 - направляющая оболочка,
4 - лопасть мешалки,
5 - вращающийся барабанный фильтр,
6 - насос кристаллической «каши»,
7 - насос внешней циркуляции,
8, 9 - расходомер,
10 - теплообменник охлаждения,
11 - выход внешней циркуляции,
12 - вход внешней циркуляции,
13 - вход газообразного CO2,
14 - маточный раствор,
15 - кристалл,
16 - раствор гидролизата,
17 - кипящая поверхность,
18 - цилиндрическая перегородка,
19 - патрубок для отмучивания кристаллов,
а - область нейтрализации посредством контакта газа и жидкости,
b - область осветления,
с - зона осаждения кристаллов,
d - область концентрации крупных кристаллов.
Ниже приводится подробное описание данного изобретения со ссылками на неограничительные варианты осуществления.
ПОДРОБНОЕ ОПИСАНИЕ
Пример 1
Нейтрализационный кристаллизатор с ЦТиП, имеющий секцию газофазной нейтрализации, согласно данному изобретению имеет следующую конфигурацию, включая: секцию жидкой фазы, имеющую объем 1 м3, которая спроектирована в соответствии с пропорцией конструкции обычного кристаллизатора с ЦТиП; секцию газовой фазы, имеющую объем 0,6 м3 и форму цилиндрического тела с эллиптической герметизированной головкой, диаметр которого составляет 600 мм, а высота составляет 2200 мм; распределитель жидкости, предусмотренный в верхней части; и распределитель газообразного диоксида углерода, предусмотренный в нижней части.
В нейтрализационный кристаллизатор с ЦТиП, имеющий секцию газофазной нейтрализации и соответствующий данному изобретению, заблаговременно вводят 0,9 м3 насыщенного раствора метионина, после чего измельчают 10 кг затравки кристалла метионина до получения диаметра частиц, не превышающего 10 микрометров. Потом запускают кристаллизатор, начиная перемешивание со скоростью 100 об/мин. Включают насос внешней циркуляции и настраивают расход раствора внешней циркуляции, вводимого в патрубок для отмучивания кристаллов, на величину 1,6 м3/ч, а расход раствора внешней циркуляции, подлежащего смешиванию с раствором гидролизата, содержащим калий и метионин, на величину 10 м3/ч. После стабилизации потока циркуляции, начинают охлаждение циркуляции для поддержания температуры на уровне 28°C. Вводят диоксид углерода из распределителя газа до тех пор, пока давление не достигнет 0,8 МПа. В этот момент, вводят раствор гидролизата, содержащий 19% калия и метионина, при 28°C с расходом 1 м3/ч (т.е., время удерживания составляет 1 час). После смешивания с материалом внешней циркуляции, смесь охлаждают посредством охладителя до 25°C и вводят в распределитель жидкости вверху кристаллизатора. Жидкость распыляют в виде тонких струек в газообразном диоксиде углерода для проведения реакции нейтрализации с получением нейтрализационного раствора и падением на поверхность жидкости кристаллизатора. Температура нейтрализационного раствора, падающего на поверхность жидкости кристаллизатора, увеличилась до 28°C. После смешивания, сопровождаемого перемешиванием, зародыши кристаллов в кристаллизаторе растут. При этом - благодаря перенасыщению - будет создано определенное количество новых зародышей кристаллов.
После введения раствора гидролизата, содержащего калий и метионин, в течение 6 мин, включают насос кристаллической «каши» для подачи кристаллической «каши» метионина во вращающийся барабанный фильтр с расходом 1,1 м3/ч для фильтрации и промывки. После непрерывного высушивания с псевдоожижением фильтрационного осадка будут получены продукты метионина. После того, как работа станет полностью стабильной (это занимает примерно 4 часа), кристаллические продукты метионина можно будет получать с выходом 112 кг/ч, а их насыпная плотность составит 811 кг/м3,
Во время всего процесса непрерывной работы - в течение 24 часов, явление пенообразования не наблюдалось.
Пример 2
