RU2456078C2 - Каталитическая композиция и способ ди-, три- и/или тетрамеризации этилена - Google Patents

Каталитическая композиция и способ ди-, три- и/или тетрамеризации этилена Download PDF

Info

Publication number
RU2456078C2
RU2456078C2 RU2010104668/04A RU2010104668A RU2456078C2 RU 2456078 C2 RU2456078 C2 RU 2456078C2 RU 2010104668/04 A RU2010104668/04 A RU 2010104668/04A RU 2010104668 A RU2010104668 A RU 2010104668A RU 2456078 C2 RU2456078 C2 RU 2456078C2
Authority
RU
Russia
Prior art keywords
composition according
ethylene
catalytic composition
chromium
ligand
Prior art date
Application number
RU2010104668/04A
Other languages
English (en)
Other versions
RU2010104668A (ru
Inventor
Бернд Х. МЮЛЛЕР (DE)
Бернд Х. МЮЛЛЕР
Петер М. ФРИТЦ (DE)
Петер М. ФРИТЦ
Хайнц БЁЛЬТ (DE)
Хайнц БЁЛЬТ
Анина ВЁЛЬ (DE)
Анина ВЁЛЬ
Вольфганг МЮЛЛЕР (DE)
Вольфганг МЮЛЛЕР
Флориан ВИНКЛЕР (DE)
Флориан ВИНКЛЕР
Антон ВЕЛЛЕНХОФЕР (DE)
Антон ВЕЛЛЕНХОФЕР
Уве РОЗЕНТАЛЬ (DE)
Уве РОЗЕНТАЛЬ
Марко ХАПКЕ (DE)
Марко ХАПКЕ
Нормен ПОЙЛЕКЕ (DE)
Нормен ПОЙЛЕКЕ
Мохаммед Хассан АЛЬ-ХАЗМИ (SA)
Мохаммед Хассан АЛЬ-ХАЗМИ
Вугар О. АЛИЕВ (SA)
Вугар О. Алиев
Фуад Мохаммед МОЗА (SA)
Фуад Мохаммед МОЗА
Original Assignee
Линде Аг
Сауди Бейсик Индастриз Корпорейшн
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Линде Аг, Сауди Бейсик Индастриз Корпорейшн filed Critical Линде Аг
Publication of RU2010104668A publication Critical patent/RU2010104668A/ru
Application granted granted Critical
Publication of RU2456078C2 publication Critical patent/RU2456078C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2495Ligands comprising a phosphine-P atom and one or more further complexing phosphorus atoms covered by groups B01J31/1845 - B01J31/1885, e.g. phosphine/phosphinate or phospholyl/phosphonate ligands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • B01J31/143Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron of aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1845Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing phosphorus
    • B01J31/1885Ligands comprising two different formal oxidation states of phosphorus in one at least bidentate ligand, e.g. phosphite/phosphinite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/189Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms containing both nitrogen and phosphorus as complexing atoms, including e.g. phosphino moieties, in one at least bidentate or bridging ligand
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/26Catalytic processes with hydrides or organic compounds
    • C07C2/32Catalytic processes with hydrides or organic compounds as complexes, e.g. acetyl-acetonates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/26Catalytic processes with hydrides or organic compounds
    • C07C2/36Catalytic processes with hydrides or organic compounds as phosphines, arsines, stilbines or bismuthines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/22Amides of acids of phosphorus
    • C07F9/224Phosphorus triamides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/46Phosphinous acids R2=P—OH; Thiophosphinous acids; Aminophosphines R2-P-NH2 including R2P(=O)H; derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/48Phosphonous acids R—P(OH)2; Thiophosphonous acids including RHP(=O)(OH); Derivatives thereof
    • C07F9/4883Amides or esteramides thereof, e.g. RP(NR'2)2 or RP(XR')(NR''2) (X = O, S)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6581Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and nitrogen atoms with or without oxygen or sulfur atoms, as ring hetero atoms
    • C07F9/6584Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and nitrogen atoms with or without oxygen or sulfur atoms, as ring hetero atoms having one phosphorus atom as ring hetero atom
    • C07F9/65848Cyclic amide derivatives of acids of phosphorus, in which two nitrogen atoms belong to the ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6581Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and nitrogen atoms with or without oxygen or sulfur atoms, as ring hetero atoms
    • C07F9/6587Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and nitrogen atoms with or without oxygen or sulfur atoms, as ring hetero atoms having two phosphorus atoms as ring hetero atoms in the same ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/20Olefin oligomerisation or telomerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • B01J2531/0258Flexible ligands, e.g. mainly sp3-carbon framework as exemplified by the "tedicyp" ligand, i.e. cis-cis-cis-1,2,3,4-tetrakis(diphenylphosphinomethyl)cyclopentane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/60Complexes comprising metals of Group VI (VIA or VIB) as the central metal
    • B01J2531/62Chromium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • C07C2531/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • C07C2531/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • C07C2531/24Phosphines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

Настоящее изобретение относится к каталитической композиции и к способу ди-, три- и/или тетрамеризации этилена. Каталитическая композиция содержит соединение хрома, лиганд общей формулы (A) R1R2P-N(R3)-P(R4)-N(R5)-H или любые циклические производные (А). По меньшей мере один из атомов Р или N в группировке PNPN является членом кольцевой системы, причем эта кольцевая система образована из одного или более составляющих соединений структур (А) посредством замещения, и сокатализатор или активатор. Способ и композиция позволяют производить 1-гексен с большим циклом активной работы катализатора и высокой селективностью. Не наблюдается широкого распределения получаемых ЛАО, хорошо подавляется образование полимеров. Обеспечивается высокая чистота продуктов без дополнительных стадий очистки на линии выделения. 3 н. и 14 з.п. ф-лы, 2 пр., 1 табл., 1 фиг.

