RU2591097C2 - Способ получения листа из нормализованной кремнистой стали - Google Patents
Способ получения листа из нормализованной кремнистой стали Download PDFInfo
- Publication number
- RU2591097C2 RU2591097C2 RU2014132738/02A RU2014132738A RU2591097C2 RU 2591097 C2 RU2591097 C2 RU 2591097C2 RU 2014132738/02 A RU2014132738/02 A RU 2014132738/02A RU 2014132738 A RU2014132738 A RU 2014132738A RU 2591097 C2 RU2591097 C2 RU 2591097C2
- Authority
- RU
- Russia
- Prior art keywords
- furnace
- section
- zones
- oxidative heating
- energy supply
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1244—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
- C21D8/1261—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/26—Methods of annealing
- C21D1/28—Normalising
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/34—Methods of heating
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/74—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
- C21D1/76—Adjusting the composition of the atmosphere
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1216—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
- C21D8/1222—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1216—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
- C21D8/1233—Cold rolling
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Thermal Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Silicon Compounds (AREA)
- Furnace Details (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Изобретение относится к области металлургии. Для повышения качества кремнистой листовой стали за счет исключения образования плотных оксидов способ получения листа из нормализованной кремнистой стали включает стадии выплавки стали, горячей прокатки и нормализации. На стадии нормализации используют печь для нормализации, содержащую секцию печи для безокислительного нагрева. Секция печи для безокислительного нагрева содержит более 3 зон. Уровень подвода энергии зон печи, используемых в секции печи для безокислительного нагрева, настраивают так, чтобы коэффициент избытка воздуха α секции печи для безокислительного нагрева попадал в диапазон 0,8≤ α<1,0. 4 з.п. ф-лы, 3 табл., 2 ил.
Description
Область техники
Настоящее изобретение относится к способу получения высококачественных листов нормализованной кремнистой стали.
Уровень техники
Производство нетекстурированной электротехнической стали как в своей стране, так и заграницей постепенно вступает в эру избыточного производства, и изделия из текстурированной кремнистой стали низкого сорта также вступают в стадию насыщения. Для того чтобы сохранить для изделий место в жесткой конкуренции на рынке, большое значение имеет повышение качества изделия или снижение его цены. Способы получения кремнистой стали включают выплавку стали, горячую прокатку, нормализацию, кислотное травление, холодную прокатку и последующий отжиг. Нетекстурированную кремнистую сталь часто подвергают обработке нормализацией, чтобы получить крупнозернистую структуру для горячекатаного листа перед холодной прокаткой так, чтобы достичь высокой прочности 0vw текстуры для холоднокатаного листа после отжига. Нормализация изделий из текстурированной кремнистой стали направлена на регулирование размера зерна и текстуры, осуществление регулирования твердой фазы, образование свободного С и N, осаждение ALN (алюмонитридов) и т.д.
Если процесс нормализации не подвергается тщательному регулированию, т.е. в фактическом способе производства неэффективно регулируют уровень потребляемой энергии, коэффициент избытка не достигает уровня стабильного регулирования <1,0, и фактический коэффициент избытка составляет >1,0. В результате возникает локальная избыточная концентрация кислорода в печи, и восстановительная атмосфера не может сохраняться во всей секции печи для безокислительного нагрева. Локальный избыток кислорода взаимодействует с Si, Al, Mn и т.д. Эти оксиды, присоединенные к поверхности листа, очень трудно удалить при последующей дробеструйной обработке и кислотном травлении. После холодной прокатки пылевидные точечные дефекты и не ощутимые на ощупь полосы можно обнаружить локально или по всей ширине поверхности прокатанного твердого листа.
Япония является мировым лидером в показателях уровня технологии получения кремнистой стали. Например, в японской патентной публикации SHO 48-19048 главное внимание уделено тому, как усилить обработку кислотным травлением для удаления уже полученных плотных оксидов настолько, насколько это возможно. В китайской книге Electrical Steel под редакцией Не Zhongzhi, также описывают, как устранить оксиды, присоединенные к поверхности листа. Конкретно, операции являются следующими: обработка кислотным травлением отпущенного стального листа в концентрированной соляной кислоте, содержащей 10% HF или 1~2% HF + 6% HNO3 при 70°С, или обработка его химическим полированием посредством Н3РО4 + HF или электролитическим полированием. После полного удаления присоединенных оксидов лист подвергают последующей обработке, и потери железа в готовых изделиях из кремнистой стали значительно снижаются.
Во всех вышеприведенных документах предшествующего уровня техники предложено усиление обработки кислотным травлением, чтобы удалить плотные оксиды с поверхности листа на стадиях, которые следуют за нормализацией, но это представляет собой только последующие восстановительные меры. Они обычно создают такие проблемы, как сложный способ и повышенная стоимость на стадиях, следующих за нормализацией. Таким образом, все еще остается потребность в обеспечении способа предотвращения образования плотных оксидов в процессе нормализации.
Описание изобретения
Целью настоящего изобретения является обеспечение способа получения нормализованной кремнистой листовой стали высокого качества. «Высокое качество» означает, что после нормализации посредством этого способа на листе не образуется никаких плотных оксидов, которые нельзя удалить последующим кислотным травлением. Способ по настоящему изобретению может успешно предотвратить образование плотных оксидов при нормализации и позволяет повысить качество нормализованной кремнистой листовой стали. Посредством способа по настоящему изобретению упрощаются стадии, которые следуют за нормализацией, и снижается стоимость.