Нейтрализационный кристаллизатор с ЦТиП, имеющий секцию газофазной нейтрализации и соответствующий примеру 1, заблаговременно вводят 0,9 м3 насыщенного раствора метионина, после чего измельчают 10 кг затравки кристалла метионина до получения диаметра частиц, не превышающего 10 микрометров. Потом запускают кристаллизатор, начиная перемешивание со скоростью 200 об/мин. Включают насос внешней циркуляции и настраивают расход раствора внешней циркуляции, вводимого в патрубок для отмучивания кристаллов, на величину 1,5 м3/ч, а расход раствора внешней циркуляции, подлежащего смешиванию с раствором гидролизата, содержащим калий и метионин, на величину 20 м3/ч. После стабилизации потока циркуляции, начинают охлаждение циркуляции для поддержания температуры на уровне 20°C. Вводят диоксид углерода из распределителя газа до тех пор, пока давление не достигнет 0,4 МПа. В этот момент, вводят раствор гидролизата, содержащий 19% калия и метионина, при 20°C с расходом 0,5 м3/ч (т.е., время удерживания составляет 2 часа). После смешивания с материалом внешней циркуляции, смесь охлаждают посредством охладителя до 18°C и вводят в распределитель жидкости вверху кристаллизатора. Жидкость распыляют в виде тонких струек в газообразном диоксиде углерода для проведения реакции нейтрализации с получением нейтрализационного раствора и падением на поверхность жидкости кристаллизатора. Температура нейтрализационного раствора, падающего на поверхность жидкости кристаллизатора, увеличилась до 20°C. После смешивания, сопровождаемого перемешиванием, зародыши кристаллов в кристаллизаторе растут. При этом -благодаря перенасыщению - будет создано определенное количество новых зародышей кристаллов.
После введения раствора гидролизата, содержащего калий и метионин, в течение 12 мин, включают насос кристаллической «каши» для подачи кристаллической «каши» метионина во вращающийся барабанный фильтр с расходом 0,55 м3/ч для фильтрации и промывки. После непрерывного высушивания с псевдоожижением фильтрационного осадка будут получены продукты метионина. После того, как работа станет полностью стабильной (это занимает примерно 8 часов), кристаллические продукты метионина можно будет получать с выходом 57 кг/ч, а их насыпная плотность составит 816 кг/м3,
Во время всего процесса непрерывной работы - в течение 24 часов, явление пенообразования не наблюдалось.
Пример 3
Нейтрализационный кристаллизатор с ЦТиП, имеющий секцию газофазной нейтрализации и соответствующий примеру 1, заблаговременно вводят 0,9 м3 насыщенного раствора метионина, после чего измельчают 10 кг затравки кристалла метионина до получения диаметра частиц, не превышающего 10 микрометров. Потом запускают кристаллизатор, начиная перемешивание со скоростью 400 об/мин. Включают насос внешней циркуляции и настраивают расход раствора внешней циркуляции, вводимого в патрубок для отмучивания кристаллов, на величину 4 м3/ч, а расход раствора внешней циркуляции, подлежащего смешиванию с раствором гидролизата, содержащим калий и метионин, на величину 10 м3/ч. После стабилизации потока циркуляции, начинают охлаждение циркуляции для поддержания температуры на уровне 35°C. Вводят диоксид углерода из распределителя газа до тех пор, пока давление не достигнет 1,0 МПа. В этот момент, вводят раствор гидролизата, содержащий 19% калия и метионина, при 35°C с расходом 2 м3/ч (т.е., время удерживания составляет 0,5 часа). После смешивания с материалом внешней циркуляции, смесь охлаждают посредством охладителя до 30°C и вводят в распределитель жидкости вверху кристаллизатора. Жидкость распыляют в виде тонких струек в газообразном диоксиде углерода для проведения реакции нейтрализации с получением нейтрализационного раствора и падением на поверхность жидкости кристаллизатора. Температура нейтрализационного раствора, падающего на поверхность жидкости кристаллизатора, увеличилась до 35°C. После смешивания, сопровождаемого перемешиванием, зародыши кристаллов в кристаллизаторе растут. При этом -благодаря перенасыщению - будет создано определенное количество новых зародышей кристаллов.
После введения раствора гидролизата, содержащего калий и метионин, в течение 3 мин, включают насос кристаллической «каши» для подачи кристаллической «каши» метионина во вращающийся барабанный фильтр с расходом 2,2 м3/ч для фильтрации и промывки. После непрерывного высушивания с псевдоожижением фильтрационного осадка будут получены продукты метионина. После того, как работа станет полностью стабильной (это занимает примерно 2 часа), кристаллические продукты метионина можно будет получать с выходом 221 кг/ч, а их насыпная плотность составит 802 кг/м3,
Во время всего процесса непрерывной работы - в течение 24 часов, явление пенообразования не наблюдалось.
Пример 4