Description

Настоящее изобретение относится к каталитической композиции и к способу ди-, три- и/или тетрамеризации этилена.
Существующие способы производства линейных α-олефинов (ЛАО), включая имеющие мономерную степень чистоты 1-гексен и 1-октен, имеют в своей основе олигомеризацию этилена. Общим в этих способах является то, что они приводят к распределению получаемых в качестве продуктов олигомеров этилена с длиной цепи 4, 6, 8 и т.д. Это обусловлено химическим механизмом, который в широких пределах управляется конкурирующими стадиями роста цепи и реакции замещения, что приводит к распределению продуктов типа Шульца-Флори и типа Пуассона.
С точки зрения рынка такое распределение продуктов ставит производителя полного спектра α-олефинов перед огромной проблемой. Причина этого в том, что каждый обслуживаемый сегмент рынка проявляет весьма специфическое поведение в том, что касается размера и роста рынка, географии, фрагментации и т.д. Следовательно, производителю очень трудно приспособиться к требованиям рынка, поскольку в данном экономическом контексте высоким спросом может пользоваться одна часть спектра продуктов, в то время как другие группы продуктов могут не иметь спроса вообще или же иметь случайную нишу. В настоящее время наиболее ценным для полимерной индустрии ЛАО-продуктом является имеющий мономерную степень чистоты 1-гексен, в то время как спрос на 1-октен также растет весьма быстро.
Таким образом, представляется весьма желательным целевое производство наиболее экономически жизнеспособных ЛАО, т.е. имеющих мономерную степень чистоты 1-гексена и 1-октена. Для выполнения требований, касающихся селективности по С6- и/или С8, были разработаны новые способы. Единственный известный селективный по С6 промышленный способ был предложен Chevron Phillips, см. подробный обзор J.T.Dixon, M.J.Green, F.M.Hess, D.H.Morgan, "Advances in selective, ethylene trimerisation - a critical overview" («Успехи в селективной тримеризации этилена - критический обзор»), J. Organometallic Chemistry 689 (2004) 3641-3668.
Кроме того, патентная заявка, поданная Sasol (WO 93/053891 А1), раскрывает каталитические системы на основе хрома, селективные к тримеризации этилена, обычно типа CrCl3(бис-(2-дифенилфосфиноэтил)амин)/метилалюмоксан (МАО). Были раскрыты также варианты структуры лигандов (например, бис(2-диэтилфосфиноэтил)амин, пентаметилдиэтилентриамин и т.д.). Однако все эти комплексы приводят к образованию значительных количеств нежелательных побочных продуктов типа ЛАО, не являющиеся 1-гексеном, и полиэтилен.
Большой объем научных публикаций и патентной литературы описывают использование металлорганических комплексов на основе хрома с лигандами, характеризующихся основной PNP-структурой (например, лиганды ряда бис(дифенилфосфино)амина) (D.S.McGuinness, P.Wasserscheid, W.Keim, С.Hu, U.Englert, J.T.Dixon, С.Grove, "Novel Cr-PNP complexes as catalysts for the trimerization of ethylene" («Новые Cr-PNP-комплексы в качестве катализаторов тримеризации этилена»), Chem. Commun., 2003, 334-335; K.Blann, A.Bollmann, J.T.Dixon, F.M.Hess, E.Killian, H.Maumela, D.H.Morgan, A.Neveling, S.Otto, M.J.Overett, "Highly selective chromium-based ethylene trimerisation catalysts with bulky diphosphinoamine ligands" («Высокоселективные катализаторы на основе хрома с объемными дифосфиноаминовыми лигандами»), Chem. Comm., 2005, 620-621; M.J.Overett, K.Blann, A.Bollmann, J.T.Dixon, F.Hess, E.Killian, H.Maumela, D.H.Morgan, A.Neveling, S.Otto, "Ethylene trimerisation and tetramerisation catalysts with polar-substituted diphosphinoamine ligands" («Катализаторы тримеризации и тетрамеризации этилена с замещенными полярными группами дифосфиноаминовыми лигандами»), Chem. Commun., 2005, 622-624; A.Jabri, P.Crewdson, S.Gambarotta, I.Korobkov, R.Duchateau, "Isolation of a Cationic Chromium(II) Species in a Catalytic System for Ethylene Tri- and Tetramerization", («Выделение структур с катионным хромом(II) в каталитической системе для три- и тетрамеризации этилена»), Organometallics 2006, 25, 715-718; T.Agapie, S.J.Schofer, J.A.Labinger, J.E.Bercaw, "Mechanistic Studies of the Ethylene Trimerization Reaction with Chromium-Diphosphine Catalysts: Experimental Evidence for a Mechanism Involving Metallacyclic Intermediates" («Механистические исследования реакции тримеризации этилена: экспериментальное доказательство механизма, включающего металлациклические интермедиаты»), J. Am. Chem. Soc. 2004, 126, 1304-1305; S.J.Schofer, M.D.Day, L.M.Henling, J.A.Labinger, J.E.Bercaw, "Ethylene Trimerization Catalysts Based on Chromium Complexes with a Nitrogen-Bridged Diphosphine Ligand Having ortho-Methoxyaryl or ortho-Thiomethoxy Substituents: Well-Defined Catalyst Precursors and Investigations of the Mechanism"(«Катализаторы тримеризации этилена на основе хромовых комплексов с дифосфиновым лигандом с азотным мостиком, имеющим о-метоксиариловый или о-тиометокси-заместители: четко определенные предшественники катализатора и исследования механизма»), Organometallics 2006, 25, 2743-2749; S.J.Schofer, M.D.Day, L.M.Henling, J.A.Labinger, J.E.Bercaw, "A Chromium-Diphosphine System for Catalytic Ethylene Trimerization: Synthetic and Structural Studies of Chromium Complexes with a Nitrogen-Bridged Diphosphine Ligand with ortho-Methoxyaryl Substituents" («Хром-дифосфиновая система для каталитической тримеризации этилена: синтетические и структурные исследования хромовых комплексов с дифосфиновым лигандом с азотным мостиком, имеющим о-метоксиарильные заместители»), Organometallics 2006, 25, 2733-2742; P.R.Elowe, С.McCann, P.G.Pringle, S.K.Spitzmesser, J.E.Bercaw, "Nitrogen-Linked Diphosphine Ligands with Ethers Attached to Nitrogen for Chromium-Catalyzed Ethylene Tri- and Tetramerization" («Дифосфиновые лиганды с азотным мостиком и простыми эфирами, связанными с азотом, для три- и тетрамеризации этилена, катализируемых хромом»), Organometallics 2006, 25, 5255-5260; WO 2004/056578, WO 2004/056479, EP 02794480.0, EP 02794479.2; или структурой S-N-S (D.S.McGuinness, D.B.Brown, R.P.Tooze, F.M.Hess, J.T.Dixon, A.M.Z.Slavin, "Ethylene Trimerization with Cr-PNP and Cr-SNS Complexes: Effect of Ligand Structure, Metal Oxidation State, and Role of Activator on Catalysis" («Тримеризация этилена с комплексами Cr-PNP и Cr-SNS: влияние структуры лиганда, состояния окисления металла на катализ и роль активатора»), Organometallics 2006, 25, 3605-3610; A.Jabri, С.Temple, P.Crewdson, S.Gambarotta, I.Korobkov, R.Duchateau, "Role of the Metal Oxidation State in the SNS-Cr Catalyst for Ethylene Trimerization: Isolation of Di- and Trivalent Cationic Intermediates («Роль состояния окисления металла в SNS-Cr-катализаторе для тримеризации этилена: выделение двух- и трехвалентных катионных интермедиатов»), J. Am. Chem. Soc. 2006, 128, 9238-9247; C.Temple, A.Jabri, P.Crewdson, S.Gambarotta, I.Korobkov, R.Duchateau, "The Question of the Cr- Oxidation State in the {Cr(SNS)} Catalyst for Selective Ethylene Trimerization: An Unanticipated Re-Oxidation Pathway" («Проблема состояния окисления хрома в катализаторе {Cr(SNS)} для селективной тримеризации этилена: непредвиденный путь обратного окисления»), Angew. Chem. Int. Ed. 2006, 45, 7050-7053); как для тримеризации, так и для тетрамеризаци этилена. В качестве активатора/сокатализатора обычно используются избыточные количества МАО.
В то время как большая часть опубликованных исследований связана с Cr-PNP-комплексами, некоторые из них посвящены другим лигандам, например лигандам общей формулы (R1)(R2)P-X-P(R3)(R4), где Х обозначает двухвалентную органическую мостиковую группу (см. WO 2005/039758 А1), или же посвящены совершенно отличным комплексам, таким как титаноцены (Н.Hagen, W.P.Kretschmer, F.R. van Buren, В.Hessen, D.A. van Oeffelen, "Selective ethylene trimerization: A study into the mechanism and the reduction of PE formation" («Селективная тримеризация этилена: изучение механизма и снижение образования полиэтилена»). Journal of Molecular Catalysis A: Chemical 248 (2006) 237-247). В любом случае основная затрагиваемая проблема всегда связана с селективностью и минимизацией образования полиэтилена.
Катализаторы тримеризации и тетрамеризации и способы, раскрытые до настоящего времени в научной и патентной литературе, обладают одним или более из следующих недостатков:
- Низкая селективность по желаемым продуктам 1-гексену и/или 1-октену (нежелательные побочные продукты из схем побочных реакций).
- Ограниченная чистота продуктов, т.е. селективность в отдельной фракции С6 или С8 (изомеризация, образование разветвленных олефинов и т.д.).
- Образование твердого парафина, т.е. образование тяжелых, длинноцепочечных продуктов с высоким числом атомов углерода.
- Образование полимеров (полиэтилена, разветвленных и/или поперечно сшитых полиэтиленов), что приводит к значительному снижению выхода продукта и загрязнению оборудования.
- Малый период цикла активной работы катализатора/низкая активность катализатора, что приводит к высокой стоимости продукта в расчете на 1 кг катализатора.
- Высокая стоимость катализаторов или лигандов.
