RU2340979C1 - Способ производства полупроводниковой подложки, полупроводниковая подложка для солнечных установок и раствор для травления - Google Patents

Способ производства полупроводниковой подложки, полупроводниковая подложка для солнечных установок и раствор для травления Download PDF

Info

Publication number
RU2340979C1
RU2340979C1 RU2007116101/28A RU2007116101A RU2340979C1 RU 2340979 C1 RU2340979 C1 RU 2340979C1 RU 2007116101/28 A RU2007116101/28 A RU 2007116101/28A RU 2007116101 A RU2007116101 A RU 2007116101A RU 2340979 C1 RU2340979 C1 RU 2340979C1
Authority
RU
Russia
Prior art keywords
acid
etching solution
semiconductor substrate
irregularities
carboxylic acid
Prior art date
Application number
RU2007116101/28A
Other languages
English (en)
Inventor
Масато ЦУТИЯ (JP)
Масато ЦУТИЯ
Икуо МАСИМО (JP)
Икуо МАСИМО
Ёсимити КИМУРА (JP)
Ёсимити КИМУРА
Original Assignee
Мимасу Семикондактор Индастри Ко., Лтд
Спейс Энерджи Корпорейшн
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Мимасу Семикондактор Индастри Ко., Лтд, Спейс Энерджи Корпорейшн filed Critical Мимасу Семикондактор Индастри Ко., Лтд
Application granted granted Critical
Publication of RU2340979C1 publication Critical patent/RU2340979C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/08Etching
    • C30B33/10Etching in solutions or melts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Weting (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Предложен безопасный и экономичный способ производства полупроводниковой подложки, обладающей отличной эффективностью фотоэлектрического преобразования, в которой мелкая структура неровностей, пригодная для использования в солнечном элементе, может быть однородно сформирована с требуемым размером на поверхности полупроводниковой подложки, полупроводниковая подложка, предназначенная для применения в солнечных установках, в которой однородная и мелкая структура неровностей в форме пирамиды предусмотрена равномерно в пределах ее поверхности, и травильный раствор для формирования полупроводниковой подложки, имеющей однородную и мелкую структуру неровностей. Полупроводниковую подложку вытравливают с использованием щелочного травильного раствора, содержащего, по меньшей мере, один тип, выбранный из группы, состоящей из карбоновых кислот, имеющих углеродное число 1-12 и имеющих, по меньшей мере, одну карбоксильную группу в молекуле, и их солей, с тем, чтобы таким образом сформировать структуру неровностей на поверхности полупроводниковой подложки. 3 н. и 9 з.п. ф-лы, 16 ил., 10 табл.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к способу производства полупроводниковой подложки, имеющей неровную структуру, которую используют для солнечного элемента, или тому подобное, к полупроводниковой подложке для применения в солнечных установках и к раствору для травления, используемому в этом способе.
Предшествующий уровень техники
В последнее время для повышения эффективности солнечных элементов используется способ, включающий в себя формирование неровной структуры на поверхности подложки для эффективной передачи падающего света с поверхности внутрь подложки. В качестве способа однородного формирования тонкой неровной структуры на поверхности подложки в непатентном документе Progress in Photovoltaics: Research and Applications, Vol.4, 435-438 (1996) описан способ, включающий в себя выполнение обработки, состоящей в анизотропном травлении с использованием смешанного водного раствора гидроокиси натрия и изопропилового спирта для обработки поверхности монокристаллической кремневой подложки, имеющей (100) плоскость на поверхности, для формирования неровностей в форме пирамид (прямоугольных пирамид), состоящей из (111) плоскости. Однако применение этого способа связано с проблемами, связанными с необходимостью обработки загрязненных водных отходов, защиты рабочей окружающей среды и обеспечения безопасности, в связи с использованием изопропилового спирта. Кроме того, форма и размер неровностей получаются неоднородными, поэтому трудно сформировать однородные тонкие неровности, расположенные в плоскости.
В качестве раствора для травления в патентном документе JP 11-233484 А описывается щелочной водный раствор, содержащий поверхностно-активное вещество, и в патентном документе JP 2002-57139 А описан щелочной водный раствор, содержащий поверхностно-активное вещество, которое содержит октановую кислоту или додециловую кислоту в качестве основного компонента.
Раскрытие сущности изобретения
Проблемы, решаемые изобретением
Цель настоящего изобретения состоит в создании безопасного и малозатратного способа производства полупроводниковой подложки, обладающей отличной эффективностью фотоэлектрического преобразования, на которой возможно однородно сформировать мелкую неровную структуру с требуемым размером, предпочтительно для солнечного элемента на поверхности полупроводниковой подложки; причем полупроводниковая подложка для применения в солнечных установках имеет однородную и мелкую неровную структуру в форме пирамид в плоскости; и раствора для травления, предназначенного для формирования полупроводниковой подложки, имеющей однородную и мелкую неровную структуру.
Для достижения указанной выше цели способ производства полупроводниковой подложки в соответствии с настоящим изобретением отличается тем, что включает в себя травление полупроводниковой подложки щелочным травильным раствором, содержащим, по меньшей мере, один тип, выбранный из группы, состоящей из карбоновых кислот, имеющих углеродное число 12 или меньше и имеющих, по меньшей мере, одну карбоксильную группу в одной молекуле, и их солей с тем, чтобы таким образом сформировать неровную структуру на поверхности полупроводниковой подложки.
Карбоновая кислота предпочтительно представляет собой один из двух или больше типов, выбранных из группы, состоящей из уксусной кислоты, пропионовой кислоты, бутановой кислоты, пентановой кислоты, гексановой кислоты, гептановой кислоты, октановой кислоты, нонановой кислоты, декановой кислоты, ундекановой кислоты, додекановой кислоты, акриловой кислоты, щавелевой кислоты и лимонной кислоты.
Кроме того, углеродное число карбоновой кислоты предпочтительно составляет 7 или меньше. Концентрация карбоновой кислоты в травильном растворе предпочтительно составляет от 0,05 до 5 моль/л.
Благодаря выбору заданного одного и двух или больше типов карбоновых кислот в качестве карбоновой кислоты в травильном растворе можно регулировать размер выступов на неровной структуре, формируемой на поверхности полупроводниковой подложки.
Полупроводниковая подложка для применения в солнечных установках, в соответствии с настоящим изобретением, имеет неровную структуру на поверхности, полученную с помощью способа в соответствии с настоящим изобретением.