Нейтрализационный кристаллизатор с ЦТиП, имеющий секцию газофазной нейтрализации и соответствующий примеру 1, заблаговременно вводят 0,9 м3 насыщенного раствора метионина, после чего измельчают 10 кг затравки кристалла метионина до получения диаметра частиц, не превышающего 10 микрометров. Потом запускают кристаллизатор, начиная перемешивание со скоростью 50 об/мин. Включают насос внешней циркуляции и настраивают расход раствора внешней циркуляции, вводимого в патрубок для отмучивания кристаллов, на величину 1,83 м3/ч, а расход раствора внешней циркуляции, подлежащего смешиванию с раствором гидролизата, содержащим калий и метионин, на величину 16,66 м3/ч. После стабилизации потока циркуляции, начинают охлаждение циркуляции для поддержания температуры на уровне 40°C. Вводят диоксид углерода из распределителя газа до тех пор, пока давление не достигнет 1,2 МПа. В этот момент, вводят раствор гидролизата, содержащий 19% калия и метионина, при 40°C с расходом 0,333 м3/ч (т.е., время удерживания составляет 3 часа). После смешивания с материалом внешней циркуляции, смесь охлаждают посредством охладителя до 39,5°C и вводят в распределитель жидкости вверху кристаллизатора. Жидкость распыляют в виде тонких струек в газообразном диоксиде углерода для проведения реакции нейтрализации с получением нейтрализационного раствора и падением на поверхность жидкости кристаллизатора. Температура нейтрализационного раствора, падающего на поверхность жидкости кристаллизатора, увеличилась до 40°C. После смешивания, сопровождаемого перемешиванием, зародыши кристаллов в кристаллизаторе растут. При этом - благодаря перенасыщению - будет создано определенное количество новых зародышей кристаллов.
После введения раствора гидролизата, содержащего калий и метионин, в течение 18 мин, включают насос кристаллической «каши» для подачи кристаллической «каши» метионина во вращающийся барабанный фильтр с расходом 0,366 м3/ч для фильтрации и промывки. После непрерывного высушивания с псевдоожижением фильтрационного осадка будут получены продукты метионина. После того, как работа станет полностью стабильной (это занимает примерно 12 часов), кристаллические продукты метионина можно будет получать с выходом 36 кг/ч, а их насыпная плотность составит 822 кг/м3,
Во время всего процесса непрерывной работы - в течение 24 часов, явление пенообразования не наблюдалось.
Пример 5
Нейтрализационный кристаллизатор с ЦТиП, имеющий секцию газофазной нейтрализации и соответствующий примеру 1, заблаговременно вводят 0,9 м3 насыщенного раствора метионина, после чего измельчают 10 кг затравки кристалла метионина до получения диаметра частиц, не превышающего 10 микрометров. Потом запускают кристаллизатор, начиная перемешивание со скоростью 500 об/мин. Включают насос внешней циркуляции и настраивают расход раствора внешней циркуляции, вводимого в патрубок для отмучивания кристаллов, на величину 3,67 м3/ч, а расход раствора внешней циркуляции, подлежащего смешиванию с раствором гидролизата, содержащим калий и метионин, на величину 16,66 м3/ч. После стабилизации потока циркуляции, начинают охлаждение циркуляции для поддержания температуры на уровне 10°C. Вводят диоксид углерода из распределителя газа до тех пор, пока давление не достигнет 0,3 МПа. В этот момент, вводят раствор гидролизата, содержащий 15% калия и метионина, при 10°C с расходом 3,33 м3/ч (т.е., время удерживания составляет 0,3 часа). После смешивания с материалом внешней циркуляции, смесь охлаждают посредством охладителя до 5°C и вводят в распределитель жидкости вверху кристаллизатора. Жидкость распыляют в виде тонких струек в газообразном диоксиде углерода для проведения реакции нейтрализации с получением нейтрализационного раствора и падением на поверхность жидкости кристаллизатора. Температура нейтрализационного раствора, падающего на поверхность жидкости кристаллизатора, увеличилась до 10°C. После смешивания, сопровождаемого перемешиванием, зародыши кристаллов в кристаллизаторе растут. При этом - благодаря перенасыщению - будет создано определенное количество новых зародышей кристаллов.