- Трудный синтез лигандов, результатом чего является малая доступность и высокая стоимость катализаторов.
- Чувствительность эффективности катализатора, как в отношении активности, так и селективности, к следовым загрязнениям (потери/отравление катализатора).
- Трудная работа с каталитическими компонентами в производственном окружении (синтез катализаторного комплекса, предварительное смешение, инертизация, регенерация катализатора или лигандов).
- Жесткие условия реакции, т.е. высокие температуры и давления, результатом чего является высокие инвестиционные расходы, расходы на техническое обслуживание и энергию.
- Высокая стоимость и расход сокатализатора/активатора.
- Чувствительность к изменению свойств сокатализатора; часто в том случае, когда в качестве активаторов нужно использовать большие количества соединений плохо определенного состава (например, с разным содержанием МАО).
В связи со сказанным целью настоящего изобретения является создание каталитической композиции и способа для селективной ди-, три- и/или тетрамеризации этилена, которые были бы лишены недостатков существующего уровня техники. В частности, более высокая селективность должна быть достигнута путем устранения образования значительных количеств тяжелых парафинов и полимеров вне зависимости от условий процесса. Кроме того, каталитическая композиция должна будет также обеспечить достаточно большой для промышленного процесса период цикла активной работы катализатора.
Иными словами, широкий спектр получаемых в качестве продуктов ЛАО (линейных α-олефинов) в процессах существующего уровня техники должен быть исключен и обеспечена возможность селективного производства в первую очередь наиболее желаемого с экономической точки зрения продукта - 1-гексена. В зависимости от природы сокатализатора и условий реакции одновременно может также осуществляться производство, например, 1-бутена и 1-гексена, а также 1-гексена и 1-октена соответственно.
Поставленная цель достигается с помощью каталитической композиции, содержащей:
(a) соединение хрома;
(b) лиганд общей формулы
(A) R1R2P-N(R3)-P(R4)-N(R5)-H или
(B) R1R2P-N(R3)-P(R4)-N(R5)-PR6R7
где R1, R2, R3, R4, R5, R6 и R7 независимо выбирают из группы, в которую входят галоген, амино, триметилсилил, C110-алкил, арил и замещенный арил или любые циклические производные (А) и (В), у которых по меньшей мере один из атомов Р или N в группировке PNPN или PNPNP является членом кольцевой системы, причем эта кольцевая система образована из одного или более составляющих соединений структуры (А) или (В) посредством замещения;
(c) активатор или сокатализатор.
Само собой разумеется, что в качестве лиганда могут быть использованы и любые циклические производные (А) и (В), у которых по меньшей мере один из атомов Р или N в группировке PNPN (формула (А)) или группировке PNPNP (формула (В)) является членом кольца, причем это кольцо может быть образовано методом замещения из одного или более составляющих соединений формул (А) или (В), т.е. формально путем удаления в расчете на одно составляющее соединение любых двух целых групп R1-R7 (определенных выше) или Н, по одному атому из двух групп R1-R7 (определенных выше), или одной целой группы R1-R7 (определенных выше) или Н и какого-либо атома из другой группы R1-R7 (определенных выше) с последующим объединением формально образованных таким образом валентно-ненасыщенных центров с помощью одной ковалентной связи в расчете на одно составляющее соединение, в результате чего на данных центрах сохранится та же валентность, что и была вначале.
Подходящими циклическими производными (А) и (В) могут быть следующие:
Figure 00000001
Figure 00000002
Figure 00000003
Соединение хрома преимущественно выбирают из органических или неорганических солей, координационных комплексов и металлорганических комплексов Cr(II) или Cr(III).
Наиболее предпочтительно, соединение хрома выбирают из CrCl3(THF)3, ацетилацетоната Cr(III), октаноата Cr(III), гексакарбонила хрома, 2-этилгексаноата Cr(III) и (бензол)трикарбонила хрома.
Предпочтительно также, чтобы R1, R2, R3, R4, R5, R6 и R7 выбирались из группы, в которую входят хлор, амино, триметилсилил, метил, этил, изопропил, трет-бутил, фенил, бензил, толил и ксилил.
Подходящими лигандами (А) и (В), имеющими аминный заместитель, могут быть следующие:
Figure 00000004
Figure 00000005
В одном из вариантов осуществления
Figure 00000006
активатор или сокатализатор выбирают из триметилалюминия, триэтилалюминия, триизопропилалюминия, триизобутилалюминия, сесквихдлорида этилалюминия, хлорида диэтилалюминия, дихлорида этилалюминия, метилалюмоксана (МАО) или их смесей.
Наиболее предпочтителен выбор лиганда из (Ph)2Р-N(изо-Pr)-Р(Ph)-N(изо-Pr)-Н, (Ph)2P-N(изо-Pr)-P(Ph)-N(Ph)-H, (Ph)2Р-N(изо-Pr)-Р(Ph)-N(трет-бутил)-Н и (Ph)2Р-N(изо-Pr)-P(Ph)-N(CH(CH3)(Ph))-H.
Преимущественно также предлагается такая катализаторная композиция, которая содержит растворитель.
Растворитель выбирают преимущественно из группы, в которую входят ароматические углеводороды, нормальные и циклические алифатические углеводороды, нормальные олефины и простые эфиры, преимущественно толуол, бензол, этилбензол, кумол, ксилолы, мезитилен, гексан, октан, циклогексан, метилциклогексан, гексен, гептен, октен, диэтиловый эфир или тетрагидрофуран, и, наиболее предпочтительно, толуол. Может также использоваться любая смесь этих соединений.
В одном из вариантов осуществления концентрация соединения хрома составляет от 0,01 до 100 ммоль/л, предпочтительно от 0,1 до 10 ммоль/л.
Отношение лиганд/Cr составляет преимущественно от 0,5 до 50, предпочтительно от 0,8 до 2,0.
Отношение Al/Cr составляет преимущественно от 1 до 1000, предпочтительно от 10 до 200.
Для специалистов в данной области очевидно, что компоненты (а)-(с) для получения каталитической композиции могут рассматриваться в большей или меньшей степени как исходные материалы, но могут быть и подвергнуты превращению, если три соединения (а)-(с) смешать для образования каталитической композиции. В этом отношении каталитическую композицию согласно настоящему изобретению можно также проиллюстрировать как способную быть полученной при соединении по меньшей мере:
(a) соединения хрома;
(b) лиганда общей формулы
(A) R1R2P-N(R3)-P(R4)-N(R5)-H или
(B) R1R2P-N(R3)-P(R4)-N(R5)-PR6R7,
где R1, R2, R3, R4, R5, R6 и R7 независимо выбирают из группы, в которую входят галоген, амино, триметилсилил, C110-алкил, арил и замещенный арил, или любые циклические производные (А) и (В), у которых по меньшей мере один из атомов Р или N в группировке PNPN или PNPNP является членом кольцевой системы, причем эта кольцевая система образована из одного или более составляющих соединений формул (А) или (В) путем замещения; и
(c) активатора или сокатализатора.
Согласно изобретению является также и способ ди-, три- и/или тетрамеризации этилена, включающий введение каталитической композиции изобретения в газовую фазу этилена в реакторе и проведение олигомеризации.
Олигомеризацию проводят преимущественно при давлении от 1 до 200 бар, предпочтительно от 10 до 50 бар.
Также предпочтительно проведение олигомеризации при температуре от 10 до 200°С, преимущественно от 20 до 100°С.
В одном из вариантов осуществления способ осуществляется в непрерывном, полунепрерывном или периодическом режиме.
Среднее время пребывания может составлять от 10 мин до 20 час, преимущественно от 1 до 4 час.
При соединении лиганда согласно общей формуле (А) с сокатализатором, может быть получен продукт реакции, имеющий структурную формулу:
Figure 00000007
или
Figure 00000008
Раскрытый выше продукт реакции может, разумеется, быть использованным в каталитической композиции вместо того, чтобы отдельно добавлять лиганд и сокатализатор и, таким образом, также оказывается в объеме правовой охраны.
В условиях реакции лиганды типа PNPN-H депротонируют in-situ с помощью сокатализатора. В еще одном предпочтительном варианте осуществления настоящего изобретения активные частицы катализатора могут быть также образованы в отдельном месте и в отдельной стадии депротонирования/элиминирования, которая приведет к приведенным выше структурам.
В частности, если используются менее крупные или стерически менее затрудненные группы R1-R7, лиганды способствуют образованию димеров. Эти димерные циклодифосфазаны могут непосредственно использоваться для образования активных частиц катализатора.
Раскрытые лиганды общих формул (А) и (В) могут быть также проиллюстрированы следующей структурной формулой:
Figure 00000009
Figure 00000010
Наиболее предпочтительными структурами лигандов является (Ph)2P-N(изо-Pr)-P(Ph)-N(изо-Pr)-Н и
Figure 00000011
и
Figure 00000012
и
Figure 00000013
