WO2013077075A1 - 半導体基板のエッチング方法およびエッチング装置 - Google Patents

半導体基板のエッチング方法およびエッチング装置 Download PDF

Info

Publication number
WO2013077075A1
WO2013077075A1 PCT/JP2012/074592 JP2012074592W WO2013077075A1 WO 2013077075 A1 WO2013077075 A1 WO 2013077075A1 JP 2012074592 W JP2012074592 W JP 2012074592W WO 2013077075 A1 WO2013077075 A1 WO 2013077075A1
Authority
WO
WIPO (PCT)
Prior art keywords
etching
semiconductor substrate
aqueous solution
surfactant
alkaline aqueous
Prior art date
Application number
PCT/JP2012/074592
Other languages
English (en)
French (fr)
Inventor
康弘 小山
盛弥 岡山
肇 小田
正浩 射場
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013077075A1 publication Critical patent/WO2013077075A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67075Apparatus for fluid treatment for etching for wet etching
    • H01L21/67086Apparatus for fluid treatment for etching for wet etching with the semiconductor substrates being dipped in baths or vessels

Definitions

  • the present invention relates to an etching method using an alkaline etching solution and an apparatus for carrying out the etching method.
  • a method of efficiently incorporating incident light from the surface of the solar cell into the substrate by forming a fine uneven structure on the surface of the substrate has been used.
  • a method for forming a fine concavo-convex structure (texture) on the substrate surface a single crystal silicon substrate having a (100) plane is anisotropically etched using a mixed solution of an aqueous sodium hydroxide solution and an aqueous isopropyl alcohol solution. The technique is generally known. By this method, it is possible to manufacture a silicon substrate having pyramidal (quadrangular pyramidal) convex portions formed by the (111) plane formed on the surface thereof.
  • the above method has various problems due to the use of isopropyl alcohol.
  • the problems include, for example, instability of processing accompanying change in the concentration of the mixed solution due to evaporation of isopropyl alcohol, complexity of waste liquid processing, work environment harmful to human body and low safety.
  • the above-described method not only does not sufficiently align the shape, size, and height of the unevenness but also does not sufficiently suppress the formation of unevenness at a desired location (exceptional occurrence of a flat location).
  • Patent Document 1 discloses a method of using an etching solution having a specific composition in the above-described method of anisotropic etching.
  • the etching solution is an alkaline etching solution containing at least one selected from the group consisting of a carboxylic acid having 12 or less carbon atoms having at least one carboxyl in a molecule and a salt thereof and silicon.
  • Patent Document 1 proposes forming an uneven structure on the surface of a semiconductor substrate by using such an etching solution.
  • the present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a method for reducing the variation of the concavo-convex structure formed on a semiconductor substrate.
  • a method for etching a semiconductor substrate of the present invention includes a wet etching process for forming a concavo-convex structure on a surface of a semiconductor substrate using an alkaline aqueous solution containing a surfactant, and the wet etching process.
  • the neutralization process of contacting the alkaline aqueous solution is included in the wet etching process.
  • a semiconductor substrate etching apparatus includes an etching tank filled with an alkaline aqueous solution containing a surfactant, and a static elimination unit that neutralizes the semiconductor substrate or the etching tank.
  • the present invention has an effect of reducing the variation of the uneven structure formed on the semiconductor substrate.
  • FIG. 1 shows the silicon etching apparatus which has an etching tank of the alkaline solution for implementing this invention. It is a figure which shows the result of having compared the unevenness
  • A is a figure which shows the state in which the surfactant is arranged at the time of the etching process without the charge removal process, and
  • (b) is the state in which the surfactant is arranged at the time of the etching process with the charge removal process.
  • FIGS. 1-10 An embodiment of the present invention will be described below with reference to FIGS.
  • a method for etching a silicon substrate using a specific etching apparatus will be described as an example in order to manufacture a substrate for a solar cell excellent in photoelectric conversion efficiency.
  • FIG. 1 is a view showing a silicon etching apparatus having an alkaline solution etching tank for carrying out the present invention.
  • FIG. 3A is a diagram showing a state in which the surfactants are arranged at the time of the etching process without the neutralizing process
  • FIG. 3B is a diagram showing the state where the surfactants are at the time of the etching process with the neutralizing process. It is a figure which shows the state which has arranged.
  • an etching apparatus 1 As shown in FIG. 1, an etching apparatus 1 according to an embodiment of the present invention includes a static elimination unit 2, a chemical solution tank (etching tank) 3, a ground 4, a circulation tank 5, a pump 6, and a flow meter 7. Therefore, the etching apparatus 1 has the same configuration as that of a normal etching apparatus that performs wet etching processing of a semiconductor substrate, except for the static elimination unit 2 and the ground 4. That is, the etching apparatus 1 is an apparatus that performs wet etching by immersing a semiconductor substrate in a chemical bath 3 filled with an alkaline solution containing a surfactant.
  • the alkaline aqueous solution is circulated in the chemical tank 3 by adding the alkaline aqueous solution beyond the capacity of the chemical tank 3.
  • the alkaline aqueous solution flowing out from the chemical tank 3 to the circulation tank 5 is returned again to the chemical tank 3 through a pipe in which the pump 7 and the flow meter 7 are provided.
  • the concentration of the alkaline aqueous solution in the chemical tank 3 of the etching apparatus 1 is kept constant.
  • the static elimination unit 2 is a unit that performs static elimination treatment on the configuration in the etching apparatus 1 that contacts the alkaline aqueous solution filled in the chemical solution tank 3 before the etching treatment.
  • the object to which the charge removal unit 2 performs the charge removal process is a configuration in which, by being charged, an electrical action is exerted on the surfactant contained in the alkaline aqueous solution in the etching process.
  • the etching apparatus 1 can reduce the variation in the concavo-convex structure formed on the silicon substrate.
  • the above configuration in which the static elimination unit 2 performs the static elimination treatment includes, for example, a silicon substrate (semiconductor substrate) that is subjected to the etching treatment, and the silicon substrate in a state where the silicon substrate is transported to the chemical liquid tank 3 and immersed in the alkaline aqueous solution of the chemical liquid tank 3.
  • This is a carrier to be supported or a chemical tank 3.