После введения раствора гидролизата, содержащего калий и метионин, в течение 1,8 мин, включают насос кристаллической «каши» для подачи кристаллической «каши» метионина во вращающийся барабанный фильтр с расходом 3,67 м3/ч для фильтрации и промывки. После непрерывного высушивания с псевдоожижением фильтрационного осадка будут получены продукты метионина. После того, как работа станет полностью стабильной (это занимает примерно 1,2 часа), кристаллические продукты метионина можно будет получать с выходом 268 кг/ч, а их насыпная плотность составит 805 кг/м3,
Во время всего процесса непрерывной работы - в течение 24 часов, явление пенообразования не наблюдалось.
Сравнительный пример
Проводили эксперимент таким же образом, как в примере 1, за исключением того, что газообразный диоксид углерода вводили в кристаллизатор из жидкой фазы.
Нейтрализационный кристаллизатор с ЦТиП, имеющий секцию газофазной нейтрализации и соответствующий примеру 1, заблаговременно вводят 0,9 м3 насыщенного раствора метионина, после чего измельчают 10 кг затравки кристалла метионина до получения диаметра частиц, не превышающего 10 микрометров. Потом запускают кристаллизатор, начиная перемешивание со скоростью 100 об/мин. Включают насос внешней циркуляции и настраивают расход раствора внешней циркуляции, вводимого в патрубок для отмучивания кристаллов, на величину 1,1 м3/ч, а расход раствора внешней циркуляции, подлежащего смешиванию с раствором гидролизата, содержащим калий и метионин, на величину 10 м3/ч. После стабилизации потока циркуляции, начинают охлаждение циркуляции для поддержания температуры на уровне 28°C. Вводят диоксид углерода из распределителя газа до тех пор, пока давление не достигнет 0,5 МПа. В этот момент, вводят раствор гидролизата, содержащий 19% калия и метионина, при 28°C с расходом 1 мм3/ч (т.е., время удерживания составляет 1 час). После смешивания с материалом внешней циркуляции, смесь охлаждают посредством охладителя до 25°C и вводят в распределитель жидкости вверху кристаллизатора. Жидкость распыляют в виде тонких струек в газообразном диоксиде углерода для проведения реакции нейтрализации с получением нейтрализационного раствора и падением на поверхность жидкости кристаллизатора. После смешивания, сопровождаемого перемешиванием, нейтрализуют жидкость диоксидом углерода, растворенным в жидкой фазе, так что зародыши кристаллов в кристаллизаторе растут. При этом - благодаря перенасыщению - будет создано определенное количество новых зародышей кристаллов.
После введения раствора гидролизата, содержащего калий и метионин, в течение 6 мин, включают насос кристаллической «каши» для подачи кристаллической «каши» метионина во вращающийся барабанный фильтр с расходом 1,1 м3/ч для фильтрации и промывки. После непрерывного высушивания с псевдоожижением фильтрационного осадка будут получены продукты метионина. После того, как работа станет полностью стабильной (это занимает примерно 4 часа), кристаллические продукты метионина можно будет получать с выходом 111 кг/ч, а их насыпная плотность составит 518 кг/м3,
Во время всего процесса непрерывной работы - в течение 24 часов, явление пенообразования не наблюдалось. Для поддержания непрерывного процесса нейтрализации и кристаллизации необходимо непрерывное введение противопенного агента.
Figure 00000001
Обращаясь к таблице 1, отмечаем, что при осуществлении
способе производства, соответствующего сравнительному примеру 1, условия работы являются, по существу, такими же, как при осуществлении способа, соответствующего данной заявке. Сравнительный пример 1 отличается от данной заявки лишь введением диоксида углерода в жидкой фазе, что приводит к заметному явлению пенообразования. Таким образом, кристаллический продукт метионина, получаемый посредством сравнительного примера 1, неудовлетворителен, а его насыпная плотность не отвечает требованиям данной заявки.
Промышленная применимость
За счет непрерывной нейтрализации и кристаллизации с использованием реакционного раствора, содержащего калий и метионин, в нейтрализационном кристаллизаторе с ЦТиП, имеющем секцию газофазной нейтрализации, данное изобретение позволяет перенести способствующую легкому пенообразованию реакцию нейтрализации раствора гидролизата, содержащего калий и метионин, с диоксидом углерода из жидкой фазы в газовую фазу. Таким образом, технологический процесс приобретает приемлемую стабильность и высокую эффективность. Получаемый продукт имеет стабильное качество. Следовательно, способ согласно данному изобретению пригоден для воплощения в промышленном производстве.