В настоящем изобретении обеспечивают способ получения нормализованной кремнистой листовой стали, включающий стадии выплавки стали, горячей прокатки и нормализации, где печь для нормализации включает секцию печи для безокислительного нагрева, которую используют на стадии нормализации и которая включает три или более зоны печи, отличающийся тем, что уровень подвода энергии зон печи, используемых в указанной секции печи для безокислительного нагрева, регулируют так, чтобы обеспечить коэффициент избытка α в указанной секции печи для безокислительного нагрева в диапазоне 0,8≤α<1,0, где уровень подвода энергии представляет собой отношение фактической мощности нагрузки при горении форсунок, используемых в зоне печи, к полной мощности нагрузки форсунок, используемых в зоне печи, и коэффициент избытка представляет собой отношение фактического количества воздуха для горения к теоретическому количеству воздуха для горения.
В способе по настоящему изобретению уровень подвода энергии зон печи, используемых в указанной секции печи для безокислительного нагрева, настраивают так, что он находится в диапазоне 15%~95%.
В способе по настоящему изобретению уровни подвода энергии используемых указанных зон печи настраивают посредством закрытия, по меньшей мере, одной зоны указанной секции печи для безокислительного нагрева.
В способе по настоящему изобретению уровни подвода энергии используемых указанных зон печи настраивают посредством регулирования количества форсунок, обслуживающих зоны в указанной секции печи для безокислительного нагрева.
В способе по настоящему изобретению уровни подвода энергии используемых указанных зон печи настраивают посредством регулирования уровня нагревания в процессе нагревания в указанной секции печи для безокислительного нагрева.
Способ по настоящему изобретению позволяет успешно предотвратить образование плотных оксидов в процессе нормализации и повысить качество нормализованной кремнистой листовой стали. Посредством способа по настоящему изобретению упрощаются стадии, следующие за нормализацией, и снижается стоимость.
Краткое описание чертежей
На Фиг. 1 показано влияние уровня подвода энергии зон печи в секции безокислительного нагрева печи для нормализации на фактический коэффициент избытка.
На Фиг. 2 показана схема подачи и закрытия форсунок в четвертой зоне (NOF4), используемой в секции печи для безокислительного нагрева печи для нормализации, где форсунки распределены в верхней части или в нижней части рабочей стороны или приводной стороны печи для нормализации, v представляет собой состояние подачи в форсунку, тогда как х обозначает закрытие форсунки.
Наилучший режим реализации изобретения
Ниже подробно описан способ по настоящему изобретению, в сопровождении с нижеприведенными чертежами и примерами, но настоящее изобретение не ограничивается этим.
Способ получения нормализованных листов кремнистой стали включает стадии выплавки стали, горячей прокатки и нормализации. На стадии нормализации печь для нормализации последовательно включает вдоль направления движения полосы стали секцию предварительного нагрева, секцию безокислительного нагрева, перемычку шахты печи (высота камеры печи резко уменьшается), различные последовательно расположенные секции печи для нормализационной обработки и герметизированное выпускное устройство. Чтобы точно регулировать повышение температуры в секции печи для безокислительного нагрева, секция печи для безокислительного нагрева может включать две зоны печи и преимущественно включает три зоны печи. При этом различные последовательно расположенные секции печи для нормализационной обработки включают по меньшей мере одну секцию печи, выбранную из секции нагревания/охлаждения с помощью радиационной трубы, секции выдержки стали с помощью электрической/радиационной трубы и секции охлаждения с помощью радиационной трубы/водной рубашки, и указанные различные последовательно расположенные секции печи для нормализационной обработки расположены в случайной последовательности. Нагрев перед перемычкой шахты печи является безокислительным нагревом путем непосредственного пламенного сжигания и защитный газ N2 загружают между перемычкой шахты печи и герметизированным выпускным устройством (включая перемычку шахты печи и герметизированное выпускное устройство). Функции печи для нормализации включают предварительный нагрев, нагрев, выдержку стали и охлаждение.
В настоящем изобретении путем настройки уровня подвода энергии (тепловой нагрузки) зон печи, используемых в секции печи для безокислительного нагрева, регулируют коэффициент избытка α секции печи для безокислительного нагрева в диапазоне 0,8≤α<1,0, осуществляя стабильное сжигание в восстановительной атмосфере, полностью исключая источник кислорода, необходимый для образования плотных оксидов, и улучшая качество листов нормализованной кремнистой стали. Массовые процентные соотношения основных элементов кремнистой стали описываются ниже: 0,5≤Si≤6,5%, 0,05≤Mn≤0,55%, 0,05≤Al≤0,7%, С≤0,05%, Р≤0,03%, S≤0,03%, и остальное представляет собой Fe и неизбежные примеси. Это только общий химический состав кремнистой стали и настоящее изобретение не ограничивается этим составом, а также может включать другие химические соединения.