  • These structures are the main structures that exert an electrical action on the surfactant contained in the alkaline aqueous solution by being charged. Therefore, these static eliminations can greatly reduce the electrical external factors for the surfactant.
  • the voltage applied to the semiconductor substrate is lowered to + 10V to ⁇ 10V by the charge removal process of the charge removal unit 2.
  • the charge removal process of the charge removal unit 2 In the wet etching process, electrical external factors that act on the surfactant in the semiconductor substrate are substantially lost. Therefore, the surfactants are arranged almost in accordance with the original properties of the surfactants.
  • the neutralization unit 2 is not particularly limited as long as it has a configuration that electrically neutralizes positive or negative charges on the surface of various configurations.
  • the static elimination unit 2 is an immersion tank filled with an ionizer that emits positive ions and negative ions, a conductor connected to the ground, and a conductive liquid.
  • an ionizer is the static elimination unit 2 and the surface of the silicon substrate is negatively charged, anions emitted from the ionizer repel. Therefore, only cations adhere to the surface, and the substrate surface is electrically neutralized. Further, for example, by bringing a conductor connected to the ground into contact with the silicon substrate and the carrier, the silicon substrate and the carrier are electrically neutralized by removing static electricity and the like.
  • the silicon substrate and the carrier are electrically neutralized by immersing the silicon substrate and the carrier in a conductive liquid filled in the immersion tank.
  • An example of the static elimination unit 2 is a conventionally known ionizer that is used for preventing electrostatic breakdown of an element or the like formed on a silicon substrate.
  • the static elimination unit 2 can be connected to a fixed arm.
  • a silicon substrate supported by a carrier (not shown) having a Teflon (registered trademark) process on the surface moves across the front of the static elimination unit 2 as the carrier moves.
  • Teflon registered trademark
  • the silicon substrate crosses in front of the static elimination unit 2 positive ions and anions are emitted from the static elimination unit 2 and are neutralized.
  • the carriers can be discharged simultaneously.
  • the static elimination unit 2 can be connected to a movable arm.
  • the movable arm moves the static elimination unit 2 along the inside and outside surfaces of the chemical tank 3. Therefore, the static elimination unit 2 can perform static elimination processing on the entire surface of the chemical tank 3.
  • the neutralization unit 2 is connected to the fixed arm.
  • the static elimination unit 2 connected to the movable arm can perform the static elimination process.
  • the combination of the static elimination unit 2 and the fixed arm can also be applied to static elimination of the chemical tank 3.
  • the combination of the static elimination unit 2 and the movable arm is preferable as described above.
  • a plurality of static elimination units 2 can be provided in the etching apparatus 1.
  • FIG. 3A is a view showing a state in which the surfactants are arranged at the time of the etching process without the charge removal process
  • FIG. 3B is the surface active agent at the time of the etching process with the charge removal process. It is a figure which shows the state which is arranged.
  • the surface of the surfactant 10 is affected by static electricity on the surface of the silicon substrate 11. Are not evenly spaced.
  • the surfactants 10 are arranged at equal intervals. This is because substantially no charge is present on the surface of the silicon substrate 11, so that the arrangement state of the surfactants 10 substantially follows only the electrical properties of the surfactants 10.
  • the surfactants 10 on the surface of the silicon substrate 11 are arranged at substantially equal intervals by appropriately controlling the charge amount of each component before and during the etching process. Therefore, the pyramidal concavo-convex structure formed with the adhering portion of the surfactant 10 as a vertex is formed at substantially equal intervals. That is, according to the present invention, the variation of the pyramidal uneven structure formed on the silicon substrate 11 is remarkably reduced.
  • the etching apparatus 1 further includes a voltmeter for measuring the charge amount on the surface of each component.
  • a voltmeter for measuring the charge amount on the surface of each component.
  • the chemical tank 3 is connected to a heater for keeping the temperature of the alkaline aqueous solution constant.
  • the heater is not particularly limited as long as the temperature of the aqueous alkaline solution can be maintained in the range of 60 to 90 ° C., for example.
  • the etching process according to the present invention is a process for regularly forming irregularities on the surface of the silicon substrate 11 using the etching apparatus 1. Therefore, the silicon substrate 11 is a substrate from which the damaged layer has been removed beyond 10 ⁇ m by being treated with a relatively high concentration alkaline solution or a mixed solution of hydrofluoric acid and nitric acid. This process is a process for removing contaminants and soot caused by cutting out a substrate from an ingot using a wire saw or the like.
  • the etching process according to the present invention is a process of immersing the silicon substrate 11 in the chemical bath 3 filled with an alkaline aqueous solution.
  • the alkaline solution is preheated to 80 ° C.
  • the temperature of the alkaline aqueous solution is maintained by a heater attached to the etching tank 11.
  • the etching process is performed for 20 minutes.
  • the silicon substrate is taken out from the chemical bath 3 using the carrier, and the alkali component is removed from the silicon substrate and the carrier by washing with water or neutralization using an acid.
  • the alkaline aqueous solution used for the etching treatment according to the present invention contains a surfactant as an additive.
  • the surfactant is an amphiphilic molecule (for example, carboxylic acid 10) having a hydrophilic portion 10a and a hydrophobic portion 10b.
  • the surfactant is hydrophilic or hydrophobic for various interfaces (liquid-gas, liquid-solid, liquid (water) -liquid (oil) interfaces) that occur between phases exhibiting different properties. Only one of the sex parts 10b is attracted.
  • the surfactant is regularly arranged with the hydrophobic portion 10b facing the silicon substrate 11 and the hydrophilic portion 10a facing the alkaline aqueous solution.
  • the alkaline aqueous solution that can be used in the method of the present invention can be obtained, for example, by diluting the stock solution to an appropriate concentration using pure water having a specific resistance of 5 to 18 M ⁇ ⁇ cm.
  • the alkaline solution can be obtained by diluting the stock solution 3 to 6 times with the pure water.
  • an example of obtaining an alkaline aqueous solution by diluting the stock solution is described.