Claims (21)

1. Способ непрерывной подготовки кристаллов метионина высокой насыпной плотности, включающий в себя следующие этапы, на которых:
(1) смешивают раствор гидролизата, содержащий калий и метионин и полученный в результате реакции 5-(β-метилмеркаптоэтил)гидантоина и раствора карбоната калия с материалом внешней циркуляции из нейтрализационного кристаллизатора с циркуляционной трубкой и перегородкой (ЦТиП), имеющего секцию газофазной нейтрализации, для формирования материала смеси; вводят материал смеси в распределитель жидкости области нейтрализации в верхней части кристаллизатора после охлаждения и распыляют в виде капель или тонких струек жидкости в зону контакта газа и жидкости для проведения реакции нейтрализации газообразным диоксидом углерода с получением нейтрализационного раствора, содержащего метионин;
(2) обеспечивают естественное падение нейтрализационного раствора в область кристаллизации в нижней части кристаллизатора для образования кристаллов в области кристаллизации с последующим обеспечением осаждения кристаллов, имеющих частицы большего диаметра, в патрубок для отмучивания кристаллов в зоне осаждения в средней части области кристаллизации;
(3) подают кристаллы метионина в патрубок для отмучивания кристаллов через насос кристаллической «каши» во вращающийся барабанный фильтр, подвергая сепарации, промывке и сушке для получения продуктов метионина;
причем материал внешней циркуляции изначально представляет собой насыщенный раствор метионина.
2. Способ по п. 1, в котором
процесс кристаллизации включает в себя выращивание мелких кристаллов, образующихся в области кристаллизации, для формирования кристаллов, имеющих больший диаметр частиц, с одновременным образованием новых центров кристаллизации.
3. Способ по п. 1, в котором в зоне осаждения в средней части области кристаллизации вводят мелкие кристаллы и часть раствора метионина в трубу внешней циркуляции для охлаждения и циркуляции; и используют часть материала внешней циркуляции для промывки кристаллов в патрубке для отмучивания кристаллов, используя другую часть этого материала для смешивания с раствором гидролизата, содержащим калий и метионин.
4. Способ по любому из пп. 1 или 2, в котором нейтрализационный кристаллизатор с ЦТиП, имеющий секцию газофазной нейтрализации, имеет газофазное пространство в верхней части, а распределитель жидкости и распределитель газа выполнены так, что жидкость как дисперсная фаза подвергается реакции газожидкостной нейтрализации в газообразном диоксиде углерода в качестве непрерывной фазы.
5. Способ по любому из пп. 1 или 2, в котором объемное соотношение раствора гидролизата, содержащего калий и метионин и вводимого в трубу внешней циркуляции нейтрализационного кристаллизатора с ЦТиП, имеющего секцию газофазной нейтрализации, с раствором внешней циркуляции составляет 1:(5-50), а температуру материала после смешивания уменьшают посредством охладителя на 0,5-5°С.
6. Способ по любому из пп. 1 или 2, в котором объемное соотношение раствора внешней циркуляции, вводимого в патрубок для отмучивания кристаллов в нижней части нейтрализационного кристаллизатора с ЦТиП, имеющего секцию газофазной нейтрализации, с выходным объемом кристаллической «каши» составляет (1-5):1.
7. Способ по любому из пп. 1 или 2, в котором скорость перемешивания в области кристаллизации нейтрализационного кристаллизатора с ЦТиП, имеющего секцию газофазной нейтрализации, составляет 50-500 об/мин, предпочтительно - 100-300 об/мин.
8. Способ по любому из пп. 1 или 2, в котором температура области кристаллизации нейтрализационного кристаллизатора с ЦТиП, имеющего секцию газофазной нейтрализации, составляет 10-40°С.
9. Способ по любому из пп. 1 или 2, в котором раствор гидролизата, содержащего калий и метионин, остается в нейтрализационном кристаллизаторе в течение 0,3-3 часов.
10. Способ по любому из пп. 1 или 2, в котором давление диоксида углерода газовой фазы в нейтрализационном кристаллизаторе с ЦТиП, имеющем секцию газофазной нейтрализации, составляет 0,3-1,2 МПа.
11. Нейтрализационный кристаллизатор с циркуляционной трубкой и перегородкой (ЦТиП), имеющий секцию газофазной нейтрализации, для непрерывной подготовки кристаллов метионина высокой насыпной плотности, содержащий:
(1) распределитель жидкости, предназначенный для формирования капель или мелких струек жидкости смешанного раствора, содержащего калий и метионин, и распределитель газа, предназначенный для подачи газообразного диоксида углерода, которые предусмотрены в области нейтрализации в верхней части;
(2) направляющую оболочку для жидкости и мешалку, предусмотренные в средней части;
(3) зону осаждения кристаллов, предусмотренную в нижней части, которая включает в себя патрубок для отмучивания кристаллов, предназначенный для осаждения кристаллов;
(4) систему внешней циркуляции, предназначенную для оборотного использования раствора калия и метионина в области кристаллизации, при этом часть раствора подают в патрубок для отмучивания кристаллов, а другую часть этого раствора смешивают с раствором гидролизата, содержащим калий и метионин, после чего осуществляют циркуляционную подачу на вход для материала нейтрализационного кристаллизатора.
12. Кристаллизатор по п. 11, дополнительно содержащий вращающийся барабанный фильтр для сепарации и промывания кристаллической «каши» из патрубка для отмучивания кристаллов.
RU2017121649A 2015-02-12 2015-12-23 Способ непрерывной подготовки кристаллов метионина высокой насыпной плотности RU2678585C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201510078388.1 2015-02-12
CN201510078388.1A CN104744326B (zh) 2015-02-12 2015-02-12 一种连续制备高堆积密度甲硫氨酸结晶的方法
PCT/CN2015/098368 WO2016127707A1 (zh) 2015-02-12 2015-12-23 一种连续制备高堆积密度甲硫氨酸结晶的方法

