RU2640656C2 - Способ получения метионина - Google Patents

Способ получения метионина Download PDF

Info

Publication number
RU2640656C2
RU2640656C2 RU2014141935A RU2014141935A RU2640656C2 RU 2640656 C2 RU2640656 C2 RU 2640656C2 RU 2014141935 A RU2014141935 A RU 2014141935A RU 2014141935 A RU2014141935 A RU 2014141935A RU 2640656 C2 RU2640656 C2 RU 2640656C2
Authority
RU
Russia
Prior art keywords
methionine
recrystallization
solution
suspension
temperature
Prior art date
Application number
RU2014141935A
Other languages
English (en)
Other versions
RU2014141935A (ru
Inventor
Мартин КЁРФЕР
Ханс Йоахим ХАССЕЛЬБАХ
Штефан РАЙХЕРТ
Харальд Якоб
Кристоф ВЕКБЕККЕР
Клаус ХУТМАХЕР
Хорст КРУЛЛЬ
Бернд ДРАПАЛЬ
Райнер ПЕТЕР
Original Assignee
Эвоник Дегусса Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Эвоник Дегусса Гмбх filed Critical Эвоник Дегусса Гмбх
Publication of RU2014141935A publication Critical patent/RU2014141935A/ru
Application granted granted Critical
Publication of RU2640656C2 publication Critical patent/RU2640656C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/26Separation; Purification; Stabilisation; Use of additives
    • C07C319/28Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/14Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides
    • C07C319/20Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides by reactions not involving the formation of sulfide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/02Preparation of thiols, sulfides, hydropolysulfides or polysulfides of thiols
    • C07C319/12Preparation of thiols, sulfides, hydropolysulfides or polysulfides of thiols by reactions not involving the formation of mercapto groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/26Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/50Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton
    • C07C323/51Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C323/52Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Abstract

Изобретение относится к способу получения D,L-метионина. Согласно предлагаемому способу диоксид углерода загружают в водный раствор метионината калия, полученный путем гидролиза 5-(2-метилмеркаптоэтил)гидантоина, чтобы осадить неочищенный метионин, который отделяют и очищают. Для очистки готовят водный раствор отделенного неочищенного метионина и подвергают перекристаллизации. При этом раствор, из которого проводят перекристаллизацию, содержит противовспениватель, ионы калия, а также добавку для обеспечения кристаллизации. Противовспениватель содержит силиконовое масло, а добавка для обеспечения кристаллизации представляет собой анионогенное поверхностно-активное вещество или смесь разных анионогенных поверхностно-активных веществ. Перекристаллизацию проводят путем добавления горячего (60-110°С) раствора метионина в теплую (35-80°С) суспензию метионина, температура которой ниже температуры добавляемого раствора. В ходе добавления температуру суспензии метионина поддерживают равной от 35 до 80°С. Добавкой для обеспечения кристаллизации является одно из соединений, представленных формулами 1-3, или их смесь. В формулах 1-3 n обозначает целое число, равное от 1 до 12, М обозначает натрий или калий, R, Rи Rобозначают линейную, разветвленную или циклическую насыщенную или ненасыщенную С-С-алкильную группу или арильную группу. Способ позволяет получать D,L-метионин, легко поддающийся фильтрованию и обладающий высокой объемной плотностью. 8 з.п. ф-лы, 6 ил., 5 пр.