  • an alkaline aqueous solution can be prepared by adding an alkali and a surfactant to a predetermined volume of pure water until the concentration becomes as described later.
  • the alkali dissolved in the alkaline aqueous solution is an organic alkali or an inorganic alkali.
  • the organic alkali include organic ammonium salts that can be used for anisotropic etching (for example, quaternary ammonium salts such as tetramethylammonium hydroxy).
  • the inorganic alkali include alkali metal hydroxides (for example, sodium hydroxide and potassium hydroxide), alkaline earth metal hydroxides (for example, calcium hydroxide), and ammonia.
  • the alkali concentration in the alkaline aqueous solution may be 8 to 16% by weight.
  • the surfactant can be a cationic or anionic amphiphilic molecule.
  • the cationic amphiphilic molecule include various alcohols.
  • the anionic amphiphilic molecule include carboxylic acid.
  • examples of the carboxylic acid that can be used as the surfactant include carboxylic acids having 1 to 12 carbon atoms.
  • the carboxylic acid is a carboxylic acid containing one or more carboxyl groups.
  • the concentration of the surfactant 17 in the alkaline aqueous solution may be 1 to 40% by weight.
  • the alkaline aqueous solution having such alkali and surfactant concentration ranges is obtained by diluting, for example, SUN-X600 manufactured by Wako Pure Chemical Industries, Ltd. 3 to 6 times according to the above-described method. Can be prepared.
  • examples of the alkaline aqueous solution that can be used for the etching include etching solutions described in International Publication No. 06/046601 pamphlet and International Publication No. 09/072438 pamphlet.
  • a substrate using silicon as a material is described as an example of a substrate for a solar battery cell.
  • the substrate processed by the method of the present invention is not particularly limited as long as it is a suitable substrate as a substrate for solar cells.
  • a method for etching a semiconductor substrate of the present invention includes a wet etching process for forming a concavo-convex structure on a surface of a semiconductor substrate using an alkaline aqueous solution containing a surfactant, and the wet etching process. Prior to the step, the neutralization process of contacting the alkaline aqueous solution is included in the wet etching process.
  • the surfactants are arranged on the surface of the semiconductor substrate at regular intervals according to the electric repulsion.
  • the electrical energy for example, static electricity
  • the surfactants are not arranged according to the original properties of the surfactants alone.
  • the present invention in the wet etching process, it is possible to reduce electrical external factors that act on the surfactant contained in the alkaline aqueous solution. That is, according to the present invention, the actual wet etching process approaches a state in which only the original properties of the surfactant are followed. As a result, the present invention has an effect of reducing variations in the concavo-convex structure formed on the semiconductor substrate.
  • the configuration is preferably the semiconductor substrate, a support member for transporting and supporting the semiconductor substrate, or an etching tank filled with the alkaline aqueous solution.
  • Any type of static elimination treatment can greatly reduce electrical external factors for the surfactant. Therefore, the above effects can be further improved.
  • the voltage applied to the semiconductor substrate is lowered to +10 V to ⁇ 10 V by the charge removal process.
  • the surfactants are arranged almost in accordance with the original properties of the surfactants.
  • the wet etching process is performed while the etching tank is grounded.
  • the surfactant may be an anionic surfactant, and the anionic surfactant may be a carboxylic acid.
  • a semiconductor substrate etching apparatus includes an etching tank filled with an alkaline aqueous solution containing a surfactant, and a static elimination unit that neutralizes the semiconductor substrate or the etching tank.
  • a substrate used, processing solution, and processing conditions The following three types of substrates were used in this example. 1.
  • a square substrate (thickness: 100 to 200 ⁇ m, side length: 90 to 156 mm) for solar cells sliced from a Si ingot by machining using a wire saw.
  • a substrate manufactured by a silicon manufacturer for manufacturing semiconductor devices (thickness: 425 to 725 ⁇ m, size: 5 to 8 inches ⁇ ).
  • the substrate is mirror-finished with boiling acid (HF), nitric acid (HNO3), acetic acid (CH3COOH), sulfuric acid (H2SO4), ammonium hydroxide (NH4OH), potassium hydroxide (KOH), sodium hydroxide (NaOH), or the like.
  • 3. Using a grinding wheel (# 1000 to # 2000) A substrate obtained by thinning the substrate by mechanical polishing (thickness: 200 to 300 ⁇ m, size: 5 to 8 inches ⁇ ).
  • Etching was performed using an alkaline aqueous solution containing carboxylic acid.
  • alkaline aqueous solution a solution obtained by diluting a commercially available chemical solution (SUN-X600, Wako Pure Chemical Industries, Ltd.) with pure water was used. Etching was performed by immersing the silicon substrate in the alkaline aqueous solution at 80 ° C. for 20 minutes.
  • the etching apparatus in which the silicon substrate, the chemical bath, and the carrier are neutralized by using a static elimination unit (WINSTAR BF-2ZA, manufactured by Sisid Electric) before the etching process that is, the etching apparatus shown in FIG. 1 using an ionizer as the static elimination unit).
  • a static elimination unit WINSTAR BF-2ZA, manufactured by Sisid Electric
  • an etching apparatus that was not subjected to charge removal were prepared.
  • the effectiveness of the etching method of the present invention was evaluated by comparing the unevenness of the unevenness formed on the substrate with or without static elimination treatment. The result is shown in FIG.
  • the voltage values shown in FIG. 2 are the results of measuring the potential at the surface of each substrate immediately before performing the etching process. A voltmeter (MODEL520-1, Trek) was used to measure the potential. Note that the results shown in FIG. It is evaluation with respect to the board
  • FIG. 2 is a diagram showing the result of comparing the variation of the concavo-convex structure formed on the substrate surface with or without the charge removal process.
  • the variation ( ⁇ ) shown in FIG. 2 is a standard deviation calculated from a ten-point average roughness Rz obtained from a surface shape roughness curve measured using a laser microscope (OLSD3500, Olympus).
  • the ten-point average roughness Rz is calculated from the five points from the highest point to the fifth highest point in the roughness curve and from the five points from the lowest point to the fifth lowest point.
  • the absolute value of the ⁇ m number up to the reference line is summed and averaged.
  • the present invention can be used to regularly form an equivalent uneven structure on a substrate by etching the semiconductor substrate.
  • the method of the present invention is particularly suitable for the production of substrates for solar cells.