Уровень подвода энергии представляет собой отношение фактической мощности нагрузки при горении форсунок, используемых в зоне печи, к полной мощности нагрузки форсунок, используемых в зоне печи, и коэффициент избытка представляет собой отношение фактического количества воздуха для горения к теоретическому количеству воздуха для горения. При определенной нагрузке при горении форсунки секции печи для безокислительного нагрева вообще имеют стабильную производительность горения с коэффициентом избытка, установленном между 0,80 и 1,0. В настоящем исследовании изобретатель обнаружил, что в отношении больших нагревательных печей для нормализации стабильное регулирование фактического коэффициента избытка относится не только к самим форсункам, но также к конкретной структуре печи и размещению форсунок.
Целью регулирования уровня подвода энергии является обеспечение горения форсунок при оптимальном уровне подвода энергии и осуществлении стабильного горения при коэффициенте избытка, составляющем 0,8-1,0 в способе производства. Когда дым от горения приходит в контакт с полосой стали, воздух и топливо полностью сгорают, и отсутствует избыток кислорода. В случае несоответствующего уровня подвода энергии, хотя коэффициент избытка устанавливают между 0,8 и 1,0, фактический коэффициент избытка будет превышать 1 и избыточный кислород будет локально присутствовать внутри камеры печи; это означает, что будет присутствовать кислород для образования плотных оксидов, и не будет поддерживаться восстановительная атмосфера внутри всей камеры печи. Например, когда уровень подвода энергии зон печи, используемых в секции печи для безокислительного нагрева, составляет менее 15%, возмущение потока воздуха внутри печи возрастает, нельзя удовлетворить требованию по нагрузке для стабильного горения форсунок, горение угольного газа является несоответствующим и присутствует локальный избыток кислорода. Когда уровень подвода энергии зон печи, используемых в секции печи для безокислительного нагрева, составляет более 95%, регулятор потока (особенно двухстворчатый клапан) переходит в нечувствительную к регулированию зону, регулирование потока становится неустойчивым, и наконец становится невозможным осуществлять регулирование коэффициента избытка и некоторый избыток кислорода будет присутствовать локально в секции печи для безокислительного нагрева. Чтобы избежать локального избытка кислорода в данной секции печи, вызванного двумя указанными выше условиями, уровень подвода энергии зон печи, используемых в секции печи для безокислительного нагрева, необходимо регулировать от 15% до 95%, так чтобы регулировать коэффициент избытка а секции печи для безокислительного нагрева в диапазоне 0,8≤α<1,0, окончательно обеспечивая восстановительную атмосферу во всей секции печи, полностью исключая источник кислорода, необходимый для образования плотных оксидов, при этом получая листы высококачественной нормализованной кремнистой стали и изготавливая высококачественные конечные изделия из кремнистой стали посредством дробеструйной обработки, кислотного травления, холодной прокатки и последующего отжига.
Уровень подвода энергии используемых зон печи можно настроить путем закрытия, по меньшей мере, одной зоны печи указанной секции печи для безокислительного нагрева. Закрытие определенной зоны печи секции печи для безокислительного нагрева означает полное закрытие всех клапанов зоны печи, так чтобы никакое количество воздуха или угольного газа не могло поступать в печную камеру зоны печи секции печи для безокислительного нагрева. На основании своего определения уровень подвода энергии представляет собой отношение фактической мощности нагрузки при горении форсунок, используемых в зоне печи, к полной мощности нагрузки форсунок, используемых в зоне печи. Так как тепло, требуемое для нагрева полосы стали от нормальной температуры до выбранной целевой температуры, является постоянным, закрытие определенной зоны печи означает увеличение фактической нагрузки при горении других незакрытых зон печи, то есть увеличение фактической мощности нагрузки при горении работающих форсунок в используемых зонах печи. Принимая во внимание, что спроектированная полная мощность нагрузки форсунок в каждой зоне печи постоянна, таким образом, уровень подвода энергии первоначальной зоны печи перераспределяется на другие незакрытые зоны печи. Таким образом, уровень подвода энергии используемых зон печи настраивают путем закрытия, по меньшей мере, одной зоны печи секции печи для безокислительного нагрева. Помимо этого, количество подлежащих закрытию зон печи можно определить с помощью требуемого диапазона коэффициента избытка секции печи для безокислительного нагрева.
С другой стороны, уровень подвода энергии используемых зон печи можно настроить путем подбора количества работающих форсунок в зонах печи в указанной секции печи для безокислительного нагрева. На основании своего определения уровень подвода энергии представляет собой отношение фактической мощности нагрузки при горении форсунок, используемых в зоне печи, к полной мощности нагрузки форсунок, используемых в зоне печи. Закрывая определенные форсунки в зоне печи, уменьшают полную мощность нагрузки используемых форсунок и таким образом настраивают уровень подвода энергии используемых зон печи. Таким образом, уровень подвода энергии используемых зон печи настраивают путем закрытия, по меньшей мере, одной форсунки используемых зон печи в секции печи для безокислительного нагрева. Помимо этого, количество подлежащих закрытию форсунок можно определить с помощью требуемого диапазона коэффициента избытка секции печи для безокислительного нагрева.
Помимо этого уровень подвода энергии используемых зон печи можно настроить путем подбора уровня нагрева в способе нагрева секции печи для безокислительного нагрева. С изменением уровня нагрева также изменяется подвод энергии и таким образом настраивают уровень подвода энергии используемых зон печи.