Publications (3)

Publication Number Publication Date
RU2017121649A RU2017121649A (ru) 2018-12-21
RU2017121649A3 RU2017121649A3 (ru) 2018-12-21
RU2678585C2 true RU2678585C2 (ru) 2019-01-30

Family

ID=53584679

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017121649A RU2678585C2 (ru) 2015-02-12 2015-12-23 Способ непрерывной подготовки кристаллов метионина высокой насыпной плотности

Country Status (14)

Country Link
US (1) US10293273B2 (ru)
EP (1) EP3246310B1 (ru)
JP (1) JP6423109B2 (ru)
KR (1) KR101975189B1 (ru)
CN (1) CN104744326B (ru)
AU (1) AU2015382630B2 (ru)
BR (1) BR112017017246B1 (ru)
CA (1) CA2974447A1 (ru)
MX (1) MX2017010418A (ru)
MY (1) MY183295A (ru)
RU (1) RU2678585C2 (ru)
SG (1) SG11201705530VA (ru)
WO (1) WO2016127707A1 (ru)
ZA (1) ZA201705902B (ru)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104744326B (zh) 2015-02-12 2016-08-10 山东新和成氨基酸有限公司 一种连续制备高堆积密度甲硫氨酸结晶的方法
CN106008297B (zh) * 2016-06-03 2018-11-30 宁夏紫光天化蛋氨酸有限责任公司 一种蛋氨酸新晶型ⅱ及其制备方法
CN106083675B (zh) * 2016-06-03 2018-07-27 宁夏紫光天化蛋氨酸有限责任公司 一种蛋氨酸新晶型i及其制备方法
KR20180078621A (ko) * 2016-12-30 2018-07-10 씨제이제일제당 (주) 결정화 기술을 이용한 l-메티오닌 결정의 제조방법
CN108794363A (zh) * 2017-05-02 2018-11-13 宁夏紫光天化蛋氨酸有限责任公司 一种蛋氨酸结晶方法
JP6985382B2 (ja) * 2017-05-16 2021-12-22 住友化学株式会社 メチオニンの気流搬送方法
CN109384696A (zh) * 2017-08-03 2019-02-26 宁夏紫光天化蛋氨酸有限责任公司 一种获得高纯度高堆积密度蛋氨酸的方法
SG11202005998YA (en) * 2017-12-27 2020-07-29 Sumitomo Chemical Co Refined methionine production method
CN108939603B (zh) * 2018-09-06 2021-06-18 四川金象赛瑞化工股份有限公司 一种分离硫酸钠和硫酸铵过程中直接冷却结晶的方法
CN109173329B (zh) * 2018-10-31 2023-08-29 浙江新和成股份有限公司 用于蒸发结晶的装置
EP3986861B1 (en) 2019-06-18 2023-08-02 Evonik Operations GmbH Process for the preparation of d,l-methionine
CN111389044A (zh) * 2020-04-16 2020-07-10 天津天大清能环境工程有限公司 一种防结垢蒸发结晶系统及方法
WO2022078940A1 (en) 2020-10-13 2022-04-21 Evonik Operations Gmbh D,l-methionine with an optimized particle size distribution
CN114426298B (zh) * 2020-10-29 2023-08-01 中国石油化工股份有限公司 碳化法制备氢氧化铝的系统及其碳化反应器
CN113289372A (zh) * 2021-06-23 2021-08-24 江苏派克斯特纤维素有限公司 非食用盐加工用蒸发结晶装置
CN115043763B (zh) * 2022-06-14 2024-04-05 天津大学 一种dl-蛋氨酸的气液连续结晶方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1428406A1 (ru) * 1986-10-08 1988-10-07 Предприятие П/Я Р-6273 Способ регулировани процесса кристаллизации в циркул ционном кристаллизаторе
WO2003045904A1 (fr) * 2001-11-29 2003-06-05 Nippon Soda Co.,Ltd. Procede de production de methionine
RU2208943C2 (ru) * 1996-10-31 2003-07-27 Сумитомо Кемикал Компани, Лимитед Способ получения метионина