Кроме того, предпочтительно, чтобы полупроводниковая подложка для применения в солнечных установках, в соответствии с настоящим изобретением, имела однородную и мелкую неровную структуру в форме пирамид на поверхности полупроводниковой подложки, и, чтобы максимальная длина размера нижней поверхности неровной структуры составляла от 1 до 20 мкм. В настоящем изобретении максимальная длина стороны обозначает среднее значение длины одной стороны нижней поверхности 10 неровных структур, последовательно выбранных в порядке убывания размеров формы неровной структуры на единице площади 266 мкм ×200 мкм.
Полупроводниковая подложка предпочтительно представляет собой тонкую подложку из монокристаллического кремния.
Травильный раствор, в соответствии с настоящим изобретением, предназначен для равномерного формирования мелкой неровной структуры в форме пирамид на поверхности полупроводниковой подложки, который представляет собой водный раствор, содержащий щелочь и карбоновую кислоту углеродным числом 12 или меньше, имеющую, по меньшей мере, одну карбоксильную группу в одной молекуле.
Травильный раствор предпочтительно имеет состав, в котором щелочь составляет от 3 до 50 мас.%, карбоновая кислота составляет от 0,05 до 5 моль/л, и баланс раствора составляет вода.
Кроме того, карбоновая кислота представляет собой предпочтительно один или два, или больше типов, выбранных из группы, состоящей из уксусной кислоты, пропионовой кислоты, бутановой кислоты, пентановой кислоты, гексановой кислоты, гептановой кислоты, октановой кислоты, нонановой кислоты, декановой кислоты, ундекановой кислоты, додекановой кислоты, акриловой кислоты, щавелевой кислоты и лимонной кислоты. Углеродное число карбоновой кислоты предпочтительно составляет 7 или меньше.
В соответствии со способом производства полупроводниковой подложки и травильного раствора, в соответствии с настоящим изобретением, полупроводниковая подложка, которая обладает отличной эффективностью фотоэлектрического преобразования и имеет мелкую однородную неровную структуру с требуемым размером, которая является предпочтительной для солнечного элемента, может быть безопасно изготовлена при малых затратах. Полупроводниковая подложка для применения в солнечных установках, в соответствии с настоящим изобретением, имеет однородную и мелкую структуру неровностей, которая является предпочтительной для солнечного элемента и т.п., и в результате, используя такую полупроводниковую подложку, может быть эффективно получен солнечный элемент, обладающий отличным фотоэлектрическим преобразованием.
Краткое описание чертежей
На фиг.1 представлены изображения результатов в виде электронных микроснимков по примеру 1, в которых в части (а) показаны изображения с увеличением 500, и в части (b) показаны изображения с увеличением 1000.
На фиг.2 показаны изображения результатов в виде электронных микроснимков по примеру 2, в которых в части (а) показаны изображения с увеличением 500, и в части (b) показаны изображения с увеличением 1000.
На фиг.3 представлены изображения результатов в виде электронных микроснимков по примеру 3, в которых в части (а) показаны изображения с увеличением 500, и в части (b) показаны изображения с увеличением 1000.
На фиг.4 представлено изображение результатов в виде электронных микроснимков по примеру 4, в которых в части (а) показаны изображения с увеличением 500, и в части (b) показаны изображения с увеличением 1000.
На фиг.5 представлены изображения результатов в виде электронных микроснимков для сравнительного примера 1, в котором в части (а) показаны изображения с увеличением 500, и в части (b) показаны изображения с увеличением 1000.
На фиг.6 представлены изображения результатов в виде электронных микроснимков по примеру 5, в которых в части (а) показаны изображения с увеличением 500, и в части (b) показаны изображения с увеличением 1000.
На фиг.7 представлены изображения результатов в виде электронных микроснимков по примеру 6, в которых в части (а) представлены изображения с увеличением 500, и в части (b) представлены изображения с увеличением 1000.
На фиг.8 показаны изображения результатов в виде электронных микроснимков по примеру 7, в которых в части (а) представлены изображения с увеличением 500, и в части (b) представлены изображения с увеличением 1000.
На фиг.9 показано изображение примера, в котором был получен отличный стандарт оценки на поверхности подложки после обработки травлением по примеру 8.
На фиг.10 показано изображение примера, в котором был получен удовлетворительный стандарт оценки на поверхности подложки после обработки травлением по примеру 8.
На фиг.11 показано изображение примера, в котором был получен приемлемый стандарт оценки на поверхности подложки после обработки травлением по примеру 8.
На фиг.12 представлено изображение примера, в котором был получен неудачный стандарт оценки на поверхности подложки после обработки травлением по примеру 8.
На фиг.13 представлены изображения результатов в виде электронных микроснимков по примеру 15.
На фиг.14 представлены изображения результатов в виде электронных микроснимков по примеру 16.
На фиг.15 представлены изображения результатов в виде электронных микроснимков по примеру 17.
На фиг.16 представлены изображения результатов в виде электронных микроснимков по примеру 18.
Подробное описание изобретения
В соответствии со способом производства полупроводниковой подложки, в соответствии с настоящим изобретением, щелочной раствор, содержащий, по меньшей мере, один тип, выбранный из группы, состоящей из карбоновых кислот, имеющих углеродное число 12 или меньше и имеющих, по меньшей мере, одну карбоксильную группу в одной молекуле, и их солей, используется как травильный раствор, и полупроводниковую подложку замачивают в травильном растворе для выполнения на поверхности подложки анизотропного травления, в результате чего на поверхности подложки формируется однородная и тонкая неровная структура.
В качестве указанных выше карбоновых кислот можно широко использовать известные органические соединения, каждое из которых имеет углеродное число, равное 12 или меньше, и имеет, по меньшей мере, одну карбоксильную группу в одной молекуле. Хотя количество карбоксильных групп, в частности, не огранивается, предпочтительно оно составляет от 1 до 3. То есть предпочтительно использовать монокарбоновые кислоты, дикарбоновые кислоты и трикарбоновые кислоты. Углеродное число карбоновой кислоты равно 1 или больше, предпочтительно 2 или больше и более предпочтительно 4 или больше, и 12 или меньше, предпочтительно 10 или меньше и более предпочтительно 7 или меньше. В качестве указанной выше карбоновой кислоты, хотя могут использоваться любые карбоновые кислоты с цепным строением молекул и циклические карбоновые кислоты, предпочтительно использовать карбоновые кислоты с цепным строением молекул, в частности предпочтительно использовать карбоновые кислоты с цепным строением молекул с углеродным числом от 2 до 7.
Примеры карбоновой кислоты с цепным строением молекул включают в себя: монокарбоновые цепные насыщенные кислоты (насыщенные жирные кислоты), такие как муравьиная кислота, уксусная кислота, пропановая кислота, бутановая кислота, пентановая кислота, гексановая кислота, гектановая кислота, октановая кислота, нонановая кислота, декановая кислота, ундекановая кислота, додекановая кислота и их изомеры; алифатические насыщенные дикарбоновые кислоты, такие как щавелевая кислота, малоновая кислота, янтарная кислота, глутаровая кислота, адипиновая кислота, пимелиновая кислота и их изомеры; алифатические насыщенные трикарбоновые кислоты, такие как пропантрикарбоновая кислота и метантрикарбоновая кислота; ненасыщенные жирные кислоты, такие как акриловая кислота, бутеновая кислота, пентеновая кислота, гексеновая кислота, гептеновая кислота, пентадиеновая кислота, гексадиеновая кислота, гептадиеновая кислота и ацетиленкарбоновая кислота; алифатические ненасыщенные дикарбоновые кислоты, такие как бутендионовая кислота, пентендионовая кислота, гексендионовая кислота, гексендионовая кислота и ацетилендикарбоновая кислота; и алифатические ненасыщенные трикарбоновые кислоты, такие как аконитовая кислота.
Примеры циклических карбоновых кислот включают в себя: алициклические карбоновые кислоты, такие как циклопропанкарбоновая кислота, циклобутанкарбоновая кислота, циклопентанкарбоновая кислота, циклогексанкарбоновая кислота, циклопропандикарбоновая кислота, циклобутандикарбоновая кислота, циклопентандикарбоновая кислота, цикропропантрикарбоновая кислота и циклобутантрикарбоновая кислота; и ароматические карбоновые кислоты, такие как бензойная кислота, фталевая кислота и бензолтрикарбоновая кислота.
Кроме того, также можно использовать органические соединения, содержащие карбоксильную группу, каждое из которых имеет другую функциональную группу, кроме карбоксильной группы. Примеры их включают в себя: оксикарбоновые кислоты, такие как гликолевая кислота, молочная кислота, гидроакриловая кислота, оксибутировая кислота, глицериновая кислота, тартроновая кислота, яблочная кислота, винная кислота, лимонная кислота, салициловая кислота и глюконовая кислота; кетакарбоновые кислоты, такие как пировиноградная кислота, ацетоуксусная кислота, пропионилуксусная кислота и левулиновая кислота; и алкоксикарбоновые кислоты, такие как метоксикарбоновая кислота и этоксиуксусная кислота.
Предпочтительные примеры таких карбоновых кислот включают в себя уксусную кислоту, пропионовую кислоту, бутановую кислоту, пентановую кислоту, гексановую кислоту, гептановую кислоту, октановую кислоту, нонановую кислоту, декановую кислоту, ундекановую кислоту, додекановую кислоту, акриловую кислоту, щавелевую кислоту и лимонную кислоту.
В качестве карбоновой кислоты в травильном растворе предпочтительно использовать карбоновую кислоту, содержащую, по меньшей мере, одну карбоновую кислоту, имеющую углеродное число 4-7, в качестве основного компонента, и если требуется, предпочтительно добавлять карбоновую кислоту, имеющую углеродное число 3 или меньше, или карбоновую кислоту, имеющую углеродное число 8 или больше.
Концентрация карбоновой кислоты в травильном растворе предпочтительно составляет от 0,05 до 5 моль/л, более предпочтительно от 0,2 до 2 моль/л.
В производственном процессе, в соответствии с настоящим изобретением, в результате выбора заданной карбоновой кислоты можно изменять размер формируемой неравной структуры на поверхности полупроводниковой подложки. В частности, благодаря использованию травильного раствора, представляющего собой смесь множества карбоновых кислот, имеющих разные углеродные числа, можно регулировать размер выступа в форме пирамиды неравной структуры на поверхности подложки. Когда углеродное число добавляемой карбоновой кислоты мало, размер неравной структуры становится меньшим. Для однородного формирования мелких неровностей предпочтительно, чтобы добавляемая карбоновая кислота содержала один или два, или больше типов алифатических карбоновых кислот с углеродным числом 4-7, в качестве основных компонентов, и, если требуется, другие карбоновые кислоты.
В качестве указанного выше щелочного раствора используется водный раствор, в котором растворена щелочь. В качестве щелочи можно использовать любую органическую щелочь и неорганическую щелочь. В качестве органической щелочи, например, предпочтительно использовать четырехкомпонентную соль аммония, такую как гидроксид тетраэтиламмония и аммиак. В качестве неорганической щелочи предпочтительно использовать гидроокиси щелочных металлов или щелочноземельных металлов, таких как гидроокись натрия, гидроокись калия и гидроокись кальция, при этом гидроокись натрия или гидроокись калия являются особенно предпочтительными. Такие щелочи можно использовать отдельно или в комбинации из, по меньшей мере, двух типов. Концентрация щелочи в травильном растворе предпочтительно составляет 3-50 мас.%, более предпочтительно 5-20 мас.% и еще более предпочтительно 8-15 мас.%.
В качестве указанной выше полупроводниковой подложки, хотя предпочтительно использовать подложку из монокристаллического кремния, также можно использовать монокристаллическую полупроводниковую подложку, в которой используется полупроводниковое соединение, такое как германий и арсенид галлия.
В способе, в соответствии с настоящим изобретением, процесс травления не ограничен конкретно. Полупроводниковую подложку замачивают или тому подобное в течение заданного периода времени, используя травильный раствор, подогреваемый для поддержания заданной температуры, в результате чего на поверхности полупроводниковой подложки формируется однородная и тонкая неровная структура. Хотя температура травильного раствора не ограничена конкретно, предпочтительно использовать диапазон от 70 до 98°С. Хотя время травления не ограничено конкретно, предпочтительно использовать от 15 до 30 минут.
В соответствии со способом производства полупроводниковой подложки в соответствии с настоящим изобретением получают полупроводниковую подложку с однородной неравной структурой в форме пирамиды, в которой максимальная длина стороны нижней поверхности равна от 1 до 20 мкм, причем верхнее предельное его значение предпочтительно составляет 10 мкм, более предпочтительно 5 мкм, и угол вершины в вертикальном разрезе составляет 110°. Кроме того, в соответствии с настоящим изобретением, может быть получена с малыми затратами полупроводниковая подложка с низкой отражающей способностью.
Сведения, подтверждающие возможность осуществления изобретения
Примеры
Ниже настоящее изобретение будет описано более конкретно на примерах. Однако следует понимать, что эти примеры представлены с целью иллюстрации, и их не следует интерпретировать как ограничение.
Пример 1