Abstract

 本発明のエッチング方法は、界面活性剤を含んでいるアルカリ水溶液を用いて、半導体基板の表面に凹凸構造を形成するエッチング処理の前に、半導体基板、支持部材またはエッチング槽(3)を除電ユニット(2)によって除電処理する工程を包含している。これによって、半導体基板上に形成される凹凸構造のばらつきが低下する。

Description

半導体基板のエッチング方法およびエッチング装置
 本発明はアルカリ性のエッチング液を用いたエッチング方法およびそれを実施する装置に関する。
 近年、太陽電池の効率を高めるために、基板の表面に微細な凹凸構造を形成することによって、太陽電池の表面からの入射光を効率良く基板内部に取り込む方法が用いられている。基板表面に微細な凹凸構造(テクスチャー)を形成する手法として、水酸化ナトリウム水溶液およびイソプロピルアルコール水溶液の混合溶液を用いて、(100)面を有している単結晶シリコン基板を異方性エッチングする手法が一般的に知られている。当該手法によって、(111)面によって構成されているピラミッド状(四角錐状)の凸部が、その表面に形成されているシリコン基板を製造可能である。
 しかし、上記手法は、イソプロピルアルコールの使用に起因して、種々の問題点を有している。当該問題点は、例えば、イソプロピルアルコールの蒸発による混合溶液の濃度変化にともなう処理の不安定性、廃液処理の煩雑さ、人体に有害な作業環境および安全性の低さなどである。また、上記手法では、凹凸の形状、大きさおよび高さが十分に揃わないだけでなく、所望の箇所に凹凸が形成されないこと(平坦な箇所の例外的な発生)を十分に抑制できない。
 特許文献1には、異方性エッチングする上記手法において特定の組成を有しているエッチング液を使用する方法が開示されている。上記エッチング液は、1分子中に少なくとも1つのカルボキシルを有する炭素数12以下のカルボン酸およびその塩からなる群から選択される少なくとも1つとシリコンとを含んでいるアルカリ性のエッチング液である。特許文献1には、このようなエッチング液を使用することによって、半導体基板の表面に凹凸構造を形成することが提案されている。
国際公開第2007-129555号パンフレット(公開日:2007年11月15日)
 しかし、特許文献1の技術では、アルカリ水溶液に追加されている添加剤が、所望の程度にまで適切に作用していない。よって、実際のエッチング後における基板表面に形成された凹凸構造の大きさのばらつきは十分に抑制されていない。このため、基板における凹凸構造が部分的に適切に形成されていない。おそらく、2次エッチング時に基板表面に対して吸着する添加剤が、基板表面において適切に配列していないことに起因して、形成される凹凸構造に悪影響を与えていると考えられる。したがって、半導体基板に所望の凹凸構造を形成するためのエッチングには、依然として改良の余地がある。
 本発明は、上述の事情に鑑みてなされたものであり、本発明の目的は、半導体基板上に形成される凹凸構造のばらつきを低下させる方法を提供することである。
 上記課題を解決するために、本発明の半導体基板のエッチング方法は、界面活性剤を含んでいるアルカリ水溶液を用いて、半導体基板の表面に凹凸構造を形成するウェットエッチング処理、および上記ウェットエッチング処理の前に、当該ウェットエッチング処理において上記アルカリ水溶液と接する構成の除電処理を包含している。
 上記課題を解決するために、本発明の半導体基板のエッチング装置は、界面活性剤を含んでいるアルカリ水溶液を満たすエッチング槽、ならびに上記半導体基板または当該エッチング槽を除電する除電ユニットを備えている。
 以上のように、本発明は、半導体基板上に形成される凹凸構造のばらつきを低下させるという効果を奏する。
本発明を実施するためのアルカリ溶液のエッチング槽を有するシリコンエッチング装置を示す図である。 基板表面に形成された凹凸構造のばらつきを、除電処理の有無について比較した結果を示す図である。 (a)は、除電処理なしのエッチング処理時において界面活性剤が配列している状態を示す図であり、(b)は、除電処理ありのエッチング処理時において界面活性剤が配列している状態を示す図である。
 図1および3を参照して、本発明の一実施形態を以下に説明する。本実施形態において、光電変換効率に優れた太陽電池セル用の基板を製造するために、特定のエッチング装置を利用して、シリコン基板をエッチングする方法を例に挙げて説明する。
 図1は、本発明を実施するためのアルカリ溶液のエッチング槽を有するシリコンエッチング装置を示す図である。図3の(a)は、除電処理なしのエッチング処理時において界面活性剤が配列している状態を示す図であり、図3の(b)は、除電処理ありのエッチング処理時に界面活性剤が配列している状態を示す図である。
 (エッチング装置1)
 図1に示すように、本発明の一実施形態に係るエッチング装置1は、除電ユニット2、薬液槽(エッチング槽)3、アース4、循環槽5、ポンプ6および流量計7を備えている。よって、エッチング装置1は、除電ユニット2およびアース4を除いて、半導体基板のウエットエッチング処理を行う通常のエッチング装置と同様の構成を有している。つまり、エッチング装置1は、界面活性剤を含んでいるアルカリ溶液を満たした薬液槽3に半導体基板を浸漬することによって、ウエットエッチングを行う装置である。
 このとき、薬液槽3の容量を超えて、アルカリ水溶液を加えることによって、薬液槽3においてアルカリ水溶液を循環させる。薬液槽3から循環槽5に流れ出たアルカリ水溶液は、ポンプ7および流量計7が設けられている配管を通して、再び薬液槽3に戻される。以上のようにして、エッチング装置1の薬液槽3におけるアルカリ水溶液の濃度が一定に保たれる。
 各構成の詳細および作用について以下に説明する。
 (除電ユニット2)