Неожиданным образом было обнаружено, что с помощью каталитической композиции изобретения и способа ди-, три- и/или тетрамеризации этилена недостатки существующего уровня техники могут быть в существенной степени устранены. В частности, способ и каталитическая композиция изобретения позволяют производить 1-гексен с большим циклом активной работы катализатора и высокой селективностью. Кроме того, достигается высокая воспроизводимость, т.е. каталитическая композиция стабильна в отношении примесей и флуктуации в условиях процесса. Дорогостоящие сокатализаторы типа МАО могут быть полностью или в значительной степени заменены более дешевыми веществами, преимущественно триэтилалюминием. Наряду с этим частично или полностью замененяются на химические вещества с хорошо определенной структурой (триэтилалюминий) дорогостоящие сокатализаторы, которые часто обладают непостоянными свойствами из-за относительно плохо установленной химической структуры (например, МАО). При использовании способа изобретения не наблюдается широкого распределения получаемых ЛАО и при этом селективно получают отдельные α-олефины. Кроме того, очень хорошо подавляется образование полимеров. И при этом могут применяться мягкие условия реакции, что в результате дает низкие инвестиционные расходы на промышленную установку и низкие затраты на энергию и эксплуатационные расходы. Кроме того, возможна относительно простая конструкция полностью законченного процесса. Очень высокая селективность по 1-гексену или 1-гексену/1-октену обеспечивает высокую чистоту продуктов без дополнительных стадий очистки на линии выделения.
Дополнительные преимущества и отличительные признаки настоящего изобретения далее иллюстрируются в приведенных ниже примерах со ссылками на прилагаемый чертеж, где фиг.1 представляет анализ полученной в примере 2 жидкой фазы методом газовой хроматографии с пламенно-ионизационным детектором (ГХ-ПИД).
Активный катализатор может быть приготовлен объединением источника хрома с лигандом в подходящем растворителе, предпочтительно толуоле, таким образом, чтобы концентрация хрома составляла от 0,01 дл 100 ммоль/л, предпочтительно от 0,1 до 10 ммоль/л, и отношение лиганд/Cr составляло от 0,5 до 50 моль/моль, предпочтительно от 0,8 до 2,0 моль/моль. Сокатализатор (преимущественно триэтилалюминий или смесь триэтилалюминия с МАО, или триэтилалюминия с триметилалюминием) добавляют в виде толуольного раствора, в результате чего получают отношение Al/Cr от 1 до 1000 моль/моль. Предпочтительное отношение Al/Cr составляет от 10 до 200 моль/моль.
Растворитель толуол может быть заменен другими растворителями, такими как отличные от толуола ароматические углеводороды (бензол, этилбензол, кумол, ксилолы, мезитилен и т.д.), алифатические углеводороды (как нормальные, так и циклические, например гексан, октан, циклогексан), нормальные олефины типа гексена, гептена, октена и т.д. или простые эфиры, например диэтиловый эфир или тетрагидрофуран.
После этого раствор катализатора вводят в контакт с газовой фазой сухого этилена под давлением от 1 до 200 бар, преимущественно от 10 до 50 бар, в подходящем герметичном реакторе. Реактором может быть реактор любого типа, подходящий для обеспечения достаточного контакта между газовой и жидкой фазами, такой как барботажные колонные реакторы, баковые реакторы с перемешиванием, проточные реакторы с фиксированной или распределенной подачей этилена и т.п.
Предпочтительные температуры реакции лежат в пределах от 10 до 200°С, в то время как наиболее предпочтительный температурный режим имеет пределы от 20 до 100°С. Среднее время пребывания и распределение времени пребывания (в случае непрерывного процесса) подбирают так, чтобы добиться достаточной конверсии при высокой селективности. Типичное среднее время пребывания лежит в пределах от 10 мин до 20 час (в зависимости от температуры и давления). Предпочтительный диапазон составляет от 1 до 4 час.
Пример 1: Приготовление лиганда
1.1 Приготовление бис(изопропиламино)фенилфосфина (NPN)
К перемешиваемому раствору изопропиламина (30 мл, 352 ммоль) в диэтиловом эфире (250 мл) прибавляют в течение 30 мин при 0°С дихлорфенилфосфин (9,63 мл, 71 ммоль, растворенный в 50 мл диэтилового эфира). После перемешивания в течение суммарно 72 час раствор фильтруют. Остаток промывают диэтиловым эфиром и удаляют растворитель в вакууме. Оставшееся масло перегоняют при 76-78°С/0,2 Торр, получая бесцветную жидкость с выходом 33% (5,3 г). 31Р{H} ЯМР: 49.0 м.д.
1.2 Приготовление (фенил)2PN(изопропил)Р(фенил)NH(изопропил) (PNPN-H)
Раствор вещества типа NPN (такого как получен на стадии 1.1) (2,4 г, 10,7 ммоль) в тетрагидрофуране (10 мл) прибавляют по каплям к перемешиваемому раствору триэтиламина (6 мл) и хлордифенилфосфина (2,36 г, 10,7 ммоль) в ТГФ (40 мл) при -40°С. После дополнительного перемешивания в течение 24 час при комнатной температуре отфильтровывают триэтиламмониевую соль, остаток растворяют в н-гексане, вновь фильтруют и выдерживают раствор при -30°С для кристаллизации. Выход 52% (2,3 г, 5,6 ммоль). 31Р{H} ЯМР: 41,2, 68,4 (широкая полоса).
Пример 2: Тримеризация этилена
300-мл реактор, оборудованный погружной трубкой, карманом для термопары, газозахватывающей мешалкой, охлаждающим змеевиком, управляющими устройствами для температуры, давления и скорости мешалки (все подключенные к системе сбора данных), инертизируют сухим аргоном и заполняют 100 мл безводного толуола. 1694 мкл 4,017 вес.%-ного раствора лиганда 1 ((фенил)2PN(изопропил)Р(фенил)NH(изопропил)) в толуоле вводят во взаимодействие с 59,2 мг CrCl3(ТГФ)3 (ТГФ - тетрагидрофуран) под защитой аргона. Раствор катализатора переносят в реактор в непрерывном токе аргона вместе с 3,6 мл 1,9 М раствора триэтилалюминия в толуоле.
Выбранные объемы и массы соответствуют концентрации хрома 1 ммоль/л при отношении лиганд/CrCl3(ТГФ)3, равном 1,5 моль/моль, и отношении Al/Cr, равном 70 моль/моль.
Реактор герметизируют, повышают давление до 30 бар сухим этиленом и нагревают до 40°С. При перемешивании со скоростью 1200 об/мин прослеживают расход этилена с помощью системы сбора данных и электронных весов, непрерывно взвешивая этиленовый пресс-цилиндр. После 120 мин времени пребывания жидкофазную реакцию быстро охлаждают перенесением жидкого содержимого с помощью давления этилена в стеклянную емкость, заполненную примерно 100 мл воды. Всю газовую фазу из верхней части реактора измеряют с помощью калиброванного газометра и количественно собирают в продутом и вакуумированном газовом мешке.
После отделения жидкой органической фазы всю массу определяют количественно с помощью взвешивания. Далее проводят анализ состава органической фазы с помощью ГХ-ПИД. Ранее собранную газовую фазу анализируют отдельно с помощью ГХ-ПИД.
На основе данных измерений подытоживают массовый баланс и определяют общие выходы и селективность.
В качестве иллюстрации на фиг.1 показаны газохроматографические следы жидкой фазы. Неожиданным образом наблюдаются очень высокий выход 1-гексена и лишь следовые количества 1-бутена, 1-октена, 1-децена и 1-додецена. В повторных экспериментах в четких и хорошо определенных условиях не было обнаружено никакого различимого образования полимеров. Средний выход C6 превышает 89 вес.% при 40°С и несколько падает с повышением температуры. Еще более неожиданным, чем высокие выходы С6, является высокая селективность по 1-гексену в С6-фракции. При температуре реакции 40°С измеренные селективности по 1-гексену приближаются к 100 вес.%, т.е. они не отличаются от 100 вес.% в пределах экспериментальной ошибки, делая тем самым ненужной в технологических операциях какую-либо установку заключительного разделения для обеспечения 1-гексена. Раскрытая в настоящем изобретении новая каталитическая система способна очень эффективно подавлять любой канал нежелательных побочных реакций, таких как изомеризация или перегруппировка олефинов, алкилирование растворителя по Фриделю-Кратсу, со-олигомеризация и т.п.
В таблице 1 суммированы типичные результаты из серии неоптимизированных экспериментов. Повышенные температуры, несмотря на то, что они ухудшают выходы С6, могут, тем не менее, оказаться полезными для одновременного производства C4- и С6-олефинов, обеспечивая при этом и селективность (чистоту продуктов) в отношении 1-бутена и 1-гексена в C4- и C6-фракциях соответственно.
Таблица 1:
Влияние температуры на селективность выходов С6 и 1-гексена (иные параметры процесса, отличные от температуры, являются такими, как указано в примере 1)
Температура °С Выход С4, вес.% Выход С6, вес.% Селективность по 1-гексену в С6-фракции, вес.%
40 8,2 89 100
65 9,6 84 97
90 33 52 90
Используя разные сокатализаторы и/или изменяя структуру функциональных групп лиганда или отношение Cr/лиганд, можно переключать систему от чистого 1-гексена, т.е. от катализатора тримеризации этилена, к системе три/тетрамеризации, производящей с высокой селективностью 1-гексен и 1-октен.
Использование в качестве сокатализатора триэтилалюминия с лигандом 1, обеспечивает высокие выходы 1-гексена, в то время как МАО приводит к получению 1-гексена и 1-октена.
Комбинации сокатализаторов, например триэтилалюминий, дополненный небольшими количествами МАО или триметилалюминия, могут повышать суммарную активность, т.е. скорость превращения, не менее чем втрое при тех же выходах и селективностях.
Были успешно синтезированы и испытан, как описано выше, и другие предпочтительные вариации лигандов основного типа, имеющих структуру PNPN-H.
Раскрытые в предшествующем описании, формуле изобретения и чертеже признаки могут как по отдельности, так и в их сочетании стать материалом для осуществления изобретения в различных его формах.