В способе по настоящему изобретению путем настройки уровня подвода энергии (тепловой нагрузки) зон печи, используемых в секции печи для безокислительного нагрева, можно регулировать коэффициент избытка α секции печи для безокислительного нагрева в диапазоне 0,8≤α<1,0, так чтобы стабильно регулировать восстановительную атмосферу всей секции печи для безокислительного нагрева, полностью исключая источник кислорода, необходимый для образования плотных оксидов во всей секции печи, получая листы высококачественной нормализованной кремнистой стали и изготавливая высококачественные конечные изделия из кремнистой стали посредством дробеструйной обработки, обработки кислотным травлением, холодной прокатки, отжига и обработки по нанесению покрытия.
Примеры приготовления
Способы получения рулона горячекатаной стали включают такие стадии, как выплавку стали и горячую прокатку, как описано ниже:
1) Способ выплавки стали включает продувку конвертера, циркуляционно-вакуумное рафинирование и способ непрерывной разливки. Посредством указанных выше способов можно строго контролировать составляющие, включения и микроструктуру изделий, поддерживать неизбежные примеси и остаточные элементы в стали на относительно низком уровне, уменьшать количество включений в стали и укрупнять их, и попытаться получить литые заготовки с высокой долей равноосных зерен при разумных затратах посредством ряда технологий выплавки стали и согласно различным категориям изделий.
2) Способ горячей прокатки включает различные стадии, подобные нагреву, черновой прокатке, прецизионной прокатке, ламинарному охлаждению и навивке в рулон при различных температурах применительно к заготовкам сортов стали непрерывного литья, сконструированных на стадии 1. Основываясь на способе горячей прокатки, независимо разработанном Baosteel, можно эффективно сберегать энергию и получать высококачественные горячие рулоны с высокой производительностью с превосходной характеристикой, которая может удовлетворять требованиям к характеристике и качеству конечных изделий. Химические составляющие стали приготовленного рулона горячекатаной стали описаны ниже: 0,5≤Si≤6,5%, 0,05≤Mn≤0,55%, 0,05≤Al≤0,7%, С≤0,05%, Р≤0,03%, S≤0,03%, и остальное является Fe и неизбежными примесями.
Примеры
Рулон горячекатаной стали, состоящей из С: 0,0074%, Si: 3,24%, Mn: 0,08%, Р; 0,005% и S: менее 0,007%, проводили через нормализацию с помощью различных способов и качество поверхности изделия после кислотного травления и холодной прокатки описано в таблице 1.
ЗП1~6 относятся к зонам печи от первой до шестой в секции безокислительного нагрева печи для нормализации.
В сравнительном примере 1 уровень подвода энергии последних двух зон печи в секции печи для безокислительного нагрева обе ниже 15%, так что коэффициент избытка α последних двух зон печи в секции печи для безокислительного нагрева нельзя регулировать в пределах диапазона 0,8≤α<1,0. В этом случае возмущение потока воздуха внутри печи возрастает, нельзя удовлетворить требованию по нагрузке для стабильного горения форсунок, горение угольного газа является несоответствующим и присутствует локальный избыток кислорода, так что невозможно осуществить стабильное регулирование восстановительной атмосферы и исключить источник кислорода, требуемого для образования плотных оксидов. Так как изделие должно проходить через все зоны печи, если одна зона печи не удовлетворяет требованию, то на нормализованных листах после кислотного травления будет присутствовать остаток оксида.
В примере 1 первые две зоны в секции печи для безокислительного нагрева закрыты, уровни подвода энергии других четырех зон печи в секции печи для безокислительного нагрева настраивают так, чтобы они попадали в диапазон 15%~95%, коэффициент избытка α различных зон печи в секции печи для безокислительного нагрева регулируют внутри диапазона 0,8≤α<1,0, чтобы стабильно регулировать восстановительную атмосферу во всей секции печи для безокислительного нагрева и полностью исключить источник кислорода, требуемого для образования плотных оксидов во всей секции печи. В этом случае на нормализованных листах после кислотного травления отсутствует остаток оксида.
На Фиг. 1 показано влияние уровня подвода энергии на фактический коэффициент избытка в примере 1 и сравнительном примере 1. Прерывистая линия представляет линию с коэффициентом избытка 1. В примере 1 первые две зоны печи в секции печи для безокислительного нагрева закрыты, уровни подвода энергии других четырех зон печи в секции печи для безокислительного нагрева настраивают так, чтобы они попадали в диапазон 15%~95%, коэффициент избытка α различных зон печи в секции печи для безокислительного нагрева можно регулировать внутри диапазона 0,8≤α<1,0. В сравнительном примере 1, так как уровни подвода энергии последних двух зон печи в секции печи для безокислительного нагрева обе ниже 15%, фактический коэффициент избытка значительно флуктуирует и его нельзя регулировать внутри диапазона 0,8≤α<1,0.
Рулон горячекатаной стали, состоящей из С: 0,0028%, Si: 2,75%, Mn: 0,09%, Al: 0,12%, Р; 0,005% и S: менее 0,007%, проводили через нормализацию с помощью различных способов и качество поверхности изделия после кислотного травления и холодной прокатки описано в таблице 2.
В сравнительном примере 2 уровень подвода энергии четвертной зоны печи (ЗП4) в секции печи для безокислительного нагрева составляет менее 15%, так что коэффициент избытка α четвертой зоны печи (ЗП4) в секции печи для безокислительного нагрева нельзя регулировать в пределах диапазона 0,8≤α<1,0. В этом случае возмущение потока воздуха внутри печи возрастает нельзя удовлетворить требованию по нагрузке для стабильного горения форсунок, горение угольного газа является несоответствующим и присутствует локальный избыток кислорода, так что невозможно осуществить стабильное регулирование восстановительной атмосферы и таким образом исключить источник кислорода, требуемого для образования плотных оксидов. Так как изделие должно проходить через все зоны печи, если одна зона печи не удовлетворяет требованию, то на нормализованных листах после кислотного травления будет присутствовать остаток оксида.
В примере 2 путем закрытия форсунок в различных местах четвертой зоны печи (ЗП4) в секции печи для безокислительного нагрева (то есть трех форсунок на рабочей стороне и трех на приводной стороне, как показано на Фиг. 2) уровень подвода энергии четвертой зоны печи (ЗП4) настраивают так, чтобы она попадала в диапазон 15%~95%, коэффициент избытка α четвертой зоны печи (ЗП4) регулируют внутри диапазона 0,8≤α<1,0, так чтобы стабильно регулировать восстановительную атмосферу во всей секции печи для безокислительного нагрева и полностью исключить источник кислорода, требуемого для образования плотных оксидов во всей секции печи. В этом случае на нормализованных листах после кислотного травления отсутствует остаток оксида.
Рулон горячекатаной стали, состоящий из стали, где С: 0,0074%, Si: 3,24%, Mn: 0,08%, Р; 0,005% и S: менее 0,007%, проводили через нормализацию с помощью различных способов и качество поверхности изделия после кислотного травления и холодной прокатки описывают в таблице 3.
В сравнительном примере 1 уровни подвода энергии последних двух зон печи в секции печи для безокислительного нагрева обе ниже 15%, так что коэффициент избытка α последних двух зон печи в секции печи для безокислительного нагрева нельзя регулировать в пределах диапазона 0,8≤α<1,0. В этом случае возмущение потока воздуха внутри печи возрастает, нельзя удовлетворить требованию по нагрузке для стабильного горения форсунок, горение угольного газа является несоответствующим и присутствует локальный избыток кислорода, так что невозможно осуществить стабильное регулирование восстановительной атмосферы и исключить источник кислорода, требуемого для образования плотных оксидов. Так как изделие должно проходить через все зоны печи, если одна зона печи не удовлетворяет требованию, то на нормализованных листах после кислотного травления будет присутствовать остаток оксида.
В примере 3 путем настойки уровня нагрева указанной секции печи для безокислительного нагрева, уровень подвода энергии различных зон печи в секции печи для безокислительного нагрева настраивают так, чтобы он попадал в диапазон 15%~95%, коэффициент избытка α различных зон печи в секции печи для безокислительного нагрева регулируют внутри диапазона 0,8≤α<1,0, так чтобы стабильно регулировать восстановительную атмосферу во всей секции печи для безокислительного нагрева и полностью исключить источник кислорода, требуемого для образования плотных оксидов во всей секции печи. В этом случае на нормализованных листах после кислотного травления отсутствует остаток оксида.
Промышленная применимость
Способ получения высококачественного листа нормализованной кремнистой стали по настоящему изобретению может успешно препятствовать образованию плотных оксидов в процессе нормализации и улучшать качество листа нормализованной кремнистой стали. С помощью способа по настоящему изобретению упрощают стадии, следующие за нормализацией, и понижают расходы, и его можно использовать для крупномасштабного производства высококачественных листов нормализованной кремнистой стали.
Claims (5)
1. Способ получения листов нормализованной кремнистой стали, включающий стадии выплавки стали, горячей прокатки и нормализации, причем нормализацию осуществляют в секции печи для безокислительного нагрева, которая включает три или более зоны печи, отличающийся тем, что уровень подвода энергии в зонах указанной секции печи для безокислительного нагрева регулируют так, чтобы обеспечить коэффициент избытка воздуха α в указанной секции печи для безокислительного нагрева в диапазоне 0,8≤α<1,0, при этом уровень подвода энергии равен отношению фактической мощности нагрузки при горении форсунок, используемых в зоне печи, к полной мощности нагрузки форсунок, используемых в зоне печи, и коэффициент избытка воздуха равен отношению фактического количества воздуха для горения к теоретическому количеству воздуха для горения.
2. Способ получения листов нормализованной кремнистой стали по п. 1, в котором уровень подвода энергии зон печи, используемых в указанной секции печи для безокислительного нагрева, настраивают так, что он находится в диапазоне от 15% до 95%.
3. Способ получения листов нормализованной кремнистой стали по п. 1 или 2, в котором уровень подвода энергии указанных используемых зон печи настраивают путем закрытия, по меньшей мере, одной зоны печи указанной секции печи для безокислительного нагрева.
4. Способ получения листов нормализованной кремнистой стали по п. 1 или 2, в котором уровень подвода энергии указанных используемых зон печи настраивают с помощью регулирования количества используемых форсунок в используемых зонах печи в указанной секции печи для безокислительного нагрева.
5. Способ получения листов нормализованной кремнистой стали по п. 1 или 2, в котором уровень подвода энергии указанных используемых зон печи настраивают посредством регулирования уровня нагрева указанной секции печи для безокислительного нагрева.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210062502.8 | 2012-03-09 | ||
CN201210062502.8A CN103305745B (zh) | 2012-03-09 | 2012-03-09 | 一种高质量硅钢常化基板的生产方法 |
PCT/CN2012/000367 WO2013131211A1 (zh) | 2012-03-09 | 2012-03-26 | 一种硅钢常化基板的生产方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2014132738A RU2014132738A (ru) | 2016-04-27 |
RU2591097C2 true RU2591097C2 (ru) | 2016-07-10 |
Family
ID=49115843
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2014132738/02A RU2591097C2 (ru) | 2012-03-09 | 2012-03-26 | Способ получения листа из нормализованной кремнистой стали |
Country Status (9)
Country | Link |
---|---|
US (1) | US9822423B2 (ru) |
EP (1) | EP2824193A4 (ru) |
JP (1) | JP2015511995A (ru) |
KR (1) | KR101612939B1 (ru) |
CN (1) | CN103305745B (ru) |
IN (1) | IN2014MN01787A (ru) |
MX (1) | MX2014010514A (ru) |
RU (1) | RU2591097C2 (ru) |
WO (1) | WO2013131211A1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2815210C1 (ru) * | 2020-10-21 | 2024-03-12 | Эбнер Индустриофенбау Гмбх | Вертикальная печь для непрерывной термической обработки металлической полосы |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104017964A (zh) * | 2014-06-12 | 2014-09-03 | 鞍钢股份有限公司 | 一种硅钢热处理方法 |
CN105779731A (zh) * | 2014-12-23 | 2016-07-20 | 鞍钢股份有限公司 | 提高低牌号无取向电工钢电磁性能的热轧板常化工艺 |
US10288963B2 (en) * | 2015-09-21 | 2019-05-14 | Apple Inc. | Display having gate lines with zigzag extensions |
JP6748375B2 (ja) | 2016-10-19 | 2020-09-02 | Jfeスチール株式会社 | Si含有熱延鋼板の脱スケール方法 |
CN110709504A (zh) * | 2017-06-05 | 2020-01-17 | 梅约医学教育与研究基金会 | 培养、增殖和分化干细胞的方法和材料 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2139944C1 (ru) * | 1998-05-27 | 1999-10-20 | Открытое акционерное общество "Череповецкий сталепрокатный завод" | Способ отопления печи с камерами предварительного и окончательного нагрева металла и печь для его осуществления |
RU2217509C2 (ru) * | 2001-08-09 | 2003-11-27 | Открытое акционерное общество "Новолипецкий металлургический комбинат" | Способ производства изотропной электротехнической стали |
RU2262540C1 (ru) * | 2004-10-12 | 2005-10-20 | Липецкий Государственный Технический Университет (Лгту) | Способ производства изотропной электротехнической стали с фосфором |
UA28503U (en) * | 2007-08-13 | 2007-12-10 | Vinnytsia Pyrohov Nat Medical | Attachment for apparatus for vibromassage of palatine tonsils |
CN101812571A (zh) * | 2009-02-24 | 2010-08-25 | 宝山钢铁股份有限公司 | 电工钢热轧带钢常化处理中防止内氧化层的方法 |
Family Cites Families (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2669442A (en) * | 1948-08-24 | 1954-02-16 | Crown Cork & Seal Co | Annealing apparatus |
US3105782A (en) * | 1960-10-10 | 1963-10-01 | Gen Electric | Method of producing magnetic material |
US3307981A (en) * | 1963-11-14 | 1967-03-07 | Inland Steel Co | Continuous bluing and annealing process |
US3778221A (en) * | 1969-02-26 | 1973-12-11 | Allegheny Ludlum Ind Inc | Annealing furnace and method for its operation |
JPS4819048B1 (ru) | 1969-09-03 | 1973-06-11 | ||
US3756868A (en) * | 1971-05-04 | 1973-09-04 | Allegheny Ludlum Ind Inc | Method of annealing steel coils moving through a furnace |
JPS54160514A (en) * | 1978-06-09 | 1979-12-19 | Nippon Steel Corp | Decarburization and annealing method for directional electromagnetic steel plate |
JPS55128530A (en) * | 1979-03-24 | 1980-10-04 | Nippon Steel Corp | Method and apparatus for controlling atmosphere of direct fire heating type deoxidizing furnace |
JPS55138024A (en) * | 1979-04-12 | 1980-10-28 | Kawasaki Steel Corp | Method of annealing directional silicon steel plate to flatten it |
JPS5613430A (en) * | 1979-07-14 | 1981-02-09 | Nisshin Steel Co Ltd | Annealing method of steel |
JPS61190056A (ja) * | 1985-02-18 | 1986-08-23 | Nippon Steel Corp | 耐熱性と高温強度にすぐれた溶融アルミメツキTi含有鋼板の製造法 |
JPS6240312A (ja) * | 1985-08-15 | 1987-02-21 | Kawasaki Steel Corp | 炉内における雰囲気制御方法 |
JPH0756545B2 (ja) * | 1985-09-06 | 1995-06-14 | 松下電器産業株式会社 | 液晶マトリツクス表示パネルの駆動法 |
JPS62120427A (ja) * | 1985-11-20 | 1987-06-01 | Kawasaki Steel Corp | けい素鋼熱延板の焼鈍方法 |
JPS63262417A (ja) * | 1987-04-21 | 1988-10-28 | Sumitomo Metal Ind Ltd | 直火式連続加熱炉の無酸化加熱方法 |
JPS6452025A (en) * | 1987-08-20 | 1989-02-28 | Nippon Steel Corp | Direct fire reduction heating method for steel strip |
JPH0230720A (ja) * | 1988-07-16 | 1990-02-01 | Kobe Steel Ltd | 鋼板の加熱方法 |
JPH0699749B2 (ja) | 1988-11-29 | 1994-12-07 | 住友金属工業株式会社 | 磁気特性の良好な無方向性電磁鋼板の製造法 |
JPH0441623A (ja) * | 1990-06-07 | 1992-02-12 | Nippon Steel Corp | 鋼帯の直火加熱炉 |
JPH04202623A (ja) * | 1990-11-30 | 1992-07-23 | Kawasaki Steel Corp | けい素鋼熱延板の脱スケール方法 |
US5354389A (en) * | 1991-07-29 | 1994-10-11 | Nkk Corporation | Method of manufacturing silicon steel sheet having grains precisely arranged in Goss orientation |
JPH0758140B2 (ja) * | 1991-11-26 | 1995-06-21 | 株式会社ノーリツ | 風呂釜装置における浴槽水の循環判定方法 |
JPH05202419A (ja) | 1992-01-27 | 1993-08-10 | Kawasaki Steel Corp | けい素鋼熱延板の脱スケール方法 |
JP2733885B2 (ja) * | 1992-07-02 | 1998-03-30 | 新日本製鐵株式会社 | 鋼帯の連続熱処理方法 |
US5302213A (en) * | 1992-12-22 | 1994-04-12 | Air Products And Chemicals, Inc. | Heat treating atmospheres from non-cryogenically generated nitrogen |
US5807441A (en) * | 1993-11-02 | 1998-09-15 | Sumitomo Metal Industries, Ltd. | Method of manufacturing a silicon steel sheet having improved magnetic characteristics |
US5620533A (en) * | 1995-06-28 | 1997-04-15 | Kawasaki Steel Corporation | Method for making grain-oriented silicon steel sheet having excellent magnetic properties |
EP0926250B1 (en) * | 1997-04-16 | 2009-04-15 | Nippon Steel Corporation | Grain-oriented electromagnetic steel sheet having excellent film characteristics and magnetic characteristics, its production method and decarburization annealing setup therefor |
JPH10306328A (ja) * | 1997-04-28 | 1998-11-17 | Nippon Steel Corp | 連続焼鈍炉 |
US6612154B1 (en) * | 1998-12-22 | 2003-09-02 | Furnace Control Corp. | Systems and methods for monitoring or controlling the ratio of hydrogen to water vapor in metal heat treating atmospheres |
US6180933B1 (en) * | 2000-02-03 | 2001-01-30 | Bricmont, Inc. | Furnace with multiple electric induction heating sections particularly for use in galvanizing line |
CN2471440Y (zh) | 2000-07-13 | 2002-01-16 | 武汉钢铁(集团)公司 | 新型硅钢热轧板常化退火炉 |
EP2107130B1 (en) * | 2000-08-08 | 2013-10-09 | Nippon Steel & Sumitomo Metal Corporation | Method to produce grain-oriented electrical steel sheet having high magnetic flux density |
BE1014997A3 (fr) * | 2001-03-28 | 2004-08-03 | Ct Rech Metallurgiques Asbl | Procede de recuit en continu de bandes en acier en vue de leur galvanisation au trempe et four pour sa mise en oeuvre. |
JP4413549B2 (ja) * | 2002-08-08 | 2010-02-10 | 独立行政法人 日本原子力研究開発機構 | 高温強度に優れたマルテンサイト系酸化物分散強化型鋼の製造方法 |
JP3753248B2 (ja) * | 2003-09-01 | 2006-03-08 | 核燃料サイクル開発機構 | 残留α粒を有する高温強度に優れたマルテンサイト系酸化物分散強化型鋼の製造方法 |
FR2867991B1 (fr) * | 2004-03-25 | 2007-05-04 | Ugine Et Alz France Sa | Bandes en acier inoxydable austenitique d'aspect de surface mat |
CN101643881B (zh) * | 2008-08-08 | 2011-05-11 | 宝山钢铁股份有限公司 | 一种含铜取向硅钢的生产方法 |
WO2011085172A2 (en) * | 2010-01-11 | 2011-07-14 | Kolene Corporation | Metal surface scale conditioning |
JP5375653B2 (ja) * | 2010-02-17 | 2013-12-25 | 新日鐵住金株式会社 | 無方向性電磁鋼板の製造方法 |
CN102373366A (zh) * | 2010-08-26 | 2012-03-14 | 宝山钢铁股份有限公司 | 一种改善无取向硅钢表面粗晶的方法 |
BR122018072170B1 (pt) * | 2011-01-12 | 2019-05-14 | Nippon Steel & Sumitomo Metal Corporation | Método de fabricação de uma chapa de aço elétrico com grão orientado |
JP6188671B2 (ja) * | 2014-12-12 | 2017-08-30 | 株式会社Ssテクノ | 水蒸気リフロー装置及び水蒸気リフロー方法 |
-
2012
- 2012-03-09 CN CN201210062502.8A patent/CN103305745B/zh active Active
- 2012-03-26 WO PCT/CN2012/000367 patent/WO2013131211A1/zh active Application Filing
- 2012-03-26 IN IN1787MUN2014 patent/IN2014MN01787A/en unknown
- 2012-03-26 EP EP12870516.7A patent/EP2824193A4/en not_active Ceased
- 2012-03-26 MX MX2014010514A patent/MX2014010514A/es active IP Right Grant
- 2012-03-26 RU RU2014132738/02A patent/RU2591097C2/ru active
- 2012-03-26 JP JP2014560206A patent/JP2015511995A/ja active Pending
- 2012-03-26 US US14/379,777 patent/US9822423B2/en active Active
- 2012-03-26 KR KR1020147023550A patent/KR101612939B1/ko active IP Right Grant
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2139944C1 (ru) * | 1998-05-27 | 1999-10-20 | Открытое акционерное общество "Череповецкий сталепрокатный завод" | Способ отопления печи с камерами предварительного и окончательного нагрева металла и печь для его осуществления |
RU2217509C2 (ru) * | 2001-08-09 | 2003-11-27 | Открытое акционерное общество "Новолипецкий металлургический комбинат" | Способ производства изотропной электротехнической стали |
RU2262540C1 (ru) * | 2004-10-12 | 2005-10-20 | Липецкий Государственный Технический Университет (Лгту) | Способ производства изотропной электротехнической стали с фосфором |
UA28503U (en) * | 2007-08-13 | 2007-12-10 | Vinnytsia Pyrohov Nat Medical | Attachment for apparatus for vibromassage of palatine tonsils |
CN101812571A (zh) * | 2009-02-24 | 2010-08-25 | 宝山钢铁股份有限公司 | 电工钢热轧带钢常化处理中防止内氧化层的方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2815210C1 (ru) * | 2020-10-21 | 2024-03-12 | Эбнер Индустриофенбау Гмбх | Вертикальная печь для непрерывной термической обработки металлической полосы |
Also Published As
Publication number | Publication date |
---|---|
EP2824193A4 (en) | 2016-01-27 |
CN103305745B (zh) | 2016-04-27 |
JP2015511995A (ja) | 2015-04-23 |
WO2013131211A1 (zh) | 2013-09-12 |
KR101612939B1 (ko) | 2016-04-18 |
MX2014010514A (es) | 2014-10-14 |
EP2824193A1 (en) | 2015-01-14 |
RU2014132738A (ru) | 2016-04-27 |
KR20140115367A (ko) | 2014-09-30 |
US9822423B2 (en) | 2017-11-21 |
CN103305745A (zh) | 2013-09-18 |
US20150013847A1 (en) | 2015-01-15 |
IN2014MN01787A (ru) | 2015-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2591097C2 (ru) | Способ получения листа из нормализованной кремнистой стали | |
JP6808735B2 (ja) | 方向性電磁鋼板の製造方法 | |
TWI472626B (zh) | 方向性電磁鋼板的製造方法及方向性電磁鋼板的再結晶退火設備 | |
RU2550440C2 (ru) | Способ производства нетекстурированной электротехнической листовой стали без дефекта рослости | |
CN107858494B (zh) | 低温高磁感取向硅钢的生产方法 | |
CN101812571B (zh) | 电工钢热轧带钢常化处理中防止内氧化层的方法 | |
CN102041440B (zh) | 一种高磁感取向硅钢的生产方法 | |
JP2009525401A (ja) | 酸素−燃料バーナーを備えた連続熱処理炉内における鋼帯の熱処理方法 | |
CN102634651A (zh) | 一种黑色金属钢板坯弱、微氧化及氧化燃烧的加热方法 | |
CN104694713A (zh) | 一种含铜低合金钢的加热方法 | |
RU2585913C2 (ru) | Способ получения листа нормализованной кремнистой стали | |
CN106337156B (zh) | 耐蚀高镍合金的制造方法 | |
CN110157979A (zh) | 一种改善钢板表面质量的轧制方法 | |
JP5488322B2 (ja) | 鋼板の製造方法 | |
CN107245564A (zh) | 一种无取向硅钢内氧化层的控制方法 | |
CN104087745A (zh) | 基于推钢式加热炉生产轴承钢的轧钢方法 | |
CN110369496B (zh) | 一种高牌号无取向硅钢冷轧预热方法 | |
CN102816918A (zh) | 防止钢卷在退火过程发生粘接的工艺方法 | |
JPH03133501A (ja) | 連続鋳造一方向性電磁鋼スラブの熱間圧延方法 | |
RU2356950C1 (ru) | Способ термообработки рулонной стали | |
JP2008114266A (ja) | 連続式加熱炉の加熱制御方法 | |
CN106011655A (zh) | 一种高效硅钢常化基板的生产方法 | |
CN102367508A (zh) | 一种提高热轧钢卷表面质量的方法 | |
WO2007013029A2 (en) | Process for continuous annealing of steel strips | |
JPS62130219A (ja) | 電磁鋼スラブの加熱方法 |