RU2294922C2 (ru) * 2001-12-08 2007-03-10 Дегусса Аг Способ получения метионина
WO2012091479A2 (en) * 2010-12-29 2012-07-05 Cj Cheiljedang Corporation Methods for production of l-methionine and related products

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA866570A (en) 1968-07-19 1971-03-23 Werner Hans-Helmut Recovery of minerals from saturated solutions by crystallization
JPS5818122B2 (ja) * 1975-05-23 1983-04-11 日石三菱株式会社 シヨウセキハンノウソウチ
JP2921097B2 (ja) 1990-10-30 1999-07-19 住友化学工業株式会社 メチオニンの製造方法
FR2708267B1 (fr) 1993-07-28 1995-09-01 Rhone Poulenc Nutrition Animal Méthode de cristallisation de la méthionine.
DE19547236A1 (de) 1995-12-18 1997-07-03 Degussa Verfahren zur Herstellung von D,L-Methionin oder dessen Salz
JP4482973B2 (ja) * 1998-09-11 2010-06-16 住友化学株式会社 メチオニンの製造方法
CN1178909C (zh) * 1999-05-21 2004-12-08 住友化学工业株式会社 蛋氨酸的制备方法
WO2006021993A1 (ja) * 2004-08-24 2006-03-02 Asahi Glass Company, Limited アルカリ金属炭酸水素塩の製造方法
JP2008297251A (ja) * 2007-05-31 2008-12-11 Mitsui Chemicals Inc ビスフェノール類の晶析方法
JP2009292796A (ja) 2008-06-09 2009-12-17 Sumitomo Chemical Co Ltd メチオニンの製造方法
JP2009292795A (ja) * 2008-06-09 2009-12-17 Sumitomo Chemical Co Ltd メチオニンの製造方法
DE102008029050A1 (de) 2008-06-18 2009-12-24 Gea Messo Gmbh Verfahren und Vorrichtung zur kontinuierlichen Herstellung eines Kristallisats mit konstanter Korngrößenverteilung
JP2010111640A (ja) * 2008-11-07 2010-05-20 Sumitomo Chemical Co Ltd メチオニンの製造方法
EP2641898A1 (de) 2012-03-20 2013-09-25 Evonik Industries AG Verfahren zur Herstellung von Methionin
CN102897795B (zh) * 2012-11-12 2015-02-25 中国石油化工股份有限公司 一种大颗粒硫酸铵晶体的生产方法
CN202983275U (zh) 2012-11-22 2013-06-12 中节能六合天融环保科技有限公司 一种具有dtb特性的真空结晶器
CN204170452U (zh) 2014-05-14 2015-02-25 重庆紫光化工股份有限公司 一种有机合成料液的分离纯化系统
CN104744326B (zh) 2015-02-12 2016-08-10 山东新和成氨基酸有限公司 一种连续制备高堆积密度甲硫氨酸结晶的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1428406A1 (ru) * 1986-10-08 1988-10-07 Предприятие П/Я Р-6273 Способ регулировани процесса кристаллизации в циркул ционном кристаллизаторе
RU2208943C2 (ru) * 1996-10-31 2003-07-27 Сумитомо Кемикал Компани, Лимитед Способ получения метионина
WO2003045904A1 (fr) * 2001-11-29 2003-06-05 Nippon Soda Co.,Ltd. Procede de production de methionine
RU2294922C2 (ru) * 2001-12-08 2007-03-10 Дегусса Аг Способ получения метионина
WO2012091479A2 (en) * 2010-12-29 2012-07-05 Cj Cheiljedang Corporation Methods for production of l-methionine and related products

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Химический энциклопедический словарь, Москва, Советская энциклопедия, Кристаллизация, с.286-287, 1983 г. (гл. редактор И.Л.Кнунянц). *

Also Published As

Publication number Publication date
CA2974447A1 (en) 2016-08-18
KR20170106400A (ko) 2017-09-20
EP3246310A4 (en) 2018-01-10
RU2017121649A (ru) 2018-12-21
MX2017010418A (es) 2018-06-07
AU2015382630B2 (en) 2018-05-17
MY183295A (en) 2021-02-18
CN104744326A (zh) 2015-07-01
US10293273B2 (en) 2019-05-21
AU2015382630A1 (en) 2017-08-24
SG11201705530VA (en) 2017-08-30
EP3246310B1 (en) 2019-08-07
WO2016127707A1 (zh) 2016-08-18
RU2017121649A3 (ru) 2018-12-21
KR101975189B1 (ko) 2019-05-07
ZA201705902B (en) 2018-12-19
US20180043281A1 (en) 2018-02-15
JP6423109B2 (ja) 2018-11-14
CN104744326B (zh) 2016-08-10
BR112017017246B1 (pt) 2021-06-01
BR112017017246A2 (pt) 2018-04-17
EP3246310A1 (en) 2017-11-22
JP2018504453A (ja) 2018-02-15

Similar Documents

Publication Publication Date Title
RU2678585C2 (ru) Способ непрерывной подготовки кристаллов метионина высокой насыпной плотности
RU2640656C2 (ru) Способ получения метионина
SK150597A3 (en) Method for manufacture of products containing disalts of formic acid
CN104743581B (zh) 一种高纯氯化钾的制备工艺
CN105031963B (zh) 一种集成反溶剂-真空蒸发-冷却或反溶剂的结晶方法
CN104355990B (zh) 一种d-乙酯生产中回收和套用l-(+)-酒石酸的方法
JP2024504577A (ja) Dl/ld-メチオニルメチオニンのジアステレオ異性的に純粋な調製のための方法
CN109694337B (zh) 一种羟乙基磺酸钠椭球形晶体及其制备方法
JPH04244056A (ja) メチオニンの製造方法
US20220306574A1 (en) Process for the preparation of d,l-methionine
JP2010059125A (ja) シトルリンの晶析方法
CN115124436B (zh) 甘氨酸连续生产工艺
JPH10306071A (ja) 粒状dl−メチオニン結晶およびその製造方法
JP2024001848A (ja) 柱状タウリンの循環製造方法
RU2196734C2 (ru) Способ получения хлорида калия
US3183263A (en) Method for changing the crystal habit of mono-sodium glutamate
JPS60152451A (ja) α−アミノ酸の晶析方法
JP4557280B2 (ja) グリシンの製造方法
JP2004175716A (ja) メチオニンの晶析方法
JP2001181254A (ja) クレアチンの精製法
CN104326901A (zh) D-乙酯生产中回收和套用l-(+)-酒石酸的方法
JPH0397617A (ja) 重炭酸ナトリウムの製造方法
CN113461745A (zh) 一种改善核苷酸晶型的方法
CN115999182A (zh) 一种连续式绝热反应结晶装置及其应用
JPS5879812A (ja) 炭酸ソ−ダ一水塩の製造方法