Claims (17)

1. Каталитическая композиция для селективной ди-, три- и/или тетрамеризации этилена, содержащая:
(a) соединение хрома;
(b) лиганд общей формулы:
(A) R1R2P-N(R3)-P(R4)-N(R5)-H,
где R1, R2, R3, R4 и R5 независимо выбирают из группы, в которую входят амино, С110-алкил, арил и замещенный арил, или любые циклические производные (А), у которых по меньшей мере один из атомов Р или N в группировке PNPN является членом кольцевой системы, причем эта кольцевая система образована из одного или более составляющих соединений структур (А) посредством замещения; и
(c) активатор или сокатализатор.
2. Каталитическая композиция по п.1, в которой соединение хрома выбирают из органических или неорганических солей, координационных комплексов и металлорганических комплексов Cr(II) или Cr(III).
3. Каталитическая композиция по п.2, в которой соединение хрома выбирают из CrCl3(THF)3, ацетилацетоната Cr(III), октаноата Cr(III), гексакарбонила хрома, 2-этилгексаноата Cr(III) и (бензол)трикарбонила хрома.
4. Каталитическая композиция по п.1, в которой R1, R2, R3, R4 и R5 выбирают из группы, в которую входят, амино, метил, этил, изопропил, трет-бутил, фенил, бензил, толил и ксилил.
5. Каталитическая композиция по п.1, в которой активатор или сокатализатор выбирают из триметилалюминия, триэтилалюминия, триизопропилалюминия, триизобутилалюминия, сесквихлорида этилалюминия, хлорида диэтилалюминия, дихлорида этилалюминия, метилалюмоксана (МАО) или их смесей.
6. Каталитическая композиция по п.1, в которой лиганд выбирают из (Ph)2P-N(изо-Pr)-P(Ph)-N(изо-Pr)-H, (Ph)2P-N(изо-Pr)-P(Ph)-N(Ph)-H, (Ph)2P-N(изо-Pr)-P(Ph)-N(трет-бутил)-H и (Ph)2P-N(изо-Pr)-P(Ph)-N(CH(CH3)(Ph))-Н.
7. Каталитическая композиция по п.1, дополнительно содержащая растворитель.
8. Каталитическая композиция по п.7, в которой растворитель выбирают из группы, в которую входят ароматические углеводороды, нормальные и циклические алифатические углеводороды, нормальные олефины и простые эфиры, преимущественно толуол, бензол, этилбензол, кумол, ксилолы, мезитилен, гексан, октан, циклогексан, метилциклогексан, гексен, гептен, октен, диэтиловый эфир или тетрагидрофуран, или их смеси, при этом наиболее предпочтителен толуол.
9. Каталитическая композиция по п.1, в которой концентрация соединения хрома составляет от 0,01 до 100 ммоль/л, предпочтительно от 0,1 до 10 ммоль/л.
10. Каталитическая композиция по п.1, в которой отношение лиганд/Cr составляет преимущественно от 0,5 до 50, предпочтительно от 0,8 до 2,0.
11. Каталитическая композиция по п.5, в которой отношение Al/Cr составляет от 1:1 до 1000:1, предпочтительно от 10:1 до 200:1.
12. Каталитическая композиция для селективной ди-, три- и/или тетрамеризации этилена, которая получена путем соединения, по меньшей мере:
(a) соединения хрома;
(b) лиганда общей формулы
(A) R1R2P-N(R3)-P(R4)-N(R5)-H,
где R1, R2, R3, R4 и R5 независимо выбирают из группы, в которую входят амино, С110-алкил, арил и замещенный арил, или любые циклические производные (А), где по меньшей мере один из атомов Р или N в группировке PNPN является членом кольцевой системы, причем эта кольцевая система образована из одного или более составляющих соединений структур (А) посредством замещения; и
(c) активатора или сокатализатора.
13. Способ селективной ди-, три- и/или тетрамеризации этилена, включающий введение каталитической композиции по любому из пп.1-12 в газовую фазу этилена в реакторе и проведение олигомеризации.
14. Способ по п.13, в котором олигомеризацию проводят при давлении от 1 до 200 бар, преимущественно от 10 до 50 бар.
15. Способ по п.13, в котором олигомеризацию проводят при температуре от 10 до 200°С, преимущественно от 20 до 100°С.
16. Способ по п.13, в котором способ осуществляют в непрерывном режиме.
17. Способ по п.13, в котором среднее время пребывания составляет от 10 мин до 20 ч, преимущественно от 1 до 4 ч.
RU2010104668/04A 2007-07-11 2008-06-16 Каталитическая композиция и способ ди-, три- и/или тетрамеризации этилена RU2456078C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP07013543 2007-07-11
EP07013543.9 2007-07-11