Используя травильный раствор, в котором 30 г/л (приблизительно 0,26 моль/л) гексановой кислоты добавили к 12,5 мас.% водного раствора КОН, в качестве травильного раствора, замочили подложку из монокристалла кремния, имеющую (100) плоскость поверхности при 90°С, в течение 30 минут. После этого поверхность обработанной подложки наблюдали, используя электронные микроснимки. На фиг.1 показаны результаты, полученные в виде электронных микроснимков. На фиг.1(а) представлен случай с увеличением 500, и на фиг.1(b) представлен случай с увеличением 1000. Кроме того, на неровной структуре, на единице площади с размерами 265 мкм на 200 мкм выбрали 10 неровных структур, последовательно в порядке убывания размера формы, и измерили длину стороны на нижней поверхности каждой пирамидальной структуры. В результате получили среднее значение длины стороны, то есть максимальная длина стороны нижней поверхности составила 9,1 мкм. В таблице 1 представлены результаты примеров 1-4 и сравнительного примера 1.
Пример 2
Эксперимент проводили таким же образом, как и в примере 1, за исключением того, что использовали травильный раствор, в котором вместо гексановой кислоты использовали 30 г/л (приблизительно 0,23 моль/л) гептановой кислоты. На фиг.2 показаны результаты, полученные в виде электронных микроснимков. Кроме того, максимальная длина стороны нижней поверхности неровной структуры составила 11,0 мкм.
Пример 3
Эксперимент провели таким же образом, как и в примере 1, за исключением того, что использовали травильный раствор, в котором вместо гексановой кислоты использовали 30 г/л (приблизительно 0,21 моль/л) октановой кислоты. На фиг.3 показаны результаты, полученные в виде электронных микроснимков. Кроме того, максимальная длина стороны нижней поверхности неравномерной структуры составила 21,1 мкм.
Пример 4
Эксперимент провели таким же образом, как и в примере 1, за исключением того, что использовали травильный раствор, в котором вместо гексановой кислоты добавили 30 г/л (приблизительно 0,19 моль/л) нонановой кислоты. На фиг.4 показаны результаты, полученные в виде электронных микроснимков. Кроме того, максимальная длина стороны нижней поверхности неровной структуры составила 32,1 мкм.
Сравнительный пример 1
Эксперимент проводили таким же образом, как в примере 1, за исключением того, что использовали травильный раствор, в котором вместо гексановой кислоты добавили изопропиловый спирт (IPA, ИПС) так, что раствор содержал 10 мас.%. ИПС. На фиг.5 показаны результаты, полученные в виде электронных микроснимков. Кроме того, максимальная длина стороны нижней поверхности неравномерной структуры составила 24,8 мкм.
Таблица 1
Состав травильного раствора Неровность подложки
Карбоновая кислота Концентрация КОН Максимальная длина боковой стороны на нижней поверхности Однородность
Пример 1 Гексановая кислота 12,5% 9,1 мкм Однородная
Пример 2 Гептановая кислота 12,5% 11,0 мкм Однородная
Пример 3 Октановая кислота 12,5% 21,1 мкм Однородная
Пример 4 Нонановая кислота 12,5% 32,1 мкм Однородная
Сравнительный Пример 1 ИПС 12,5% 24,8 мкм Неоднородная
Как показано на фиг.1-4 и в таблице 1, в примерах 1-4, в которых использовали травильный раствор в соответствии с настоящим изобретением, была сформирована структура неровностей, имеющая однородные и мелкие выступы в форме пирамид, равномерно расположенных по всей поверхности подложки. Кроме того, размер выступов в форме пирамид изменяется в соответствии с углеродным числом алифатической карбоновой кислоты, содержащейся в растворе. Кроме того, в результате измерения степени отражения на длине волны 800 нм подложек, полученных в примерах 1-4, в среднем получили отражательную способность 7-8%. Таким образом, были получены исключительно хорошие результаты.
С другой стороны, как показано на фиг.5 и в таблице 1, что касается травильного раствора, в который добавили изопропанол, был получен неравномерный размер выступов в форме пирамид, и наблюдали определенное количество наложенных друг на друга пирамидальных форм.
Пример 5
Используя травильный раствор, в котором к водному раствору 12,5 мас.%. КОН добавили гептановую кислоту и нонановую кислоту, в качестве травильного раствора, был проведен эксперимент таким же образом, как и в примере 1. Количество добавленных гексановой кислоты и нонановой кислоты составило 60 г/л и 30 г/л соответственно. На фиг.6 представлены результаты, полученные в виде электронных микроснимков. В таблице 2 показаны результаты для примеров 5-7.
Пример 6
Был проведен эксперимент таким же образом, как и в примере 5, за исключением того, что количество добавленной гептановой кислоты и нонановой кислоты изменили до 30 г/л, соответственно. На фиг.7 показаны результаты, полученные в виде электронных микроснимков.
Пример 7
Был проведен эксперимент таким же образом, как и в примере 5, за исключением того, что количество добавленной гептановой кислоты и нонановой кислоты изменили до 30 г/л и 60 г/л соответственно. На фиг.8 показаны результаты, полученные в виде электронных микроснимков.
Таблица 2
Состав травильного раствора Неровность подложки
Карбоновая кислота [Пропорция по массе] Концентрация КОН Максимальная длина боковой стороны на нижней поверхности Однородность
Пример 5 Гептановая кислота+нонановая кислота [2:1] 12,5% 11,5 мкм Однородная
Пример 6 Гептановая кислота+нонановая кислота [1:1] 12,5% 15,0 мкм Однородная
Пример 7 Гептановая кислота+нонановая кислота [1:2] 12,5% 21,1 мкм Однородная
Как показано на фиг.6-8 и в таблице 2, благодаря использованию травильного раствора с множеством алифатических карбоновых кислот, подмешанных к нему, можно легко регулировать размер выступов в форме пирамид структуры неровностей на поверхности подложки.
Пример 8
Вначале, как показано в таблице 3, приготовили травильный раствор, содержащий щелочь и алифатическую карбоновую кислоту, с использованием воды в качестве баланса. Используя 6 л травильного раствора при температуре жидкости от 80 до 85°С, замочили подложку из монокристаллического кремния, имеющую (100) плоскость на поверхности в течение 30 минут, и после этого поверхность обработанной подложки наблюдали визуально.
В таблице 3 представлены результаты визуальных наблюдений. В таблице 3 подложки с пирамидальной формы мелкими неоднородными структурами, сформированными на поверхности, оценивали путем классификации на три ступени (однородность: отличная>удовлетворительная>приемлемая) для оценки неоднородности неровностей. Подложки без тонких неровных структур пирамидальной формы, сформированных на поверхностях, определяли как неудачный результат. На фиг.9-12 показаны фотографии, представляющие примеры поверхностей подложек, получивших отличную, удовлетворительную, приемлемую и неудачную оценки.
Таблица 3
Пример 8
Карбоновая кислота
Щелочь
Гексановая кислота (моль/л)
0,43 0,36 0,29 0,22 0,14 0,07 0,06
КОН 6 мас.% Отличный Отличный Удовлетворительный Приемлемый Неудачный Неудачный Неудачный
КОН 12,5 мас.% Приемлемый Отличный Отличный Удовлетворительный Приемлемый Неудачный Неудачный
КОН 25 мас.% Приемлемый Удовлетворительный Удовлетворительный Приемлемый Приемлемый Приемлемый Неудачный
КОН 50 мас.% Неудачный Приемлемый Удовлетворительный Удовлетворительный Приемлемый Приемлемый Приемлемый
Пример 9
Эксперимент провели таким же образом, как и в примере 8, за исключением того, что в качестве травильного раствора использовали травильный раствор, имеющий состав, представленный в таблице 4. Результаты показаны в таблице 4.
Таблица 4
Пример 9
Карбоновая кислота
Щелочь
Гептановая кислота (моль/л)
0,38 0,32 0,26 0,19 0,13
КОН 6 мас.% Неудачный Неудачный Приемлемый Приемлемый Удовлетворительный
КОН 12,5 мас.% Удовлетворительный Отличный Отличный Удовлетворительный Неудачный
КОН 25 мас.% Удовлетворительный Отличный Отличный Удовлетворительный Удовлетворительный
КОН 50 мас.% Отличный Отличный Удовлетворительный Удовлетворительный Удовлетворительный
Пример 10
Эксперимент был проведен так же, как и в примере 8, за исключением того, что в качестве травильного раствора использовали раствор, имеющий состав, показанный в таблице 5. Результаты представлены в таблице 5.
Таблица 5
Пример 10
Карбоновая кислота
Щелочь
Октановая кислота (моль/л)
0,35 0,29 0,23 0,17 0,12 0,06 0,05 0,03
КОН 6 мас.% Отличный Удовлетворительный Удовлетворительный Неудачный Неудачный. Неудачный Неудачный Неудачный
КОН 12,5 мас.% Отличный Отличный Удовлетворительный Удовлетворительный Приемлемый Приемлемый Неудачный Неудачный
КОН 25 мас.% Отличный Отличный Удовлетворительный Удовлетворительный Приемлемый Приемлемый Приемлемый Неудачный
КОН 50 мас.% Отличный Отличный Удовлетворительный Удовлетворительный Приемлемый Приемлемый Приемлемый Приемлемый
Пример 11
Эксперимент был проведен таким же образом, как и в примере 8, за исключением того, что в качестве травильного раствора использовали травильный раствор, имеющий состав, показанный в таблице 6. Результаты приведены в таблице 6.
Таблица 6
Пример 11
Карбоновая кислота
Щелочь
Нонановая кислота (моль/л)
0,32 0,26 0,21 0,16 0,11 0,05 0,04
КОН 6 мас.% Приемлемый Приемлемый Неудачный Неудачный Неудачный Неудачный Неудачный
КОН 12,5 мас.% Отличный Отличный Отличный Неудачный Неудачный Неудачный Неудачный
КОН 25 мас.% Отличный Отличный Отличный Удовлетворительный Удовлетворительный Неудачный Неудачный
КОН 50 мас.% Отличный Отличный Отличный Отличный Удовлетворительный Удовлетворительный Удовлетворительный
Пример 12
Эксперимент был проведен таким же образом, как в примере 8, за исключением того, что в качестве травильного раствора использовали травильный раствор, имеющий состав, представленный в таблице 7. Результаты показаны в таблице 7.
Таблица 7
Пример 12
Карбоновая кислота
Щелочь
Декановая кислота (моль/л)
0,29 0,24 0,19 0,15 0,10 0,05 0,04
КОН 6 мас.% Неудачный Неудачный Приемлемый Приемлемый Неудачный Неудачный Неудачный
КОН 12,5 мас.% Приемлемый Приемлемый Приемлемый Приемлемый Приемлемый Приемлемый Приемлемый
КОН 25 мас.% Приемлемый Удовлетворительный Удовлетворительный Приемлемый Приемлемый Приемлемый Приемлемый
КОН 50 мас.% Приемлемый Удовлетворительный Отличный Удовлетворительный Удовлетворительный Приемлемый Приемлемый
Пример 13
Эксперимент был проведен таким же образом, как в примере 8, за исключением того, что в качестве травильного раствора использовали травильный раствор, имеющий состав, представленный в таблице 8. Результаты показаны в таблице 8.
Таблица 8
Пример 13
Карбоновая кислота
Щелочь
Ундекановая кислота (моль/л)
0,09 0,05 0,04
КОН 25 мас.% Неудачный Приемлемый Приемлемый
КОН 50 мас.% Приемлемый Приемлемый Приемлемый
Пример 14
Эксперимент был проведен таким же образом, как и в примере 8, за исключением того, что в качестве травильного раствора использовали травильный раствор, имеющий состав, показанный в таблице 9. Результаты представлены в таблице 9.
Таблица 9
Пример 14
Карбоновая кислота
Щелочь
Додекановая кислота (моль/л)
0,08 0,04 0,03
КОН 25 мас.% Неудачный Приемлемый Приемлемый
КОН 50 мас.% Приемлемый Приемлемый Приемлемый
Пример 15
Используя 6 л водного раствора КОН (6 мас.%), содержащего 200 г (приблизительно 0,55 моль/л) уксусной кислоты в качестве травильного раствора, подложку из монокристаллического кремния (вес: 7,68 г, толщина: 222 мкм), имеющую (100) плоскость на поверхности, замочили при температуре от 90 до 95°С в течение 30 минут, в результате чего была получена подложка (вес: 5,47 г, толщиной: 171 мкм), имеющая мелкие неровности на поверхности. Поверхность обработанной подложки наблюдали, используя электронные микроснимки. На фиг.13 представлены результаты, полученные с помощью электронных микроснимков (увеличение: 1000, 3 участка). Максимальная длина стороны нижней поверхности неравномерной структуры на поверхности полученной подложки составила 15,0 мкм. В таблице 10 показаны результаты примеров 15-18.
Пример 16
Используя 6 л водного раствора КОН (6 мас.%), содержащего 200 г (приблизительно 0,17 моль/л) лимонной кислоты, в качестве травильного раствора, подложку из монокристаллического кремния (вес: 7,80 г, толщина: 227 мкм), имеющую плоскость (100) на поверхности, замочили при температуре от 90 до 95°С в течение 20 минут, в результате чего была получена подложка (вес: 6,44 г, толщина: 193 мкм), имеющая мелкие неровности на поверхности. На фиг.14 показаны результаты, полученные с помощью электронных микроснимков (увеличение: 1000, 3 участка). Максимальная длина стороны нижней поверхности неровной структуры на поверхности полученной подложки составила 10,0 мкм.
Пример 17
Используя 6 л водного раствора КОН (6 мас.%), содержащего 300 г (приблизительно 0,69 моль/л) акриловой кислоты, в качестве травильного раствора, подложки из монокристаллического кремния (SLOT 5, вес: 9,66 г, толщина: 279 мкм и SLOT 20, вес: 9,66 г, толщина: 283 мкм), каждая из которых имела (100) плоскость на поверхности, замочили при температуре от 90 до 95°С в течение 30 минут, в результате чего были получены подложки (SLOT 5, вес: 7,56 г, толщина: 239 мкм и SLOT 20, вес: 7,53 г, толщина: 232 мкм), каждая имеющая мелкие неровности на поверхности. На фиг.15 показаны результаты, полученные с помощью электронных микроснимков (увеличение: 1000). Максимальная длина боковой стороны нижних поверхностей неровных структур на поверхностях полученных подложек составила 17,0 мкм.
Пример 18
Используя 6 л водного раствора КОН (6 мас.%), содержащего 200 г (приблизительно 0,37 моль/л) щавелевой кислоты, в качестве травильного раствора, подложки из монокристаллического кремния (SLOT 5, вес: 9,60 г, толщина: 289 мкм, и SLOT 20, вес: 9,65 г, толщина: 285 мкм), каждая имеющая (100) плоскость на поверхности, замочили при температуре от 90 до 95°С в течение 30 минут, в результате чего были получены подложки (SLOT 5, вес: 7,60 г, толщина: 239 мкм и SLOT 20, вес: 7,60 г, толщина: 244 мкм), каждая из которых имела мелкие неровности на поверхности. На фиг.16 показаны результаты, полученные с помощью электронных микроснимков (увеличение: 1000, 3 участка). Максимальная длина боковой стороны нижних поверхностей неровных структур на поверхностях полученных подложек составила 15,0 мкм.
Таблица 10
Состав травильного раствора Неоднородность подложки
Карбоновая кислота Концентрация КОН Максимальная длина стороны на нижней поверхности Однородность
Пример 15 Уксусная кислота 6% 15,0 мкм Однородная
Пример 16 Лимонная кислота 6% 10,0 мкм Однородная
Пример 17 Акриловая кислота 6% 17,0 мкм Однородная
Пример 18 Щавелевая кислота 6% 15,0 мкм Однородная

Claims (12)

1. Способ производства полупроводниковой подложки, заключающийся в травлении полупроводниковой подложки щелочным травильным раствором, содержащим, по меньшей мере, один тип карбоновой кислоты, имеющей углеродное число 1-12, и имеющий, по меньшей мере, одну карбоксильную группу в одной молекуле, и их солей для формирования структуры неровностей на поверхности полупроводниковой подложки.
2. Способ по п.1, отличающийся тем, что карбоновая кислота представляет собой один, или два, или больше типов, выбранных из группы, состоящей из уксусной кислоты, пропионовой кислоты, бутановой кислоты, пентановой кислоты, гексановой кислоты, гептановой кислоты, октановой кислоты, нонановой кислоты, декановой кислоты, ундекановой кислоты, додекановой кислоты, акриловой кислоты, щавелевой кислоты и лимонной кислоты.
3. Способ по п.1, отличающийся тем, что карбоновая кислота имеет углеродное число 7 или меньше.
4. Способ по п.1, отличающийся тем, что травильный раствор содержит карбоновую кислоту в концентрации от 0,05 до 5 моль/л.
5. Способ по п.1, отличающийся тем, что дополнительно осуществляют выбор заданного одного, или двух, или больше типов карбоновых кислот в качестве карбоновой кислоты, используемой в травильном растворе для регулирования размеров выступов в форме пирамиды структуры неровностей, сформированной на поверхности полупроводниковой подложки.
6. Полупроводниковая подложка, используемая в солнечных установках, содержащая структуру неровностей на ее поверхности, полученная способом по пп.1-5.
7. Полупроводниковая подложка по п.6, дополнительно содержащая однородную и мелкую структуру неровностей в форме пирамиды на ее поверхности, в которой структура неровностей имеет нижнюю поверхность, имеющую максимальную длину боковой стороны от 1 до 20 мкм.
8. Полупроводниковая подложка по п.6 или 7, которая представляет собой тонкую подложку из монокристаллического кремния.
9. Травильный раствор для равномерного формирования тонкой структуры неровностей в форме пирамиды на поверхности полупроводниковой подложки, который представляет собой водный раствор, содержащий щелочь и карбоновую кислоту, имеющую углеродное число 12 или меньше и, по меньшей мере, одну карбоксильную группу в одной молекуле.
10. Травильный раствор по п.9, который содержит от.3 до 50 мас.% щелочи, от 0,05 до 5 моль/л карбоновой кислоты и остальное составляет вода.
11. Травильный раствор по п.9 или 10, в котором карбоновая кислота представляет собой один, или два, или больше типов кислоты, выбранных из группы, состоящей из уксусной кислоты, пропионовой кислоты, бутановой кислоты, пентановой кислоты, гексановой кислоты, гептановой кислоты, октановой кислоты, нонановой кислоты, декановой кислоты, ундекановой кислоты, додекановой кислоты, акриловой кислоты, щавелевой кислоты и лимонной кислоты.
12. Травильный раствор по п.9, в котором карбоновая кислота имеет углеродное число 7 или меньше.
RU2007116101/28A 2004-10-28 2005-10-26 Способ производства полупроводниковой подложки, полупроводниковая подложка для солнечных установок и раствор для травления RU2340979C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-314450 2004-10-28
JP2004314450 2004-10-28

Publications (1)

Publication Number Publication Date
RU2340979C1 true RU2340979C1 (ru) 2008-12-10

Family

ID=36227843

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007116101/28A RU2340979C1 (ru) 2004-10-28 2005-10-26 Способ производства полупроводниковой подложки, полупроводниковая подложка для солнечных установок и раствор для травления

Country Status (11)

Country Link
US (2) US20080048279A1 (ru)
EP (1) EP1806775A1 (ru)
JP (1) JP4394693B2 (ru)
KR (1) KR100873432B1 (ru)
CN (1) CN101019212B (ru)
AU (1) AU2005297901B2 (ru)
CA (1) CA2579751C (ru)
NO (1) NO20071128L (ru)
RU (1) RU2340979C1 (ru)
TW (1) TWI390615B (ru)
WO (1) WO2006046601A1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MD360Z (ru) * 2010-09-23 2011-11-30 Институт Прикладной Физики Академии Наук Молдовы Способ формирования микроструктурных поверхностей кремниевых подложек
RU2449421C2 (ru) * 2009-11-06 2012-04-27 Евгений Инвиевич Гиваргизов Подложка для каскадных солнечных элементов
RU2565328C1 (ru) * 2011-08-31 2015-10-20 Асахи Касеи И-Матириалс Корпорейшн Подложка для оптической системы и полупроводниковое светоизлучающее устройство

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090266414A1 (en) 2006-05-02 2009-10-29 Mimasu Semiconductor Industry Co., Ltd. Process for producing semiconductor substrate, semiconductor substrate for solar application and etching solution
TW200745313A (en) * 2006-05-26 2007-12-16 Wako Pure Chem Ind Ltd Substrate etching liquid
DE102007026081A1 (de) * 2007-05-25 2008-11-27 Gebr. Schmid Gmbh & Co. Verfahren zur Behandlung von Siliziumwafern, Behandlungsflüssigkeit und Siliziumwafer
KR101426941B1 (ko) * 2007-05-30 2014-08-06 주성엔지니어링(주) 태양전지 및 그의 제조방법
WO2008147116A2 (en) * 2007-05-30 2008-12-04 Jusung Engineering Co., Ltd Solar cell and method of fabricating the same
WO2009002129A2 (en) * 2007-06-27 2008-12-31 Epivalley Co., Ltd. Semiconductor light emitting device and method of manufacturing the same
KR100916375B1 (ko) * 2007-06-27 2009-09-07 주식회사 에피밸리 반도체 발광소자 및 반도체 발광소자를 제조하는 방법
DE102008014166B3 (de) * 2008-03-14 2009-11-26 Rena Gmbh Verfahren zur Herstellung einer Siliziumoberfläche mit pyramidaler Textur
US8940178B2 (en) 2009-03-18 2015-01-27 E I Du Pont De Nemours And Company Textured silicon substrate and method
CN101844872B (zh) * 2010-05-07 2012-05-02 上海长悦涂料有限公司 一种植绒液的制备方法
JP2011258767A (ja) * 2010-06-09 2011-12-22 Sharp Corp 太陽電池
US20120273036A1 (en) * 2011-04-29 2012-11-01 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and manufacturing method thereof
KR20120136881A (ko) * 2011-06-10 2012-12-20 동우 화인켐 주식회사 결정성 실리콘 웨이퍼의 텍스쳐 에칭액 조성물 및 텍스쳐 에칭방법
WO2013058070A1 (ja) * 2011-10-19 2013-04-25 シャープ株式会社 半導体基板のエッチング方法
WO2013069385A1 (ja) * 2011-11-08 2013-05-16 シャープ株式会社 半導体基板のエッチング方法
WO2013077075A1 (ja) * 2011-11-25 2013-05-30 シャープ株式会社 半導体基板のエッチング方法およびエッチング装置
US8940580B2 (en) * 2012-06-28 2015-01-27 International Business Machines Corporation Textured multi-junction solar cell and fabrication method
CN103560170B (zh) * 2013-10-29 2016-07-06 太极能源科技(昆山)有限公司 Se太阳能电池及其制作方法
JP7389571B2 (ja) * 2019-06-18 2023-11-30 アルバック成膜株式会社 シリコンエッチング方法及びシリコン基板

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US630640A (en) * 1899-02-13 1899-08-08 Lorin W Young Combined hedge and wire fence.
JPS6442824A (en) * 1987-08-11 1989-02-15 Kyushu Electron Metal Wet etching
JPH06196734A (ja) * 1992-12-24 1994-07-15 Canon Inc 半導体太陽電池の製造方法及びその半導体太陽電池
JP2955167B2 (ja) * 1993-11-10 1999-10-04 シャープ株式会社 太陽電池の製造方法
US6867888B2 (en) * 1996-07-12 2005-03-15 Science Applications International Corporation Switchable polymer-dispersed liquid crystal optical elements
JP3772456B2 (ja) * 1997-04-23 2006-05-10 三菱電機株式会社 太陽電池及びその製造方法、半導体製造装置
JP3695932B2 (ja) * 1998-02-12 2005-09-14 三洋電機株式会社 凹凸基板の製造方法
JP3948890B2 (ja) * 2000-08-09 2007-07-25 三洋電機株式会社 凹凸基板の製造方法、凹凸構造形成用界面活性剤並びに光起電力素子の製造方法
DE10241300A1 (de) 2002-09-04 2004-03-18 Merck Patent Gmbh Ätzpasten für Siliziumoberflächen und -schichten

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2449421C2 (ru) * 2009-11-06 2012-04-27 Евгений Инвиевич Гиваргизов Подложка для каскадных солнечных элементов
MD360Z (ru) * 2010-09-23 2011-11-30 Институт Прикладной Физики Академии Наук Молдовы Способ формирования микроструктурных поверхностей кремниевых подложек
RU2565328C1 (ru) * 2011-08-31 2015-10-20 Асахи Касеи И-Матириалс Корпорейшн Подложка для оптической системы и полупроводниковое светоизлучающее устройство

Also Published As

Publication number Publication date
JPWO2006046601A1 (ja) 2008-05-22
KR100873432B1 (ko) 2008-12-11
TWI390615B (zh) 2013-03-21
CA2579751C (en) 2010-12-14
CA2579751A1 (en) 2006-05-04
US20080048279A1 (en) 2008-02-28
NO20071128L (no) 2007-05-24
KR20070044047A (ko) 2007-04-26
US20090166780A1 (en) 2009-07-02
AU2005297901A1 (en) 2006-05-04
AU2005297901B2 (en) 2008-11-27
JP4394693B2 (ja) 2010-01-06
CN101019212B (zh) 2010-12-08
WO2006046601A1 (ja) 2006-05-04
CN101019212A (zh) 2007-08-15
TW200620441A (en) 2006-06-16
EP1806775A1 (en) 2007-07-11

Similar Documents

Publication Publication Date Title
RU2340979C1 (ru) Способ производства полупроводниковой подложки, полупроводниковая подложка для солнечных установок и раствор для травления
US20090266414A1 (en) Process for producing semiconductor substrate, semiconductor substrate for solar application and etching solution
US20100269903A1 (en) Process for producing polycrystalline silicon substrate and polycrystalline silicon substrate
US8329046B2 (en) Methods for damage etch and texturing of silicon single crystal substrates
US8759231B2 (en) Silicon texture formulations with diol additives and methods of using the formulations
KR101407988B1 (ko) 에칭액 및 실리콘 기판의 표면가공 방법
AU2014239493A1 (en) Photovoltaic element and manufacturing method therefor
US20110180132A1 (en) Texturing and damage etch of silicon single crystal (100) substrates
KR20090081979A (ko) 단결정 실리콘 광기전력 소자의 요철기판 에칭액 조성물 및제조방법
WO2013168813A1 (ja) エッチング液及びこれを用いたシリコン系基板の製造方法
JP5717309B2 (ja) 太陽電池用シリコンウエハー及びその製造方法
Krieg et al. Texturization of multicrystalline DWS wafers by HF/HNO3/H2SO4 at elevated temperature
JP2013236027A (ja) エッチング液及びこれを用いたシリコン系基板の製造方法
CN113629166A (zh) 一种多晶硅表面处理方法
WO2012057132A1 (ja) シリコン基板の製造方法

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20130212

PC41 Official registration of the transfer of exclusive right

Effective date: 20150724

MM4A The patent is invalid due to non-payment of fees

Effective date: 20171027