 除電ユニット2は、薬液槽3に満たされるアルカリ水溶液に接触するエッチング装置1における構成に対して、エッチング処理の前に除電処理を施すユニットである。除電ユニット2が除電処理を施す対象としては、帯電していることによって、エッチング処理においてアルカリ水溶液に含まれている界面活性剤に電気的な作用を及ぼす構成である。
 このように、除電ユニット2による種々の構成の除電処理によって、エッチング処理において界面活性剤の適切な作用を乱す電気的な外的要因が減少し得る。したがって、エッチング装置1は、シリコン基板上に形成される凹凸構造のばらつきを低下させることができる。
 除電ユニット2が除電処理を施す上記構成は、例えば、エッチング処理を受けるシリコン基板(半導体基板)、シリコン基板を薬液槽3に搬送し、薬液槽3のアルカリ水溶液に浸漬させた状態においてシリコン基板を支持するキャリア、または薬液槽3である。これらの構成は、帯電していることによって、アルカリ水溶液に含まれている界面活性剤に電気的な作用を及ぼす主要な構成である。したがって、これらの除電によって界面活性剤に対する電気的な外的要因を大きく減少させ得る。
 また、除電ユニット2の除電処理によって、上記半導体基板が帯びている電圧を+10V~-10Vに低下させることが好ましい。ウエットエッチング処理において、上記半導体基板における界面活性剤に作用する電気的な外的要因が実質的に消失する。よって、界面活性剤の本来の性質にほぼしたがって、界面活性剤が配列する。
 除電ユニット2は、種々の構成の表面が帯びている正または負の電荷を電気的に中和する構成であれば、特に限定されない。例えば、除電ユニット2は、陽イオンおよび陰イオンを放射するイオナイザ、アースに接続されている導電体、ならびに導電性の液体を満たした浸漬槽である。例えば、イオナイザが除電ユニット2であり、シリコン基板の表面が負に帯電しているとき、イオナイザから放射される陰イオンは反発する。よって、陽イオンのみが表面に付着して、基板表面は電気的に中和される。また例えば、アースに接続されている導電体をシリコン基板およびキャリアに接触させることによって、シリコン基板およびキャリアは、静電気などが除去されて電気的に中和される。また例えば、浸漬槽に満たされた導電性の液体にシリコン基板およびキャリアを浸漬させることによって、シリコン基板およびキャリアは電気的に中和される。除電ユニット2の一例は、シリコン基板上に形成されている素子などの静電気破壊の防止に使用される、従来公知のイオナイザである。
 ここで、除電ユニット2は、固定式のアームに接続され得る。このとき、表面にテフロン(登録商標)加工が施されているキャリア(図示せず)に支持されているシリコン基板が、キャリアの移動にしたがって除電ユニット2の前を横切って移動する。シリコン基板は、除電ユニット2の前を横切るときに、除電ユニット2から陽イオンおよび陰イオンが放射されて、除電される。このときキャリアを同時に除電し得る。
 また、除電ユニット2は可動式のアームに接続され得る。可動式のアームは、薬液槽3の内部および外部の表面に沿って除電ユニット2を移動させる。よって、除電ユニット2は薬液槽3の全表面に対して除電処理を施し得る。
 シリコン基板またはキャリアの除電処理に関して、除電ユニット2が固定式のアームに接続されている場合を説明した。しかし、キャリアおよびシリコン基板が所定の位置に停止しているときに、可動式のアームに接続されている除電ユニット2が除電処理を施し得る。同様に、除電ユニット2および固定式のアームの組合せは、薬液槽3の除電にも適用可能である。しかし、薬液槽3を可動させることは容易とはいえないので、上述のように、除電ユニット2および可動式のアームの組合せが好ましい。上述の記載から容易に想像し得るように、複数の除電ユニット2がエッチング装置1に備えられ得る。
 (アース4)
 図1に示すように、エッチング装置1において、薬液槽3はアースに接続されている。よって、エッチング処理において、薬液槽3の表面が帯電した場合であっても、速やかに電荷が逃がされる。つまり、エッチング処理において界面活性剤に影響を及ぼす外的要因が確実に排除され得る。
 (除電処理と界面活性剤の配列状態との関係)
 除電ユニット2による除電処理の作用について、図3を用いて詳細に説明する。図3の(a)は、除電処理なしのエッチング処理時において界面活性剤が配列している状態を示す図であり、図3の(b)は、除電処理ありのエッチング処理時において界面活性剤が配列している状態を示す図である。
 図3の(a)に示すように、例えば、除電処理を施していないシリコン基板(半導体基板)11をアルカリ水溶液に浸漬すると、シリコン基板11の表面における静電気に影響を受けて、界面活性剤10が等間隔に配列しない。しかし、図3の(b)に示すように、除電処理を施したシリコン基板11をアルカリ水溶液に浸漬すると、界面活性剤10は等間隔を空けて配列する。シリコン基板11の表面には実質的に電荷が存在しないので、界面活性剤10の配列状態は、界面活性剤10が有している電気的性質のみに実質的にしたがうからである。
 上述したように、エッチング処理前およびエッチング処理中における各構成の帯電量を適切に制御することによって、シリコン基板11の表面における界面活性剤10が実質的に等間隔を空けて配列する。よって、界面活性剤10の付着部分を頂点として形成されるピラミッド状の凹凸構造は、実質的に等間隔を空けて形成される。つまり、本発明によれば、シリコン基板11上に形成されるピラミッド状の凹凸構造のばらつきが著しく低減される。
 (他の構成)
 薬液槽3、アース4、循環槽5、ポンプ6および流量計7は、上述のように公知のエッチング装置に採用される構成であるので、これらに関する詳細な説明を省略する。ここでは、図1に特に示していなかった構成について説明する。