Publications (2)

Publication Number Publication Date
RU2010104668A RU2010104668A (ru) 2011-08-20
RU2456078C2 true RU2456078C2 (ru) 2012-07-20

Family

ID=38863117

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010104668/04A RU2456078C2 (ru) 2007-07-11 2008-06-16 Каталитическая композиция и способ ди-, три- и/или тетрамеризации этилена

Country Status (13)

Country Link
US (2) US8637721B2 (ru)
EP (1) EP2167231B8 (ru)
JP (1) JP5158726B2 (ru)
KR (1) KR101241656B1 (ru)
CN (1) CN101720253B (ru)
BR (1) BRPI0813779B1 (ru)
CA (1) CA2692533C (ru)
ES (1) ES2394866T3 (ru)
MY (1) MY148675A (ru)
RU (1) RU2456078C2 (ru)
SG (1) SG183005A1 (ru)
TW (1) TWI415683B (ru)
WO (1) WO2009006979A2 (ru)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2647238C2 (ru) * 2014-01-06 2018-03-14 Сауди Бейсик Индастриз Корпорейшн Модифицированный способ предварительного образования для активации катализатора при реакциях этилена
RU2659038C2 (ru) * 2013-02-11 2018-06-27 Сауди Бэйсик Индастрис Корпорэйшн Способ очистки неочищенного pnpnh-соединения
RU2659781C2 (ru) * 2013-02-11 2018-07-04 Сауди Бэйсик Индастрис Корпорэйшн Способ очистки неочищенного pnpnh-соединения
RU2665551C1 (ru) * 2014-07-24 2018-08-31 САБИК ГЛОБАЛ ТЕКНОЛОДЖИС Би.Ви. Каталитическая композиция и способ олигомеризации этилена с образованием 1-гексена и/или 1-октена
RU2749592C2 (ru) * 2016-12-30 2021-06-15 Сабик Глобал Текнолоджис Б.В. Способ получения раствора катализатора для селективного производства 1-гексена
RU2802018C2 (ru) * 2019-01-15 2023-08-22 Чайна Петролиум энд Кемикал Корпорейшн Галогенсодержащее соединение и его применение в качестве лиганда в катализаторе олигомеризации этилена

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2703021C (en) * 2007-11-28 2015-01-20 Vugar Aliyev Catalyst composition and process for oligomerization of ethylene
EP2239056B1 (en) * 2009-04-09 2011-07-20 Saudi Basic Industries Corporation Catalyst composition and process for oligomerization of ethylene
KR101809226B1 (ko) 2009-10-16 2017-12-14 사솔 테크날러지 (프로프라이어터리) 리미티드 에틸렌을 포함하는 다성분 탄화수소 스트림으로부터 성분들의 분리
WO2011085951A1 (en) 2010-01-15 2011-07-21 Basell Polyolefine Gmbh Oligomerization of olefins
EP2354113A1 (en) 2010-02-04 2011-08-10 Linde AG Method for deactivation of a catalyst
CN102451758B (zh) * 2010-10-22 2015-12-16 中国石油化工股份有限公司 乙烯四聚催化剂、其制备和应用
CN102451759B (zh) * 2010-10-22 2015-09-09 中国石油化工股份有限公司 乙烯四聚催化剂、其制备和应用
WO2012055943A2 (en) 2010-10-28 2012-05-03 Basell Polyolefine Gmbh Oligomerization of olefins
WO2012072178A1 (en) 2010-11-30 2012-06-07 Linde Aktiengesellschaft Method for cleaning a reactor and/or equipment thereof
ES2409707T3 (es) 2011-02-16 2013-06-27 Linde Ag Procedimiento de preparación de una composición catalítica para oligomerización de etileno y unidad de preformación de composición de catalizador respectiva
CN103100420A (zh) * 2011-11-09 2013-05-15 中国石油化工股份有限公司 用于乙烯四聚的催化剂组合物及其中配体的制备方法
JP5844636B2 (ja) * 2011-12-27 2016-01-20 出光興産株式会社 α−オレフィンの製造方法
KR101846031B1 (ko) * 2012-03-16 2018-04-05 에스케이이노베이션 주식회사 에틸렌으로부터 1-헥센 및/또는 1-옥텐을 제조하기 위한 촉매계
CA2871215C (en) 2012-05-09 2018-06-19 Sasol Technology (Proprietary) Limited Separation of components from a multi-component hydrocarbon stream
SG11201407142WA (en) 2012-05-09 2014-11-27 Sasol Tech Pty Ltd Tetramerisation of ethylene
MY164153A (en) 2012-05-09 2017-11-30 Sasol Tech (Proprietary) Limited Oligomerisation of olefinic compounds with reduced polymer formation
WO2013168102A1 (en) 2012-05-09 2013-11-14 Sasol Technology (Proprietary) Limited Tetramerisation of ethylene
BR112014027663A2 (pt) 2012-05-09 2017-06-27 Sasol Tech Pty Ltd processo para a oligomerização de um hidrocarboneto
EP2684857A1 (en) * 2012-07-10 2014-01-15 Saudi Basic Industries Corporation Method for oligomerization of ethylene
KR101483248B1 (ko) 2012-11-15 2015-01-16 주식회사 엘지화학 리간드 화합물, 유기크롬 화합물, 에틸렌 올리고머화용 촉매계, 이의 제조 방법 및 이를 이용한 에틸렌 올리고머화 방법
ES2524905T3 (es) * 2012-11-28 2014-12-15 Saudi Basic Industries Corporation Proceso para la oligomerización de etileno
CA2800268C (en) * 2012-12-21 2020-02-25 Nova Chemicals Corporation Continuous ethylene tetramerization process
EP2764914A1 (en) * 2013-02-11 2014-08-13 Linde AG Metalated PNPNH ligand, catalyst composition and use thereof in the oligomerization of ethylene
KR101483247B1 (ko) * 2013-04-23 2015-01-16 주식회사 엘지화학 폴리올레핀 중합용 촉매의 제조 방법 및 폴리올레핀 제조방법
US9533923B2 (en) * 2013-05-09 2017-01-03 Sasol Technology (Proprietary) Limited Oligomerisation of ethylene to mixtures of 1-hexene and 1-octene
MY173996A (en) * 2013-05-09 2020-03-03 Sasol Tech Pty Ltd Oligomerisation of ethylene to mixtures of 1-hexene and 1-octene
MX2015014764A (es) 2013-05-09 2016-03-11 Sasol Tech Pty Ltd Tetramerizacion de etileno.
EP2832445A1 (en) * 2013-07-29 2015-02-04 Linde AG Catalyst composition and process for oligomerization of ethylene
CN104511311B (zh) * 2013-09-30 2017-07-07 华东理工大学 一种高选择性的乙烯三聚、四聚催化剂体系及其使用方法
KR101638980B1 (ko) 2013-09-30 2016-07-12 주식회사 엘지화학 리간드 화합물, 유기크롬 화합물, 에틸렌 올리고머화용 촉매 시스템, 및 이를 이용한 에틸렌 올리고머화 방법
KR101601936B1 (ko) 2013-11-19 2016-03-09 주식회사 엘지화학 리간드 화합물, 올레핀 올리고머화용 촉매계, 및 이를 이용한 올레핀 올리고머화 방법
KR101646178B1 (ko) * 2014-11-25 2016-08-05 롯데케미칼 주식회사 올레핀 올리고머화용 촉매계, 및 이를 이용한 올레핀 올리고머화 방법
KR101645611B1 (ko) * 2014-11-26 2016-08-05 롯데케미칼 주식회사 올레핀 올리고머화용 촉매계, 및 이를 이용한 올레핀 올리고머화 방법
KR101679515B1 (ko) * 2015-02-12 2016-11-24 주식회사 엘지화학 올리고머화 촉매계의 제조방법 및 이에 의해 제조된 올리고머화 촉매계
WO2016186282A1 (ko) * 2015-05-15 2016-11-24 주식회사 엘지화학 촉매 조성물 및 이를 이용한 폴리올레핀의 제조방법
KR101768194B1 (ko) 2015-05-15 2017-08-16 주식회사 엘지화학 촉매 조성물 및 이를 이용한 폴리올레핀의 제조방법
KR101757835B1 (ko) 2015-06-12 2017-07-13 주식회사 엘지화학 리간드 화합물, 유기 크롬 화합물, 올레핀 올리고머화용 촉매 시스템, 및 이를 이용한 올레핀의 올리고머화 방법
EP3350143B1 (en) 2015-09-16 2024-05-15 SABIC Global Technologies B.V. Process for deactivation of an olefin oligomerization catalyst
CN108430956B (zh) 2015-12-22 2020-09-22 沙特基础工业全球技术有限公司 用于从线性α烯烃生产中回收甲苯的方法
KR101818180B1 (ko) * 2016-05-13 2018-02-21 한국화학연구원 에틸렌 올리고머화 방법
ES2962319T3 (es) 2016-12-30 2024-03-18 Sabic Global Technologies Bv Método de preparación de un catalizador homogéneo para la producción selectiva de 1-hexeno
WO2019074304A1 (ko) * 2017-10-11 2019-04-18 롯데케미칼 주식회사 올레핀 올리고머화용 촉매계 및 이를 이용하는 올레핀 올리고머 제조방법
CN109289928A (zh) * 2018-10-09 2019-02-01 天津科技大学 一种用于乙烯齐聚的催化剂及其制备方法
WO2020100010A1 (en) * 2018-11-12 2020-05-22 Sabic Global Technologies B.V. Ligands for production of 1-hexene in chromium assisted ethylene oligomerization process
CN111434668B (zh) * 2019-01-15 2021-08-03 中国石油化工股份有限公司 含卤素化合物及用途和催化剂组合物及乙烯齐聚方法和乙烯三聚方法和乙烯四聚方法
US11826743B2 (en) 2019-01-15 2023-11-28 China Petroleum & Chemical Corporation Halogen-containing compound and use thereof as catalyst ligand in ethylene oligomerization
EP3907004B1 (en) 2019-01-15 2023-09-13 China Petroleum & Chemical Corporation Halogen-containing compound and use thereof, catalyst composition, and ethylene oligomerization, trimerization and tetramerization methods
CN111434670B (zh) * 2019-01-15 2021-07-30 中国石油化工股份有限公司 含氟化合物及用途和乙烯齐聚催化剂组合物及乙烯齐聚方法和乙烯三聚方法和乙烯四聚方法
CN110479382B (zh) * 2019-08-19 2022-04-29 迈瑞尔实验设备(上海)有限公司 一种用于乙烯选择性齐聚制1-辛烯的催化剂体系及其制备方法与应用
CN111889142B (zh) * 2020-07-23 2023-02-07 天津科技大学 一种乙烯选择性齐聚的催化剂体系、反应方法及其应用
CN112473741B (zh) * 2020-10-22 2023-09-01 杭州小菱科技有限公司 一种乙烯齐聚催化剂体系及其制备方法与用途
WO2022115750A1 (en) 2020-11-30 2022-06-02 Saudi Arabian Oil Company Catalyst systems
WO2022115754A1 (en) 2020-11-30 2022-06-02 Saudi Arabian Oil Company Catalyst systems
US11458462B2 (en) 2020-11-30 2022-10-04 Saudi Arabian Oil Company Catalyst systems
US11612883B2 (en) 2020-11-30 2023-03-28 Saudi Arabian Oil Company Catalyst systems
WO2022115749A1 (en) 2020-11-30 2022-06-02 Saudi Arabian Oil Company Catalyst systems
JP7280623B2 (ja) * 2020-12-28 2023-05-24 株式会社アビー 細胞凍結保存液、及び細胞凍結方法
CN116917040A (zh) 2021-03-12 2023-10-20 沙特阿拉伯石油公司 催化剂体系
WO2023027749A1 (en) 2021-08-26 2023-03-02 Saudi Arabian Oil Company Catalyst systems
CN114163475B (zh) * 2021-12-01 2023-07-28 浙江智英石化技术有限公司 含吡咯基刚性结构多位点配体的催化剂体系、制备方法及应用
WO2023118226A1 (en) 2021-12-23 2023-06-29 Sabic Global Technologies B.V. Catalyst composition for oligomerization reaction
US11639321B1 (en) 2022-08-31 2023-05-02 Saudi Arabian Oil Company Catalyst systems that include meta-alkoxy substituted n-aryl bis-diphosphinoamine ligands
US11623901B1 (en) 2022-08-31 2023-04-11 Saudi Arabian Oil Company Catalyst systems that include silyl ether moieties
WO2024047612A1 (en) 2022-09-02 2024-03-07 Sabic Global Technologies B.V. Methods for producing 1-hexene

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2299096C2 (ru) * 2000-07-11 2007-05-20 Инеос Юроут Лимитед Тримеризация и олигомеризация олефинов с использованием катализатора, включающего источник хрома, молибдена или вольфрама и лиганд, содержащий по меньшей мере один атом фосфора, мышьяка или сурьмы, связанный с по меньшей мере одной (гетеро)углеводородной группой

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5259939A (en) 1991-08-30 1993-11-09 Beckman Instruments, Inc. Capillary electrophoresis buffer
US5811618A (en) * 1991-10-16 1998-09-22 Amoco Corporation Ethylene trimerization
GB9517105D0 (en) * 1995-08-21 1995-10-25 Bp Chem Int Ltd Catalyst compositions
JP4027423B2 (ja) * 1996-04-04 2007-12-26 イネオス ヨーロッパ リミテッド 新規な触媒組成物
US6337297B1 (en) * 1998-10-12 2002-01-08 Tosoh Corporation Catalyst for trimerization of ethylene and process for trimerizing ethylene using the catalyst
GB9918635D0 (en) * 1999-08-06 1999-10-13 Bp Chem Int Ltd Polymerisation process
JP4308015B2 (ja) 2001-12-20 2009-08-05 サソル テクノロジー (ピーティーワイ)リミテッド クロムを主成分とした触媒を使用したオレフィン類の三量化およびオリゴマー化
US7297832B2 (en) 2002-12-20 2007-11-20 Sasol Technology (Pty) Limited Tetramerization of olefins
DE60331252D1 (de) 2002-12-20 2010-03-25 Sasol Tech Pty Ltd Trimerisierung von olefinen
US7273959B2 (en) 2003-10-10 2007-09-25 Shell Oil Company Catalytic trimerization of olefinic monomers
US20070185357A1 (en) * 2005-11-21 2007-08-09 De Boer Eric J M Catalytic process for the oligomerization of olefinic monomers
CN100386149C (zh) * 2006-06-26 2008-05-07 中国石油天然气股份有限公司 一种乙烯三聚催化剂及其应用
DE102009027375A1 (de) 2009-07-01 2011-03-10 Robert Bosch Gmbh Diagnoseverfahren zum Durchführen einer Diagnose eines Systems

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2299096C2 (ru) * 2000-07-11 2007-05-20 Инеос Юроут Лимитед Тримеризация и олигомеризация олефинов с использованием катализатора, включающего источник хрома, молибдена или вольфрама и лиганд, содержащий по меньшей мере один атом фосфора, мышьяка или сурьмы, связанный с по меньшей мере одной (гетеро)углеводородной группой

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Burford Neil et al "Sequential dehydrochloride coupling of trichlorophosphine with 2,6-di-isopropylaniline: aminophosphine precursors to phosphetidines" Canadian journal of chemistry, vol 80, no 11, pages 1404-1409, 07.10.2002. Kats Stephanie A "Diastereoselectivity in the formation of skeletally stabilized phosphazanes" Inorganic chemistry, vol 33, no 9, 1762-1769. Helm Monte L et al "Synthesis, characterization and solution properties of skeletally stabilized triphosphazanes" Inorganic chemistry, vol 38, no 13, pages 3167-3172, 08.06.1999. В.В.Москва, А.К.Кулиев и др. "N,N-дифосфорилированные 1,3,2-диазафосфоланы" Журнал общей химии, т.55, вып.4, стр.935-936, 1976. Mundt Cornelia et al "N-phosphanylated 1,3,2-oxaza- and 1,3,2-diazaphospholanes and phosphorinanes" Phosphorus, sulfus and silicon and the related elements, vol 88, no 1-4, pages 75-81, 1994. *
Scherer Otto J et al "Synthesis and isolation of cis- and trans-1,3,2.lambda.3,4.lambda.3-diazadiphosphetidine" Angewandte chemie int. ed. engl., vol 15, no 12, 1976, pages 772. Dixon J Т et al "Advances in selective ethylene trimerisation - a critical overview" journal of organometallic chemistry, Elsevier-Sequoia S.A. Lausanne, vol 689, no 23, 15.11.2004, pages 3641-3668. Mcguinness David S et al "Cocatalyst influence in selective oligomerization: effect on activity, catalyst stability, and 1-hexene / 1-octene selectivity in the ethylene trimerization and tetramerization reaction" organometallics, ACS, Washington, US, vol 26, no 10, 10.04.2007, pages 2561-2569. *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2659038C2 (ru) * 2013-02-11 2018-06-27 Сауди Бэйсик Индастрис Корпорэйшн Способ очистки неочищенного pnpnh-соединения
RU2659781C2 (ru) * 2013-02-11 2018-07-04 Сауди Бэйсик Индастрис Корпорэйшн Способ очистки неочищенного pnpnh-соединения
RU2647238C2 (ru) * 2014-01-06 2018-03-14 Сауди Бейсик Индастриз Корпорейшн Модифицированный способ предварительного образования для активации катализатора при реакциях этилена
RU2665551C1 (ru) * 2014-07-24 2018-08-31 САБИК ГЛОБАЛ ТЕКНОЛОДЖИС Би.Ви. Каталитическая композиция и способ олигомеризации этилена с образованием 1-гексена и/или 1-октена
RU2749592C2 (ru) * 2016-12-30 2021-06-15 Сабик Глобал Текнолоджис Б.В. Способ получения раствора катализатора для селективного производства 1-гексена
RU2804351C2 (ru) * 2018-11-12 2023-09-28 Сабик Глоубл Текнолоджиз Б.В. Лиганды для получения 1-октена в хром-катализируемом процессе олигомеризации этилена
RU2802018C2 (ru) * 2019-01-15 2023-08-22 Чайна Петролиум энд Кемикал Корпорейшн Галогенсодержащее соединение и его применение в качестве лиганда в катализаторе олигомеризации этилена

Also Published As

Publication number Publication date
MY148675A (en) 2013-05-31
EP2167231A2 (en) 2010-03-31
SG183005A1 (en) 2012-08-30
WO2009006979A8 (en) 2009-12-23
WO2009006979A3 (en) 2009-03-26
JP2010532711A (ja) 2010-10-14
TWI415683B (zh) 2013-11-21
TW200909055A (en) 2009-03-01
ES2394866T3 (es) 2013-02-06
CA2692533A1 (en) 2009-01-15
BRPI0813779A2 (pt) 2014-12-30
KR101241656B1 (ko) 2013-03-11
US20140179970A1 (en) 2014-06-26
JP5158726B2 (ja) 2013-03-06
US8637721B2 (en) 2014-01-28
RU2010104668A (ru) 2011-08-20
CN101720253B (zh) 2013-07-17
CN101720253A (zh) 2010-06-02
WO2009006979A2 (en) 2009-01-15
BRPI0813779B1 (pt) 2018-06-26
US9555404B2 (en) 2017-01-31
EP2167231B1 (en) 2012-09-26
EP2167231B8 (en) 2013-03-06
KR20100046170A (ko) 2010-05-06
US20100190939A1 (en) 2010-07-29
CA2692533C (en) 2013-03-05

Similar Documents

Publication Publication Date Title
RU2456078C2 (ru) Каталитическая композиция и способ ди-, три- и/или тетрамеризации этилена
RU2525917C2 (ru) Каталитическая композиция и способ олигомеризации этилена
RU2467797C2 (ru) Каталитическая композиция и способ олигомеризации этилена
RU2467796C2 (ru) Катализатор олигомеризации этилена, способ его получения и способ олигомеризации с его использованием
CA2629885C (en) Catalytic oligomerization of olefinic monomers
CA2510190C (en) Trimerisation of olefins
US7525009B2 (en) Trimerisation of olefins
KR101471156B1 (ko) 선택적 에틸렌 올리고머화 촉매계