Description

Изобретение относится к способу получения D,L-метионина, обладающего высокой объемной плотностью, в котором метионин очищают путем перекристаллизации.
L-Метионин является незаменимой аминокислотой, которая обладает большим промышленным значением в качестве кормовой добавки. Поскольку D- и L-метионин обладают одинаковой питательной ценностью, в качестве кормовой добавки обычно используют рацемат. Синтез D,L-метионина проводят с использованием в качестве исходных веществ метилмеркаптопропионового альдегида и цианида водорода и получают промежуточный продукт 5-(2-метилмеркаптоэтил)гидантоин, который можно превратить в метионинат путем гидролиза.
Для проведения гидролиза гидантоина, а также для последующего выделения метионина из его соли известны различные способы. Настоящее изобретение относится к получению метионина так называемым способом с использованием карбоната калия, который описан, например, в ЕР 1256571 А1 и DE 1906405 А1. В этом случае 5-(2-метилмеркаптоэтил)гидантоин в водном растворе сначала вводят в реакцию с карбонатом калия и получают метионинат калия с выделением диоксида углерода и аммиака. Основный раствор метионината калия нейтрализуют путем добавления диоксида углерода и метионин осаждается. Однако полученный таким образом неочищенный метионин находится в виде пластинчатых или хлопьевидных, плохо поддающихся фильтрованию кристаллов, которые представлены на фиг. 1.
Для регулирования пенообразования и улучшения качества кристаллов в ЕР 1256571 А1 осаждение неочищенного метионина проводят в присутствии противовспенивателя. Этот способ обладает тем недостатком, что метионин получают в виде сферических, но пористых частиц, которые представлены на фиг. 2. Чтобы получить пригодный для продажи продукт, полученный таким образом метионин, вследствие его пористой структуры, необходимо промывать большим количеством воды и сушить, что приводит к большим затратам энергии.
Добавление добавок в ходе осаждения неочищенного метионина может улучшить качество кристаллов. Добавки, такие как, например, сорбитанлаурат, поливиниловый спирт, гидроксипропилметилцеллюлоза, глютен или казеин, известны из JP 11158140 и JP 10306071. В соответствии с этими способами получают кристаллы метионина, обладающие объемной плотностью, равной до 770 г/л. Установлено, что недостатком этих способов является то, что их проводят в периодическом режиме или только в полунепрерывном режиме.
Также известно, что чистоту и объемную плотность метионина можно улучшить путем перекристаллизации неочищенного метионина. Например, в JP 2004-292324 раскрыто, что перекристаллизация неочищенного метионина, проводимая путем добавления поливинилового спирта или глютена, дает чистый метионин, обладающий объемной плотностью, равной до 580 г/л. Перекристаллизацию проводят путем проводимого по каплям добавления горячего раствора метионина к холодной суспензии метионина, при этом метионин осаждается в результате охлаждения горячего раствора. Установлено, что недостатком этого способа также является то, что его не проводят в непрерывном режиме.
В ЕР 1451139 А1 описана перекристаллизация метионина в присутствии гидоксиэтилцеллюлозы, при этом сначала получают кристаллы метионина, обладающие объемной плотностью, равной до 620 г/л. В этом случае установлено, что недостатком является то, что при проведении перекристаллизации в непрерывном режиме происходит накопление постоянно добавляемой добавки вследствие повторного использования фильтрата для растворения неочищенного метионина, и что повышение концентрации добавки приводит к снижению объемной плотности. По этой причине гидоксиэтилцеллюлоза не является предпочтительной для использования в качестве добавки для обеспечения кристаллизации в непрерывном режиме, в котором фильтрат, содержащий чистый метионин, повторно используют для растворения неочищенного метионина. Повторное использование фильтрата, полученного после перекристаллизации, является существенно важным для обеспечения экономичности способа в промышленном масштабе, поскольку при этом устранены потери растворившегося метионина и сведено к минимуму образование сточных вод.
В JP 46019610 В1 описан способ перекристаллизации метионина, который, однако, не обеспечивает получение метионина, обладающего высокой объемной плотностью.
Задачей настоящего изобретения является разработка способа получения метионина, в котором отсутствуют описанные выше недостатки. Полученный этим способом метионин должен легко поддаваться фильтрованию и обладать высокой объемной плотностью. Кроме того, необходимо, чтобы способ можно было осуществлять в непрерывном режиме и предпочтительно, чтобы отсутствовали отрицательные последствия процессов накопления.
Для решения этой задачи в настоящем изобретении разработан способ получения D,L-метионина, в котором диоксид углерода загружают в водный раствор метионината калия, полученный путем гидролиза 5-(2-метилмеркаптоэтил)гидантоина, чтобы осадить неочищенный метионин, который отделяют и очищают, где для очистки готовят водный раствор отделенного неочищенного метионина, и подвергают перекристаллизации. В этом способе раствор, из которого проводят перекристаллизацию, содержит ионы калия, а также добавку для обеспечения кристаллизации, где добавкой для обеспечения кристаллизации является неионогенное или анионогенное поверхностно-активное вещество, или смесь разных неионогенных или анионогенных поверхностно-активных веществ. В соответствии с настоящим изобретением перекристаллизацию проводят путем добавления горячего (60-110°C) раствора метионина в теплую (35-80°C) суспензию метионина, температура которой ниже температуры добавляемого раствора, при этом в ходе добавления температуру суспензии метионина поддерживают равной от 35 до 80°C.
Горячий раствор метионина предпочтительно быстро охлаждать путем его добавления в более холодную исходную загрузку суспензии метионина, в результате чего образуется перенасыщенный раствор метионина и метионин осаждается из раствора. В этом случае прерывается предпочтительный трехмерный рост кристаллов и обеспечивается образование изометрических кристаллов. Однако в результате такого быстрого режима охлаждения, кроме искомых изометрических кристаллов, также может произойти образование зародышей нежелательных новых пластинчатых кристаллов. В одном предпочтительном варианте осуществления способа, предлагаемого в настоящем изобретении, их можно определенным образом повторно растворить путем незначительного повышения температуры на 5-15°C, предпочтительно на 6-12°C, по сравнению с температурой перемешивания.