 図1には示していないが、エッチング装置1は、各構成の表面における帯電量を測定する電圧計をさらに備えている。当該構成によって、除電ユニット2による除電処理の結果として、エッチング処理において界面活性剤の作用に悪影響を与えない程度に、任意の構成の帯電量が低下していることを確認し得る。例えば、シリコン基板の表面における電圧が+10V~-10Vの範囲を外れている場合、再び除電ユニット2による除電処理を行い得る。つまり、電圧計を採用することによって、エッチング処理時における各構成の電気的な状態を最適化し得る。
 また、薬液槽3には、アルカリ水溶液の温度を一定に保つためのヒータが接続されている。ヒータは、例えばアルカリ水溶液の温度を60~90℃の範囲に保ち得る構成であれば、特に限定されない。
 (エッチング処理)
 本発明に係るエッチング処理は、エッチング装置1を用いて、シリコン基板11の表面に凹凸を規則正しく形成するための処理である。よって、シリコン基板11は、比較的に高濃度のアルカリ溶液、またはフッ酸と硝酸との混合液を用いた処理を受けて、10μmを超えてダメージ層が除去されている基板である。当該処理は、ワイヤソーなどを用いたインゴットからの基板の切り出しに起因する汚染物および疵を取り除く処理である。
 本発明に係るエッチング処理は、アルカリ水溶液を満たした薬液槽3にシリコン基板11を浸漬する処理である。例えば、アルカリ溶液はあらかじめ80℃に加熱されている。そして、エッチング槽11に取り付けられているヒータによって、アルカリ水溶液の温度が維持される。エッチング処理は20分間にわたって実施される。
 所定のエッチング処理が終了すると、キャリアを用いて薬液槽3からシリコン基板が取り出され、水洗、または酸を用いた中和によって、シリコン基板およびキャリアからアルカリ成分が除去される。
 (アルカリ水溶液)
 本発明に係るエッチング処理に使用されるアルカリ水溶液は、添加剤として界面活性剤を含んでいる。図3に示すように、界面活性剤は、親水性部分10aおよび疎水性部分10bを有している両親媒性分子(例えば、カルボン酸10)である。よって、界面活性剤は、異なる性質を示す相の間に生じる種々の界面(液体-気体、液体-固体、液体(水)-液体(油)の界面)に対して、親水性部分10aまたは疎水性部分10bの一方のみを向けて吸着する。エッチング装置1を用いたエッチングにおいて、界面活性剤は、シリコン基板11に対して疎水性部分10bを向け、上記アルカリ水溶液に対して親水性部分10aを向けて、規則正しく配列する。
 本発明の方法に使用され得るアルカリ水溶液は、例えば、5~18MΩ・cmの比抵抗を有している純水を用いて、原液を適当な濃度にまで希釈することによって得られる。例えば、当該純水を用いて当該原液を3~6倍に希釈して、アルカリ水溶液が得られる。ここでは、原液を希釈することによってアルカリ水溶液を得る例について説明している。しかし、所定の容積の純水に対して、アルカリおよび界面活性剤を後述するような濃度になるまで添加することによって、アルカリ水溶液は調製され得る。
 アルカリ水溶液に溶解しているアルカリは、有機アルカリまたは無機アルカリである。有機アルカリとしては、異方性エッチングに使用可能な有機物のアンモニウム塩(例えばテトラメチルアンモニウムヒドロキシといった第4級アンモニウム塩)が挙げられる。無機アルカリとしては、アルカリ金属の水酸化物(例えば水酸化ナトリウムおよび水酸化カリウムなど)、アルカリ土類金属の水酸化物(例えば水酸化カルシウムなど)、およびアンモニアなどが挙げられる。上記アルカリ水溶液におけるアルカリの濃度は8~16重量%であり得る。
 界面活性剤は、陽イオン性または陰イオン性の両親媒性分子であり得る。陽イオン性の両親媒性分子としては、種々のアルコールが挙げられる。陰イオン性の両親媒性分子としては、カルボン酸などが挙げられる。例えば、界面活性剤として使用可能なカルボン酸としては、炭素数が1以上、12以下であるカルボン酸が挙げられる。当該カルボン酸は、1つ以上のカルボキシル基を含んでいるカルボン酸である。アルカリ水溶液における界面活性剤17の濃度は1~40重量%であり得る。
 このようなアルカリおよび界面活性剤の濃度範囲を有している上記アルカリ水溶液は、上述の方法にしたがえば、例えば、和光純薬株式会社製のSUN-X600を3~6倍に希釈することによって、調製され得る。
 したがって、上記エッチングに使用され得るアルカリ水溶液の例としては、国際公開第06/046601号パンフレットおよび国際公開第09/072438号パンフレットに記載のエッチング液が挙げられる。
 本実施形態では、太陽電池セル用の基板として、シリコンを材料としている基板を例に説明している。しかし、本発明の方法によって処理される基板は、太陽電池セル用の基板として好適な基板であれば、特に限定されない。
 〔まとめ〕
 上記課題を解決するために、本発明の半導体基板のエッチング方法は、界面活性剤を含んでいるアルカリ水溶液を用いて、半導体基板の表面に凹凸構造を形成するウェットエッチング処理、および上記ウェットエッチング処理の前に、当該ウェットエッチング処理において上記アルカリ水溶液と接する構成の除電処理を包含している。
 原理的には、ウエットエッチング処理において、界面活性剤は、その電気的な斥力にしたがって一定の間隔を空けて半導体基板の表面に配列する。しかし、実際のウエットエッチング処理では、アルカリ水溶液と接する構成が有している電気的エネルギー(例えば静電気)が界面活性剤に影響を及ぼす。よって、界面活性剤の本来の性質のみにしたがって、界面活性剤は配列しているわけではない。
 そこで、上記構成によれば、ウエットエッチング処理において、アルカリ水溶液に含まれている界面活性剤に作用する電気的な外的要因を減少させ得る。つまり、本発明によれば、実際のウエットエッチング処理において、界面活性剤の本来の性質のみにしたがっている状態に近づく。その結果として、本発明は、半導体基板上に形成される凹凸構造のばらつきを低下させるという効果を奏する。
 また、本発明の半導体基板のエッチング方法において、上記構成は、上記半導体基板、当該半導体基板を搬送し、支持する支持部材、または上記アルカリ水溶液を満たすエッチング槽であることが好ましい。
 いずれの構成の除電処理も、界面活性剤に対する電気的な外的要因を大きく減少させ得る。よって、上述の効果をさらに向上させ得る。
 また、本発明の半導体基板のエッチング方法において、上記除電処理によって、上記半導体基板が帯びている電圧を+10V~-10Vに低下させることが好ましい。
 上記構成によれば、ウエットエッチング処理において、半導体基板における界面活性剤に作用する電気的な外的要因が実質的に消失する。よって、界面活性剤の本来の性質にほぼしたがって、界面活性剤が配列する。
 また、本発明の半導体基板のエッチング方法において、上記ウェットエッチング処理は上記エッチング槽を接地しながら実施されることが好ましい。
 ウェットエッチング処理において、外部からさらに電気的エネルギーが付与された場合であっても、界面活性剤の配列に影響することなく、当該電気的エネルギーを逃がすことができる。
 また、本発明の半導体基板のエッチング方法において、上記界面活性剤は陰イオン性の界面活性剤であり得、上記陰イオン性の界面活性剤はカルボン酸であり得る。
 上記課題を解決するために、本発明の半導体基板のエッチング装置は、界面活性剤を含んでいるアルカリ水溶液を満たすエッチング槽、ならびに上記半導体基板または当該エッチング槽を除電する除電ユニットを備えている。
 上記構成によれば、上述の方法と同様の効果を奏する。
 以上において、本発明の好ましい実施形態を例として本発明を説明している。しかし、本発明は、この実施形態に限定して解釈されるべきではない。本発明は、請求の範囲に規定されている範囲にしたがって解釈されるべきである。当業者は、本発明の具体的な好ましい実施形態に関する記載、および当該分野における技術常識に基づいて、請求の範囲に規定されている範囲にまで拡大し、かつ一般化して本発明を実施可能である。本明細書に記載の特許文献および非特許文献は、本発明の理解および実施に際してその内容が本明細書に援用される。
 本発明に係るエッチング方法の有効性について、以下のように従来技術と比較した。
 (使用した基板、処理液、および処理条件)
 本実施例において使用した基板は、以下の3種類である。
1.ワイヤソーを用いた機械加工によってSiインゴットからスライスされた太陽電池セル用の、正方形の基板(厚さ:100~200μm、1辺の長さ:90~156mm)。
2.シリコン製造メーカーによって製造された、半導体装置製造用の基板(厚さ425~725μm、サイズ:5~8インチφ)。当該基板は、沸酸(HF)、硝酸(HNO3)、酢酸(CH3COOH)、硫酸(H2SO4)、水酸化アンモニウム(NH4OH)、水酸化カリウム(KOH)、水酸化ナトリウム(NaOH)等によって鏡面化されている。
3.研磨砥石(#1000~#2000)を用いて、2.の基板を機械研磨によって薄板化した基板(厚さ:200~300μm、サイズ:5~8インチφ)。
 エッチングを、カルボン酸を含んでいるアルカリ水溶液を用いて行った。上記アルカリ水溶液として、純水を用いて市販の薬液(SUN-X600、和光純薬株式会社)を希釈した溶液を使用した。エッチングを、80℃において20分間にわたって上記アルカリ水溶液にシリコン基板を浸漬することによって実施した。
 また、エッチング処理の前に、シリコン基板、薬液槽およびキャリアを除電ユニット(WINSTAR BF-2ZA、シシド静電気製)を用いて除電したエッチング装置(すなわち除電ユニットとしてイオナイザを用いた図1に示すエッチング装置1)、ならびに除電を行っていないエッチング装置を準備した。
 (エッチング方法の評価)
 本発明のエッチング方法の有効性を、除電処理の有無について、基板に形成されている凹凸の高さのばらつきについて比較することによって評価した。その結果を図2に示す。図2に示されている電圧値は、エッチング処理を実施する直前に、それぞれの基板の表面における電位を測定した結果である。電位の測定には、電圧計(MODEL520-1、トレック社)を使用した。なお、図2に示されている結果は、上記1.の基板に対する評価である。上記2.および3.の基板について結果を特に示していないが、上記1.の基板と同様であった。
 図2は、基板表面に形成された凹凸構造のばらつきを、除電処理の有無について比較した結果を示す図である。図2に示されているばらつき(σ)は、レーザ顕微鏡(OLSD3500、オリンパス)を用いて測定した表面形状の粗さ曲線から求めた十点平均粗さRzから算出した標準偏差である。十点平均粗さRzは、当該粗さ曲線における最も高い点から5番目に高い点までの5つの点、および最も低い点から5番目に低い点までの5つの点から、当該粗さ曲線の基準線までのμm数の絶対値を合計し、平均を取った値である。
 図2に示すように、除電処理を施さなかった場合(-2.0kV)、高さのばらつきはσ=1.3μmと測定され、除電処理を施した場合(±10V)、高さのばらつきはσ=0.7μmと測定された。つまり、本発明に係る除電処理にしたがって、高さのばらつきは約1/2に低下した。
 本発明は、半導体基板をエッチングすることによって、同等の凹凸構造を規則正しく基板上に形成するために利用可能である。本発明の方法は、太陽電池セル用の基板の製造にとって特に好適である。
 1   エッチング装置
 2   除電ユニット
 3   薬液槽(エッチング槽)
 4   アース
 5   循環槽
 6   ポンプ
 7   流量計
 10  カルボン酸(界面活性剤)
 10a 親水性部分
 10b 疎水性部分
 11  シリコン基板(半導体基板)