В результате использования предлагаемой в настоящем изобретении комбинации, присутствия ионов калия, добавления добавки для обеспечения кристаллизации и регулирования температуры перекристаллизации, получают крупнозернистые, легко поддающиеся фильтрованию кристаллы метионина, обладающие объемной плотностью, равной более 500 г/л.
В предпочтительном варианте осуществления способа добавкой для обеспечения кристаллизации является одно из соединений, представленных формулами 1-3, или их смесь:
Figure 00000001
Figure 00000002
Figure 00000003
где n обозначает целое число, равное от 1 до 12, М обозначает натрий или калий и R1, R2 и R3 обозначают линейную, разветвленную или циклическую насыщенную или ненасыщенную C8-C20-алкильную группу или арильную группу.
В предпочтительном варианте осуществления указанных выше соединений n=2 и R1, R2 и R3 обозначают линейные насыщенные C8-C18-алкильные группы.
В другом варианте осуществления способа добавкой для обеспечения кристаллизации является эфир жирной кислоты и сорбита или смесь разных эфиров жирных кислот и сорбита, предпочтительно полиэтоксилированных эфиров жирных кислот и сорбита. В особенно предпочтительном варианте осуществления добавкой для обеспечения кристаллизации является полиэтоксилированный сорбитанстеарат и предпочтительно полиэтоксилированный сорбитантристеарат формулы 4:
Figure 00000004
в которой w+x+y+z=20.
Концентрация добавки для обеспечения кристаллизации в растворе, из которого происходит перекристаллизация, предпочтительно равна по меньшей мере 50 ч./млн в пересчете на полную массу раствора, особенно предпочтительно по меньшей мере 100 ч./млн, наиболее предпочтительно по меньшей мере 400 ч./млн. Для обеспечения оптимального дозирования и распределения добавки для обеспечения кристаллизации ее предпочтительно использовать в форме водного раствора или эмульсии и в этом случае концентрация добавки для обеспечения кристаллизации в растворе или эмульсии предпочтительно равна от 2 до 15 мас. %.
В предпочтительном варианте осуществления способа, предлагаемого в настоящем изобретении, раствор, из которого проводят перекристаллизацию, дополнительно содержит противовспениватель. Противовспениватель подавляет образование пены, которая образуется при обработке раствора и суспензии метионина, и образование которой усиливается и/или вызвано некоторыми указанными выше добавками для обеспечения кристаллизации. Кроме того, при одновременном использовании противовспенивателя и добавок для обеспечения кристаллизации проявляется синергетический эффект применительно к устанавливающимся объемным плотностям метионина, в результате чего обеспечиваются объемные плотности, равные более 600 г/л, одновременно отсутствуют отрицательные последствия процессов накопления и, таким образом, способ, предлагаемый в настоящем изобретении, также можно проводить в непрерывном режиме.
Противовспениватель предпочтительно содержит силиконовое масло, причем предпочтение отдается использованию силиконового масла, обладающего кинематической вязкостью, равной от 0,65 до 10000 мм2/с (измеренной при 25°C в соответствии со стандартом DIN 53018), особенно предпочтительно равной от 90 до 1500 мм2/с. Противовспениватель может дополнительно содержать компоненты, которые эффективны в качестве эмульгаторов, например, смеси полиэтоксилированных жирных кислот и полиэтоксилированных жирных спиртов. Противовспениватель также может содержать диоксид кремния. В предпочтительном варианте осуществления противовспенивателем является водный раствор, который содержит от 5 до 10 мас. % силиконового масла, от 0,05 до 1 мас. % диоксида кремния, от 0,5 до 5 мас. % смеси полиэтоксилированных жирных кислот и от 2 до 7 мас. % смеси полиэтоксилированных жирных спиртов. Предпочтительно, если противовспениватель используют в смеси с добавкой для обеспечения кристаллизации, причем добавку для обеспечения кристаллизации добавляют при концентрации, предпочтительно равной от 2 до 15 мас. %. Для обеспечения непрерывного стабильного дозирования противовспенивателя его предпочтительно дополнительно разбавить водой до использования.
Использование противовспенивателей, содержащих силиконовое масло, приводит к тому, что в метионине, полученном способом, предлагаемым в настоящем изобретении, с использованием подходящей методики анализа (например, рентгеноэлектронная спектроскопия, обозначаемая, как РЭС) можно обнаружить кремний. Поэтому, другим объектом настоящего изобретения является D,L-метионин, полученный способом, предлагаемым в настоящем изобретении, где в указанном способе используют противовспениватель, содержащий силиконовое масло.
Согласно изобретению неожиданно было установлено, что присутствие ионов калия в растворе, из которого происходит перекристаллизация, является важным для успешного проведения перекристаллизации. Предпочтительно, если концентрация ионов калия в растворе, из которого происходит перекристаллизация, равна от 1 до 30 г/кг, особенно предпочтительно от 2 до 14 г/кг, наиболее предпочтительно от 5 до 10 г/кг. Предпочтительно, если калий попадает в раствор для проведения перекристаллизации с неочищенным метионином. Концентрацию калия можно регулировать, например, путем добавления воды для промывки при фильтровании неочищенного метионина и/или путем добавления пресной воды к чистому фильтрату, использующемуся для растворения неочищенного метионина, и/или путем добавления калия в чистый фильтрат, использующийся для растворения неочищенного метионина.
В соответствии с настоящим изобретением до проведения перекристаллизации неочищенный метионин растворяют в водном растворе. Предпочтительно, если это осуществляют путем нагревания раствора до температуры, равной по меньшей мере 95°C, особенно предпочтительно путем нагревания до температуры кипения. Для растворения неочищенного метионина можно использовать, например, пресную воду, фильтрат, содержащий чистый метионин, или конденсат, полученный при вакуумной кристаллизации, описанной ниже, или их смеси.
В соответствии с настоящим изобретением добавку для обеспечения кристаллизации и противовспениватель добавляют к водной матрице, использующейся для растворения неочищенного метионина. В одном возможном варианте осуществления способа добавку для обеспечения кристаллизации и противовспениватель также добавляют к раствору, из которого осаждается неочищенный метионин.
Предпочтительно, если перекристаллизацию проводят путем добавления горячего (85-110°C) раствора неочищенного метионина в теплую (35-60°C) суспензию метионина, при этом температуру образующейся таким образом смеси поддерживают постоянной, равной от 35 до 60°C. В этом случае отношение объема добавляемого раствора неочищенного метионина к объему исходной загрузки суспензии метионина предпочтительно находится в диапазоне от 1:1 до 1:10, особенно предпочтительно от 1:3 до 1:6.
В другом предпочтительном варианте осуществления способа перекристаллизацию проводят в две стадии. Для этого на первой стадии перекристаллизации горячий (85-110°C) раствор неочищенного метионина добавляют в теплую (60-80°C) суспензию метионина и температуру образующейся таким образом смеси поддерживают постоянной, равной от 60 до 80°C. В этом случае особенно предпочтительно извлекать некоторое количество суспензии метионина, полученной на первой стадии перекристаллизации, и затем повторно добавлять в смесь для перекристаллизации через контур циркуляции, при этом температуру суспензии в контуре циркуляции повышают на 6-12°C. На второй стадии перекристаллизации теплую (60-80°C) суспензию метионина, полученную на первой стадии перекристаллизации, добавляют в теплую (35-60°C) суспензию метионина, при этом температуру образующейся таким образом смеси поддерживают постоянной, равной от 35 до 60°C. Отношение объема добавляемой суспензии метионина к объему исходной загрузки суспензии метионина предпочтительно находится в диапазоне от 1:1 до 1:10, особенно предпочтительно от 1:3 до 1:6.
Кроме первой стадии перекристаллизации или первой и второй стадий перекристаллизации, способ, предлагаемый в настоящем изобретении, также может включать дополнительные стадии перекристаллизации.
В случае многостадийной процедуры неочищенный метионин можно загружать на всех стадиях параллельно при такой же разнице температур раствора неочищенного метионина и исходной загрузки суспензии метионина. Многостадийную перекристаллизацию также можно провести таким образом, что на стадиях перекристаллизации последовательно загружают раствор метионина, полученный на предыдущей стадии, при этом разницу температур неочищенного метионина и раствора метионина выбирают таким образом, что раствор метионина, полученный на одной стадии перекристаллизации, можно использовать в качестве неочищенного метионина на другой стадии перекристаллизации. Это обеспечивает то преимущество, что уменьшается образование нежелательных пластинчатых кристаллов в результате чрезмерно большой разницы температур. Многостадийная перекристаллизация, разумеется, также включает смешанные формы параллельных и последовательных изменений стадий перекристаллизации.
Температурный режим, предпочтительный для способа, предлагаемого в настоящем изобретении, основан на зависимой от температуры растворимости метионина, представленной на фиг. 6.
С экономической точки зрения целесообразно охлаждать растворы метионина до конечной температуры, равной от 30 до 50°C, поскольку при этом можно предельно уменьшить количество метионина, оставшегося в растворе, а также можно избежать использования дорогостоящих охлаждающих сред для дополнительного охлаждения содержащих метионин растворов.
В предпочтительном варианте осуществления способа перекристаллизацию проводят путем вакуумной кристаллизации. В этом случае на первой стадии перекристаллизации давление предпочтительно равно от 100 до 1000 мбар, особенно предпочтительно от 150 до 400 мбар. Если проводят двухстадийную перекристаллизацию, то на второй стадии перекристаллизации давление предпочтительно равно от 35 до 200 мбар, особенно предпочтительно от 35 до 100 мбар. Предпочтительно, если воду, испаряющуюся при проведении вакуумной кристаллизации, конденсируют и повторно используют для последующего растворения неочищенного метионина.
В одном предпочтительном варианте осуществления способа некоторое количество суспензии метионина извлекают из смеси на первой и/или одной из других стадий перекристаллизации и повторно добавляют через контур циркуляции. На первой стадии кристаллизации горячий раствор метионина предпочтительно добавляют к циркулирующей более холодной суспензии в объемном отношении, составляющем от 1:3 до 1:6. При таком быстром охлаждении обеспечивается сильное перенасыщение, вследствие чего, с одной стороны, рост сравнительно больших кристаллов происходит изометрически, или, с другой стороны, образуются новые небольшие пластинчатые кристаллы. Небольшие пластинчатые кристаллы также повторно растворяют в линии рециркуляции путем повышения температуры на 6-12°C, при этом сохраняются сравнительно большие изометрические кристаллы.
Выделение чистого метионина из маточного раствора, образующегося при перекристаллизации, предпочтительно проводят путем фильтрования, например, фильтрования под давлением или в вакууме, или с использованием центрифуг, например, центрифуг со скользящим шабером, с пульсирующей выгрузкой осадка или с перфорированным ротором.
Способ, предлагаемый в настоящем изобретении, можно осуществлять в непрерывном режиме, или в периодическом режиме, или в полунепрерывном режиме.
На прилагаемых фиг. 1-4 представлены электронные микрофотографии кристаллического метионина. На фиг. 1 представлен неочищенный метионин, полученный при осаждении неочищенного метионина без добавления добавок для обеспечения кристаллизации. На фиг. 2 представлен неочищенный метионин, полученный при осаждении неочищенного метионина с добавлением противовспенивателя, описанного в ЕР 1256571 А1. На фиг. 3 представлен метионин, полученный без добавления добавок для обеспечения кристаллизации, при отсутствии калия, путем простого охлаждения. На фиг. 4 представлен чистый метионин, полученный способом, предлагаемым в настоящем изобретении.
На фиг. 5 в качестве примера и в виде диаграммы представлена схема осуществления способа, предлагаемого в настоящем изобретении, в предпочтительном варианте двухстадийной перекристаллизации. В резервуаре А при температуре, равной от 90 до 100°C, неочищенный метионин растворяют в водной матрице, которая может включать фильтрат, содержащий чистый метионин. Температуру регулируют с помощью циркуляционного насоса и наружного теплообменника. Добавку для обеспечения кристаллизации, предлагаемую в настоящем изобретении, включая противовспениватель, непрерывно добавляют к водной матрице. Раствор метионина нагревают до 100-110°C с помощью одного или большего количества теплообменников В и затем загружают в контур циркуляции первого вакуумного кристаллизатора D. Циркулирующая суспензия обладает температурой, равной от 60 до 70°C. Отношение загружаемого количества к циркулирующему количеству находится в диапазоне от 1:3 до 1:6. Среднее время пребывания смеси в контуре циркуляции равно от 5 до 15 с. Смесь нагревают до 65-75°C с помощью теплообменника С, в результате чего мелкие и в особенности пластинчатые кристаллы метионина быстро растворяются вследствие их сравнительно большой удельной площади поверхности. Затем смесь попадает в первый вакуумный кристаллизатор D, в верхней части которого при давлении, равном от 180 до 200 мбар, происходит испарение воды и охлаждение смеси. Это приводит к кристаллизации растворенного метионина. Кристаллы метионина осаждаются в вакуумном кристаллизаторе с разной скоростью. Небольшие пластинчатые кристаллы осаждаются медленнее, чем крупные изометрические кристаллы. Суспензию для рециркуляции извлекают из верхней части вакуумного кристаллизатора, в которой находятся главным образом более мелкие пластинчатые кристаллы вследствие их более низкой скорости осаждения. Крупные изометрические кристаллы извлекают из нижней части вакуумного кристаллизатора D и загружают в контур циркуляции второго вакуумного кристаллизатора Е. Здесь циркулирующая суспензия обладает температурой, равной от 30 до 50°C. Отношение загружаемого количества к циркулирующему количеству находится в диапазоне от 1:3 до 1:6. Давление в вакуумном кристаллизаторе Е равно от 60 до 80 мбар. В вакуумном кристаллизаторе Е дополнительно кристаллизуется метионин, в результате чего, в частности, увеличивается средний размер кристаллов метионина. При необходимости суспензию метионина можно поместить в промежуточный резервуар F для обеспечения дополнительного осаждения метионина. В заключение, метионин выделяют путем проведения подходящей стадии G разделения твердое вещество/жидкость, при этом полученный фильтрат при необходимости можно возвратить в резервуар А.
Приведенные ниже примеры предназначены для более подробного описания настоящего изобретения.
Примеры
Пример 1:
Сравнение перекристаллизации в присутствии добавки для обеспечения кристаллизации, предлагаемой в настоящем изобретении, с перекристаллизацией в присутствии известной добавки для обеспечения кристаллизации
60 г Метионина, 305 г воды и 35 г фильтрата, содержащего неочищенный метионин, помещали в колбу и циркулировали через теплообменник с помощью насоса при температуре, равной 40°C. Вследствие присутствия карбоната калия в фильтрате, содержащем неочищенный метионин, концентрация ионов калия составляла примерно 7 г/кг. Затем к этой суспензии при скорости, равной 18 мл/мин, добавляли раствор 150 г метионина в 990,5 мл воды и 109,5 г фильтрата, содержащего неочищенный метионин, нагретого до 90°C, при этом температуру начальной загрузочной суспензии поддерживали равной 40°C. После добавления 650 мл горячего раствора извлекали 500 мл суспензии и затем при скорости, равной 18 мл/мин, добавляли еще 500 мл горячего раствора. Полученную суспензию выгружали, определяли количество пены и метионин отфильтровывали и промывали с помощью 300 мл ацетона. После сушки метионина определяли объемную плотность.
Эксперименты по проведению перекристаллизации проводили в присутствии приведенных ниже добавок, необходимые концентрации устанавливали путем добавления добавки к исходным растворам/суспензиям. Значения концентрации указывают на полное содержание активного ингредиента без содержания воды в пересчете на полную массу раствора или суспензии. Добавка 1 представляла собой водную смесь противовспенивателя и добавки для обеспечения кристаллизации, предлагаемую в ЕР 1451139 А1, содержащую 2 мас. % гидоксиэтилцеллюлозы и 2 мас. % полиэтоксилированной жирной кислоты (C18H37-(CO)-O-(CH2-CH2-O)7-H). Добавка 2 представляла собой водную смесь добавки для обеспечения кристаллизации и композиции противовспенивателя, предлагаемую в настоящем изобретении, содержащую 6,1 мас. % силиконового масла, обладающего кинематической вязкостью, равной 1000 мм2/с (AK 1000, Wacker-Chemie GmbH), 0,25 мас. % гидрофобизированного диоксида кремния (Sipernat D10, Evonik Degussa GmbH), 2,6 мас. % смеси полиэтоксилированных жирных кислот (Intrasol® FS 18/90/7, Ashland Deutschland GmbH), 3,7 мас. % смеси полиэтоксилированных жирных спиртов (2,35 мас. % Marlipal®, Sasol Germany GmbH, 1,35 мас. % Brij C2, Croda Chemicals Europe) и 5,1 мас. % сульфата жирного спирта (Sulfopon® 1218 G, Oleochemicals), описывающегося формулой:
Figure 00000005
где n = от 12 до 18.
В приведенной ниже таблице представлены экспериментально определенные количества пены и значения объемных плотностей метионина для разных типов и концентраций смесей, использующихся в качестве добавок для обеспечения кристаллизации; приведено полное содержание активного ингредиента (без учета содержания воды).
Figure 00000006
Обнаружено, что добавка для обеспечения кристаллизации, предлагаемая в настоящем изобретении, при низкой концентрации обеспечивает такое же эффективное улучшение объемной плотности, как добавка, предлагаемая в ЕР 1451139 А1, и что в отличие от добавки, предлагаемой в ЕР 1451139 А1, добавка, предлагаемая в настоящем изобретении, сохраняет свою эффективность даже при высокой концентрации.
Пример 2:
Перекристаллизация в присутствии чистого противовспенивателя, чистых добавок для обеспечения кристаллизации, и смесей противовспенивателя и добавки для обеспечения кристаллизации
Эксперименты по проведению перекристаллизации по методике, описанной в примере 1, проводили путем добавления чистых добавок для обеспечения кристаллизации, предлагаемых в настоящем изобретении, смесей добавок для обеспечения кристаллизации с противовспенивателем и чистого противовспенивателя. В приведенной ниже таблице представлены экспериментально определенные количества пены и значения объемных плотностей метионина.
Чистый противовспениватель (сравнительный пример 1) использовали в виде водной смеси, содержащей 6,1 мас. % силиконового масла, обладающего кинематической вязкостью, равной 1000 мм2/с (AK 1000, Wacker-Chemie GmbH), 0,25 мас. % гидрофобизированного диоксида кремния (Sipernat D10, Evonik Degussa GmbH), 2,6 мас. % смеси полиэтоксилированных жирных кислот (Intrasol® FS 18/90/7, Ashland Deutschland GmbH), 3,7 мас. % смеси полиэтоксилированных жирных спиртов (2,35 мас. % Marlipal®, Sasol Germany GmbH, 1,35 мас. % Brij C2, Croda Chemicals Europe).
Использующимися чистыми добавками для обеспечения кристаллизации являлись следующие анионогенные поверхностно-активные вещества:
2) CnH2n+1-O-SО3Na, где n = от 12 до 18 (Sulfopon® 1218G, Oleochemicals)
3) CnH2n+1-O-C2H4-SO3Na, где n = от 8 до 18 (Hostapon® SCI 85, Clariant)
4) CnH2n+1-(OC2H4)2-O-SO3Na, где n = 12 (Disponil® FES 27, Cognis)
5) CnH2n+1-(OC2H4)12-O-SO3Na, где n = 12 (Disponil® FES 993, Cognis)
Сравнительный пример 6) CnH2n+1-(OC2H4)30-O-SO3Na, где n = 12 (Disponil® FES 77, Cognis)
Для приготовления смесей противовспенивателя с добавками для обеспечения кристаллизации в каждом случае к указанной выше смеси добавляли 5,1 мас. % соответствующей добавки для обеспечения кристаллизации и содержание воды уменьшалось на 5,1 мас. % вследствие добавления следующих добавок:
7) (1)+(2)
8) (1)+(3)
9) (1)+(4)
10) (1)+(5)
Сравнительный пример 11) (1)+(6)
Figure 00000007
Figure 00000008
Результаты показывают, что чистый противовспениватель не обеспечивает улучшения объемной плотности (строка 1). Добавки для обеспечения кристаллизации 2-5, предлагаемые в настоящем изобретении, обеспечивают повышение объемной плотности до значений, составляющих >500 г/л, но в большинстве случаев вызывают увеличение пенообразования. Комбинации 7-9 противовспенивателя и добавок для обеспечения кристаллизации, предлагаемые в настоящем изобретении, обеспечивают объемные плотности, составляющие >600 г/л, комбинация 10, предлагаемая в настоящем изобретении, обеспечивает объемную плотность, составляющую >500 г/л, и не вызывает увеличения пенообразования.
Пример 3:
Перекристаллизация в присутствии противовспенивателя и добавок для обеспечения кристаллизации или противовспенивателя и смеси добавок для обеспечения кристаллизации
Дополнительные эксперименты по проведению перекристаллизации по методике, описанной в примере 1, проводили с использованием смесей противовспенивателя и добавки для обеспечения кристаллизации или смесей противовспенивателя и нескольких добавок для обеспечения кристаллизации. Для этой цели использовали следующие смеси:
8) (1)+(3) при концентрациях, равных 200, 400, 1200, 2000 и 4000 ч./млн
9) (1)+(4) при концентрациях, равных 200, 400, 1000, 1200, 2000 и 4000 ч./млн
10) (1)+(5) при концентрациях, равных 200, 400, 1000, 1200, 2000 и 4000 ч./млн
11) (1)+((3)+(2) при соотношении 1:1) при концентрациях, равных 200, 400, 1200, 2000 и 4000 ч./млн
12) (1)+((4)+(2) при соотношении 1:2) при концентрациях, равных 200, 400, 1200, 2000 и 4000 ч./млн
Figure 00000009
Figure 00000010
Figure 00000011
Figure 00000012
Figure 00000013
Результаты, обобщенные в приведенных выше таблицах, показывают, что, в отличие от способа, описанного в ЕР 1451139 А1, увеличение концентрации исследуемых добавок не приводит к уменьшению объемной плотности или по меньшей мере не приводит к существенному уменьшению объемной плотности.
Сравнительный пример 1:
Перекристаллизация в присутствии анионогенных поверхностно-активных веществ
Эксперименты по проведению перекристаллизации проводили с использованием анионогенных поверхностно-активных веществ: (13) додецилбензолсульфоната натрия и (14) диоктилсульфосукцината натрия, известного из JP 46019610 В. В этом примере каждое чистое поверхностно-активное вещество использовали при концентрации, равной 400 ч./млн.
Добавка Концентрация ( ч./млн) Количество пены (мл) Объемная плотность (г/л)
13 400 >400 348
14 400 0 446
Экспериментальные данные показывают, что эти поверхностно-активные вещества обеспечивают результаты, худшие, чем результаты, полученные для поверхностно-активных веществ, исследуемых в примере 2.
Пример 4:
Перекристаллизация в присутствии неионогенных поверхностно-активных веществ
Эксперименты по проведению перекристаллизации по методике, описанной в примере 1, проводили путем добавления неионогенных поверхностно-активных веществ. В экспериментах по проведению перекристаллизации использовали приведенные ниже поверхностно-активные вещества на основе сорбитана, где каждое из поверхностно-активных веществ использовали при концентрации, равной 400 ч./млн.
15) Tego SMO V; сорбитанмоноолеат (PET10-084)
16) Tego STO V; сорбитантриолеат (РЕТ10-086)
17) Tego SMS 60; полиэтоксилированный сорбитанмоностеарат (Pet10-087)
18) Tego SMS; сорбитанмоностеарат (Pet10-088)
19) Span 60; сорбитанмоностеарат (Pet10-095)
20) Span 80; сорбитанмоноолеат (Pet10-096)
21) Span 83; сорбитансесквиолеат (Pet10-097)
22) Span 65; сорбитантристеарат (Pet12-167)
23) Tween 61; полиэтоксилированный (4 ЭО (этиленоксид)) сорбитантристеарат (Pet12-169)
24) Tween 65; полиэтоксилированный (20 ЭО) сорбитантристеарат (Pet10-089)
Figure 00000014
С использованием неионогенного поверхностно-активного вещества, полиэтоксилированного сорбитанмоностеарата (Tween™ 65, выпускающийся фирмой Croda), при концентрации, равной 400 ч./млн, обеспечивается объемная плотность метионина, равная 616 г/л.
Пример 5:
Влияние концентрации ионов калия на объемную плотность метионина
1000 г Горячего (95°C) раствора 100 г метионина в 900 г воды при перемешивании в течение 2 ч по каплям добавляли к теплой (40°C) суспензии 20 г метионина в 180 г воды, поддерживая температуру исходной загрузочной суспензии, равной 40°C. Эксперименты проводили в присутствии полного количества активного ингредиента, равного 400 ч./млн, в пересчете на полную массу раствора/суспензии смеси добавки для обеспечения кристаллизации и противовспенивателя, предлагаемой в настоящем изобретении, и количества гидрокарбоната калия, соответствующего концентрации ионов калия, приведенной в таблице. Смесь добавки для обеспечения кристаллизации и противовспенивателя, предлагаемая в настоящем изобретении, содержала водный раствор 6,1 мас. % силиконового масла, обладающего кинематической вязкостью, равной 1000 мм2/с (AK 1000, Wacker-Chemie GmbH), 0,25 мас. % гидрофобизированного диоксида кремния (Sipernat D10, Evonik Degussa GmbH), 2,6 мас. % смеси полиэтоксилированных жирных кислот (Intrasol® FS 18/90/7, Ashland Deutschland GmbH), 3,7 мас. % смеси полиэтоксилированных жирных спиртов (2,35 мас. % Marlipal®, Sasol Germany GmbH, 1,35 мас. % Brij C2, Croda Chemicals Europe) и 5,1 мас. % сульфата жирного спирта (Sulfopon® 1218 G, Oleochemicals), описывающегося формулой:
Figure 00000015
где n = от 12 до 18. Концентрация чистой добавки для обеспечения кристаллизации составляла 117 ч./млн.
Объемную плотность осадившегося метионина определяли после фильтрования и сушки.
Figure 00000016
Таким образом, добавление ионов калия приводит к повышению объемной плотности даже при низкой концентрации сульфата жирного спирта, использующегося в качестве добавки для обеспечения кристаллизации.

Claims (13)

1. Способ получения D,L-метионина, в котором диоксид углерода загружают в водный раствор метионината калия, полученный путем гидролиза 5-(2-метилмеркаптоэтил)гидантоина, чтобы осадить неочищенный метионин, который отделяют и очищают, где для очистки готовят водный раствор отделенного неочищенного метионина и подвергают перекристаллизации, отличающийся тем, что раствор, из которого проводят перекристаллизацию, содержит противовспениватель, ионы калия, а также добавку для обеспечения кристаллизации, где противовспениватель содержит силиконовое масло и где добавкой для обеспечения кристаллизации является анионогенное поверхностно-активное вещество или смесь разных анионогенных поверхностно-активных веществ, и тем, что перекристаллизацию проводят путем добавления горячего (60-110°С) раствора метионина в теплую (35-80°С) суспензию метионина, температура которой ниже температуры добавляемого раствора, при этом в ходе добавления температуру суспензии метионина поддерживают равной от 35 до 80°С, отличающийся тем, что добавкой для обеспечения кристаллизации является одно из соединений, представленных формулами 1-3, или их смесь:
Figure 00000017
Figure 00000018
Figure 00000019
,
где n обозначает целое число, равное от 1 до 12, М обозначает натрий или калий и R1, R2 и R3 обозначают линейную, разветвленную или циклическую насыщенную или ненасыщенную С820-алкильную группу или арильную группу.
2. Способ по п.1, отличающийся тем, что n равно 2 и R1, R2 и R3 обозначают линейные насыщенные С818-алкильные группы.
3. Способ по п.1 или 2, отличающийся тем, что концентрация добавки для обеспечения кристаллизации в растворе, из которого происходит перекристаллизация, равна по меньшей мере 50 ч./млн в пересчете на полную массу раствора и/или суспензии.
4. Способ по одному из пп.1-3, отличающийся тем, что концентрация ионов калия в растворе, из которого происходит перекристаллизация, равна от 1 до 30 г/кг.
5. Способ по одному из пп.1-4, отличающийся тем, что концентрация ионов калия в растворе, из которого происходит перекристаллизация, равна от 5 до 10 г/кг.
6. Способ по одному из пп.1-5, отличающийся тем, что перекристаллизацию проводят путем добавления горячего (85-110°С) раствора неочищенного метионина в теплую (35-60°С) суспензию метионина, при этом температуру образующейся таким образом смеси поддерживают постоянной, равной от 35 до 60°С.
7. Способ по одному из пп.1-5, отличающийся тем, что перекристаллизацию проводят в две стадии, где на первой стадии перекристаллизации горячий (85-110°С) раствор неочищенного метионина добавляют в теплую (60-80°С) суспензию метионина и температуру образующейся таким образом смеси поддерживают постоянной, равной от 60 до 80°С, и где на второй стадии перекристаллизации теплую (60-80°С) суспензию метионина, полученную на первой стадии перекристаллизации, добавляют в теплую (35-60°С) суспензию метионина, при этом температуру образующейся таким образом смеси поддерживают постоянной, равной от 35 до 60°С.
8. Способ по одному из пп.1-7, отличающийся тем, что перекристаллизацию проводят путем вакуумной кристаллизации, где на первой стадии перекристаллизации давление равно от 100 до 1000 мбар и, если проводят двухстадийную перекристаллизацию, то на второй стадии перекристаллизации давление равно от 35 до 200 мбар.
9. Способ по одному из пп.1-8, отличающийся тем, что некоторое количество суспензии метионина извлекают из смеси на первой и/или одной из других стадий перекристаллизации и повторно добавляют через контур циркуляции, при этом температуру суспензии в контуре циркуляции повышают на 6-12°С.
RU2014141935A 2012-03-20 2013-02-26 Способ получения метионина RU2640656C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP12160257.7 2012-03-20
EP12160257.7A EP2641898A1 (de) 2012-03-20 2012-03-20 Verfahren zur Herstellung von Methionin
PCT/EP2013/053795 WO2013139562A1 (en) 2012-03-20 2013-02-26 Process for the preparation of methionine

Publications (2)

Publication Number Publication Date
RU2014141935A RU2014141935A (ru) 2016-05-20
RU2640656C2 true RU2640656C2 (ru) 2018-01-11

Family

ID=47749849

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014141935A RU2640656C2 (ru) 2012-03-20 2013-02-26 Способ получения метионина

Country Status (12)

Country Link
US (2) US9156782B2 (ru)
EP (3) EP2641898A1 (ru)
JP (1) JP6143840B2 (ru)
KR (1) KR101988692B1 (ru)
CN (2) CN104203912B (ru)
BR (1) BR112014023279B1 (ru)
ES (1) ES2662937T3 (ru)
MX (1) MX354153B (ru)
MY (1) MY167899A (ru)
RU (1) RU2640656C2 (ru)
SG (1) SG11201405870SA (ru)
WO (1) WO2013139562A1 (ru)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5930329B2 (ja) 2011-02-23 2016-06-08 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH 3‐(メチルチオ)プロパナール及びシアン化水素からの2‐ヒドロキシ‐4‐(メチルチオ)酪酸ニトリルの製法
JP2016520630A (ja) 2013-06-03 2016-07-14 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH アクロレインの製造法
EP2848607A1 (de) 2013-09-17 2015-03-18 Evonik Industries AG Verfahren zur Gewinnung von Methionin
CN104744326B (zh) * 2015-02-12 2016-08-10 山东新和成氨基酸有限公司 一种连续制备高堆积密度甲硫氨酸结晶的方法
CN106008297B (zh) * 2016-06-03 2018-11-30 宁夏紫光天化蛋氨酸有限责任公司 一种蛋氨酸新晶型ⅱ及其制备方法
CN106083675B (zh) * 2016-06-03 2018-07-27 宁夏紫光天化蛋氨酸有限责任公司 一种蛋氨酸新晶型i及其制备方法
KR20180078621A (ko) 2016-12-30 2018-07-10 씨제이제일제당 (주) 결정화 기술을 이용한 l-메티오닌 결정의 제조방법
US10829447B2 (en) 2017-04-27 2020-11-10 Sumitomo Chemical Company, Limited Methionine production method and production equipment
JP7431581B2 (ja) * 2017-05-15 2024-02-15 エボニック オペレーションズ ゲーエムベーハー メチオニンの製造方法
CN109384696A (zh) * 2017-08-03 2019-02-26 宁夏紫光天化蛋氨酸有限责任公司 一种获得高纯度高堆积密度蛋氨酸的方法
CN113993841B (zh) * 2019-06-18 2024-03-22 赢创运营有限公司 用于制备d,l-甲硫氨酸的方法
CN111100051B (zh) * 2019-12-31 2022-01-28 山东新和成氨基酸有限公司 在甲硫氨酸制备过程中使用的添加剂及甲硫氨酸的制备方法
EP4229034A1 (en) 2020-10-13 2023-08-23 Evonik Operations GmbH D,l-methionine with an optimized particle size distribution
CN112679397B (zh) * 2020-12-21 2023-08-01 宁夏紫光天化蛋氨酸有限责任公司 一种dl-蛋氨酸的制备方法
CN114920675B (zh) * 2022-04-20 2024-02-06 天津大学 一种蛋氨酸晶体及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2097373C1 (ru) * 1993-07-28 1997-11-27 Рон-Пуленк Нютрисьон Анималь Способ кристаллизации метионина
JPH11158140A (ja) * 1997-11-26 1999-06-15 Sumitomo Chem Co Ltd メチオニンの製造方法
WO2003050071A1 (en) * 2001-12-08 2003-06-19 Degussa Ag Process for the preparation of methionine
JP2004292324A (ja) * 2003-03-26 2004-10-21 Nippon Soda Co Ltd メチオニンの精製方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4619610B1 (ru) * 1966-08-25 1971-06-01
JPS4619610Y1 (ru) 1968-09-16 1971-07-08
JPS5921732A (ja) * 1982-07-28 1984-02-03 ユニチカ株式会社 強撚糸調特殊複合糸の製造方法
JPH0619610A (ja) 1992-07-03 1994-01-28 Fuji Elelctrochem Co Ltd 故障診断装置付き座標入力装置
DE19547236A1 (de) * 1995-12-18 1997-07-03 Degussa Verfahren zur Herstellung von D,L-Methionin oder dessen Salz
JP3947269B2 (ja) 1997-05-06 2007-07-18 日本曹達株式会社 粒状dl−メチオニン結晶およびその製造方法
CN1178909C (zh) * 1999-05-21 2004-12-08 住友化学工业株式会社 蛋氨酸的制备方法
JP2001340098A (ja) * 2000-03-30 2001-12-11 Nippon Shokubai Co Ltd L−アスパラギン酸の製造方法
CN1589259A (zh) * 2001-11-29 2005-03-02 日本曹达株式会社 蛋氨酸的制备方法
CN103476938B (zh) * 2010-12-29 2016-10-12 Cj第一制糖株式会社 L-甲硫氨酸和相关产物的生产方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2097373C1 (ru) * 1993-07-28 1997-11-27 Рон-Пуленк Нютрисьон Анималь Способ кристаллизации метионина
JPH11158140A (ja) * 1997-11-26 1999-06-15 Sumitomo Chem Co Ltd メチオニンの製造方法
WO2003050071A1 (en) * 2001-12-08 2003-06-19 Degussa Ag Process for the preparation of methionine
JP2004292324A (ja) * 2003-03-26 2004-10-21 Nippon Soda Co Ltd メチオニンの精製方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
База данных DWPI, запись AN 1971-36844S, документа JP 46-019610 B (1971 г.). *
База данных DWPI, запись AN 1971-36844S, реферат документа JP 46-019610 B (1971 г.). *

Also Published As

Publication number Publication date
EP3187489B1 (en) 2020-11-25
WO2013139562A1 (en) 2013-09-26
EP2828239B1 (en) 2018-01-31
EP2828239A1 (en) 2015-01-28
JP2015515458A (ja) 2015-05-28
ES2662937T3 (es) 2018-04-10
MX354153B (es) 2018-02-15
MX2014011130A (es) 2014-12-10
SG11201405870SA (en) 2014-10-30
EP2641898A1 (de) 2013-09-25
US9156782B2 (en) 2015-10-13
CN104203912B (zh) 2016-08-17
KR101988692B1 (ko) 2019-06-12
RU2014141935A (ru) 2016-05-20
JP6143840B2 (ja) 2017-06-07
US20160068480A1 (en) 2016-03-10
BR112014023279B1 (pt) 2021-06-01
US20150051421A1 (en) 2015-02-19
CN105646304B (zh) 2018-09-28
CN105646304A (zh) 2016-06-08
EP3187489A1 (en) 2017-07-05
CN104203912A (zh) 2014-12-10
KR20140138946A (ko) 2014-12-04
US9464045B2 (en) 2016-10-11
MY167899A (en) 2018-09-26

Similar Documents

Publication Publication Date Title
RU2640656C2 (ru) Способ получения метионина
RU2678585C2 (ru) Способ непрерывной подготовки кристаллов метионина высокой насыпной плотности
RU2679309C2 (ru) Способ получения метионина
WO2003050071A1 (en) Process for the preparation of methionine
JP6103017B2 (ja) 硫酸ニッケルの晶析設備および晶析方法
JP7388647B2 (ja) メチオニンの製造プロセスで用いられる添加剤及びメチオニンの製造方法
CN113993841B (zh) 用于制备d,l-甲硫氨酸的方法
JP2001072656A (ja) メチオニン結晶粉体物性の制御方法
CZ293399B6 (cs) Způsob čištění karbazolesterového prekurzoru 6-chlor-alfa-methylkarbazol-2-octové kyseliny
UA55016A (ru) Translated By PlajСПОСОБ КРИСТАЛЛИЗАЦИИ СОЛЕЙ ИЗ РАСТВОРОВ

Legal Events

Date Code Title Description
HZ9A Changing address for correspondence with an applicant
PD4A Correction of name of patent owner