Claims (8)

  1.  界面活性剤を含んでいるアルカリ水溶液を用いて、半導体基板の表面に凹凸構造を形成するウェットエッチング処理、および
     上記ウェットエッチング処理の前に、当該ウェットエッチング処理において上記アルカリ水溶液と接する構成の除電処理を包含していることを特徴とする半導体基板のエッチング方法。
  2.  上記構成は、上記半導体基板、当該半導体基板を搬送し、支持する支持部材、または上記アルカリ水溶液を満たすエッチング槽であることを特徴とする請求項1に記載の半導体基板のエッチング方法。
  3.  上記除電処理によって、上記半導体基板が帯びている電圧を+10V~-10Vに低下させることを特徴とする請求項1または2に記載の半導体基板のエッチング方法。
  4.  上記ウェットエッチング処理は、上記アルカリ水溶液を満たすエッチング槽を接地しながら実施されることを特徴とする請求項1~3のいずれか1項に記載の半導体基板のエッチング方法。
  5.  上記除電処理および上記ウェットエッチング処理の間に、上記構成が帯びている電圧を測定することをさらに包含している請求項1~4のいずれか1項に記載の半導体基板のエッチング方法。
  6.  上記界面活性剤は陰イオン性の界面活性剤であることを特徴とする請求項1~5のいずれか1項に記載の半導体基板のエッチング方法。
  7.  上記陰イオン性の界面活性剤はカルボン酸であることを特徴とする請求項6に記載の半導体基板のエッチング方法。
  8.  半導体基板のエッチング装置であって、
     界面活性剤を含んでいるアルカリ水溶液を満たすエッチング槽、ならびに上記半導体基板または当該エッチング槽を除電する除電ユニットを備えていることを特徴とする半導体基板のエッチング装置。
PCT/JP2012/074592 2011-11-25 2012-09-25 半導体基板のエッチング方法およびエッチング装置 WO2013077075A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-258316 2011-11-25
JP2011258316 2011-11-25

Publications (1)

Publication Number Publication Date
WO2013077075A1 true WO2013077075A1 (ja) 2013-05-30

Family

ID=48469532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074592 WO2013077075A1 (ja) 2011-11-25 2012-09-25 半導体基板のエッチング方法およびエッチング装置

Country Status (1)

Country Link
WO (1) WO2013077075A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6442134A (en) * 1987-08-10 1989-02-14 Hitachi Ltd Apparatus for cleaning semiconductor wafer
JPH07221311A (ja) * 1994-02-01 1995-08-18 Matsushita Electron Corp 薄膜トランジスタの製造方法
WO2006046601A1 (ja) * 2004-10-28 2006-05-04 Mimasu Semiconductor Industry Co., Ltd. 半導体基板の製造方法、ソーラー用半導体基板及びエッチング液
JP2006173260A (ja) * 2004-12-14 2006-06-29 Renesas Technology Corp 半導体装置の製造方法及び装置
JP2007227628A (ja) * 2006-02-23 2007-09-06 Nec Electronics Corp 半導体装置の製造方法およびウェット処理装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6442134A (en) * 1987-08-10 1989-02-14 Hitachi Ltd Apparatus for cleaning semiconductor wafer
JPH07221311A (ja) * 1994-02-01 1995-08-18 Matsushita Electron Corp 薄膜トランジスタの製造方法
WO2006046601A1 (ja) * 2004-10-28 2006-05-04 Mimasu Semiconductor Industry Co., Ltd. 半導体基板の製造方法、ソーラー用半導体基板及びエッチング液
JP2006173260A (ja) * 2004-12-14 2006-06-29 Renesas Technology Corp 半導体装置の製造方法及び装置
JP2007227628A (ja) * 2006-02-23 2007-09-06 Nec Electronics Corp 半導体装置の製造方法およびウェット処理装置

Similar Documents

Publication Publication Date Title
KR101962469B1 (ko) 결정질 실리콘 태양전지의 텍스쳐 구조의 제조방법
Huang et al. Metal-assisted electrochemical etching of silicon
JP5339880B2 (ja) シリコン基板のエッチング液およびシリコン基板の表面加工方法
US9249523B2 (en) Electro-polishing and porosification
JP2011515872A (ja) 結晶太陽電池の表面クリーニング及び凹凸形成プロセス
CN103314448A (zh) 用于高度掺杂的半导体层湿化学蚀刻的方法
WO2016152228A1 (ja) 太陽電池用結晶シリコン基板の製造方法、結晶シリコン系太陽電池の製造方法および結晶シリコン系太陽電池モジュールの製造方法
JP2014096459A (ja) 太陽電池用半導体基板の表面処理方法、太陽電池用半導体基板の製造方法、太陽電池の製造方法及び太陽電池製造装置
Lee et al. A breakthrough method for the effective conditioning of PVA brush used for post-CMP process
JP2006291259A (ja) 帯電を抑制するアルミニウムまたはアルミニウム合金表面形成方法及び帯電を抑制するアルミニウムまたはアルミニウム合金部材
WO2013077075A1 (ja) 半導体基板のエッチング方法およびエッチング装置
JP2014146753A (ja) 太陽電池用基板製造装置及びこれを用いた太陽電池用基板の製造方法
CN102856434B (zh) 一种正方形硅纳米孔阵列的制备方法
CN110021681B (zh) 太阳能电池表面的化学抛光及所得的结构
JP2014203849A (ja) 太陽電池用基板の製造方法及び太陽電池
US9837259B2 (en) Sequential etching treatment for solar cell fabrication
JP4174446B2 (ja) 基板処理装置及び基板処理方法
Amouzgar et al. A new approach for improving the silicon texturing process using gas-lift effect
WO2013058070A1 (ja) 半導体基板のエッチング方法
KR20140116193A (ko) 텍스처 형성용 에칭액
WO2013069385A1 (ja) 半導体基板のエッチング方法
KR20150093330A (ko) 도전성 구조물의 제조 방법
Tanaka et al. Perfect adsorption of ppb-level surfactant in 5% KOH water solution on a silicon surface changing anisotropic etching properties
Pyatilova et al. Effect of ionic Ag+ transfer on localization of metal-assisted etching of silicon surface
CN104078527A (zh) 一种太阳能电池硅片背面及边缘扩散层的刻蚀方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12852003

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12852003

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP