RU2333608C2 - Способ и устройство для обеспечения защиты в системе обработки данных - Google Patents

Способ и устройство для обеспечения защиты в системе обработки данных Download PDF

Info

Publication number
RU2333608C2
RU2333608C2 RU2004114212/09A RU2004114212A RU2333608C2 RU 2333608 C2 RU2333608 C2 RU 2333608C2 RU 2004114212/09 A RU2004114212/09 A RU 2004114212/09A RU 2004114212 A RU2004114212 A RU 2004114212A RU 2333608 C2 RU2333608 C2 RU 2333608C2
Authority
RU
Russia
Prior art keywords
key
short
access key
value
term
Prior art date
Application number
RU2004114212/09A
Other languages
English (en)
Other versions
RU2004114212A (ru
Inventor
Филип ХОКЕС
Николай К.Н. ЛЕУНГ
Грегори Г. РОУЗ
Original Assignee
Квэлкомм Инкорпорейтед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Квэлкомм Инкорпорейтед filed Critical Квэлкомм Инкорпорейтед
Publication of RU2004114212A publication Critical patent/RU2004114212A/ru
Application granted granted Critical
Publication of RU2333608C2 publication Critical patent/RU2333608C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/04Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0891Revocation or update of secret information, e.g. encryption key update or rekeying
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/04Key management, e.g. using generic bootstrapping architecture [GBA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2209/00Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
    • H04L2209/60Digital content management, e.g. content distribution
    • H04L2209/601Broadcast encryption
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/04Key management, e.g. using generic bootstrapping architecture [GBA]
    • H04W12/041Key generation or derivation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/04Key management, e.g. using generic bootstrapping architecture [GBA]
    • H04W12/043Key management, e.g. using generic bootstrapping architecture [GBA] using a trusted network node as an anchor
    • H04W12/0433Key management protocols

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
  • Storage Device Security (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

Изобретение относится к системам обработки данных и, в частности, к способам и устройствам обеспечения криптографической защиты в системе обработки данных. Техническим результатом является создание защищенного и эффективного способа обновления ключей в системе обработки данных, достигаемое тем, что каждому пользователю предоставляется регистрационный ключ. Обновляемый через большие промежутки времени ключ широковещания шифруется с использованием регистрационного ключа и периодически предоставляется пользователю. Ключ с малым временем обновления шифруется с использованием ключа широковещания. Краткосрочный ключ является доступным с каждым широковещательным сообщением, причем информация, достаточная для вычисления краткосрочного ключа, предоставляется в заголовке Интернет-протокола, предшествующем контенту широковещания. Широковещательные сообщения затем шифруются с использованием краткосрочного ключа, причем пользователь дешифрует широковещательное сообщение, используя этот краткосрочный ключ. 4 н. и 20 з.п. ф-лы, 14 ил.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится в общем случае к системам обработки данных и конкретно к способам и устройствам обеспечения защиты в системе обработки данных.
Предшествующий уровень техники
Обеспечение защиты в информационных системах и системах обработки данных, в том числе в системах связи, способствует идентифицируемости, равнодоступности, безошибочности, конфиденциальности, работоспособности, так же, как и множеству других критериев. Шифрование, или общая область криптографии, применяется в электронной коммерции, беспроводной связи, при широковещательной передаче, и имеет очень широкую область применения. В электронной коммерции шифрование применяется для предотвращения мошенничества и верификации финансовых транзакций. В системах обработки данных шифрование применяется для верификации подлинности участников. Шифрование также применяется для предотвращения взлома, защиты Web-страниц и предотвращения доступа к конфиденциальным документам, а также и при осуществлении ряда других мер обеспечения безопасности.
Системы, использующие криптографию, часто называемые криптосистемами, могут быть разделены на симметричные криптосистемы и асимметричные криптосистемы. Системы с симметричным шифрованием используют одинаковый ключ (т.е. секретный ключ) для шифрования и дешифрования сообщения. В то же время асимметричные системы шифрования используют первый ключ (т.е. открытый ключ) для шифрования сообщения и используют второй, отличающийся ключ (т.е. секретный ключ) для дешифрования сообщения. Асимметричные криптосистемы часто называются криптосистемами с открытым ключом. В симметричных криптосистемах существует проблема защищенной передачи секретного ключа от источника к приемнику. Помимо этого в симметричных криптосистемах существует проблема при частом обновлении ключей или других механизмов шифрования. В системах обработки данных способы безопасного обновления ключей имеют следствием увеличение времени обработки, объемов памяти и другие накладные расходы при обработке. В беспроводных системах связи обновление ключей занимает ценные ресурсы полосы пропускания, которые в противном случае могли бы быть доступны для передачи.
Предшествующим уровнем техники не предоставляется способ обновления ключей в больших группах мобильных станций для обеспечения возможности их доступа к шифрованной широковещательной передаче. Таким образом, существует потребность в защищенном и эффективном способе обновления ключей в системе обработки данных. Помимо этого существует потребность в защищенном и эффективном способе обновления ключей в беспроводной системе связи.
Сущность изобретения
Варианты осуществления изобретения, раскрытые в настоящем описании, направлены на удовлетворение описанных выше потребностей, предлагая способ обеспечения защиты в системах обработки данных. В одном из аспектов, способ защищенной передачи включает в себя определение краткосрочного ключа для передаваемого сообщения, причем краткосрочный ключ имеет идентификатор краткосрочного ключа; определение ключа доступа для данного сообщения, причем ключ доступа имеет идентификатор ключа доступа; шифрование сообщения с помощью ключа доступа; формирование заголовка Интернет-протокола, содержащего идентификатор краткосрочного ключа, и передачу зашифрованного сообщения с заголовком Интернет-протокола.
В другом аспекте, в системе беспроводной связи, поддерживающей услугу широковещания, элемент инфраструктуры включает в себя схему приема, модуль идентификации пользователя, выполняющий восстановление краткосрочного ключа для дешифрования широковещательного сообщения, и блок оборудования мобильной связи, выполненный с возможностью использования краткосрочного ключа для дешифрования широковещательного сообщения. Модуль идентификации пользователя включает в себя блок обработки, выполняющий дешифрование информации о ключе. Блок оборудования мобильной связи включает в себя запоминающее устройство для хранения набора краткосрочных ключей и идентификаторов краткосрочных ключей.
В еще одном аспекте устройство хранения цифровых сигналов включает в себя первый набор инструкций для приема идентификатора краткосрочного ключа, специфичного для передачи, причем идентификатор краткосрочного ключа соответствует краткосрочному ключу, второй набор инструкций для определения ключа доступа, основываясь на идентификаторе краткосрочного ключа, третий набор инструкций для шифрования идентификатора краткосрочного ключа с помощью ключа доступа для восстановления краткосрочного ключа, и четвертый набор инструкций для дешифрования передачи, используя краткосрочный ключ.
Перечень чертежей
Фиг.1А - схема криптосистемы.
Фиг.1В - схема симметричной криптосистемы.
Фиг.1С - схема асимметричной криптосистемы.
Фиг.1D - схема системы шифрования PGP.
Фиг.1Е - схема системы дешифрования PGP.
Фиг.2 - схема системы связи с расширенным спектром, поддерживающей некоторое количество пользователей.
Фиг.3 - блок-схема системы связи, поддерживающей широковещательные передачи.
Фиг.4 - блок-схема мобильной станции в беспроводной системе связи.
Фиг.5А и 5В - иллюстрации моделей, описывающих обновление ключей в мобильной станции, используемого для управления доступом к широковещанию.
Фиг.6 - модель, описывающая криптографические операции в МИП.
Фиг.7А-7D - иллюстрация способа реализации защищенного шифрования в беспроводной системе связи, поддерживающей широковещательные передачи.
Фиг.7Е - временная диаграмма периодов обновления ключей опции защиты в беспроводной системе связи, поддерживающей широковещательные передачи.
Фиг.8А-8D - иллюстрации применения способа защищенного шифрования в беспроводной системе связи, поддерживающей широковещательные передачи.
Фиг.9А - иллюстрация формата пакета IPSec для передачи по Интернет-протоколу.
Фиг.9В - иллюстрация идентификатора ассоциации защиты или SPI, применимого в пакете IPSec.
Фиг.9С - иллюстрация запоминающего устройства для хранения информации SPI в мобильной станции.
Фиг.9D - иллюстрация запоминающего устройства для хранения Ключей Доступа к Широковещанию (КДШ, ВАК) в мобильной станции.
Фиг.10 и 11 - иллюстрация способа обеспечения защиты широковещательного сообщения в беспроводной системе связи.
Фиг.12А - иллюстрация идентификатора ассоциации защиты или SPI, применимого в пакете IPSec.
Фиг.12В - иллюстрация запоминающего устройства для хранения информации SPI в мобильной станции.
Фиг.13 и 14 - иллюстрация способа обеспечения защиты широковещательного сообщения в беспроводной системе связи.
Подробное описание
Слово "иллюстративный" в настоящем описании применяется исключительно для обозначения "служащий для примера, демонстрации, или иллюстрации". Любой вариант осуществления, изложенный в настоящем описании как "иллюстративный", не должен рассматриваться как предпочтительный или имеющий преимущество перед другими вариантами осуществления.
Беспроводные системы связи широко используются для обеспечения различных типов связи, таких как передача речи, данных и т.п. Такие системы могут быть основаны на множественном доступе с кодовым разделением каналов (МДКР, СДМА), множественном доступе с временным разделением каналов (МДВР, IDMA) или других способах модуляции. Системы МДКР обеспечивают определенные преимущества перед системами других типов, включая увеличенную производительность системы.
Система может быть спроектирована для поддержки одного или более стандартов, таких как стандарт "TIA/EIA/IS-95-B Mobile Station-Base Station Compatibility Standard for Dual-Mode Wideband Spread Spectrum Cellular System", который в настоящем описании упоминается как стандарт IS-95, стандарт, предложенный консорциумом "3rd Generation Partnership Project" (проект партнерства в области систем связи 3-его поколения), который в настоящем описании упоминается как стандарт 3GPP, и стандарт, реализованный в наборе документов, включающем в себя документы №№ 3G TS 25.211, 3G TS 25.212, 3G TS и 25.213, 3G TS 25.214, 3G TS 25.302, который в настоящем описании упоминается как стандарт W-CDMA, стандарт, предложенный консорциумом "3rd Generation Partnership Project 2" (проект 2 партнерства в области систем связи 3-его поколения), который в настоящем описании упоминается как стандарт 3GPP2, и стандарт TR-45.4, который в настоящем описании упоминается как стандарт cdma2000, первоначально называвшийся IS-2000 MC. Стандарты, приведенные выше, включены в настоящее описание во всей своей полноте посредством ссылки.
Каждый стандарт специфически определяет обработку данных для передачи от базовой станции к мобильной станции и наоборот. Последующее обсуждение рассматривает в качестве иллюстративного варианта осуществления изобретения систему связи с расширенным спектром, совместимую с системами стандарта cdma2000. Альтернативные варианты осуществления изобретения могут включать в себя другие стандарты/системы. Другие варианты осуществления изобретения могут применять способы защиты, изложенные в настоящем описании, в других типах систем обработки данных, использующих криптосистемы.
Криптосистема представляет собой способ сокрытия сообщения, позволяющий определенной группе пользователей извлечь указанное сообщение. Фиг.1А иллюстрирует базовую криптосистему 10. Криптография является областью техники, связанной с созданием и применением криптосистем. Криптоанализ является областью техники, связанной с взломом криптосистем, т.е. приемом и распознаванием сообщений, при условии, что вы не входите в состав определенной группы пользователей, которой разрешен доступ к сообщению. Исходное сообщение называется сообщением в виде открытого текста, или открытым текстом. Зашифрованное сообщение называется шифротекстом, причем шифрование включает в себя любое средство преобразования открытого текста в шифротекст. Дешифрование включает в себя любые средства преобразования шифротекста в открытый текст, например, восстановление исходного сообщения. Как иллюстрируется на Фиг.1А, сообщение в виде открытого текста шифруется, образуя шифротекст. Затем шифротекст принимается и дешифруется для восстановления открытого текста. Хотя термины "открытый текст" и "шифротекст" в общем случае относятся к данным, концепция шифрования может применяться к любой цифровой информации, в том числе к аудио- и видеоданным, представленным в цифровой форме. Хотя в изобретении, изложенном в настоящем описании, термины "открытый текст" и "шифротекст" используются соответственно области техники, относящейся к криптографии, эти термины не исключают другие формы цифровой связи.
Криптосистема основывается на секретах (числовых значениях, известных действительным участникам криптосистемы, но не известных остальным). Группа объектов совместно использует секрет, если объект вне этой группы не может получить этот секрет, не обладая очень существенными ресурсами.
Криптосистема может представлять собой набор алгоритмов, причем каждый алгоритм имеет метку, и метки называются ключами. Симметричная система шифрования, часто называемая криптосистемой, использует один и тот же ключ (например, секретный ключ) для шифрования и дешифрования сообщения. Симметричная система 20 шифрования проиллюстрирована на Фиг.1В, причем при шифровании и дешифровании применяется одинаковый секретный ключ.
Напротив, асимметричная система шифрования применяет первый ключ (например, открытый ключ) для шифрования сообщения и применяет другой ключ (например, секретный ключ) для его дешифрования. Фиг.1С иллюстрирует асимметричную систему 30 шифрования, в которой один ключ предусмотрен для шифрования и второй ключ для дешифрования. Асимметричные криптосистемы также называются криптосистемами с открытым ключом. Открытый ключ выпускается в открытое обращение и становится доступен для шифрования любого сообщения, однако только секретный ключ может применяться при дешифровании сообщения, зашифрованного с помощью открытого ключа.
В симметричных криптосистемах существует проблема защищенного предоставления секретного ключа от источника приемнику. В одном из решений, для предоставления информации может использоваться курьер, либо более эффективным и надежным решением может быть использование криптосистемы с открытым ключом, такой как криптосистема с открытым ключом, разработанная Rivert, Shamir, и Adelman (RSA), обсуждаемая ниже. Система RSA используется в популярном инструментальном средстве защиты, называемом Pretty Good Privacy (PGP), более подробно описанным ниже. Например, изначально записанная криптосистема заменяет буквы в открытом тексте, сдвигая каждую букву на n в алфавите, где n является заранее определенной целой постоянной величиной. В такой схеме "А" заменяется на "D" и т.д., причем данная схема шифрования может включать в себя несколько значений n. В этой схеме шифрования "n" является ключом. Предусмотренным получателем предоставляется схема шифрования перед приемом шифротекста. В этом случае только знающие ключ должны иметь возможность дешифровать шифротекст для получения открытого текста. Однако, вычислив ключ при известном шифровании, непредусмотренные стороны могут получить возможность перехватывать и дешифровать шифротекст, создавая проблему защиты.
Более сложные и изощренные криптосистемы используют стратегические ключи, устойчивые к перехвату и дешифрованию непредусмотренными сторонами. Классическая криптосистема использует функции шифрования Е и функции дешифрования D, такие как:
D_K(E_K(P))=P, для любого открытого текста Р. (1)
В криптосистемах с открытым ключом Е_К легко вычисляется на основе известного "открытого ключа" Y, который в свою очередь вычисляется на основе К. Открытый ключ Y выпускается в открытое обращение, так что всякий может зашифровать сообщения. Функция дешифрования D_K вычисляется на основе открытого ключа Y, но только зная секретный ключ К. Без секретного ключа непредусмотренный получатель не сможет дешифровать шифротекст, сгенерированный таким образом. В этом случае, только получатель, который сгенерировал К, может дешифровать сообщения.
RSA представляет собой криптосистему с открытым ключом, разработанную Rivert, Shamir и Adelman, в которой, например, открытый текст рассматривается как положительные целые до 2512. Ключами являются четверки (p,q,e,d), с р в виде 256-битного простого числа, q в виде 258-битного простого числа, и d и е в виде больших чисел, с (de-1) делящимся на (p-1)(q-1). Далее, определим функцию шифрования как:
E_K(P)=Pemod(pq), D_K(C)=Cdmod(pq). (2)
В то время как Е_К легко вычисляется из пары (pq,e), не существует простого способа вычисления D_K из пары (pq,e). Следовательно, получатель, сгенерировавший К, может выпустить в открытое обращение (pq,e). Является возможным послать защищенное сообщение получателю, и только он имеет возможность прочесть указанное сообщение.
PGP сочетает признаки симметричного и асимметричного шифрования. Фиг.1D и 1Е иллюстрируют криптосистему 50 PGP, в которой сообщение в виде открытого текста шифруется и восстанавливается. На Фиг.1D сообщение в виде открытого текста сжимается для экономии времени передачи модема и дискового пространства. Сжатие усиливает криптографическую защиту, добавляя еще один уровень преобразования к обработке при шифровании и дешифровании. Большинство способов криптоанализа для взлома шифра используют комбинации, найденные в открытом тексте. Сжатие уменьшает количество таких комбинаций в открытом тексте, тем самым, усиливая устойчивость к криптоанализу. Необходимо заметить, что один из вариантов осуществления изобретения не производит сжатия: открытый текст или другое сообщение, слишком короткое для сжатия, или не очень хорошо поддающееся сжатию.
Затем PGP создает сеансовый ключ, представляющий собой одноразовый секретный ключ. Этот ключ представляет собой случайное число, которое может быть сгенерировано любым случайным событием (событиями), таким как случайные перемещения компьютерной мыши и/или нажатия на клавиши при печати. Сеансовый ключ применяется с алгоритмом защищенного шифрования для шифрования открытого текста, получая в результате шифротекст. После шифрования данных сеансовый ключ шифруется с помощью открытого ключа получателя. Сеансовый ключ, зашифрованный с помощью открытого ключа, передается получателю вместе с шифротекстом.
Для дешифрования, как иллюстрируется на Фиг.1Е, экземпляр PGP получателя использует секретный ключ для восстановления временного сеансового ключа, который PGP затем применяет для дешифрования обычным образом зашифрованного шифротекста. Сочетание способов шифрования дает преимущества удобства шифрования с открытым ключом и скорость симметричного шифрования. Симметричное шифрование в общем случае является гораздо более быстрым, чем шифрование с открытым ключом. Шифрование с открытым ключом в свою очередь предоставляет решение проблем распространения ключа и передачи данных. В сочетании производительность и распространение ключа улучшаются без какого-либо ущерба защищенности.
Ключ представляет собой величину, используемую в криптографическом алгоритме для получения определенного шифротекста. Обычно ключи являются очень большими числами. Размер ключа измеряется в битах. В криптографии с открытым ключом защищенность возрастает с размером ключа, однако, размер открытого ключа и размер секретного ключа симметричного шифрования в общем случае не связаны. Несмотря на то что открытый и секретный ключи математически связаны, возникает проблема при определении секретного ключа при единственно известном открытом ключе. Определение секретного ключа возможно при наличии достаточного времени и вычислительной мощности, что делает выбор размера ключа важной проблемой при обеспечении защиты. Оптимальной целью является максимизация размера ключа с точки зрения обеспечения защиты и минимизация размера ключа с точки зрения обеспечения быстрой обработки. Более длинные ключи являются криптографически безопасными в течение большего периода времени. Дополнительным соображением является предполагаемый перехватчик, более конкретно: 1) какова важность сообщения для третьей стороны; и 2) сколько ресурсов имеется в распоряжении третьей стороны для дешифрования сообщения.
Необходимо отметить, что ключи хранятся в зашифрованной форме. Конкретно, PGP хранит ключи в двух файлах: один для открытых ключей, другой для секретных ключей. Эти файлы называются 'кольца для ключей'. В применении, система шифрования PGP добавляет открытые ключи целевого получателя в кольцо для открытых ключей отправителя. Секретные ключи отправителя хранятся в кольце для секретных ключей отправителя.
Как обсуждалось в примерах, приводимых выше, способ распространения ключей, используемых для шифрования и дешифрования, может быть сложным. "Проблема обмена ключами" включает в себя, во-первых, обеспечение гарантии того, что обмен ключами происходит таким образом, что как отправитель, так и получатель могут выполнить шифрование и дешифрование, соответственно, и, для двунаправленной связи, что как отправитель, так и получатель могут шифровать и дешифровать сообщения. Помимо этого требуется, чтобы обмен ключами происходил таким образом, чтобы предотвратить перехват третьей и непредусмотренной сторонами.
Наконец, отдельным предметом рассмотрения является аутентификация (установление подлинности), гарантирующая получателю, что сообщение было зашифровано предусмотренным отправителем, а не третьей стороной. В системе обмена секретными ключами, обмен ключами происходит защищенно, обеспечивая улучшенную защищенность при успешном обмене ключами и верной аутентификации. Необходимо отметить, что схема шифрования с секретными ключами неявно обеспечивает аутентификацию. Базовое допущение в криптосистеме с секретным ключом заключается в том, что только предусмотренный отправитель имеет ключ, способный зашифровать сообщение, доставленное предусмотренному получателю. Хотя криптографические методы с открытым ключом решают критический аспект 'проблемы обмена ключами', в особенности их устойчивости к анализу даже при наличии пассивного подслушивания в процессе обмена ключами, они все же не решают все проблемы, связанные с обменом ключами. Более конкретно, поскольку ключи рассматриваются как 'открытая информация' (особенно в случае RSA), для обеспечения аутентификации требуется некий другой механизм. Желательно, чтобы для аутентификации было достаточно только обладание ключами, и хотя этого достаточно для шифрования сообщений, это не является гарантией уникальной подлинности отправителя, а обладание соответствующим ключом расшифровки само по себе не является достаточным для установления подлинности получателя.
Одним из решений является разработка механизма распространения ключей, гарантирующего, что ключи в списке в действительности являются принадлежащими заданным объектам, иногда называемого доверенным органом, сертифицирующим органом или депозитарием третьей стороны. Обычно орган не генерирует ключей сам, но гарантирует, что списки ключей и связанные идентификационные данные, хранимые и афишируемые для сведения отправителей и получателей, являются верными и не дискредитированными. Другой способ основан на том, что пользователи распространяют и отслеживают ключи друг друга и доверяют неформальному распределенному способу организации. В случае RSA, если пользователь желает послать свидетельство их подлинности дополнительно к зашифрованному сообщению, подпись шифруется с помощью секретного ключа. Получатель может использовать алгоритм RSA обращенным образом, чтобы убедиться в том, что информация расшифровывается, поскольку только отправитель мог зашифровать открытый текст, используя секретный ключ. Обычно зашифрованная 'подпись' представляет собой 'дайджест сообщения', содержащий уникальное математическое 'резюме' секретного сообщения (если бы подпись была постоянной для множества сообщений, то, зная предыдущее, получатели могли бы использовать его некорректно). Таким образом, теоретически, только отправитель сообщения может сгенерировать верную подпись для этого сообщения, тем самым, аутентифицируя его для получателя.
Дайджест сообщения часто вычисляется, используя криптографическую хэш-функцию. Криптографическая хэш-функция вычисляет значение (с фиксированным количеством битов) из любой входной величины, независимо от длины входной величины. Одним из свойств криптографической хэш-функции является следующее: для данной выходной величины трудно путем вычисления определить входную величину, давшую указанную выходную величину. Примером криптографической хэш-функции является SHA-1, описанная в "Secure Hash Standard", FIPS PUB 180-1, опубликованной Federal Information Processing Standards Publications (FIPS PUBS) и выпущенной National Institute of Standards and Technology.
На Фиг.2 представлен пример системы 100 связи, поддерживающей некоторое количество пользователей и способной реализовать, по меньшей мере, некоторые аспекты и варианты осуществления настоящего изобретения. Для организации передачи в системе 100 может быть использован любой из множества алгоритмов и способов. Система 100 обеспечивает связь для ряда сотовых ячеек с 102А по 102G, каждая из которых обслуживается соответствующей базовой станцией с 104А по 104G, соответственно. В иллюстративном варианте осуществления изобретения некоторые из базовых станций 104 имеют множество приемных антенн, а другие имеют только одну приемную антенну. Аналогично, некоторые из базовых станций 104 имеют множество передающих антенн, а другие имеют одну передающую антенну. Не существует ограничений на комбинации передающих антенн и приемных антенн. Таким образом, возможно, что базовая станция 104 имеет множество передающих антенн и одну приемную антенну, или имеет множество приемных антенн и одну передающую антенну, или имеет как одну, так и множество передающих антенн и приемных антенн.
Терминалы 106 в зоне покрытия могут быть фиксированными (т.е. стационарными) или мобильными. Как показано на Фиг.2, по системе распределены различные терминалы 106. Каждый терминал 106 в любой заданный момент времени осуществляет связь, по меньшей мере, с одной, а возможно, и с большим количеством базовых станций 104, по восходящей линии связи и нисходящей линии связи, что зависит от того, например, используется ли мягкий режим эстафетной передачи обслуживания или спроектирован ли терминал для (одновременного или последовательного) приема множества передач от множества базовых станций, и работает ли он в этом режиме. Мягкий режим эстафетной передачи обслуживания в системах связи МДКР широко известен в настоящей области техники и детально описан в патенте США № 5,101,501 озаглавленном "Method and system for providing a Soft Handoff in CDMA Cellular Telephone System", права на который принадлежат правообладателю настоящего изобретения.
Под нисходящей линией связи подразумевается передача от базовой станции на терминал, и под восходящей линией связи подразумевается передача от терминала на базовую станцию. В иллюстративном варианте осуществления изобретения некоторые из терминалов 106 имеют множество приемных антенн, а другие имеют одну приемную антенну. На Фиг.2 базовая станция 104А передает данные на терминалы 106А и 106J, базовая станция 104С передает данные на терминал 106С и т.д.
Возрастающая потребность в беспроводной передаче данных и расширение числа услуг, доступных посредством технологии беспроводной связи, привело к созданию специфических услуг по передаче данных. Одна из таких услуг называется высокоскоростной передачей данных (ВПД, HDR). Пример услуги ВПД предложен в спецификации "EIA/TIA-IS856 cdma2000 High Rate Packet Data Air Interface Specification", называемой "спецификация ВПД" ("HDE Specification"). Услуга ВПД является в общем случае более всеобъемлющей по отношению к речевым системам связи, что обеспечивает эффективный способ передачи пакетов данных в системе беспроводной связи. При увеличении объема передаваемых данных и количества каналов передачи, ограниченная полоса пропускания, доступная для радиопередач, становится критическим ресурсом. Следовательно, существует потребность в эффективном и четком способе организации передач в системах связи, оптимизирующем использование доступной полосы пропускания. В иллюстративном варианте осуществления изобретения система 100, показанная на Фиг.2, является совместимой с типом системы МДКР, имеющей услугу ВПД.
Согласно иллюстративному варианту осуществления изобретения, система 100 поддерживает услугу высокоскоростного мультимедийного широковещания, называемую услугой высокоскоростного широковещания (УВСШ, HSBS). Примеры применений УВСШ могут включать в себя формирование видеопотоков фильмов, спортивных новостей и т.д. Услуга УВСШ является услугой пакетной передачи данных, основанной на Интернет-протоколе (IP). Согласно иллюстративному варианту осуществления изобретения, провайдер услуги оповещает пользователей о доступности такой услуги высокоскоростного широковещания. Пользователи, желающие воспользоваться услугой УВСШ, подписываются на получение услуги и могут ознакомиться с программой услуги широковещания при помощи рекламы, службы коротких сообщений (SMS), протокола беспроводных приложений (WAP) и т.п. Мобильные пользователи именуются Мобильными Станциями (МС, MS). Базовые станции (БС) передают параметры, относящиеся к УВСШ в служебных сообщениях. Если МС желает принять сеанс широковещания, МС считывает служебные сообщения и определяет подходящие конфигурации. Затем МС настраивается на частоту, содержащую канал УВСШ, и принимает контент услуги широковещания.
Рассматриваемая услуга представляет собой услугу высокоскоростного мультимедийного широковещания. Эта услуга в настоящем документе называется услугой высокоскоростного широковещания (УВСШ). Одним из примеров является формирование видеопотоков фильмов, спортивных новостей и т.д. Данная услуга, вероятно, является услугой пакетной передачи данных, основанной на Интернет-протоколе (IP).
Провайдер услуги оповещает пользователей о доступности такой услуги высокоскоростного широковещания. Пользователи мобильных станций, желающие воспользоваться такой услугой, подписываются на получение услуги и могут ознакомиться с программой услуги широковещания при помощи рекламы, SMS, WAP и т.п. Базовые станции передают параметры, относящиеся к услуге широковещания в служебных сообщениях. Мобильные станции, желающие прослушать сеанс широковещания, считывают служебные сообщения и определяют подходящие конфигурации, настраиваются на частоту, содержащую высокоскоростной широковещательный канал и начинают прием контента услуги широковещания.
Для услуги УВСШ существует несколько возможных моделей подписки/оплаты, которые включают в себя свободный доступ контролируемый доступ, и частично контролируемый доступ. Для свободного доступа не требуется подписки для получения услуги. БС производит широковещательную передачу контента без шифрования, и заинтересованные мобильные устройства могут принимать этот контент. При этом провайдер услуги может получать доход при помощи размещения рекламы, которая также может передаваться по широковещательному каналу. Например, могут передаваться клипы выпускаемых в ближайшее время фильмов, за что студии платят провайдеру.
В случае контролируемого доступа, для того чтобы принимать услугу широковещания, пользователь МС подписывается на эту услугу и оплачивает соответствующую сумму. Неподписавшийся пользователь не будет иметь возможности принимать услугу УВСШ. Контролируемый доступ может быть осуществлен путем шифрования передачи/контента УВСШ таким образом, что только подписавшиеся пользователи смогут дешифровать этот контент. При этом могут использоваться процедуры обмена ключами шифрования по радиоинтерфейсу. Эта схема обеспечивает высокий уровень защиты и предотвращает кражу услуги.
Гибридная схема доступа, называемая частично контролируемым доступом, предоставляет услугу УВСШ, как основанную на подписке услугу, которая является шифруемой с перемежающимися незашифрованными рекламными передачами. Такая реклама может быть предназначена для того, чтобы подтолкнуть к подписке на зашифрованную услугу УВСШ. Расписание таких незашифрованных сегментов может быть известно МС через сторонние средства.
На Фиг.3 представлена система 200 беспроводной связи, в которой видео- и аудиоинформация предоставляется в сеть обслуживания передачи пакетных данных (PDSN) 202 сервером контента (СК, CS) 201. Источником видео- и аудиоинформации может быть телепрограмма и радиопередача. Информация предоставляется в виде пакетированных данных, например, в виде IP-пакетов. PDSN 202 обрабатывает IP-пакеты для распространения в сети доступа (СД, AN). Как показано, СД определена как часть системы, включающей в себя БС 204, осуществляющую связь с множеством МС 206. PDSN 202 связана с БС 204. Для услуги УВСШ, БС 204 передает поток информации от PDSN 202 и предоставляет информацию на определенном канале абонентам в системе 200. Для управления доступом, контент шифруется СК 201 перед предоставлением в PDSN 202. Подписавшиеся пользователи снабжаются ключами дешифрования, позволяющими дешифровать IP-пакеты.
На Фиг.4 подробно показана МС 300, подобная МС 206 по Фиг.3. МС 300 имеет антенну 302, соединенную со схемой 304 приема. МС 300 принимает передачи от БС (не показана), подобной БС 204 по Фиг.3. МС 300 включает в себя модуль идентификации пользователя (МИП, UIM) 308 и оборудование мобильной связи (ОМС, МЕ) 306. Схема 304 приема связана с МИП 308 и ОМС 306. МИП 308 применяет процедуры верификации для защиты передачи УВСШ и предоставляет различные ключи в ОМС 306. ОМС 306 может быть связано с блоком 312 обработки. ОМС 306 выполняет основную обработку, включающую в себя, но не в ограничительном смысле, дешифрованием потоков контента УВСШ. ОМС 306 включает в себя запоминающее устройство, ЗУ 310. В иллюстративном варианте осуществления изобретения, к данным в блоке обработки ОМС 306 (не показан) и данным в запоминающем устройстве ОМС, ЗУ 310, может легко осуществить доступ не подписчик при использовании ограниченных ресурсов, и поэтому говорят, что ОМС 306 является незащищенным. Любая информация, попадающая в ОМС 306 или обрабатываемая в ОМС 306, остается защищенной и секретной только в течение короткого промежутка времени. Поэтому требуется, чтобы любая секретная информация, такая как ключ(ключи), используемая совместно с ОМС 306, часто менялась.
МИП 308 является доверенным для хранения и обработки секретной информации (такой как ключи шифрования), которая должна оставаться защищенной в течение длительного времени. Поскольку МИП 308 является защищенным блоком, для секретов, хранящихся в нем, необязательно, чтобы система часто меняла секретную информацию. МИП 308 включает в себя блок обработки, называемый защищенным блоком обработки МИП (ЗБОМ, SUPU) 316 и запоминающее устройство, называемое защищенным запоминающим устройством МИП (ЗЗУМ, SUMU) 314, которые являются доверенными для обеспечения защиты. Внутри МИП 308, ЗЗУМ 314 хранит секретную информацию таким образом, чтобы препятствовать несанкционированному доступу к информации. Если секретная информация получена из МИП 308, то для доступа должен требоваться сравнительно большой объем ресурсов. Также внутри МИП 308, ЗБОМ 316 выполняет вычисления над величинами, которые могут быть внешними относительно МИП 308 и/или внутренними относительно МИП 308. Результаты вычислений могут быть сохранены в ЗЗУМ 314 или переданы в ОМС 306. Вычисления, выполняемые ЗБОМ 316, могут быть получены из МИП 308 только объектом, обладающим значительным объемом ресурсов. Аналогично, выходные данные ЗБОМ 316, предназначенные для сохранения в ЗЗУМ 314 (но не для выдачи на ОМС 306), выполнены таким образом, что несанкционированный перехват требует значительного объема ресурсов. В одном из вариантов осуществления, МИП 308 представляет собой постоянный блок внутри МС 300. Необходимо отметить, что в дополнение к защищенной памяти и обработке в МИП 308, МИП 308 может также включать в себя незащищенную память и обработку данных (не показана) для хранения информации, включающей в себя телефонные номера, информацию об адресах электронной почты, информацию об адресах Web-страниц или унифицированных указателях информационных ресурсов (URL), и/или функции органайзера, и т.п.
Альтернативные варианты осуществления могут предлагать сменный и/или перепрограммируемый МИП. В иллюстративном варианте осуществления ЗБОМ 316 не обладает значительной вычислительной мощностью для выполнения функций помимо процедур, связанных с защитой и ключами, причем защита и ключи обычно могут быть использованы для предоставления возможности шифрования контента широковещания УВСШ. Альтернативные варианты осуществления могут реализовывать МИП с большей вычислительной мощностью.
МИП 308 связан с конкретным пользователем и применяется главным образом для верификации того, что МС 300 имеет право пользоваться привилегиями, предоставленными данному пользователю, такими как доступ к мобильной телефонной сети. Таким образом, пользователь скорее связан с МИП 308, а не с МС 300. Один и тот же пользователь может быть связан со множеством МИП 308.
Услуга широковещания сталкивается с проблемой определения способа распространения ключей подписавшимся пользователям. Для дешифрования контента широковещания в определенное время, ОМС должно знать текущий ключ дешифрования. Во избежание кражи услуги, ключ дешифрования должен часто меняться, например одна услуга обновляет ключ раз в минуту. Такие ключи дешифрования называются краткосрочными ключами (КК, SK). КК применяется для дешифрования контента широковещания в течение короткого промежутка времени, следовательно, данный КК можно рассматривать как имеющий для пользователя некую ценность в денежном выражении. Например, ценность в денежном выражении может быть частью стоимости регистрации. Предположим, что для не подписчика стоимость получения КК из запоминающего устройства ЗУ 310 подписчика превышает ценность в денежном выражении КК. То есть стоимость нелегитимного получения КК превышает вознаграждение, что дает в результате отсутствие чистой прибыли. Следовательно, потребность в защите КК в запоминающем устройстве ЗУ 310 уменьшается. Тем не менее, если секретный ключ имеет время существования, превышающее время жизни КК, стоимость нелегитимного получения КК реально может быть меньшей, чем вознаграждение. В такой ситуации имеется чистая прибыль при нелегитимном получении КК из запоминающего устройства ЗУ 310. Отсюда, в идеальном случае, запоминающее устройство ЗУ 310 не хранит секретов с временем жизни, превышающим время жизни КК.
Предполагается, что каналы, используемые СК (не показан) для распространения КК на различные устройства подписчиков, являются незащищенными. Другими словами, в оптимальном проекте каналы должны полагаться незащищенными, и КК должен быть спроектирован соответственно. Таким образом, при распространении данного КК, СК требует использования способов, скрывающих значение КК от неподписавшихся пользователей. Кроме этого СК распространяет КК каждому из потенциально большого количества подписчиков для обработки в соответствующем ОМС за относительно короткий промежуток времени. Известные защищенные способы передачи ключа являются традиционно медленными и требуют передачи большого количества ключей. Способы передачи ключа в общем случае не являются подходящими для требуемого сочетания критериев защищенности и эффективности. Иллюстративный вариант осуществления изобретения является подходящим способом распространения ключей дешифрования среди большого множества подписчиков за короткий промежуток времени таким способом, что не подписчики не могут получить ключи дешифрования.
Иллюстративный вариант осуществления изобретения описан как передающий информацию в пакетах, совместимых с Интернет-протоколом, таких как описываемые ниже пакеты "IPSec" (протокола защиты трафика на уровне IP), и, таким образом, нижеследующее описание предоставляет краткое введение в терминологию, используемую в связи с IPSec. Указанная терминология полезна при описании иллюстративных вариантов осуществления изобретения, но использование этой терминологии не означает ограничения иллюстративных вариантов осуществления изобретения связью с применением IPSec.
Основные положения IPSec описаны в RFC 1825, озаглавленном "Security Architecture for Internet Protocol", R. Atkinson, август 1995, RFC 1826 озаглавленном "IP Autentification Header", R. Atkinson, август 1995, и RFC 1827 озаглавленном "IP Encapsulating Security Payload (ESP)", R. Atkinson, август 1995. Заголовок аутентификации представляет собой механизм, обеспечивающий целостность IP-дейтаграмм, причем IP-дейтаграммы в общем случае являются коллекцией полезной информации, называемой полезной нагрузкой, в сочетании с сетевой управляющей информацией и заголовком IP. Сетевые маршрутизаторы используют заголовки IP для направления пакетов в требуемый узел сети. В некоторых ситуациях, заголовок аутентификации может также обеспечивать аутентификацию IP-дейтаграмм. Инкапсуляция полезной нагрузки IP-пакета в целях защиты (ESP) представляет собой механизм, обеспечивающий конфиденциальность и целостность IP-дейтаграмм, и может применяться в сочетании с заголовком аутентификации. IPSec использует "ассоциации защиты" (структуры данных, ассоциированные с защищенной передачей и определяющие ее параметры защиты) для описания параметров, таких как ключ шифрования и алгоритм шифрования, применяемых при шифровании и/или аутентификации связи между группой объектов. Необходимо отметить, что концепция ассоциации защиты также применима к криптосистемам, не основанным на IPSec.
Пакет IPSec включает в себя 32-битный параметр, называемый индексом параметров защиты (SPI), который используется совместно с адресом назначения для идентификации ассоциации защиты, используемой для шифрования и/или аутентификации содержимого IP-дейтаграмм. Любой объект может сохранить ассоциации защиты в базе данных ассоциаций защиты и индексировать ассоциации защиты согласно адресу назначения и SPI. Зашифрованное содержимое пакетов IPSec часто называют полезной нагрузкой.
В иллюстративном варианте осуществления изобретения, МС 300 поддерживает УВСШ в беспроводной системе связи. Для получения доступа к УВСШ пользователь должен зарегистрироваться и затем подписаться на услугу. После подписки различные ключи обновляются по необходимости. В процессе регистрации СК и МИП 308 согласовывают ассоциацию защиты и приходят к соглашению о регистрационном ключе (РК, RK) и других параметрах, требуемых для ассоциации защиты между пользователем и СК. Затем СК может посылать на МИП 308 дополнительную секретную информацию, зашифрованную с помощью РК. РК хранится в качестве секрета в МИП 308, тогда как другие параметры могут храниться в ОМС 306. РК является уникальным для данного МИП 308, т.е. каждому пользователю назначается отдельный РК. Сам по себе процесс регистрации не дает пользователю доступа к УВСШ.
Как указывалось выше, после регистрации пользователь подписывается на услугу. В процессе подписки СК посылает МИП 308 значение общего ключа доступа к широковещанию (КДШ, ВАК). Необходимо отметить, что в то время как РК является специфическим для МИП 308, КДШ применяется для шифрования широковещательной передачи для множества пользователей. СК посылает МС 300, а более точно, МИП 308, значение КДШ, шифрованное с применением РК, уникального для МИП 308. МИП 308 имеет возможность восстановить значение исходного КДШ из зашифрованной версии, используя РК. КДШ, совместно с другими параметрами образует ассоциацию защиты между СК и группой подписавшихся пользователей. КДШ хранится в качестве секрета в МИП 308, тогда как другие параметры ассоциации защиты могут храниться в ОМС 306. Затем СК передает данные, называемые информацией о краткосрочном ключе (ИКК, SKI), которые объединяются с КДШ в МИП 308 для получения КК. Затем МИП 308 передает КК в ОМС 306. В этом случае СК может эффективно распространять новые значения КК в ОМС подписавшихся пользователей. Ниже приведены несколько примеров получения КК из ИКК, и форм ИКК. Подробно обсуждаются процессы регистрации и подписки, после чего описываются ИКК и КК.
Что касается регистрации, при регистрации пользователя с помощью данного СК, МИП 308 и СК (не показан) устанавливают ассоциацию защиты. То есть МИП 308 и СК приходят к соглашению о секретном регистрационном ключе РК. РК является уникальным для каждого МИП 308, хотя если пользователь имеет множество МИП, то эти МИП могут совместно обладать одним и тем же РК, в зависимости от политики СК. Регистрация может происходить при подписке пользователя на широковещательный канал, предлагаемый СК, или может происходить перед подпиской. Один СК может предлагать множество широковещательных каналов. СК может выбрать ассоциирование пользователя с одним и тем же РК для всех каналов или требовать регистрации пользователя для каждого канала и ассоциировать одного пользователя с разными РК для разных каналов. Множество СК могут выбрать применение одних и тех же регистрационных ключей или требовать регистрации пользователя и получения им отличающегося РК для каждого СК.
Три общих сценария для установления ассоциации защиты включают в себя: 1) способ Соглашение об Аутентифицированных Ключах (AKA), применяемый в системах 3GPP; 2) способ Обмена Ключами в Интернет (IKE), применяемый в IPSec; и 3) предоставление услуги через эфир (OTASP). В любом случае запоминающее устройство МИП, ЗЗУМ 314, содержит секретный ключ, называемый в настоящем описании А-ключ. Например, при использовании способа AKA, А-ключ является секретом, известным только МИП и Доверенной Третьей Стороне (ДТС, ТТР), причем ДТС может включать в себя несколько объектов. Обычно ДТС является провайдером мобильных услуг, у которого зарегистрировался пользователь. Любая связь между СК и ДТС является защищенной, и СК полагает, что ДТС не способствует несанкционированному доступу к услуге широковещания. При регистрации пользователя СК информирует ДТС, что пользователь желает зарегистрироваться для получения услуги, и обеспечивает верификацию запроса пользователя. ДТС использует функцию, подобную криптографической хэш-функции, для вычисления РК на основе А-ключа и дополнительных данных, называемых Информацией о Регистрационном Ключе (ИРК, RKI). ДТС передает РК и/или ИРК в СК по защищенному каналу вместе с другими данными. СК посылает ИРК в МС 300. Схема 304 приема передает ИРК в МИП 308 и может передавать ИРК в ОМС 306. МИП 308 вычисляет РК на основе ИРК и А-ключа, хранящегося в запоминающем устройстве МИП, ЗЗУМ 314. РК сохраняется в запоминающем устройстве МИП, ЗЗУМ 314 и не предоставляется непосредственно в ОМС 306. Альтернативные варианты осуществления могут использовать сценарий IKE, или какие-либо другие способы установления РК. Также должны быть согласованы другие параметры ассоциации защиты между СК и МИП 308. РК хранится в качестве секрета в МИП 308, тогда как другие параметры ассоциации защиты могут храниться в ОМС 306. В иллюстративном варианте осуществления, в котором КДШ посылается в МИП 308 как пакет IPSec, зашифрованный с использованием РК, СК и МС 300 согласовывают значение SPI, используемом для индексирования ассоциации защиты и этот SPI обозначается SPI_RK.
В способе AKA, РК является секретом, совместно используемым между СК, МИП и ДТС. Тем самым, как это принимается в настоящем описании, способ AKA подразумевает, что любая ассоциация защиты между СК и МИП неявно включает в себя ДТС. Включение ДТС в любую ассоциацию защиты не рассматривается как брешь в защите, поскольку СК доверяет в том плане, что ДТС не содействует несанкционированному доступу к широковещательному каналу. Как указывалось выше, если ключ используется совместно с ОМС 306, то требуется его частая замена. Это происходит вследствие риска, что не подписчик получит доступ к информации, хранящейся в запоминающем устройстве ЗУ 310, и, таким образом, получит доступ к услуге с контролируемым или частично контролируемым доступом. ОМС 306 хранит КК, т.е. информацию о ключе, используемом при дешифровании контента широковещания, в запоминающем устройстве ЗУ 310. СК посылает подписавшимся пользователям необходимую для вычисления КК информацию. Если ОМС 306 подписавшегося пользователя может вычислить КК на основе этой информации, то дополнительная информация, требуемая для вычисления КК, не может быть секретной. В этом случае, допустим, что ОМС 306 неподписавшегося пользователя также может вычислить КК на основе этой информации. Следовательно, значение КК должно вычисляться в ЗБОМ 316, используя секретный ключ, совместно используемый СК и ЗЗУМ 314. СК и ЗЗУМ 314 совместно используют значение РК, однако каждый пользователь имеет уникальное значение РК. СК требуется незначительное время для шифрования КК с помощью каждого значения РК и передачи этих зашифрованных значений каждому подписавшемуся пользователю.
Что касается подписки, для гарантии эффективного распространения защищенной информации о КК, СК периодически распространяет общий ключ доступа к широковещанию (КДШ) на каждый МИП 308 подписчика. Для каждого подписчика СК шифрует КДШ, используя соответствующий РК, для получения значения, называемого Информацией о КДШ (ИКДШ, BAKI). СК посылает соответствующую ИКДШ в МС 300 подписавшегося пользователя. Например, КДШ может передаваться в виде IP-пакета, зашифрованного с использованием РК, соответствующего каждой МС. В иллюстративном варианте осуществления, ИКДШ представляет собой пакет, содержащий КДШ, зашифрованный с использованием РК в качестве ключа. Поскольку РК является персональным ключом для каждого пользователя, СК должен посылать КДШ каждому подписчику персонально; таким образом, КДШ не рассылается через широковещательный канал. МС 300 передает ИКДШ в МИП 308. ЗБОМ 316 вычисляет КДШ, используя значение РК, хранящееся в ЗЗУМ 314, и значение ИКДШ. Затем значение КДШ сохраняется в ЗЗУМ. В иллюстративном варианте осуществления, ИКДШ содержит значение SPI, обозначаемое SPI_RK, которое соответствует ассоциации защиты, содержащей РК. МС 300 знает, что МИП 308 может расшифровать полезную нагрузку, если пакет IPSec зашифрован согласно упомянутой ассоциации защиты. Следовательно, если МС 300 принимает пакет IPSec, зашифрованный согласно упомянутой ассоциации защиты, МС 300 передает ИКДШ в МИП 308 для использования РК при дешифровании полезной нагрузки.
Желательно, чтобы период обновления КДШ был достаточным для того, чтобы обеспечить СК возможность послать КДШ каждому подписчику персонально, без значительного объема служебных сообщений. Поскольку ОМС 306 не является доверенным для хранения секретов в течение длительного времени, МИП 308 не предоставляет КДШ в ОМС 306. Также должны быть согласованы другие параметры ассоциации защиты между СК и группой подписчиков. В одном из вариантов осуществления, указанные параметры являются фиксированными, тогда как в другом варианте осуществления, указанные параметры могут посылаться СК как часть ИКДШ. Тогда как КДШ хранится в качестве секрета в МИП 308, другие параметры ассоциации защиты могут храниться в ОМС 306. В одном из вариантов осуществления, в котором КК посылается в МС 300 в виде пакета IPSec, зашифрованного с использованием КДШ, СК предоставляет подписчикам SPI, используемый для индексирования ассоциации защиты, и указанный SPI обозначается SPI_BAK.
В следующем параграфе обсуждается, как после успешного процесса регистрации происходит обновление КК. В пределах каждого периода обновления КДШ, предусматривается короткий интервал, в течение которого КК распространяется в широковещательном канале. СК использует криптографическую функцию для определения двух значений, КК и ИКК (информация о КК), таким образом, что KK может быть определен на основе КДШ и ИКК. Например, ИКК может представлять собой КК, зашифрованный с использованием КДШ в качестве ключа. В одном из иллюстративных вариантов осуществления ИКК представляет собой пакет IPSec, в котором полезная нагрузка содержит значения КК, шифрованные с использованием КДШ в качестве ключа. В качестве альтернативы, КК может представлять собой результат применения криптографической хэш-функции к последовательному объединению (конкатенации) блоков ИКК и КДШ. В идеальном случае, СК гарантирует, что значения КК не могут быть предсказаны заранее. Если КК может быть предсказан заранее, тогда атакующая сторона, т.е. объект, осуществляющий нелегитимный доступ, может посылать предсказанные значения КК неподписавшимся пользователям.
В качестве примера, допустим, что за период 24 часа должны использоваться N значений КК. Если КК предсказуем с точностью 100%, то атакующей стороне требуется только запросить МИП вычислить N ключей. Затем атакующая сторона делает N ключей доступными неподписавшимся пользователям. Неподписавшиеся пользователи могут загружать ключи в начале каждого дня и получать доступ к услуге УВСШ с малыми затратами или неудобствами. Если атакующая сторона способна предсказывать КК только с точностью 50%, то атакующей стороне требуется разослать примерно 2N ключей. При уменьшении точности предсказания требуемое количество генерируемых ключей возрастает. Атакующая сторона может быть лишена интереса к распространению КК, будучи убежденной, что стоимость генерации, хранения и распространения предсказаний превышает прибыль от предоставления нелегитимного доступа. Атакующая сторона может быть лишена интереса, будучи убежденной, что точность любого предсказания, сделанного атакующей стороной, является относительно малой, тем самым, увеличивая количество ключей, которое атакующая сторона должна сгенерировать, до уровня, при котором стоимость предоставления нелегитимного доступа превышает прибыль. Следовательно, в идеальном случае, любая схема генерации КК гарантирует, что наилучшие предсказания атакующей стороны имеют достаточно малую точность. Таким образом, вычисление КК должно включать в себя некоторое случайное значение, которое может быть заранее предсказано только с малой точностью.
В иллюстративном варианте осуществления, в котором КК находится в зашифрованном виде, СК может выбрать КК, используя случайную или псевдослучайную функцию. В альтернативных вариантах осуществления, в которых КК получается в результате применения криптографической функции к ИКК и КДШ, СК при формировании ИКК вводит непредсказуемые значения. Некоторая часть ИКК может быть предсказуемой. Например, часть ИКК может быть производной от системного времени, в течение которого ИКК остается действительной. Эта часть, называемая SKI_PREDICT, может не передаваться в МС 300 как часть услуги широковещания. Остаток ИКК, SKI_RANDOM, может быть непредсказуемым. То есть SKI_RANDOM предсказуем с малой точностью. SKI_RANDOM передается в МС 300 как часть услуги широковещания. МС 300 восстанавливает ИКК из SKI_PREDICT и SKI_RANDOM и предоставляет ИКК в МИП 308. ИКК может восстанавливаться в МИП 308. Значение ИКК меняется для каждого нового КК. Таким образом, SKI_PREDICT и/или SKI_RANDOM изменяются при вычислении каждого нового КК.
СК посылает SKI_RANDOM на БС для широковещательной передачи. БС производит широковещательную передачу SKI_RANDOM, который принимается антенной 302 и передается в схему 304 приема. Схема 304 приема предоставляет SKI_RANDOM в МС 300, и МС 300 восстанавливает ИКК. МС 300 предоставляет ИКК в МИП 308, и МИП 308 получает КК, используя КДШ, хранящийся в ЗЗУМ 314. Затем МИП 308 предоставляет КК в ОМС 306. ОМС 306 сохраняет КК в запоминающем устройстве, ЗУ 310. ОМС 306 использует КК для дешифрования широковещательных передач, принимаемых от СК.
СК и БС приходят к соглашению относительно некоторых критериев, при которых SKI_RANDOM должен передаваться. СК может потребовать снижения собственной ценности КК в денежном выражении путем частого изменения КК. В такой ситуации требование изменения данных SKI_RANDOM уравновешивается требованием оптимизации доступной полосы пропускания. В некоторых иллюстративных вариантах осуществления, SKI_RANDOM посылается с зашифрованным контентом. Это позволяет МС 300 генерировать КК и начать дешифрование немедленно. Во многих ситуациях это является ненужной загрузкой полосы пропускания. Исключением является схема, в которой SKI_RANDOM посылается в качестве параметров связи. Например, значение SPI в IPSec может меняться, и может использоваться для включения значения SKI_RANDOM, как это более подробно описано ниже.
В другом варианте осуществления, SKI_RANDOM посылается отдельно от зашифрованного контента. SKI_RANDOM даже может передаваться по каналу, отличному от широковещательного канала. Когда пользователь "настраивается" на широковещательный канал, схема 304 приема получает информацию о положении широковещательного канала из "канала управления". Может оказаться желательным обеспечить быстрый доступ при "настройке" пользователя на широковещательный канал. При этом от ОМС 306 требуется получать ИКК в течение короткого промежутка времени. ОМС 306 может уже знать SKI_RANDOM, тем не менее, БС предоставляет SKI_RANDOM в ОМС 306 в течение короткого промежутка времени. Например, БС может часто передавать SKI_RANDOM по каналу управления вместе с информацией о положении широковещательного канала, или часто передавать SKI_RANDOM по широковещательному каналу. Чем чаще БС "обновляет" значение SKI_RANDOM, тем быстрее МС 300 может получить доступ к широковещательному сообщению. Требование обновления SKI_RANDOM уравновешивается требованием оптимизации доступной полосы пропускания, поскольку слишком частая передача данных SKI_RANDOM может занимать неприемлемый объем ресурсов полосы пропускания в канале управления или широковещательном канале.
В некоторых ситуациях СК может выбрать использование значений SKI_PREDICT и SKI_RANDOM, меняющихся для каждого получаемого значения КК. В других ситуациях СК может потребовать уменьшения количества раз изменения SKI_RANDOM, для того, чтобы МС не требовалось получать SKI_RANDOM так часто. Например, если пользователь часто меняет каналы УВСШ в их множестве, тогда будет лучше, если значение SKI_RANDOM с большой вероятностью не будет меняться в течение пяти минут, за которые пользователь переключится на другой канал. Если SKI_RANDOM изменится, то пользователь будет вынужден ждать широковещательной передачи нового значения SKI_RANDOM, что указывает на то, что схема будет более "дружественной к пользователю", если SKI_RANDOM остается постоянным как можно дольше. СК может пожелать использовать множество значений КК в течение времени существования значения SKI_RANDOM, используя значение SKI_PREDICT, которое меняется, если СК желает изменить КК. В одном из примеров используется системное время; однако, использование системного времени создает дополнительные проблемы, связанные с синхронизацией.
Что касается шифрования и передачи контента широковещания, СК шифрует контент широковещания, используя текущий КК. Иллюстративный вариант осуществления использует алгоритм шифрования, такой как алгоритм шифрования Усовершенствованного Стандарта Шифрования (AES). В иллюстративном варианте осуществления зашифрованный контент затем передается в пакетах IPSec согласно режиму транспортировки при инкапсуляции полезной нагрузки IP-пакета в целях защиты (ESP), обсуждаемому ниже. Пакет IPSec также содержит значение SPI, предписывающее ОМС 306 использовать текущий КК для дешифрования принимаемого контента широковещания. Зашифрованный контент посылается через широковещательный канал.
Схема 304 приема предоставляет ИРК и ИКДШ непосредственно в МИП 308. Помимо этого, если СК вычисляет КК на основе SKI_RANDOM и SKI_PREDICT, тогда схема 304 приема предоставляет SKI_RANDOM в соответствующую часть МС 300, где он объединяется с SKI_PREDICT для получения ИКК. В одном из вариантов осуществления, ИКК присоединяется к зашифрованному сообщению и извлекается ОМС 306. ИКК предоставляется в МИП 308 соответствующей частью МС 300. МИП 308 вычисляет РК на основе ИРК и А-ключа, дешифрует ИКДШ, используя РК, для получения КДШ, и вычисляет КК, используя ИКК и КДШ, для генерации КК с целью применения в ОМС 306. ОМС 306 дешифрует контент широковещания, используя КК. МИП 308 иллюстративного варианта осуществления может не обладать достаточной мощностью для дешифрования контента широковещания в реальном масштабе времени, и поэтому КК передается в ОМС 306 для дешифрования широковещательной передачи.
Фиг.5В иллюстрирует передачу и обработку ключей, в том числе РК, КДШ и КК, согласно иллюстративному варианту осуществления. Как показано, при регистрации МС 300 принимает информацию о РК (ИРК) и передает ее в МИП 308, причем ЗБОМ 316 вычисляет РК, используя ИРК и А-ключ, и сохраняет РК в запоминающем устройстве МИП, ЗЗУМ 314. МС 300 периодически принимает информацию о КДШ (ИКДШ), содержащую КДШ, зашифрованный с использованием значения РК, специфичного для МИП 308. Зашифрованная ИКДШ дешифруется в ЗБОМ 316 для восстановления КДШ, который сохраняется в запоминающем устройстве МИП, ЗЗУМ 314. Кроме этого, МС 300 периодически принимает ИКК. В некоторых иллюстративных вариантах осуществления, МС 300 принимает SKI_RANDOM, который она объединяет с SKI_PREDICT, формируя ИКК. ЗБОМ 316 вычисляет КК на основе ИКК и КДШ. КК предоставляется в ОМС 306 для дешифрования контента широковещания.
В иллюстративном варианте осуществления ключи СК не обязательно должны зашифровываться и передаваться в МС; СК может использовать альтернативный способ. Информация о ключе, генерируемая СК для передачи каждой МС, предоставляет МС достаточно информации для вычисления ключа. Как иллюстрировано в системе 350 по Фиг.6, РК генерируется СК, но в МС передается информация о РК (ИРК). СК посылает информацию, достаточную для МИП, чтобы получить РК, причем для получения РК из переданной СК информации используется заранее определенная функция. ИРК содержит достаточную информацию для МС, чтобы определить исходный РК на основе А-ключа и других значений, таких как системное время, используя заранее определенную открытую функцию, обозначенную d1, причем:
РК=d1(А-ключ,ИРК). (3)
В иллюстративном варианте осуществления, функция d1 определяет функцию криптографического типа. Согласно одному из вариантов осуществления, РК определяется как:
РК=SHA'(А-ключ||ИРК), (4)
где "||" обозначает последовательное объединение (конкатенацию) блоков, содержащих А-ключ и ИРК, SHA'(Х) обозначает последние 128 битов выходных данных безопасного алгоритма хэширования SHA-1, имеющего на входе Х. В альтернативном варианте осуществления, РК определяется как:
РК=AES(А-ключ,ИРК), (5)
где AES(X,Y) обозначает шифрование 128-битного блока ИРК, используя 128-битный А-ключ. В другом варианте осуществления, основанном на протоколе AKA, РК определяется как выходные данные функции f3 генерации ключей в 3GPP, причем ИРК содержит величину RAND и подходящие величины AMF и SQN, как определено этим стандартом.
КДШ обрабатывается другим способом, поскольку множество пользователей, имеющих различные значения РК, должны вычислить одно и тоже значение КДШ. СК может использовать любой способ для определения КДШ. Однако, значение ИКДШ, связанное с конкретным МИП 308, должно представлять собой КДШ, зашифрованный при уникальном РК, связанном с указанным МИП 308. ЗБОМ 316 дешифрует ИКДШ, используя РК, хранящийся в ЗЗУМ 314, согласно функции, обозначаемой d2, как:
КДШ = d2(ИКДШ,РК). (6)
В альтернативном варианте осуществления, СК может вычислять ИКДШ, применяя к КДШ процесс дешифрования, использующий РК, и ЗБОМ 316 получает КДШ, применяя к ИКДШ процесс шифрования, использующий РК. Это считается эквивалентом шифрованию КДШ в СК и дешифрованию ИКДШ в ЗБОМ 316. Альтернативные варианты осуществления могут использовать любое количество комбинаций ключей в дополнение или вместо показанных на Фиг.6.
КК обрабатывается аналогично РК. В некоторых вариантах осуществления, ИКК сначала определяется на основе SKI_PREDICT и SKI_RANDOM, причем SKI_RANDOM представляет собой информацию, переданную из СК в МС. Затем используется заранее определенная функция, обозначенная d3, для определения КК из ИКК и КДШ (хранящегося в ЗЗУМ 314), как:
КК=d3(КДШ,ИКК). (7)
В одном из вариантов осуществления функция d3 является функцией криптографического типа. В иллюстративном варианте осуществления, КК вычисляется как:
КК=SHA(КДШ||ИКК), (8)
тогда как в другом варианте осуществления КК вычисляется как
КК=AES(КДШ,ИКК). (9)
На Фиг.7А-7D показан способ обеспечения защиты широковещательного сообщения. Фиг.7А иллюстрирует процесс 400 регистрации, в котором подписчик согласовывает регистрацию с СК на этапе 402. На этапе 404 регистрация предоставляет МИП уникальный РК. На этапе 406 МИП сохраняет РК в защищенном запоминающем устройстве (ЗЗУМ). Фиг.7В иллюстрирует обработку 420 в СК и МС в процессе подписки. На этапе 422 СК генерирует КДШ для временного периода Т1. КДШ является действительным в течение временного периода Т1 для КДШ, причем КДШ периодически обновляется. На этапе 424 СК санкционирует для МИП доступ к контенту широковещания (КШ, ВС) в течение временного периода Т1 для КДШ. На этапе 426 СК шифрует КДШ, используя отдельный РК для каждого подписчика. Зашифрованный КДШ называется ИКДШ. Затем, на этапе 428, СК передает ИКДШ в МИП. На этапе 430 МИП принимает ИКДШ и выполняет дешифрование, используя РК. Дешифрованная ИКДШ дает в результате сгенерированный изначально КДШ. МИП сохраняет КДШ в ЗЗУМ на этапе 432.
Если пользователь подписывается на услугу широковещания на конкретный период обновления КДШ, то СК посылает соответствующую информацию ИКДШ, причем ИКДШ соответствует КДШ, зашифрованному с помощью РК. Обычно это происходит перед началом периода обновления этого КДШ, или когда МС первый раз настраивается на широковещательный канал в течение периода обновления этого КДШ. Это может быть инициировано МС или СК согласно множеству критериев. Одновременно могут передаваться и дешифровываться множество ИКДШ.
Необходимо отметить, что если окончание периода обновления КДШ является близким, то МС может запросить обновленный КДШ у СК, если МС имеет подписку на следующий период обновления КДШ. В альтернативном варианте осуществления первый таймер t1 используется в СК, причем после истечения таймера, т.е. удовлетворения требованиям в отношении периода обновления КДШ, СК передает КДШ. СК может изменить значение КДШ раньше, чем предполагалось изначально. Это может потребоваться, если, например, текущее значение КДШ раскрыто.
Необходимо отметить, что для пользователя является возможным прием КДШ в течение периода обновления КДШ, в котором, например, подписчик начал использовать услугу в середине месяца тогда, как обновления КДШ выполняются ежемесячно. Дополнительно, периоды времени обновления КДШ и КК могут быть синхронизованы таким образом, что обновления для всех подписчиков выполняются в установленное время.
Фиг.8А иллюстрирует процесс регистрации в беспроводной системе 500 связи согласно иллюстративному варианту осуществления изобретения. СК 502 согласовывают с каждым подписчиком, т.е. МС 512, генерацию РК, специфического для каждого подписчика. РК предоставляется в устройство ЗЗУМ в МИП каждой МС. Как показано, СК 502 генерирует РК1, который сохраняется в ЗЗУМ1 510 в МИП1 512. Аналогично СК 502 генерирует РК2 и РКN, которые сохраняются в ЗЗУМ2 520 в МИП2 522 и ЗЗУМN 530 в МИПN 532, соответственно.
Фиг.8В иллюстрирует процесс подписки в системе 500. СК 502 дополнительно включает в себя множество кодеров 504. Каждый из кодеров 504 принимает один из уникальных ключей РК и значение БАК, сгенерированные в СК 502. Выходные данные каждого кодера 504 представляют собой ИКДШ, зашифрованную специфически для подписчика. ИКДШ принимается в МИП из состава каждой МС, такой как МИП1 512. Каждый МИП включает в себя ЗБОМ и ЗЗУМ, такие как ЗБОМ1 514 и ЗЗУМ1 510 в МИП1 512. ЗБОМ включает в себя декодер, такой как декодер 516, который восстанавливает КДШ, используя РК данного МИП. Этот процесс повторяется для каждого подписчика.
Фиг.8D иллюстрирует обработку КШ после регистрации и подписки. СК 502 включает в себя кодер 560, который кодирует КШ, используя текущий КК для генерации шифрованного контента широковещания (ШКШ, ЕВС). ШКШ затем передается подписчикам. Каждая МС включает в себя декодер, такой как декодер 544, который извлекает КШ из ШКШ, используя КК.
Следующее ниже описание рассматривает четыре иллюстративных варианта осуществления, которые могут применяться для обновления КК и широковещательной передачи контента. В первом иллюстративном варианте осуществления КК вычисляется на основе КДШ и значения SPI в заголовке пакетов IPSec, содержащих контент широковещания. Во втором иллюстративном варианте осуществления КК вычисляется на основе КДШ, передаваемого широковещательным образом случайного значения, обозначаемого RAND, и значения SPI в заголовке пакетов IPSec, содержащих контент широковещания. В третьем иллюстративном варианте осуществления КК вычисляется на основе КДШ, системного времени и передаваемого широковещательным образом случайного значения, обозначаемого SK_RAND. В четвертом иллюстративном варианте осуществления КК посылается в виде пакета IPSec, зашифрованного с использованием КДШ. Другие варианты осуществления могут предоставлять КК как комбинацию перечисленных выше вариантов осуществления, или используя другой механизм для предоставления КК в МС с достаточной частотой для потери интереса к несанкционированному доступу к услуге широковещания.
Поскольку краткосрочный ключ (КК) используется для шифрования и дешифрования контента широковещания и хранится в памяти, которая может быть подвержена несанкционированному доступу, то обычно КК часто меняется. Проблема заключается в том, каким образом часто менять КК, в то же время соблюдая баланс со следующими четырьмя задачами: 1) минимизация времени ожидания обновления КК, или периода полного отключения, для мобильной станции, которая недавно настроилась на широковещательную передачу; 2) минимизация объема полосы пропускания, используемого для обновления значения КК; 3) повышение уровня защищенности; и 4) упрощение интегрирования КК в IPSec. Частые обновления могут уменьшить период полного отключения, но ценой требования большей доли полосы пропускания для посылки частых обновлений.
Одно из решений предоставляет способ для предоставления достаточной информации для выполнения обновлений КК в каждом пакете контента широковещания без использования дополнительной полосы пропускания. Тем самым, период полного отключения может быть минимизирован без необходимости в дополнительной полосе пропускания. Изложенные в настоящем описании четыре иллюстративных варианта осуществления выполнения обновления КК имеют различные достоинства и недостатки. Все четыре варианта осуществления предоставляют способы, которые являются в значительной степени защищенными. Первый вариант осуществления устраняет период полного отключения и не использует дополнительной полосы пропускания для обновления значения КК. Другие варианты осуществления могут допускать появление периода полного отключения в периоды интенсивного использования. Первый вариант осуществления также легко интегрируется с IPSec.
Согласно первому варианту осуществления выполнения обновления КК, упомянутые выше проблемы решаются путем определения КК, который шифрует заданный пакет IPSec, как функцию ключа доступа к широковещанию (КДШ) и SPI в заголовке ESP. В этом случае, вместо того, чтобы предоставлять КК в отдельном потоке, КК вычисляется из потока контента. Допуская, что МС уже приняла КДШ, как описывалось выше, МС имеет возможность немедленно вычислить КК для каждого пакета контента без необходимости ожидания какой-либо дополнительной информации об обновлении КК. Это эффективно устраняет любое время ожидания обновления КК для новой принимающей стороны широковещания. Как только МС принимает пакет контента, МС может немедленно определить КК и дешифровать контент.
Информация, достаточная для вычисления КК в МС, предоставляется в пакете IPSec. Пакет IPSec использует инкапсуляцию полезной нагрузки IP-пакета в целях защиты (ESP) и описан в RFC 1827, озаглавленном "IP Encapsulating Security Payload (ESP)", R.Atkinson, август 1995 г., как упоминалось выше. ESP представляет собой механизм, обеспечивающий целостность и конфиденциальность IP-дейтаграмм. При некоторых обстоятельствах он также может обеспечить аутентификацию IP-дейтаграмм. Фиг.9А иллюстрирует пакет 600 IPSec, включающий в себя заголовок 602 IP, заголовок 604 ESP и полезную нагрузку 606, согласно одному из вариантов осуществления. Инкапсуляция полезной нагрузки IP-пакета с целью защиты (ESP) может находиться в любом месте после заголовка IP и перед завершающим заголовком протокола транспортного уровня. В общем случае ESP содержит незашифрованный заголовок, за которым следуют зашифрованные данные.
Поле 604 заголовка ESP включает в себя идентификатор ассоциации защиты, называемый SPI. Согласно первому варианту осуществления, изложенному выше, пакеты IPSec, содержащие контент широковещания, включают в себя SPI, относящийся к КК, обозначаемый SPI_SK. Фиг.9В иллюстрирует формат соответствующего 32-битного SPI_SK 610. SPI_SK 610 разделен на две части: SPI_RAND 612 и BAK_ID 614. SPI_RAND 612 представляет собой случайное число, являющееся статистически случайным, и также используется для вычисления КК, который используется для шифрования и дешифрования соответствующего контента широковещания или полезной нагрузки. Параметр SPI_RAND позволяет серверу контента (СК) часто изменять эффективное значение КК для контента путем изменения значения SPI_RAND, тем самым предоставляя МС параметр, требуемый для немедленного вычисления значения КК. Помимо этого SPI_RAND выполняет роль SKI_RANDOM, обсуждавшегося выше. Случайность SPI_RAND гарантирует, что атакующая сторона не сможет предсказать значения КК с высокой точностью. Поскольку SPI уже является стандартным параметром в шифрованных пакетах IPSec, т.е. является заданным для ESP, настоящий вариант осуществления не требует дополнительной полосы пропускания, обычно связанной с передачей КК в виде отдельного потока. BAK_ID указывает, какое значение КДШ использовать для вычисления значения КК. В одном из вариантов осуществления BAK_ID представляет собой 4-х битный дескриптор, причем каждый дескриптор связан со значением КДШ. Когда МС выполняет процедуру подписки, МС сохраняет каждый полученный BAK_ID и соответствующее значение КДШ в запоминающем устройстве. Согласно одному из вариантов осуществления МС включает в себя таблицу соответствия (ТС, LUT) для хранения значения (значений) КДШ, идентифицированных соответствующими BAK_ID. ТС КДШ размещается в защищенной памяти в МИП.
Фиг.9D иллюстрирует ТС 630 КДШ. Каждый элемент в ТС 630 идентифицирует BAK_ID, соответствующее значение КДШ и время истечения действительности данной комбинации. Время истечения вводится вследствие малого количества значений BAK_ID. Альтернативные варианты осуществления могут не использовать значения времени истечения в ТС КДШ. В одном из вариантов осуществления используются только 16 значений BAK_ID. Если новый КДШ выпускается каждый месяц, тогда значение BAK_ID должно повторяться по истечении 16 месяцев. В этот момент может возникнуть путаница относительно того, какое значение КДШ является действительным. Время истечения обеспечивает период задержки (тайм-аут), после которого новая запись замещает просроченную запись. ТС КДШ может требоваться сохранить несколько значений КДШ. Одной из причин этого является то, что СК может решить послать значения КДШ в МС перед тем, как они станут действительными. Дополнительно, СК может решить иметь множество значений КДШ, которые являются действительными в одно и то же время, причем разные значения КДШ могут использоваться для вычисления разных значений КК. Если ТС КДШ не содержит текущего КДШ, соответствующего BAK_ID, тогда МС может произвести процедуру подписки для получения действительного КДШ.
После извлечения SPI_RAND и BAK_ID из SPI_SK и восстановления КДШ, соответствующего BAK_ID, МИП вычисляет значение КК на основе КДШ и SPI_RAND, используя криптографическую функцию g:
КК=g(BAK,SPI_RAND). (10)
В одном из вариантов осуществления функция g(BAK,SPI_RAND) соответствует шифрованному значению SPI_RAND, дополненному до 128 битов нулями, используя алгоритм шифрования AES с КДШ в качестве ключа:
КК=AES(BAK,SPI_RAND). (11)
В другом варианте осуществления функция g(BAK,SPI_RAND) соответствует вычислению 128-ми самых младших битов выходных данных SHA-1, примененного к последовательному объединению (конкатенации) КДШ и SPI_RAND:
КК=SHA(BAK,SPI_RAND). (12)
В этом случае от МИП не требуется вычислять значения КК для каждого пакета, принимаемого МС. МС сохраняет каждое из значений SPI_SK с соответствующими значениями КК в запоминающем устройстве, таком как таблица соответствия (ТС). МС может сохранять значения SPI_SK и КК в качестве ассоциации защиты в базе данных ассоциаций защиты (БАЗ, SAD): ТС, в которой МС сохраняет обычные ассоциации защиты, требуется для других приложений. Ассоциации защиты индексируются согласно адресу назначения и SPI. Когда новый КК генерируется из нового значения SPI_SK, старая ассоциация защиты замещается новой ассоциацией защиты, содержащей новые значения SPI_SK и КК. В качестве альтернативы, МС может сохранять значения SPI_SK и КК в ТС КК (SK_LUT), с одной ТС КК, выделенной для каждого широковещательного канала. Фиг.9С иллюстрирует ТС 620 КК. Каждый элемент в ТС 620 идентифицирует SPI_SK и соответствующее значение КК. Когда МС принимает пакет контента широковещания, ОМС сначала проверяет БАЗ или ТС КК для того, чтобы определить, содержит ли таблица значения SPI_SK, совпадающее с SPI принятого пакета. Если таблица содержит такое значение, то ОМС использует это значение, в противном случае МИП вычисляет новое значение КК. СК также может иметь ТС КДШ, БАЗ или ТС КК.
Фиг.10 и 11 иллюстрируют один из вариантов осуществления выполнения обновления КК. Фиг.10 иллюстрирует способ 700 выполнения операций в СК. На этапе 702 для каждого IP-пакета СК определяет КДШ, который будет использован при определении КК, и определяет BAK_ID, соответствующий КДШ. BAK_ID может быть идентификатором любого типа, который позволяет различать значения КДШ в их множестве. СК посылает КДШ и BAK_ID отдельным пользователям при выполнении процедуры подписки на этапе 706. Пользователи могут выполнять процедуру подписки в различные моменты времени до и во время периода подписки. Этапы 702 и 706 могут происходить до начала периода подписки. На этапе 710 СК выбирает случайное значение в качестве значения SPI_RAND. Если BAK_ID представлен с использованием b битов, тогда SPI_RAND представлен с использованием (32-b) битов. Значение SPI_RAND не должно повторяться в течение времени существования одного КДШ. После того как SPI_RAND и BAK_ID становятся известными, СК объединяет их (т.е. присоединяет BAK_ID к SPI_RAND), формируя SPI_SK на этапе 712. На этапе 714 СК формирует КК, используя криптографическую функцию для объединения SPI_RAND с КДШ, соответствующим BAK_ID, формируя КК. Затем на этапе 716 СК шифрует широковещательное сообщение или часть сообщения с помощью КК, и посылает зашифрованное сообщение на этапе 718. Необходимо отметить, что зашифрованное широковещательное сообщение является частью IP-пакета, который включает в себя заголовок IP и заголовок ESP. Заголовок ESP включает в себя SPI_SK. На этапе 720 СК принимает решение, менять ли КК. Если СК решит не менять КК, тогда СК переходит к этапу 716. Если СК решает изменить КК, тогда СК переходит к этапу 724, где СК принимает решение, менять ли КДШ. Если СК решает не менять КДШ, тогда СК переходит к этапу 710. Если СК решает изменить КДШ, тогда СК переходит к этапу 702.
Фиг.11 иллюстрирует соответствующие операции в приемнике, таком как МС. Способ 750 стартует, когда приемник принимает IP-пакет, включающий в себя SPI_SK в заголовке ESP на этапе 752. Необходимо отметить, что приемник извлекает информацию SPI_SK из IP-пакета. Приняв SPI_SK, приемник сначала проверяет, хранится ли в запоминающем устройстве КК, соответствующий принятому значению SPI_SK.
В одном из вариантов осуществления SPI_SK хранится в ТС КК, расположенной в блоке ОМС 306 по Фиг.4, а в другом варианте осуществления SPI_SK хранится в базе данных ассоциаций защиты: обе эти таблицы обозначены на этой Фиг.11 как таблица SPI. На этапе 754 выполняется проверка таблицы SPI. Если значение КК хранится в запоминающем устройстве приемника, то приемник имеет возможность на этапе 756 дешифровать полезную нагрузку пакета контента, используя хранящееся значение КК. Если приемник не имеет значения КК, хранящегося в запоминающем устройстве, то приемник извлекает BAK_ID и SPI_RAND из SPI_SK на этапе 758. Затем, на этапе 760, приемник проверяет, имеет ли ТС КДШ элемент действительного КДШ, соответствующего BAK_ID. Если ТС КДШ имеет действительный КДШ, соответствующий BAK_ID, то приемник выбирает это значение и переходит к этапу 764. Если ТС КДШ не имеет действительного КДШ, соответствующего BAK_ID, например, как в случае, когда пользователь желает подписаться на этот период, то приемник выполняет процедуру подписки для получения действительного КДШ, как показано на этапе 762. Новый КДШ сохраняется вместе с BAK_ID в ТС КДШ, и приемник переходит к этапу 764. Приемник объединяет КДШ соответствующий значению BAK_ID, т.е. BAK_ID в принятом SPI_SK, и значение SPI_RAND (также содержащееся в принятом SPI_SK) для вычисления нового КК на этапе 764. Затем приемник использует новое значение КК для дешифрования полезной нагрузки пакета контента на этапе 766. Приемник также сохраняет это значение КК, индексированное соответствующим SPI_SK, и, возможно, адрес назначения пакетов IPSec.
КК вычисляется непосредственно на основе данных о КДШ и значения SPI_SK в пакете контента. КДШ меняется менее часто, чем КК, например, КДШ может меняться раз в месяц. Таким образом, приемник имеет возможность немедленно определить значение КК из пакетов контента без дополнительной задержки и не требуя большей полосы пропускания для посылки обновления КК.
Согласно одному из вариантов осуществления, вычисление КК происходит следующим образом:
КК=f(SPI_SK,КДШ), (13)
причем функция определена как шифрование SPI_SK с использованием КДШ. Поскольку SPI_SK состоит из SPI_RAND и BAK_ID, уравнение (13) также может быть представлено в виде:
КК=f(SPI_RAND,BAK_ID). (14)
Второй иллюстративный вариант осуществления выполнения обновления КК вводит дополнительный аспект случайности в вычисление КК, причем КК определяется как функция КДШ, SPI_RAND и дополнительного параметра RAND. Параметр RAND остается постоянным для нескольких значений КК. RAND позволяет вычислять больше различных значений КК из одного значения КДШ посредством изменения как SPI_RAND, так и RAND. Если не использовать RAND, тогда существует самое большее 232 значений КК, которые могут быть вычислены из одного КДШ при помощи изменения SPI. Однако если используется 96-битный RAND, тогда существует до 2218 значений КК, которые могут быть вычислены из одного КДШ при помощи изменения как SPI_RAND, так и RAND. (Эти числа не учитывают биты SPI, которые используются для представления BAK_ID.) Теперь, помимо того, что SPI_SK идентифицирует только КДШ, SPI_SK должен также содержать информацию, идентифицирующую RAND. Для того чтобы получить значение RAND, SPI_SK образуется из трех частей: 1) BAK_ID, идентифицирующего значение КДШ; 2) RAND_ID, идентифицирующего значение RAND; и 3) значения SPI_RAND, обеспечивающего часто изменяемого случайного характера SPI_SK.
Фиг.12А иллюстрирует соответствующую SPI_SK 800 часть IP-пакета, включающую в себя SPI_RAND 802, BAK_ID 804 и RAND_ID 806. SPI_RAND 802 и BAK_ID 804 аналогичны описанным выше. Для поддержания SPI_SK с заранее определенной или заданной битовой длиной, SPI_RAND 802 может использовать меньшее количество битов, чем SPI_RAND 612 по Фиг.9В, оставляя биты для RAND_ID 806. RAND_ID 806 соответствует значению RAND, используемому для вычисления КК, и может представлять собой 4-битный дескриптор или другой идентификатор. RAND_ID и соответствующее значение (значения) RAND хранятся в ТС в приемнике. Фиг.12В иллюстрирует ТС 820 RAND. ТС 820 RAND включает в себя элемент для каждого значения RAND, содержащий RAND_ID и время истечения, связанное со значением RAND.
Фиг.13 иллюстрирует функционирование СК. Для каждого IP-пакета передатчик на этапе 902 определяет КДШ, который будет использоваться для вычисления КК, и определяет BAK_ID, соответствующий КДШ. BAK_ID может быть идентификатором любого типа, который позволяет различать значения КДШ среди их множества. СК посылает КДШ и BAK_ID отдельным пользователям при выполнении процедуры подписки на этапе 904. Пользователи могут выполнять процедуру подписки в различные моменты времени до и во время периода подписки. Этапы 902 и 904 могут происходить до начала периода подписки. На этапе 906 передатчик выбирает значение RAND и определяет соответствующий RAND_ID. СК может посылать RAND и RAND_ID в МС на индивидуальной основе или посылать RAND и RAND_ID, подлежащие широковещательной передаче по широковещательному каналу. Не требуется, чтобы значение RAND было секретным, поэтому оно не шифруется. Если RAND и RAND_ID передаются широковещательно, не должно быть большого промежутка времени между повторными передачами, так чтобы МС не требовалось ожидать в течение длительного времени перед получением значения RAND. Во время широковещательной передачи RAND и RAND_ID используется большая доля полосы пропускания. Однако если на канал настроено большое количество пользователей, тогда большая доля полосы пропускания потребуется для передачи RAND каждому пользователю на индивидуальной основе. Следовательно, RAND и RAND_ID должны передаваться широковещательно, если только на канал настроено большое количество пользователей. На этапе 910 СК выбирает случайное значение SPI_RAND.
После определения SPI_RAND, BAK_ID и RAND_ID передатчик объединяет их (например, последовательно объединяет BAK_ID и RAND_ID с SPI_RAND), формируя SPI_SK на этапе 912. СК использует криптографическую функцию для объединения SPI_RAND, КДШ (идентифицируемого BAK_ID) и RAND (идентифицируемого RAND_ID), формируя КК. Затем СК шифрует широковещательное сообщение или часть широковещательного сообщения на этапе 916 и передает зашифрованное сообщение на этапе 918. Необходимо отметить, что зашифрованное широковещательное сообщение является частью IP-пакета, который включает в себя заголовок IP и заголовок ESP. Заголовок ESP включает в себя SPI_SK. На этапе 920 СК принимает решение, менять ли КК. Если СК решает не менять КК, тогда СК переходит к этапу 916. Если СК решает изменить КК, тогда СК переходит к этапу 922, на котором СК принимает решение, менять ли RAND. Если СК решает не менять RAND, тогда СК переходит к этапу 910. Если СК решает изменить RAND, тогда СК переходит к этапу 924, на котором СК решает, менять ли КДШ. Если СК решает не менять КДШ, тогда СК переходит к этапу 906. Если СК решает изменить КДШ, тогда СК переходит к этапу 902.
Фиг.14 иллюстрирует соответствующие операции в приемнике, таком как МС. Способ 950 стартует, когда приемник принимает IP-пакет, включающий в себя SPI_SK в заголовке ESP на этапе 952. Необходимо отметить, что приемник извлекает информацию SPI_SK из IP-пакета. После приема SPI_SK, на этапе 952 приемник сначала проверяет, хранится ли в запоминающем устройстве КК, соответствующий принятому значению SPI_SK. В одном из вариантов осуществления SPI_SK хранится в ТС КК, расположенной в блоке ОМС 306 по Фиг.4, а в другом варианте осуществления SPI_SK хранится в базе данных ассоциаций защиты: обе эти таблицы обозначены на Фиг.14 как таблица SPI. На этапе 954 выполняется проверка ТС КК. Если значение КК хранится в запоминающем устройстве приемника, то приемник имеет возможность на этапе 956 дешифровать полезную нагрузку пакета контента, используя хранящееся значение КК. Если приемник не имеет значения КК, хранящегося в запоминающем устройстве, то приемник извлекает BAK_ID и SPI_RAND из SPI_SK на этапе 958. Затем, на этапе 960, приемник проверяет, имеет ли ТС КДШ элемент действительного КДШ, соответствующего BAK_ID. Если ТС КДШ имеет действительный КДШ, соответствующий BAK_ID, тогда приемник выбирает это значение и переходит к этапу 964. Если ТС КДШ не имеет действительного КДШ, соответствующего BAK_ID, тогда (допуская, что пользователь желает подписаться на этот период) приемник выполняет процедуру подписки для получения действительного КДШ, как показано на этапе 962. Новый КДШ сохраняется вместе с BAK_ID в ТС КДШ, и приемник переходит к этапу 964. Затем, на этапе 964, приемник проверяет, имеет ли ТС RAND элемент действительного RAND, соответствующего RAND_ID. Если ТС RAND имеет действительное RAND, соответствующее RAND_ID, тогда приемник выбирает это значение и переходит к этапу 964. Если ТС RAND не имеет действительного RAND, соответствующего RAND_ID, тогда приемник получает RAND и RAND_ID, либо посредством запроса этого значения у СК, либо из широковещательной передачи, как показано на этапе 966. Новое RAND сохраняется вместе с RAND_ID в ТС RAND, и приемник переходит к этапу 968. Приемник объединяет КДШ, соответствующий значению BAK_ID (т.е. BAK_ID в принятом SPI_SK), RAND, соответствующий RAND_ID (т.е. RAND_ID в принятом SPI_SK), и значение SPI_RAND (также содержащееся в принятом SPI_SK) для вычисления нового КК на этапе 968. Затем приемник использует новое значение КК для дешифрования полезной нагрузки пакета контента на этапе 970. Приемник также сохраняет это значение КК, индексированное соответствующим SPI_SK, и, возможно, адрес назначения пакетов IPSec.
RAND изменяется менее часто, чем SPI_RAND. Значение RAND является общим для всех мобильных станций, прослушивающих широковещательную передачу. Таким образом, значение RAND может передаваться широковещательно на все мобильные станции, и не требуется его шифрование персонально для каждого приемника. Таким образом, если имеется достаточное количество мобильных станций, прослушивающих широковещательный поток, в случае радиоинтерфейса является более эффективной широковещательная передача значения RAND несколько раз для всех указанных мобильных станций, а не требование, чтобы каждая мобильная станция отдельно запрашивала значение RAND у СК.
Согласно одному из вариантов осуществления вычисление КК происходит следующим образом:
КК=f(SPI_SK,КДШ,RAND), (15)
причем функция определена как шифрование SPI_SK с использованием КДШ. Поскольку SPI_SK состоит из SPI_RAND, BAK_ID и RAND_ID, уравнение (15) также может быть представлено в виде:
КК=f(SPI_RAND,BAK_ID,RAND_ID,RAND). (16)
Необходимо отметить, что использование значения RAND может привести к появлению некоторых "периодов полного отключения", поскольку приемнику требуется принять значение RAND для замены. Однако эти периоды являются менее частыми, чем при обновлении КК через отдельный поток и ожидании приемником периодических обновлений. RAND предусмотрено для менее частой замены, чем значение КК, и таким образом обновления RAND не передаются так часто. Для СК также может оказаться желательным уменьшение вероятности "полного отключения" в результате прекращения МС прослушивания канала вследствие потери сигнала, настройки на другой канал, или ответа на прерывание, например, телефонный вызов. Полное отключение, наиболее вероятно, происходит в начале периода времени существования в значении RAND. Учитывая это, СК может проводить повторную широковещательную передачу нового RAND более часто в окрестности момента времени, когда новое значение RAND становится действительным. В конце периода времени существования RAND может оказаться необходимым выполнить широковещательную передачу как значения текущего RAND, так и значения последующего RAND. Значения RAND не должны быть предсказуемыми, и СК должен начать передачу RAND только за небольшое время перед тем, как RAND становится действительным.
Как обсуждалось выше, согласно третьему иллюстративному варианту осуществления КК вычисляется на основе КДШ, системного времени и передаваемого широковещательным образом случайного значения, обозначаемого SK_RAND. Фиг.7С иллюстрирует способ обновления ключей для защищенного шифрования в беспроводной системе связи, поддерживающей услугу широковещания. Способ 440 реализует временные периоды как показано на Фиг.7Е. КДШ обновляется периодически через временной интервал Т1. Таймер t1 запускается при генерации каждого КК и истекает через время Т1. Переменная, используемая для вычисления КК, называется SK_RAND и обновляется периодически через временной интервал Т2. Таймер t2 запускается, когда генерируется SK_RAND, и истекает через Т2. В одном из вариантов осуществления КК дополнительно периодически обновляется через временной интервал Т3. Таймер t3 запускается при генерации каждого КК и истекает через время Т3. SK_RAND генерируется в СК и периодически предоставляется в МС. МС и СК используют SK_RAND для генерации КК, как более подробно описывается ниже.
Первый таймер t1 перезапускается при обновлении применяемого значения КДШ. Длина промежутка времени между двумя обновлениями КДШ представляет собой период обновления КДШ. В иллюстративном варианте осуществления период обновления КДШ составляет месяц, однако альтернативные варианты осуществления могут использовать любой временной интервал, требуемый для оптимальной работы системы, или для удовлетворения разнообразных критериев системы.
Далее по Фиг.7С способ 440 запускает таймер t2 на этапе 442, давая начало временному интервалу Т2 SK_RAND. СК генерирует SK_RAND и предоставляет это значение в схему передачи для передачи по системе на этапе 444. Таймер t3 запускается на этапе 446, давая начало временному интервалу Т3 КК. Затем, на этапе 448, СК шифрует КШ, используя текущий КК. Зашифрованный результат представляет собой ШКШ, причем СК предоставляет ШКШ в схему передачи для передачи по системе. Если таймер t2 на этапе 450 уже истек, то процесс возвращается на этап 442. Поскольку t2 не превышает Т2, если таймер t3 уже истек на этапе 452, то обработка возвращается на этап 446, в противном случае обработка возвращается к этапу 450.
Фиг.7D иллюстрирует работу МС, осуществляющей доступ к услуге широковещания. Способ 460 сначала на этапе 462 синхронизирует таймеры t2 и t3 со значениями в СК. МИП в МС принимает SK_RAND, генерируемый в СК на этапе 464. На этапе 466 МИП генерирует КК, используя SK_RAND, КДШ и результат измерения времени. МИП передает КК в ОМС данной МС. Затем МИП дешифрует принятый ШКШ, используя КК для извлечения исходного КШ на этапе 468. Если таймер t2 истекает на этапе 470, то обработка возвращается к этапу 462. Поскольку таймер t2 не превышает Т2, если таймер t3 истекает на этапе 472, то таймер t3 инициализируется на этапе 474, и обработка возвращается к этапу 466.
На Фиг.8С показано управление ключами и их обновление, причем СК применяет функциональное средство 508 для генерации значения SK_RAND, которое представляет собой промежуточное значение, используемое СК и МС для вычисления КК. Более точно, функциональное средство (F) 508 использует значение КДШ, SK_RAND и временной фактор. Хотя вариант осуществления, иллюстрированный на Фиг.8С, использует таймер для определения момента обновления КК, альтернативные варианты осуществления могут использовать альтернативные меры для обеспечения периодических обновлений, например, появление ошибки или другое событие. СК предоставляет значение SK_RAND каждому подписчику, причем функциональное средство (F) 518, постоянно находящееся в каждом МИП, реализует такую же функцию, что и функциональное средство 508 в СК. Функциональное средство 518 выполняет операции с SK_RAND, КДШ и значением таймера, генерируя КК, который сохраняется в памяти ОМС, например, ЗУ1 542 в ОМС1 540.
Как обсуждалось выше, согласно четвертому варианту осуществления, КК шифруется с использованием КДШ для формирования ИКК, и ИКК передается в МС. В одном из иллюстративных вариантов осуществления КК передается в пакете IPSec, зашифрованном с использованием КДШ. СК также может осуществлять широковещательную передачу соответствующего SPI, который может быть использован для идентификации данных, зашифрованных с использованием КК. Указанный вариант осуществления не требует более подробного обсуждения.
В иллюстративных вариантах, представленных выше, СК может выбирать обновление КК по своему усмотрению. Чем более часто меняется КК, тем в большей степени СК может снизить интерес атакующей стороны к распространению значений КК. Существуют моменты времени, когда атакующая сторона решает, что прибыль от распространения значений КК должна быть выше, чем в другие моменты времени. Главным образом это происходит вследствие сущности контента широковещания. Например, если происходит важное событие, неподписавшиеся пользователи будут более заинтересованы в получении новостей по УВСШ и, следовательно, будут готовы платить больше за нелегитимный доступ, чем в другие моменты времени. В эти моменты времени СК может увеличить стоимость и создать большее неудобство атакующей стороне и неподписавшимся пользователям, изменяя КК более часто, чем обычно. Однако СК должен учитывать пределы вычислительной мощности МИП. Если СК изменяет КК слишком часто, тогда МИП будет не в состоянии вычислять значения КК в реальном масштабе времени, и таким образом пользователи не будут иметь возможности дешифровывать контент в реальном масштабе времени.
Специалисты в данной области техники должны понимать, что информация и сигналы могут быть представлены при помощи любой из множества известных технологий и способов. Например, данные, инструкции, команды, информация, сигналы, биты, символы, и чипы (символы псевдошумовой последовательности), которые могли упоминаться в вышеизложенном описании, могут быть представлены напряжениями, токами, электромагнитными волнами, магнитными полями или частицами, оптическими полями или частицами, или любой их комбинацией.
Для специалистов в данной области техники также должно быть понятно, что различные иллюстративные логические блоки, модули, схемы и этапы алгоритмов, описанные в связи с вариантами осуществления изобретения, раскрытыми в настоящем описании, могут быть реализованы как электронное аппаратное обеспечение, компьютерное программное обеспечение или их комбинация. С целью ясной иллюстрации такой взаимозаменяемости аппаратного обеспечения и программного обеспечения различные иллюстративные компоненты, блоки, модули, схемы и этапы были описаны выше в общих терминах, отражающих их функциональность. Будет ли эта функциональность реализована как аппаратное обеспечение или программное обеспечение зависит от конкретного приложения и конструкционных ограничений, налагаемых на всю систему. Специалисты в данной области техники могу реализовать описанную функциональность различными способами в каждом конкретном варианте применения, но такие конструкторские решения не могут рассматриваться как отклонение от объема настоящего изобретения.
Различные иллюстративные логические блоки, модули и схемы, описанные в связи с вариантами осуществления изобретения, раскрытыми в настоящем описании, могут быть реализованы или выполнены при помощи процессора общего назначения, процессора цифровых сигналов (DSP), специализированной интегральной схемы (ASIC), программируемой пользователем матрицы логических элементов (FPGA) или другого программируемого логического устройства, дискретных логических элементов или транзисторной логики, дискретных аппаратных компонентов или любой их комбинации, разработанной для выполнения функций, изложенных в настоящем описании. Процессор общего назначения может представлять собой микропроцессор, но, в качестве альтернативы, процессор может представлять собой любой обычный процессор, контроллер, микроконтроллер или конечный автомат. Процессор также может быть реализован как комбинация вычислительных устройств, например, комбинация DSP и микропроцессора, множество микропроцессоров, один или более микропроцессоров в сочетании с ядром DSP, или любая подобная конфигурация.
Этапы способа или алгоритма, описанные в связи с вариантами осуществления изобретения, раскрытыми в настоящем описании, могут быть осуществлены непосредственно в виде аппаратного обеспечения, в виде программного модуля, выполняемого процессором, или их комбинации. Программный модуль может располагаться в ОЗУ, флэш-памяти, ПЗУ, стираемом программируемом ПЗУ (EPROM), электрически стираемом программируемом ПЗУ (EEPROM), регистрах, на жестком диске, на сменном диске, на CD-ROM, или на любых видах носителей информации, известных в данной области техники. Иллюстративный носитель информации связан с процессором таким образом, что процессор может считывать информацию с носителя информации и записывать информацию на носитель информации. В качестве альтернативы, носитель информации может быть интегрирован в процессор. Процессор и носитель информации могут быть расположены в ASIC. ASIC может быть расположена в пользовательском терминале. В качестве альтернативы, процессор и носитель информации могут быть расположены в пользовательском терминале в виде дискретных компонентов.
Предыдущее описание раскрытых вариантов осуществления изобретения предназначено для предоставления возможности любому специалисту в данной области техники создать или использовать настоящее изобретение. Различные модификации этих вариантов осуществления изобретения будут очевидны для специалистов данной области техники и общие принципы, определенные в настоящем описании, могут быть применены в других вариантах осуществления изобретения без отступления от сущности и объема настоящего изобретения. Таким образом, настоящее изобретение не ограничивается вариантами осуществления, приведенными в настоящем описании, но должно рассматриваться согласно самому широкому объему, совместимому с принципами и новыми признаками, изложенными в настоящем описании.

Claims (23)

1. Способ защищенной передачи сообщения, содержащий этапы, на которых определяют краткосрочный ключ для передаваемого сообщения, причем краткосрочный ключ имеет идентификатор краткосрочного ключа, содержащий значение индекса параметров защиты; определяют ключ доступа для сообщения, причем ключ доступа имеет идентификатор ключа доступа, при этом краткосрочный ключ вычисляют как функцию идентификатора краткосрочного ключа и ключа доступа; шифруют сообщение с помощью краткосрочного ключа; формируют заголовок Интернет-протокола (IP), содержащий идентификатор краткосрочного ключа; и передают зашифрованное сообщение вместе с заголовком Интернет-протокола.
2. Способ по п.1, в котором идентификатор краткосрочного ключа содержит идентификатор ключа доступа.
3. Способ по п.1, в котором значение индекса параметров защиты является случайным числом.
4. Способ по п.1, в котором краткосрочный ключ вычисляют путем шифрования идентификатора краткосрочного ключа с помощью ключа доступа.
5. Способ по п.1, в котором заголовок Интернет-протокола является частью заголовка инкапсуляции полезной нагрузки IP-пакета с целью защиты (ESP).
6. Способ по п,5, в котором заголовок Интернет-протокола дополнительно содержит второе случайное число, причем второе случайное число имеет идентификатор случайного числа.
7. Способ по п.6, в котором идентификатор краткосрочного ключа содержит идентификатор ключа доступа и идентификатор случайного числа.
8. Способ по п.7, в котором идентификатор краткосрочного ключа дополнительно содержит значение индекса параметров защиты.
9. Способ по п.8, в котором значение индекса параметров защиты является случайным числом.
10. Способ по п.6, в котором краткосрочный ключ вычисляют как функцию идентификатора краткосрочного ключа, второго случайного числа и ключа доступа.
11. Способ по п.10, в котором краткосрочный ключ вычисляют путем шифрования идентификатора краткосрочного ключа и второго случайного числа с помощью ключа доступа.
12. Способ защищенного приема контента, содержащий этапы, на которых принимают пакет протокола защиты графика на уровне Интернет-протокола (IPSec), включающий в себя зашифрованный контент и индекс параметров защиты, относящийся к краткосрочному ключу, восстанавливают ключ доступа с использованием индекса параметров защиты, вычисляют краткосрочный ключ с использованием индекса параметров защиты и ключа доступа и дешифруют контент с использованием краткосрочного ключа.
13. Способ по п.12, в котором индекс параметров защиты содержит значение ключа доступа, при этом ключ доступа восстанавливают с использованием этого значения ключа доступа.
14. Способ по п.13, в котором значение ключа доступа показывает, какой ключ доступа должен быть использован для вычисления краткосрочного ключа, и хранится в таблице соответствия.
15. Способ по п.12, в котором индекс параметров защиты содержит случайное число, при этом краткосрочный ключ вычисляют с использованием этого случайного числа и ключа доступа.
16. Мобильная станция для защищенного приема контента, содержащая средство для приема пакета протокола защиты графика на уровне Интернет-протокола (IPSec), включающего в себя зашифрованный контент и индекс параметров защиты, относящийся к краткосрочному ключу, средство для восстановления ключа доступа с использованием индекса параметров защиты, средство для вычисления краткосрочного ключа с использованием индекса параметров защиты и ключа доступа и средство для дешифрования контента с использованием краткосрочного ключа.
17. Мобильная станция по п.16, в которой индекс параметров защиты содержит значение ключа доступа, при этом ключ доступа восстанавливается средством для восстановления ключа доступа с использованием этого значения ключа доступа.
18. Мобильная станция по п.17, в которой значение ключа доступа показывает, какой ключ доступа должен быть использован для вычисления краткосрочного ключа, при этом мобильная станция дополнительно содержит средство для хранения значений ключа доступа.
19. Мобильная станция по п.16, в которой индекс параметров защиты содержит случайное число, при этом краткосрочный ключ вычисляется средством для вычисления краткосрочного ключа с использованием этого случайного числа и ключа доступа.
20. Мобильная станция для защищенного приема контента, содержащая схему приема, выполненную с возможностью приема пакета протокола защиты графика на уровне Интернет-протокола (IPSec), включающего в себя зашифрованный контент и индекс параметров защиты, относящийся к краткосрочному ключу, модуль идентификации пользователя, выполненный с возможностью восстановления ключа доступа с использованием индекса параметров защиты, при этом модуль идентификации пользователя дополнительно выполнен с возможностью вычисления краткосрочного ключа с использованием индекса параметров защиты и ключа доступа, и блок оборудования мобильной связи, выполненный с возможностью дешифрования контента с использованием краткосрочного ключа.
21. Мобильная станция по п.20, в которой модуль идентификации пользователя содержит блок обработки, выполненный с возможностью восстановления ключа доступа.
22. Мобильная станция по п.21, в которой модуль идентификации пользователя дополнительно содержит запоминающее устройство для хранения ключа доступа.
23. Мобильная станция по п.21, в которой блок обработки дополнительно выполнен с возможностью вычисления краткосрочного ключа.
RU2004114212/09A 2001-10-09 2002-10-08 Способ и устройство для обеспечения защиты в системе обработки данных RU2333608C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/973,301 2001-10-09
US09/973,301 US7352868B2 (en) 2001-10-09 2001-10-09 Method and apparatus for security in a data processing system

Publications (2)

Publication Number Publication Date
RU2004114212A RU2004114212A (ru) 2005-10-27
RU2333608C2 true RU2333608C2 (ru) 2008-09-10

Family

ID=25520731

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2004114212/09A RU2333608C2 (ru) 2001-10-09 2002-10-08 Способ и устройство для обеспечения защиты в системе обработки данных

Country Status (15)

Country Link
US (2) US7352868B2 (ru)
EP (3) EP2204940B1 (ru)
JP (1) JP4732687B2 (ru)
KR (1) KR100967323B1 (ru)
CN (2) CN100481762C (ru)
AU (1) AU2002342014C1 (ru)
BR (1) BR0213214A (ru)
CA (1) CA2463542C (ru)
ES (2) ES2796115T3 (ru)
HK (2) HK1076553A1 (ru)
IL (1) IL161312A0 (ru)
MX (1) MXPA04003335A (ru)
RU (1) RU2333608C2 (ru)
TW (1) TWI256223B (ru)
WO (1) WO2003032573A2 (ru)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2491747C1 (ru) * 2009-06-23 2013-08-27 Сименс Акциенгезелльшафт Защищенная от манипулирования передача данных между автоматизированными приборами
RU2510972C2 (ru) * 2008-12-12 2014-04-10 Континенталь Аутомотиве Гмбх Способ эксплуатации сенсорного устройства и сенсорное устройство
RU2614369C2 (ru) * 2012-09-17 2017-03-24 Нокиа Текнолоджиз Ой Защита при обеспечении мобильности между серверами mbms
RU2689308C2 (ru) * 2014-09-25 2019-05-27 Сони Корпорейшн Устройство беспроводной связи, способ беспроводной связи и программа
RU2718217C1 (ru) * 2019-04-05 2020-03-31 Открытое Акционерное Общество "Информационные Технологии И Коммуникационные Системы" Способ обеспечения передачи зашифрованных данных со сменой ключей шифрования и имитозащиты в цифровой системе передачи данных
US11182490B2 (en) 2017-03-23 2021-11-23 Microsoft Technology Licensing, Llc Obfuscation of user content in user data files
RU2764393C2 (ru) * 2017-03-23 2022-01-17 МАЙКРОСОФТ ТЕКНОЛОДЖИ ЛАЙСЕНСИНГ, ЭлЭлСи Конфигурируемые примечания для высококонфиденциального пользовательского контента
RU2768196C2 (ru) * 2017-08-04 2022-03-23 БИТДЕФЕНДЕР АйПиАр МЕНЕДЖМЕНТ ЛТД Защищённое запоминающее устройство
RU2768196C9 (ru) * 2017-08-04 2022-05-13 БИТДЕФЕНДЕР АйПиАр МЕНЕДЖМЕНТ ЛТД Защищённое запоминающее устройство

Families Citing this family (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8121296B2 (en) * 2001-03-28 2012-02-21 Qualcomm Incorporated Method and apparatus for security in a data processing system
US8077679B2 (en) * 2001-03-28 2011-12-13 Qualcomm Incorporated Method and apparatus for providing protocol options in a wireless communication system
US9100457B2 (en) 2001-03-28 2015-08-04 Qualcomm Incorporated Method and apparatus for transmission framing in a wireless communication system
US7693508B2 (en) * 2001-03-28 2010-04-06 Qualcomm Incorporated Method and apparatus for broadcast signaling in a wireless communication system
US20040120527A1 (en) * 2001-08-20 2004-06-24 Hawkes Philip Michael Method and apparatus for security in a data processing system
US7185362B2 (en) * 2001-08-20 2007-02-27 Qualcomm, Incorporated Method and apparatus for security in a data processing system
US7352868B2 (en) 2001-10-09 2008-04-01 Philip Hawkes Method and apparatus for security in a data processing system
US7649829B2 (en) 2001-10-12 2010-01-19 Qualcomm Incorporated Method and system for reduction of decoding complexity in a communication system
WO2003036857A1 (en) * 2001-10-24 2003-05-01 Nokia Corporation Ciphering as a part of the multicast cencept
US7305700B2 (en) 2002-01-08 2007-12-04 Seven Networks, Inc. Secure transport for mobile communication network
US7356147B2 (en) * 2002-04-18 2008-04-08 International Business Machines Corporation Method, system and program product for attaching a title key to encrypted content for synchronized transmission to a recipient
JP4644487B2 (ja) * 2002-07-26 2011-03-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 安全な認証型距離測定法
US7599655B2 (en) 2003-01-02 2009-10-06 Qualcomm Incorporated Method and apparatus for broadcast services in a communication system
US8098818B2 (en) * 2003-07-07 2012-01-17 Qualcomm Incorporated Secure registration for a multicast-broadcast-multimedia system (MBMS)
US8718279B2 (en) * 2003-07-08 2014-05-06 Qualcomm Incorporated Apparatus and method for a secure broadcast system
US8724803B2 (en) 2003-09-02 2014-05-13 Qualcomm Incorporated Method and apparatus for providing authenticated challenges for broadcast-multicast communications in a communication system
US7302060B2 (en) * 2003-11-10 2007-11-27 Qualcomm Incorporated Method and application for authentication of a wireless communication using an expiration marker
US7574603B2 (en) * 2003-11-14 2009-08-11 Microsoft Corporation Method of negotiating security parameters and authenticating users interconnected to a network
KR100871263B1 (ko) * 2004-01-20 2008-11-28 삼성전자주식회사 멀티미디어 방송캐스트/멀티캐스트 서비스를 지원하는 이동통신시스템에서 암호화에 따른 멀티미디어 방송캐스트/멀티캐스트 서비스 데이터 패킷 송/수신 방법
KR100838556B1 (ko) * 2004-03-18 2008-06-17 콸콤 인코포레이티드 보안 실시간 프로토콜에서 암호정보의 효율적 전송
CN100581283C (zh) * 2004-11-16 2010-01-13 北京三星通信技术研究有限公司 适用于多媒体广播与组播业务的密码管理方法
US8422667B2 (en) 2005-01-27 2013-04-16 The Chamberlain Group, Inc. Method and apparatus to facilitate transmission of an encrypted rolling code
US9148409B2 (en) 2005-06-30 2015-09-29 The Chamberlain Group, Inc. Method and apparatus to facilitate message transmission and reception using different transmission characteristics
USRE48433E1 (en) 2005-01-27 2021-02-09 The Chamberlain Group, Inc. Method and apparatus to facilitate transmission of an encrypted rolling code
US20070011448A1 (en) * 2005-07-06 2007-01-11 Microsoft Corporation Using non 5-tuple information with IPSec
US8306918B2 (en) 2005-10-11 2012-11-06 Apple Inc. Use of media storage structure with multiple pieces of content in a content-distribution system
WO2007097604A1 (en) * 2006-02-27 2007-08-30 Samsung Electronics Co., Ltd. Method and system for protecting broadcast service/content in a mobile broadcast system, and method for generating short term key message therefor
GB0613192D0 (en) * 2006-07-01 2006-08-09 Ibm Methods, apparatus and computer programs for managing persistence
CN101296358B (zh) * 2007-04-26 2011-06-22 华为技术有限公司 一种广播加密更新系统及方法
KR100840904B1 (ko) * 2007-06-22 2008-06-24 주식회사 케이티프리텔 Ota 서비스를 제공하기 위한 시스템 및 그 방법
KR100840901B1 (ko) * 2007-06-22 2008-06-24 주식회사 케이티프리텔 Ota 서비스를 제공하기 위한 시스템 및 그 방법
US9104987B2 (en) * 2007-07-24 2015-08-11 The Directv Group, Inc. Method and system for associating business rules with received content in a content processing system and generating a content list therefrom
US20090031367A1 (en) * 2007-07-24 2009-01-29 The Directv Group, Inc. Method and system for utilizing multiple content delivery networks for distributing content
US9832424B2 (en) 2007-07-25 2017-11-28 The Directv Group, Inc. Method and system for managing content lifecycle in a content processing system
US8964734B2 (en) * 2007-07-26 2015-02-24 The Directv Group, Inc. Method and system for communicating content having modified packet headers through a satellite
US8462271B2 (en) * 2007-07-26 2013-06-11 The Directv Group, Inc. Method and system of managing files within a content processing system based on publication time
US9564988B2 (en) * 2007-07-26 2017-02-07 The Directv Group, Inc. Method and system for forming a formatted content stream and using a cyclic redundancy check
US8161167B2 (en) 2007-08-28 2012-04-17 Cisco Technology, Inc. Highly scalable application layer service appliances
US8280057B2 (en) * 2007-09-04 2012-10-02 Honeywell International Inc. Method and apparatus for providing security in wireless communication networks
CN101227271B (zh) * 2008-01-25 2012-03-07 中兴通讯股份有限公司 一种内容的加密解密方法及装置
US8468358B2 (en) 2010-11-09 2013-06-18 Veritrix, Inc. Methods for identifying the guarantor of an application
US8006291B2 (en) 2008-05-13 2011-08-23 Veritrix, Inc. Multi-channel multi-factor authentication
US8536976B2 (en) 2008-06-11 2013-09-17 Veritrix, Inc. Single-channel multi-factor authentication
US8516562B2 (en) 2008-05-13 2013-08-20 Veritrix, Inc. Multi-channel multi-factor authentication
US8166297B2 (en) * 2008-07-02 2012-04-24 Veritrix, Inc. Systems and methods for controlling access to encrypted data stored on a mobile device
JP5081089B2 (ja) 2008-07-17 2012-11-21 キヤノン株式会社 放送受信装置、及びその制御方法
CN100581169C (zh) * 2008-08-21 2010-01-13 西安西电捷通无线网络通信有限公司 一种基于单播会话密钥的组播密钥分发方法及其更新方法
US8291509B2 (en) * 2008-10-17 2012-10-16 Sap Ag Searchable encryption for outsourcing data analytics
US9425960B2 (en) * 2008-10-17 2016-08-23 Sap Se Searchable encryption for outsourcing data analytics
WO2010051342A1 (en) 2008-11-03 2010-05-06 Veritrix, Inc. User authentication for social networks
US8954034B2 (en) 2009-01-13 2015-02-10 Via Telecom Co., Ltd. Hash key generation apparatus and method for multiple cards communication system
TWI383341B (zh) * 2009-03-16 2013-01-21 Chiou Haun Lee Multilayer Diffusion and Decryption Methods
US8581695B2 (en) 2009-05-27 2013-11-12 Grant B. Carlson Channel-switching remote controlled barrier opening system
JP5038366B2 (ja) * 2009-07-16 2012-10-03 株式会社エヌ・ティ・ティ・ドコモ 移動通信システム、移動局及び無線基地局
TWI401583B (zh) * 2009-08-06 2013-07-11 Phison Electronics Corp 資料擾亂/解擾亂與資料處理方法及其控制器與儲存系統
US8589667B2 (en) 2010-04-19 2013-11-19 Apple Inc. Booting and configuring a subsystem securely from non-local storage
US8474014B2 (en) 2011-08-16 2013-06-25 Veritrix, Inc. Methods for the secure use of one-time passwords
US8713314B2 (en) * 2011-08-30 2014-04-29 Comcast Cable Communications, Llc Reoccuring keying system
US10789373B2 (en) * 2011-10-31 2020-09-29 Reid Consulting Group, Inc. System and method for securely storing and sharing information
US11290261B2 (en) 2011-10-31 2022-03-29 Reid Consulting Group, Inc. System and method for securely storing and sharing information
CN103124257B (zh) * 2011-11-21 2018-01-19 中兴通讯股份有限公司 安全联盟管理方法及设备
AU2013388938A1 (en) 2012-09-18 2015-04-09 The George Washington University Emergent network defense system
US20160072770A1 (en) * 2012-09-18 2016-03-10 Earl N. Crane Emergent network defense system
GB2516837B (en) 2013-07-31 2015-12-09 Ip Access Ltd Network elements, wireless communication system and methods therefor
US9344419B2 (en) 2014-02-27 2016-05-17 K.Y. Trix Ltd. Methods of authenticating users to a site
US9641488B2 (en) 2014-02-28 2017-05-02 Dropbox, Inc. Advanced security protocol for broadcasting and synchronizing shared folders over local area network
US9614669B1 (en) * 2014-11-17 2017-04-04 Q-Net Security, Inc. Secure network communications using hardware security barriers
CN104993924A (zh) * 2015-07-10 2015-10-21 安徽新华传媒股份有限公司 一种数字版权加解密方法
US9646172B1 (en) * 2016-11-15 2017-05-09 Envieta Systems LLC Data storage system for securely storing data records
US10749692B2 (en) 2017-05-05 2020-08-18 Honeywell International Inc. Automated certificate enrollment for devices in industrial control systems or other systems
SG10201706513XA (en) * 2017-08-10 2019-03-28 Sitechexport Pte Ltd End-to-end encrypted protocol structure for Peer-to-Peer messaging
CN107741947B (zh) * 2017-08-30 2020-04-24 浙江九州量子信息技术股份有限公司 基于hdfs文件系统的随机数密钥的存储与获取方法
US10652743B2 (en) 2017-12-21 2020-05-12 The Chamberlain Group, Inc. Security system for a moveable barrier operator
CN108307324B (zh) * 2018-01-22 2021-11-19 深圳优特利通信技术有限公司 一种广播消息安全传输方法及装置
US11074773B1 (en) 2018-06-27 2021-07-27 The Chamberlain Group, Inc. Network-based control of movable barrier operators for autonomous vehicles
US11423717B2 (en) 2018-08-01 2022-08-23 The Chamberlain Group Llc Movable barrier operator and transmitter pairing over a network
WO2020112209A2 (en) * 2018-09-14 2020-06-04 SeaPort, Inc. Methods and systems for efficient encoding and decoding communications
US10997810B2 (en) 2019-05-16 2021-05-04 The Chamberlain Group, Inc. In-vehicle transmitter training
CN110798316A (zh) * 2019-09-20 2020-02-14 西安瑞思凯微电子科技有限公司 加密密钥生成及其加密方法、解密密钥生成及其解密方法
TWI811544B (zh) * 2020-05-15 2023-08-11 致伸科技股份有限公司 無線輸入裝置及其資訊傳輸方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0636963A2 (en) * 1993-07-30 1995-02-01 International Business Machines Corporation Authentication system using one-time passwords
US5481613A (en) * 1994-04-15 1996-01-02 Northern Telecom Limited Computer network cryptographic key distribution system
RU2115249C1 (ru) * 1994-02-28 1998-07-10 Моторола, Инк. Способ эфирной перенастройки по ключу множества групп связи
US5956404A (en) * 1996-09-30 1999-09-21 Schneier; Bruce Digital signature with auditing bits
US6044154A (en) * 1994-10-31 2000-03-28 Communications Devices, Inc. Remote generated, device identifier key for use with a dual-key reflexive encryption security system
RU2147792C1 (ru) * 1996-04-29 2000-04-20 Моторола, Инк. Использование шифровального сервера для шифрования сообщений
US6073122A (en) * 1997-08-15 2000-06-06 Lucent Technologies Inc. Cryptographic method and apparatus for restricting access to transmitted programming content using extended headers
JP2001177513A (ja) * 1999-12-15 2001-06-29 Nippon Telegr & Teleph Corp <Ntt> 通信システムにおける認証方法、センタ装置、認証プログラムを記録した記録媒体
EP1117204A3 (en) * 2000-01-14 2003-10-01 Hewlett-Packard Company, A Delaware Corporation Authorization infrastructure based on public key cryptography

Family Cites Families (538)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5870474A (en) 1995-12-04 1999-02-09 Scientific-Atlanta, Inc. Method and apparatus for providing conditional access in connection-oriented, interactive networks with a multiplicity of service providers
US4163255A (en) 1976-07-19 1979-07-31 Teleglobe Pay-Tv System, Inc. Billing method and system for a subscriber of a pay television system
JPS5857781B2 (ja) 1978-01-17 1983-12-21 三菱電機株式会社 符号化復号化方式
FR2448825A1 (fr) 1979-02-06 1980-09-05 Telediffusion Fse Systeme de transmission d'information entre un centre d'emission et des postes recepteurs, ce systeme etant muni d'un moyen de controle de l'acces a l'information transmise
USRE33189E (en) 1981-11-19 1990-03-27 Communications Satellite Corporation Security system for SSTV encryption
US4484027A (en) 1981-11-19 1984-11-20 Communications Satellite Corporation Security system for SSTV encryption
US5253294A (en) * 1983-02-22 1993-10-12 At&T Bell Laboratories Secure transmission system
ZA862839B (en) 1985-05-24 1986-12-30 Scientific Atlanta Method and apparatus for scrambling and descrambling television signals
US4901307A (en) 1986-10-17 1990-02-13 Qualcomm, Inc. Spread spectrum multiple access communication system using satellite or terrestrial repeaters
US4750167A (en) 1986-10-20 1988-06-07 The Grass Valley Group, Inc. Digital audio transmission system
US5117457A (en) 1986-11-05 1992-05-26 International Business Machines Corp. Tamper resistant packaging for information protection in electronic circuitry
US4870408A (en) 1987-04-30 1989-09-26 Motorola, Inc. Method for dynamically allocating data channels on a trunked communication system
US4881263A (en) * 1987-09-25 1989-11-14 Digital Equipment Corporation Apparatus and method for secure transmission of data over an unsecure transmission channel
US4924513A (en) * 1987-09-25 1990-05-08 Digital Equipment Corporation Apparatus and method for secure transmission of data over an unsecure transmission channel
JPH0290840U (ru) 1988-12-30 1990-07-18
US5052000A (en) 1989-06-09 1991-09-24 At&T Bell Laboratories Technique for improving the operation of decision feedback equalizers in communications systems utilizing error correction
US5235631A (en) 1989-07-31 1993-08-10 Motorola, Inc. Trunked talk-group assignment method
US5101501A (en) * 1989-11-07 1992-03-31 Qualcomm Incorporated Method and system for providing a soft handoff in communications in a cdma cellular telephone system
US5056109A (en) 1989-11-07 1991-10-08 Qualcomm, Inc. Method and apparatus for controlling transmission power in a cdma cellular mobile telephone system
US5136586A (en) 1989-12-04 1992-08-04 Academy Of Applied Science Method and apparatus for telephone line multiplex channeling of toll-quality voice and digital information
JP3008441B2 (ja) 1990-04-28 2000-02-14 日本電気株式会社 セキュリティモジュール
US5351087A (en) 1990-06-01 1994-09-27 Thomson Consumer Electronics, Inc. Two stage interpolation system
US5511073A (en) 1990-06-25 1996-04-23 Qualcomm Incorporated Method and apparatus for the formatting of data for transmission
US5103459B1 (en) 1990-06-25 1999-07-06 Qualcomm Inc System and method for generating signal waveforms in a cdma cellular telephone system
CA2068883C (en) 1990-09-19 2002-01-01 Jozef Maria Karel Timmermans Record carrier on which a main data file and a control file have been recorded, method of and device for recording the main data file and the control file, and device for reading the record carrier
JPH03179841A (ja) 1990-10-19 1991-08-05 Matsushita Electric Ind Co Ltd 暗号デジタル放送受信装置
US5237612A (en) 1991-03-29 1993-08-17 Ericsson Ge Mobile Communications Inc. Cellular verification and validation system
US5222137A (en) * 1991-04-03 1993-06-22 Motorola, Inc. Dynamic encryption key selection for encrypted radio transmissions
US5241598A (en) 1991-05-22 1993-08-31 Ericsson Ge Mobile Communications, Inc. Rolling key resynchronization in cellular verification and validation system
US5159447A (en) 1991-05-23 1992-10-27 At&T Bell Laboratories Buffer control for variable bit-rate channel
US6647000B1 (en) 1999-05-28 2003-11-11 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatus for performing slot hopping of logical control channels in wireless communications systems
JPH0514342A (ja) 1991-07-02 1993-01-22 Hitachi Ltd パケツト同報通信方式
US5369784A (en) 1991-08-01 1994-11-29 City Communications Limited Radio communications system using multiple simultaneously transmitting transceivers
US5404563A (en) 1991-08-28 1995-04-04 International Business Machines Corporation Scheduling normally interchangeable facilities in multiprocessor computer systems
US5257396A (en) 1991-09-17 1993-10-26 Zenith Electronics Corporation Dual in-band/out-of-band CATV system
JP2968099B2 (ja) 1991-09-20 1999-10-25 明星電気株式会社 コードレスボタン電話システムのテナント制御方式
US5164988A (en) * 1991-10-31 1992-11-17 International Business Machines Corporation Method to establish and enforce a network cryptographic security policy in a public key cryptosystem
US5239584A (en) * 1991-12-26 1993-08-24 General Electric Corporation Method and apparatus for encryption/authentication of data in energy metering applications
MY109399A (en) 1992-01-07 1997-01-31 Koninklijke Philips Electronics Nv Device for processing digital data, and digital video system comprising the device
US5363379A (en) 1992-04-30 1994-11-08 International Business Machines Corporation FDDI network test adaptor error injection circuit
US5421006A (en) * 1992-05-07 1995-05-30 Compaq Computer Corp. Method and apparatus for assessing integrity of computer system software
US6253069B1 (en) 1992-06-22 2001-06-26 Roy J. Mankovitz Methods and apparatus for providing information in response to telephonic requests
US5565909A (en) 1992-08-31 1996-10-15 Television Computer, Inc. Method of identifying set-top receivers
JP2551304B2 (ja) 1992-09-11 1996-11-06 日本電気株式会社 同報リンク制御方式
US5353332A (en) 1992-09-16 1994-10-04 Ericsson Ge Mobile Communications Inc. Method and apparatus for communication control in a radiotelephone system
US5768276A (en) 1992-10-05 1998-06-16 Telefonaktiebolaget Lm Ericsson Digital control channels having logical channels supporting broadcast SMS
US5603081A (en) 1993-11-01 1997-02-11 Telefonaktiebolaget Lm Ericsson Method for communicating in a wireless communication system
FI96655C (fi) 1992-12-17 1996-07-25 Nokia Telecommunications Oy Menetelmä ryhmäpuhelun ylläpitämiseksi radiopuhelinjärjestelmässä ja radiopuhelinjärjestelmän järjestelmäohjain sekä tilaaja-asema
US5412655A (en) 1993-01-29 1995-05-02 Nec Corporation Multiprocessing system for assembly/disassembly of asynchronous transfer mode cells
RU2091983C1 (ru) 1993-02-09 1997-09-27 Геннадий Николаевич Чижухин Способ шифрования двоичной информации и устройство для его осуществления
US5442626A (en) 1993-08-24 1995-08-15 At&T Corp. Digital communications system with symbol multiplexers
US5410602A (en) 1993-09-27 1995-04-25 Motorola, Inc. Method for key management of point-to-point communications
US5371794A (en) 1993-11-02 1994-12-06 Sun Microsystems, Inc. Method and apparatus for privacy and authentication in wireless networks
FI940093A0 (fi) 1994-01-10 1994-01-10 Nokia Mobile Phones Ltd Foerfarande foer oeverfoering av data och datagraenssnittenhet
US5787172A (en) * 1994-02-24 1998-07-28 The Merdan Group, Inc. Apparatus and method for establishing a cryptographic link between elements of a system
EP0907270B1 (en) * 1994-02-24 2009-04-15 Comcast Cable Holdings, LLC Apparatus and method for establishing a cryptographic link between elements of a system
US5774496A (en) 1994-04-26 1998-06-30 Qualcomm Incorporated Method and apparatus for determining data rate of transmitted variable rate data in a communications receiver
US5448568A (en) 1994-04-28 1995-09-05 Thomson Consumer Electronics, Inc. System of transmitting an interactive TV signal
US5515441A (en) * 1994-05-12 1996-05-07 At&T Corp. Secure communication method and apparatus
US5473609A (en) 1994-05-26 1995-12-05 Thomson Consumer Electronics, Inc. Method and apparatus for processing a conditional access program guide as for a satellite TV service
US5579393A (en) * 1994-06-21 1996-11-26 Escan, Inc. System and method for secure medical and dental record interchange
US5467398A (en) * 1994-07-05 1995-11-14 Motorola, Inc. Method of messaging in a communication system
EP1968059B1 (en) 1994-07-08 2014-11-12 Sony Corporation Receiving controlled-access broadcast signals
US5537474A (en) 1994-07-29 1996-07-16 Motorola, Inc. Method and apparatus for authentication in a communication system
US5513245A (en) 1994-08-29 1996-04-30 Sony Corporation Automatic generation of private authentication key for wireless communication systems
US5796829A (en) 1994-09-09 1998-08-18 The Titan Corporation Conditional access system
US5548646A (en) 1994-09-15 1996-08-20 Sun Microsystems, Inc. System for signatureless transmission and reception of data packets between computer networks
NL9401626A (nl) 1994-10-04 1996-05-01 Multihouse Automatisering Bv Systeem voor digitale communicatie.
US5758291A (en) 1994-10-18 1998-05-26 Motorola, Inc. Method for automatically revising a wireless communication unit scan list
US5740246A (en) 1994-12-13 1998-04-14 Mitsubishi Corporation Crypt key system
US5485577A (en) 1994-12-16 1996-01-16 General Instrument Corporation Of Delaware Method and apparatus for incremental delivery of access rights
US5592470A (en) 1994-12-21 1997-01-07 At&T Broadband wireless system and network architecture providing broadband/narrowband service with optimal static and dynamic bandwidth/channel allocation
FI98027C (fi) 1995-01-10 1997-03-25 Nokia Telecommunications Oy Pakettiradiojärjestelmä ja päätelaitteisto pakettiradiojärjestelmää varten
US6272632B1 (en) * 1995-02-21 2001-08-07 Network Associates, Inc. System and method for controlling access to a user secret using a key recovery field
US6424717B1 (en) * 1995-04-03 2002-07-23 Scientific-Atlanta, Inc. Encryption devices for use in a conditional access system
US6157719A (en) 1995-04-03 2000-12-05 Scientific-Atlanta, Inc. Conditional access system
US6937729B2 (en) 1995-04-03 2005-08-30 Scientific-Atlanta, Inc. Representing entitlements to service in a conditional access system
RU2077113C1 (ru) 1995-04-19 1997-04-10 Военная академия связи Способ криптозащиты системы телекоммуникационных технологий
US5708961A (en) 1995-05-01 1998-01-13 Bell Atlantic Network Services, Inc. Wireless on-premises video distribution using digital multiplexing
US5673259A (en) 1995-05-17 1997-09-30 Qualcomm Incorporated Random access communications channel for data services
US6577848B1 (en) 1995-05-30 2003-06-10 Motorola, Inc. Dispatch system and method of assigning a shared channel to remote units
US5898710A (en) 1995-06-06 1999-04-27 Globespan Technologies, Inc. Implied interleaving, a family of systematic interleavers and deinterleavers
US5751707A (en) 1995-06-19 1998-05-12 Bell Atlantic Network Services, Inc. AIN interaction through wireless digital video network
US5878141A (en) 1995-08-25 1999-03-02 Microsoft Corporation Computerized purchasing system and method for mediating purchase transactions over an interactive network
US5758068A (en) 1995-09-19 1998-05-26 International Business Machines Corporation Method and apparatus for software license management
US6058289A (en) 1995-09-26 2000-05-02 Pacific Communication Sciences, Inc. Method and apparatus for low power mobile unit for cellular communications system
US5991407A (en) 1995-10-17 1999-11-23 Nokia Telecommunications Oy Subscriber authentication in a mobile communications system
US5729540A (en) 1995-10-19 1998-03-17 Qualcomm Incorporated System and method for scheduling messages on a common channel
US5841764A (en) 1995-10-30 1998-11-24 Ericsson Inc. Method and apparatus for permitting a radio to originate and receive data messages in a data communications network
EP0800745B1 (en) 1995-10-31 2003-09-17 Koninklijke Philips Electronics N.V. Time-shifted conditional access
US6577734B1 (en) * 1995-10-31 2003-06-10 Lucent Technologies Inc. Data encryption key management system
FI101581B (fi) 1995-11-07 1998-07-15 Nokia Telecommunications Oy Kiinteän verkon protokollien sovittaminen matkaviestinverkkoon signalo intituen puuttuessa
JPH09135478A (ja) 1995-11-10 1997-05-20 Sanyo Electric Co Ltd Fm多重信号受信装置
US5787347A (en) 1995-12-11 1998-07-28 Gte Laboratories Incorporated Method and apparatus for selecting a cellular system for communication with a cellular telephone in a roaming area
US6493761B1 (en) 1995-12-20 2002-12-10 Nb Networks Systems and methods for data processing using a protocol parsing engine
US5686963A (en) 1995-12-26 1997-11-11 C-Cube Microsystems Method for performing rate control in a video encoder which provides a bit budget for each frame while employing virtual buffers and virtual buffer verifiers
FI102235B (fi) * 1996-01-24 1998-10-30 Nokia Telecommunications Oy Autentikointiavainten hallinta matkaviestinjärjestelmässä
DE69728382T2 (de) 1996-02-02 2004-08-19 Marconi Uk Intellectual Property Ltd. Zellenausrichter
US6055314A (en) 1996-03-22 2000-04-25 Microsoft Corporation System and method for secure purchase and delivery of video content programs
US5673322A (en) 1996-03-22 1997-09-30 Bell Communications Research, Inc. System and method for providing protocol translation and filtering to access the world wide web from wireless or low-bandwidth networks
US5778069A (en) 1996-04-10 1998-07-07 Microsoft Corporation Non-biased pseudo random number generator
JPH10214233A (ja) 1996-04-15 1998-08-11 Toshiba Corp 情報処理装置、情報処理システム、情報処理方法、プログラム記憶装置、及び鍵の判定方法及び判定装置
US5778187A (en) 1996-05-09 1998-07-07 Netcast Communications Corp. Multicasting method and apparatus
US6172972B1 (en) 1996-05-28 2001-01-09 Microsoft Corporation Multi-packet transport structure and method for sending network data over satellite network
GB2313749B (en) 1996-05-31 1998-05-13 I Co Global Communications Secure communications
US20050048963A1 (en) 1996-06-03 2005-03-03 Kubler Joseph J. Configurable premises based wireless network and operating protocol
US5884196A (en) 1996-06-06 1999-03-16 Qualcomm Incorporated Method and apparatus of preserving power of a remote unit in a dispatch system
US5881368A (en) 1996-06-06 1999-03-09 Qualcomm Incorporated Method and apparatus of power control in a CDMA dispatch system
FI962381A (fi) 1996-06-07 1997-12-08 Nokia Telecommunications Oy Datan pakkaaminen tietoliikenneyhteydellä
US5719875A (en) 1996-06-11 1998-02-17 Lucent Technologies Inc. Systematic convolution interleavers and deinterleavers
US5983099A (en) 1996-06-11 1999-11-09 Qualcomm Incorporated Method/apparatus for an accelerated response to resource allocation requests in a CDMA push-to-talk system using a CDMA interconnect subsystem to route calls
JP3201265B2 (ja) 1996-06-12 2001-08-20 富士ゼロックス株式会社 データ伝送装置および方法
US5748736A (en) 1996-06-14 1998-05-05 Mittra; Suvo System and method for secure group communications via multicast or broadcast
JP3540511B2 (ja) * 1996-06-18 2004-07-07 株式会社東芝 電子署名検証装置
US6026165A (en) * 1996-06-20 2000-02-15 Pittway Corporation Secure communications in a wireless system
JP3344897B2 (ja) 1996-06-28 2002-11-18 株式会社エヌ・ティ・ティ・ドコモ Cdma移動通信における容量制御方法
US5936965A (en) 1996-07-08 1999-08-10 Lucent Technologies, Inc. Method and apparatus for transmission of asynchronous, synchronous, and variable length mode protocols multiplexed over a common bytestream
US5835730A (en) 1996-07-31 1998-11-10 General Instrument Corporation Of Delaware MPEG packet header compression for television modems
JP3452447B2 (ja) 1996-08-06 2003-09-29 三菱電機株式会社 Cdmaシステム及びその送信電力制御装置
JPH1063598A (ja) 1996-08-22 1998-03-06 Nippon Telegr & Teleph Corp <Ntt> マルチキャスト通信方法及びマルチキャスト通信システムと、マルチキャスト通信用サーバ
FR2753026B1 (fr) 1996-08-28 1998-11-13 Pyndiah Ramesh Procede de transmission de bits d'information avec codage correcteur d'erreurs, codeur et decodeur pour la mise en oeuvre de ce procede
EP0931388B1 (en) 1996-08-29 2003-11-05 Cisco Technology, Inc. Spatio-temporal processing for communication
US5778059A (en) 1996-08-30 1998-07-07 Digital Technics, Inc. Distributed predictive and event-driven processing environment
US6522877B1 (en) 1996-09-06 2003-02-18 Nokia Mobile Phones Ltd. Methods and apparatus for providing an interactive cell broadcast service
US5850444A (en) 1996-09-09 1998-12-15 Telefonaktienbolaget L/M Ericsson (Publ) Method and apparatus for encrypting radio traffic in a telecommunications network
US5887252A (en) 1996-09-10 1999-03-23 Nokia Mobile Phones Limited Multicast transmission for DS-CDMA cellular telephones
JP3630874B2 (ja) 1996-09-13 2005-03-23 キヤノン株式会社 通信装置及びシステム及び方法
US6201961B1 (en) 1996-09-13 2001-03-13 Globalstar L. P. Use of reference phone in point-to-point satellite communication system
TW594190B (en) * 1996-09-13 2004-06-21 Matsushita Electric Ind Co Ltd Polymer dispersion type liquid crystal display element and producing method therefor
US5751725A (en) 1996-10-18 1998-05-12 Qualcomm Incorporated Method and apparatus for determining the rate of received data in a variable rate communication system
US5909491A (en) * 1996-11-06 1999-06-01 Nokia Mobile Phones Limited Method for sending a secure message in a telecommunications system
DE19646371A1 (de) 1996-11-09 1998-05-14 Bosch Gmbh Robert Verfahren und Anordnung zum Verbessern der Übertragungsqualität in einem Punkt-zu-Mehrpunkt Funkübertragungssystem
US5896382A (en) 1996-11-19 1999-04-20 Scientific-Atlanta, Inc. Method and apparatus for communicating information between a headend and subscriber over a wide area network
FI105137B (fi) 1996-12-02 2000-06-15 Nokia Networks Oy Parannettu ryhmälähetys pakettiverkossa
JP3402100B2 (ja) 1996-12-27 2003-04-28 カシオ計算機株式会社 音声制御ホスト装置
US6069885A (en) 1996-12-30 2000-05-30 At&T Corp Method and apparatus for providing high speed services using a wireless communications system
TW373372B (en) 1996-12-31 1999-11-01 Heng-Dao Lin Wireless 3C box
US6108424A (en) * 1997-01-09 2000-08-22 U.S. Philips Corporation Mobile radio telephone station comprising a protection system for at least one authentication number and method of protecting an authentication number
JPH10200536A (ja) 1997-01-09 1998-07-31 Toshiba Corp ネットワークシステム
US5946316A (en) 1997-01-17 1999-08-31 Lucent Technologies, Inc. Dynamic distributed multicast routing protocol
US5850445A (en) * 1997-01-31 1998-12-15 Synacom Technology, Inc. Authentication key management system and method
US5940507A (en) * 1997-02-11 1999-08-17 Connected Corporation Secure file archive through encryption key management
JPH10240826A (ja) 1997-03-03 1998-09-11 Card Koole Service Kk 電子契約方法
US6690795B1 (en) 1997-03-04 2004-02-10 Lucent Technologies Inc. Multiple keys for decrypting data in restricted-access television system
US6195546B1 (en) 1997-03-14 2001-02-27 Nortel Networks Limited Method and apparatus for network initiated parameter updating
US6223028B1 (en) 1997-03-17 2001-04-24 Nortel Networks Ltd Enhanced method and system for programming a mobile telephone over the air within a mobile telephone communication network
KR100260516B1 (ko) 1997-04-01 2000-07-01 정선종 코드분할 다중접속 이동통신망에서의 비동기통신 데이터발신호 및 착신호 서비스 방법
US6047071A (en) 1997-04-15 2000-04-04 Nokia Mobile Phones Network-initiated change of mobile phone parameters
GB2324934A (en) 1997-05-02 1998-11-04 Motorola Ltd Multiplexing data from multi-media sources
US6128490A (en) 1997-05-08 2000-10-03 Nortel Networks Limited Wireless communication system that supports selection of operation from multiple frequency bands and multiple protocols and method of operation therefor
US5990928A (en) 1997-05-30 1999-11-23 Rockwell International Corporation Method and apparatus for receiving broadcast entertainment transmissions at a moving receiver station
ATE540497T1 (de) 1997-05-30 2012-01-15 Qualcomm Inc Fehlerschutzverfahren und vorrichtung für über- funk-dateiübertragung
US6233234B1 (en) * 1997-06-03 2001-05-15 Bell Atlantic Network Services, Inc. Secure LAN/internet telephony
US6108706A (en) 1997-06-09 2000-08-22 Microsoft Corporation Transmission announcement system and method for announcing upcoming data transmissions over a broadcast network
US6081907A (en) 1997-06-09 2000-06-27 Microsoft Corporation Data delivery system and method for delivering data and redundant information over a unidirectional network
FI105306B (fi) 1997-06-10 2000-07-14 Nokia Networks Oy Radiojärjestelmä
DE19727267A1 (de) * 1997-06-26 1999-01-07 Siemens Ag Verfahren und Computersystem zur Codierung einer digitalen Nachricht, zur Übertragung der Nachricht von einer ersten Computereinheit zu einer zweiten Computereinheit und zur Decodierung der Nachricht
PT992025E (pt) 1997-06-27 2002-12-31 Swisscom Mobile Ag Processo de transaccao com um elemento de identificacao portatil
US6603857B1 (en) 1997-07-14 2003-08-05 Entrust Technologies Limited Method and apparatus for controlling release of time sensitive information
FI104667B (fi) 1997-07-14 2000-04-14 Nokia Networks Oy Liittymäpalvelun toteuttaminen
GB2327567A (en) 1997-07-17 1999-01-27 Orange Personal Comm Serv Ltd Controlling Access to SMSCB Service
FI104023B1 (fi) 1997-07-18 1999-10-29 Nokia Mobile Phones Ltd Tiedonsiirtomenetelmä ja -järjestelmä
EP1010324A1 (en) 1997-08-01 2000-06-21 Scientific-Atlanta, Inc. Representing entitlements to service in a conditional access system
EP1000509B1 (en) 1997-08-01 2002-11-27 Scientific-Atlanta, Inc. Encryption device for use in a conditional access system
BR9815610A (pt) 1997-08-01 2004-06-22 Scientific Atlanta Verificação da fonte de informações de programa em sistema de acesso condicional
JPH1168755A (ja) 1997-08-08 1999-03-09 Fujitsu Ltd Atm網のブロードキャスト制御システム並びにネットワーク装置及び交換ノード装置
US6021124A (en) 1997-08-19 2000-02-01 Telefonaktiebolaget Lm Ericsson Multi-channel automatic retransmission query (ARQ) method
US5983388A (en) 1997-08-25 1999-11-09 Analog Devices Forward error correction arrangement (FEC) for multipoint to single point communication systems
US6032197A (en) 1997-09-25 2000-02-29 Microsoft Corporation Data packet header compression for unidirectional transmission
US6608832B2 (en) 1997-09-25 2003-08-19 Telefonaktiebolaget Lm Ericsson Common access between a mobile communications network and an external network with selectable packet-switched and circuit-switched and circuit-switched services
DE19742681C2 (de) 1997-09-26 2003-03-06 Ericsson Telefon Ab L M GPRS-Teilnehmerauswahl von mehreren Internet-Dienstanbietern
IL121862A (en) 1997-09-29 2005-07-25 Nds Ltd West Drayton Distributed ird system for pay television systems
JPH11110401A (ja) 1997-09-30 1999-04-23 Nippon Telegr & Teleph Corp <Ntt> 放送型配信フィルタリング方法及びシステム及び放送型配信フィルタリングプログラムを格納した記憶媒体
US5970072A (en) 1997-10-02 1999-10-19 Alcatel Usa Sourcing, L.P. System and apparatus for telecommunications bus control
US6480477B1 (en) 1997-10-14 2002-11-12 Innowave Eci Wireless Systems Ltd. Method and apparatus for a data transmission rate of multiples of 100 MBPS in a terminal for a wireless metropolitan area network
US6665718B1 (en) 1997-10-14 2003-12-16 Lucent Technologies Inc. Mobility management system
JPH11127468A (ja) 1997-10-20 1999-05-11 Fujitsu Ltd 通信制御装置及び無線通信システム
US6005848A (en) 1997-10-27 1999-12-21 Motorola, Inc. Method and apparatus for a talkgroup call in a wireless CDMA system
JP4820936B2 (ja) 1997-10-28 2011-11-24 モトローラ モビリティ インコーポレイテッド Cdmaディスパッチ・システム
US6044069A (en) 1997-10-29 2000-03-28 Conexant Systems, Inc. Power management system for a mobile station
US6574211B2 (en) 1997-11-03 2003-06-03 Qualcomm Incorporated Method and apparatus for high rate packet data transmission
JPH11136669A (ja) 1997-11-04 1999-05-21 Sony Corp 衛星放送装置及び方法
US6009106A (en) 1997-11-19 1999-12-28 Digi International, Inc. Dynamic bandwidth allocation within a communications channel
US6128735A (en) * 1997-11-25 2000-10-03 Motorola, Inc. Method and system for securely transferring a data set in a data communications system
US6185430B1 (en) 1997-11-26 2001-02-06 Motorola, Inc. Voice call group function for a satellite based air traffic control system
FI104133B1 (fi) 1997-11-28 1999-11-15 Nokia Mobile Phones Ltd Koodaus- ja modulointimenetelmä ja laite sen soveltamiseksi
JPH11161167A (ja) 1997-11-28 1999-06-18 Pumpkin House:Kk 暗号化装置およびその方法ならびに暗号化プログラムを記録した記録媒体
US6097817A (en) 1997-12-10 2000-08-01 Omnipoint Corporation Encryption and decryption in communication system with wireless trunk
US5966373A (en) 1997-12-10 1999-10-12 L-3 Communications Corporation Waveform and frame structure for a fixed wireless loop synchronous CDMA communications system
FR2772533B1 (fr) 1997-12-15 2001-09-28 Inst Nat Rech Inf Automat Dispositif d'interconnexion entre segments de reseaux communiquant selon des protocoles de formats differents, et procede correspondant
US6065061A (en) 1997-12-16 2000-05-16 Lucent Technologies Inc. Internet protocol based network architecture for cable television access with switched fallback
US8175120B2 (en) 2000-02-07 2012-05-08 Ipr Licensing, Inc. Minimal maintenance link to support synchronization
US7079523B2 (en) 2000-02-07 2006-07-18 Ipr Licensing, Inc. Maintenance link using active/standby request channels
KR100241783B1 (ko) 1997-12-19 2000-02-01 윤종용 복합무선단말기의 서비스 옵션에 따른 수신경고음 및 표시문구발생 방법
KR100269339B1 (ko) * 1997-12-24 2000-10-16 서평원 이동통신시스템에서홈위치등록기관리시스템및이를이용한데이터베이스관리방법
JP3561154B2 (ja) * 1997-12-26 2004-09-02 株式会社東芝 放送受信装置および契約管理装置
US6192070B1 (en) 1998-01-02 2001-02-20 Mitsubishi Electric Research Laboratories, Inc. Universal modem for digital video, audio and data communications
US6519266B1 (en) 1998-01-05 2003-02-11 Nortel Networks Limited Layering of wireless packet data service
US6990680B1 (en) 1998-01-05 2006-01-24 Gateway Inc. System for scheduled caching of in-band data services
US6052812A (en) 1998-01-07 2000-04-18 Pocketscience, Inc. Messaging communication protocol
FI980085A0 (fi) 1998-01-16 1998-01-16 Finland Telecom Oy Kryptering av kortmeddelanden och annullering av krypteringen
FI106172B (fi) 1998-01-29 2000-11-30 Nokia Networks Oy Menetelmä uudelleenkonfiguroida solukkoradioverkossa yhteys
US6047395A (en) 1998-01-30 2000-04-04 Cirrus Logic, Inc. Error correction processor for correcting a multi-dimensional code by generating an erasure polynomial over one dimension for correcting multiple codewords in another dimension
EP0936774A1 (en) 1998-02-13 1999-08-18 CANAL+ Société Anonyme Recording of scrambled digital data
EP0936812A1 (en) * 1998-02-13 1999-08-18 CANAL+ Société Anonyme Method and apparatus for recording of encrypted digital data
JPH11243569A (ja) 1998-02-25 1999-09-07 Kokusai Electric Co Ltd メッセージ受信機
US6081508A (en) * 1998-02-25 2000-06-27 Indus River Networks, Inc. Remote computer communication
JP3428420B2 (ja) 1998-02-25 2003-07-22 松下電器産業株式会社 デジタル放送受信再生装置
FI980427A (fi) 1998-02-25 1999-08-26 Ericsson Telefon Ab L M Menetelmä, järjestely ja laite todentamiseen
KR100315641B1 (ko) 1999-03-03 2001-12-12 서평원 오티에이피에이를 위한 단말기와 시스템의 상호 인증 방법
US6055236A (en) * 1998-03-05 2000-04-25 3Com Corporation Method and system for locating network services with distributed network address translation
US6353614B1 (en) 1998-03-05 2002-03-05 3Com Corporation Method and protocol for distributed network address translation
JP3822997B2 (ja) 1998-03-19 2006-09-20 株式会社日立製作所 放送情報配信システム
EP0944275B1 (en) 1998-03-19 2005-09-14 Hitachi, Ltd. Broadcast information delivering system
CA2324450C (en) 1998-03-23 2006-01-03 Samsung Electronics Co., Ltd. Power control device and method for controlling a reverse link common channel in a cdma communication system
US6201954B1 (en) 1998-03-25 2001-03-13 Qualcomm Inc. Method and system for providing an estimate of the signal strength of a received signal
US6473419B1 (en) 1998-03-26 2002-10-29 Nokia Corporation State apparatus, and associated methods, for controlling packet data communications in a radio communication system
US6208634B1 (en) 1998-03-30 2001-03-27 Nortel Networks Limited Methods and apparatus for CDMA wireless call setup time/service negotiation optimization
EP0951198A2 (en) 1998-04-14 1999-10-20 Nec Corporation IP multicast over a wireless ATM network
US6373829B1 (en) 1998-04-23 2002-04-16 Motorola, Inc. Method and apparatus for group calls in a wireless CDMA communication system using outbound traffic channels for individual group members
JPH11313059A (ja) 1998-04-27 1999-11-09 Nippon Telegr & Teleph Corp <Ntt> マルチキャスト通信方法及びそのシステム並びにマルチキャスト通信プログラムを記録した記録媒体
US6098878A (en) 1998-04-30 2000-08-08 Ericsson Inc. Tariff management apparatus and method for communications terminals using smart cards
DE19820422A1 (de) 1998-05-07 1999-11-11 Giesecke & Devrient Gmbh Verfahren zur Authentisierung einer Chipkarte innerhalb eines Nachrichtenübertragungs-Netzwerks
US6230024B1 (en) 1998-05-12 2001-05-08 Nortel Networks Limited Voice to digital fax transmission
JPH11331150A (ja) 1998-05-13 1999-11-30 Sony Corp 情報利用者についての認証・課金方法、情報利用者への情報復元用情報の配布方法及び無線呼び出し装置、並びに再生又は受信装置
FI106600B (fi) 1998-05-13 2001-02-28 Nokia Networks Oy Monipistelähetys
US6233341B1 (en) 1998-05-19 2001-05-15 Visto Corporation System and method for installing and using a temporary certificate at a remote site
US6477377B2 (en) 1998-05-29 2002-11-05 Ericsson Inc. Cellular radiotelephone systems and methods that broadcast a common control channel over multiple radio frequencies
US6253326B1 (en) * 1998-05-29 2001-06-26 Palm, Inc. Method and system for secure communications
JPH11345179A (ja) 1998-06-02 1999-12-14 Ntt Data Corp データ管理方法、データ管理システム及び構成装置、記録媒体
JPH11355460A (ja) 1998-06-03 1999-12-24 Meidensha Corp Isdn回線の接続方法
US6795473B1 (en) 1999-06-23 2004-09-21 Lambda Physik Ag Narrow band excimer laser with a prism-grating as line-narrowing optical element
JP3640237B2 (ja) 1998-06-11 2005-04-20 株式会社エヌ・ティ・ティ・ドコモ 移動通信網における情報配信方法
US6510515B1 (en) 1998-06-15 2003-01-21 Telefonaktlebolaget Lm Ericsson Broadcast service access control
US6536041B1 (en) 1998-06-16 2003-03-18 United Video Properties, Inc. Program guide system with real-time data sources
KR20000002254A (ko) 1998-06-18 2000-01-15 윤종용 이동통신시스템의 송수신 장치 및 방법
US6148010A (en) 1998-06-24 2000-11-14 Qualcomm Incorporated Method and apparatus for distributing and consolidating data packets onto multiple network interfaces
US6295361B1 (en) 1998-06-30 2001-09-25 Sun Microsystems, Inc. Method and apparatus for multicast indication of group key change
FI105966B (fi) 1998-07-07 2000-10-31 Nokia Networks Oy Autentikointi tietoliikenneverkossa
JO2117B1 (en) 1998-07-15 2000-05-21 كانال + تيكنولوجيز سوسيته انونيم A method and device for the secure communication of information between a group of audio-visual devices that operate with numbers
US6567914B1 (en) * 1998-07-22 2003-05-20 Entrust Technologies Limited Apparatus and method for reducing transmission bandwidth and storage requirements in a cryptographic security system
JP2000040064A (ja) 1998-07-24 2000-02-08 Ntt Data Corp ネットワークアクセスの認証方式
US6918035B1 (en) 1998-07-31 2005-07-12 Lucent Technologies Inc. Method for two-party authentication and key agreement
US6148198A (en) 1998-08-05 2000-11-14 Ericsson Inc. Method and apparatus for selecting a service provider
US6310661B1 (en) 1998-08-07 2001-10-30 Hughes Electronics Corporation Method of broadcasting controlling data streams and apparatus for receiving the same
US6141347A (en) 1998-08-26 2000-10-31 Motorola, Inc. Wireless communication system incorporating multicast addressing and method for use
KR100330241B1 (ko) 1998-08-26 2002-10-04 삼성전자 주식회사 무선패킷음성데이터통신장치및방법
GB2341059A (en) 1998-08-28 2000-03-01 Nokia Oy Ab Internet protocol flow detection
JP2000078555A (ja) 1998-08-28 2000-03-14 Sony Corp データ伝送システムの課金方法及び装置
EP0984630B1 (en) 1998-09-01 2006-08-23 Irdeto Access B.V. Data communication system
US6018360A (en) 1998-09-09 2000-01-25 Motorola, Inc. Method of switching a call to a multipoint conference call in a H.323 communication compliant environment
US6438612B1 (en) 1998-09-11 2002-08-20 Ssh Communications Security, Ltd. Method and arrangement for secure tunneling of data between virtual routers
US6374103B1 (en) 1998-09-30 2002-04-16 Lucent Technologies, Inc. Method and system for overhead message updates
EP0993128A1 (en) 1998-10-05 2000-04-12 Motorola, Inc. Power control in communications systems
US6266420B1 (en) * 1998-10-08 2001-07-24 Entrust Technologies Limited Method and apparatus for secure group communications
US6408001B1 (en) 1998-10-21 2002-06-18 Lucent Technologies Inc. Method for determining label assignments for a router
US6735190B1 (en) * 1998-10-21 2004-05-11 Lucent Technologies Inc. Packet transport method device utilizing header removal fields
JP3644579B2 (ja) 1998-10-29 2005-04-27 富士通株式会社 セキュリティ強化方法及び装置
JP3248498B2 (ja) 1998-10-30 2002-01-21 日本電気株式会社 移動通信システム
JP2000137551A (ja) 1998-11-02 2000-05-16 Mitsubishi Electric Corp 端末装置
CA2282942A1 (en) 1998-11-09 2000-05-09 Lucent Technologies Inc. Efficient authentication with key update
US6721805B1 (en) 1998-11-12 2004-04-13 International Business Machines Corporation Providing shared-medium multiple access capability in point-to-point communications
US6385461B1 (en) 1998-11-16 2002-05-07 Ericsson Inc. User group indication and status change in radiocommunications systems
JP2000151708A (ja) 1998-11-18 2000-05-30 Nec Corp 同報通信方法および同報通信装置
GB9826158D0 (en) 1998-11-27 1999-01-20 British Telecomm Anounced session control
JP3197526B2 (ja) 1998-11-27 2001-08-13 株式会社ワイ・アール・ピー移動通信基盤技術研究所 復号装置
AU1286700A (en) 1998-11-27 2000-06-19 British Telecommunications Public Limited Company Session announcement for adaptive component configuration
JP3022530B1 (ja) 1998-12-07 2000-03-21 日本電気株式会社 Cdma無線通信システムにおけるマルチキャスト通信方式
EP1009140A3 (en) 1998-12-11 2005-12-07 Matsushita Electric Industrial Co., Ltd. Data transmission method, data transmission system, data receiving method, and data receiving apparatus
DE19857677B4 (de) 1998-12-14 2008-04-24 Siemens Ag Verfahren und Anordnung zur Kodierung von Symbolen für eine Übertragung über eine Funkschnittstelle eines Funk-Kommunikationssystems
KR100331864B1 (ko) 1998-12-15 2002-05-09 서평원 팩스 서비스가 가능한 통신 시스템 및 이를 이용한 팩스 데이터서비스 방법
US6343280B2 (en) 1998-12-15 2002-01-29 Jonathan Clark Distributed execution software license server
JP2000183968A (ja) 1998-12-17 2000-06-30 Nippon Telegr & Teleph Corp <Ntt> パケット通信システムおよびそれを構成するノードとエッジ装置
JP2000196546A (ja) 1998-12-25 2000-07-14 Jisedai Joho Hoso System Kenkyusho:Kk 放送送受信方法、放送送信装置、放送受信装置、及び放送送受信システム
JP2000196673A (ja) 1998-12-28 2000-07-14 Toshiba Corp ハイブリッド移動通信システム、ハイブリッド移動通信装置及びハイブリッド移動通信方法
PL342519A1 (en) 1998-12-28 2001-06-18 Ntt Docomo Inc Method of monitoring communication, communication method, terminal equipment, relay apparatus and communication system
US6363242B1 (en) 1999-01-11 2002-03-26 Lucent Technologies Inc. Identifying alternative service options
US6343260B1 (en) * 1999-01-19 2002-01-29 Sun Microsystems, Inc. Universal serial bus test system
JP2000224648A (ja) 1999-01-26 2000-08-11 Telefon Ab L M Ericsson 移動無線電話システム、基地局装置、移動局装置及び移動無線電話システムにおける通信方法
EP1024661A3 (en) 1999-01-27 2002-07-17 Hughes Electronics Corporation Pictographic electronic program guide
US6415312B1 (en) 1999-01-29 2002-07-02 International Business Machines Corporation Reliable multicast for small groups
US6502140B1 (en) 1999-01-29 2002-12-31 International Business Machines Corporation Multicast support for small groups
EP1030484B1 (en) 1999-01-29 2013-07-17 Alcatel Lucent Data link layer quality of service for UMTS
US6542490B1 (en) 1999-01-29 2003-04-01 Nortel Networks Limited Data link control proctocol for 3G wireless system
US6606706B1 (en) 1999-02-08 2003-08-12 Nortel Networks Limited Hierarchical multicast traffic security system in an internetwork
FI106763B (fi) 1999-02-10 2001-03-30 Nokia Mobile Phones Ltd Menetelmä käytössä olevan protokollan tiedottamiseksi protokollapinon muille kerroksille
US6314095B1 (en) 1999-02-11 2001-11-06 Motorola, Inc. Method and apparatus for a high-speed multimedia content switch with compressed internet protocol header
GB9903124D0 (en) 1999-02-11 1999-04-07 Nokia Telecommunications Oy An authentication method
FI106901B (fi) 1999-02-23 2001-04-30 Nokia Mobile Phones Ltd Menetelmä ja järjestely pakettidatan siirron hallitsemiseksi solukkojärjestelmässä
CA2299017A1 (en) 1999-02-26 2000-08-26 Akemichi Yamada A method for high speed modulation and error control coding
US6556587B1 (en) 1999-02-26 2003-04-29 Telefonaktiebolaget Lm Ericsson (Publ) Update of header compression state in packet communications
US6377782B1 (en) 1999-03-01 2002-04-23 Mediacell, Inc. Method and apparatus for communicating between a client device and a linear broadband network
JP2000253459A (ja) 1999-03-02 2000-09-14 Kodo Ido Tsushin Security Gijutsu Kenkyusho:Kk 暗号無線通信装置
JP2000253065A (ja) 1999-03-03 2000-09-14 Nippon Telegr & Teleph Corp <Ntt> マルチキャストルーチング方法及びその装置とそのプログラムを記録した記録媒体
JP3968190B2 (ja) 1999-03-06 2007-08-29 松下電器産業株式会社 送受信装置
US6640251B1 (en) 1999-03-12 2003-10-28 Nortel Networks Limited Multicast-enabled address resolution protocol (ME-ARP)
US6788681B1 (en) 1999-03-16 2004-09-07 Nortel Networks Limited Virtual private networks and methods for their operation
EP1163758B1 (en) 1999-03-19 2003-09-10 Nokia Corporation Method and network element for forwarding multicast messages
US6614804B1 (en) 1999-03-22 2003-09-02 Webtv Networks, Inc. Method and apparatus for remote update of clients by a server via broadcast satellite
ES2620291T3 (es) 1999-03-24 2017-06-28 Qualcomm, Incorporated Acceso múltiple de reserva
JP3816689B2 (ja) 1999-03-31 2006-08-30 株式会社東芝 情報配信装置、情報受信装置及び通信方法
AU4211100A (en) 1999-04-09 2000-11-14 Opentv, Inc. Bandwidth management on a hybrid point to point broadcast
JP2000295541A (ja) 1999-04-09 2000-10-20 Matsushita Electric Ind Co Ltd 放送受信装置,放送受信装置の契約情報処理方法および放送受信装置の契約情報処理プログラム記録媒体
US6944763B1 (en) 1999-04-13 2005-09-13 Sony Corporation Data transmission system
US6473858B1 (en) 1999-04-16 2002-10-29 Digeo, Inc. Method and apparatus for broadcasting data with access control
US6765909B1 (en) 1999-04-22 2004-07-20 Nortel Networks Limited Method and apparatus for providing support for multiple QoS levels within a third generation packet data session
US7096355B1 (en) * 1999-04-26 2006-08-22 Omniva Corporation Dynamic encoding algorithms and inline message decryption
US6345307B1 (en) 1999-04-30 2002-02-05 General Instrument Corporation Method and apparatus for compressing hypertext transfer protocol (HTTP) messages
US6449491B1 (en) 1999-05-10 2002-09-10 Ericsson Inc. Apparatus and methods for conducting group calls in wireless communications systems
KR100429187B1 (ko) 1999-05-11 2004-04-28 엘지전자 주식회사 비동기 전송방식 이동통신 패킷 네트웍 및 패킷 데이터 전송 방법
EP1052876A1 (fr) 1999-05-11 2000-11-15 Alcatel Système de transmission tenant compte des exigences des différents trafics supportés, émetteur et récepteur correspondants
JP3692830B2 (ja) 1999-05-14 2005-09-07 株式会社日立製作所 マルチキャスト通信システム
US6628946B1 (en) 1999-05-20 2003-09-30 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for broadcasting system information in a cellular communications network
US6542504B1 (en) * 1999-05-28 2003-04-01 3Com Corporation Profile based method for packet header compression in a point to point link
US6178166B1 (en) 1999-05-28 2001-01-23 Motorola, Inc. Method and apparatus for group calls in a wireless CDMA communication system
WO2000076125A1 (en) 1999-06-02 2000-12-14 Nortel Networks Limited Method for engineering paths for multicast traffic
JP3331331B2 (ja) 1999-06-03 2002-10-07 松下電器産業株式会社 通信端末装置及び過干渉防止方法
FI108983B (fi) 1999-06-07 2002-04-30 Nokia Corp Liikkuvuusagentin valinta accessverkossa
US6959384B1 (en) 1999-12-14 2005-10-25 Intertrust Technologies Corporation Systems and methods for authenticating and protecting the integrity of data streams and other data
JP3689591B2 (ja) 1999-06-08 2005-08-31 キヤノン株式会社 無線通信装置
FI109321B (fi) 1999-06-10 2002-06-28 Nokia Corp Menetelmä ja järjestely nopean solunvaihdon toteuttamiseksi pakettikytkentäisessä solukkoradiojärjestelmässä
US6658463B1 (en) 1999-06-10 2003-12-02 Hughes Electronics Corporation Satellite multicast performance enhancing multicast HTTP proxy system and method
US6377810B1 (en) 1999-06-11 2002-04-23 Motorola, Inc. Method of operation of mobile wireless communication system with location information
US6434367B1 (en) 1999-06-11 2002-08-13 Lucent Technologies Inc. Using decoupled power control sub-channel to control reverse-link channel power
US6957346B1 (en) 1999-06-15 2005-10-18 Ssh Communications Security Ltd. Method and arrangement for providing security through network address translations using tunneling and compensations
AU5879800A (en) 1999-06-18 2001-01-09 Trustees Of Columbia University In The City Of New York, The System and method for receiving over a network a broadcast from a broadcast source
US6560206B1 (en) 1999-06-21 2003-05-06 Nortel Networks Limited Cell based data transmission method
JP3343908B2 (ja) 1999-06-22 2002-11-11 日本電気株式会社 同報通信方法とそのシステム及びその基地局装置と移動局
US6577644B1 (en) 1999-06-22 2003-06-10 Lucent Technologies Inc. Quality of service (QoS) enhancement to multilink point-to-point protocol (PPP)
DE69939254D1 (de) 1999-06-22 2008-09-18 Hitachi Ltd Kryptografisches Gerät und Verfahren
US6633979B1 (en) 1999-06-25 2003-10-14 Telefonaktiebolaget Lm Ericsson (Publ) Methods and arrangements for secure linking of entity authentication and ciphering key generation
US6760752B1 (en) * 1999-06-28 2004-07-06 Zix Corporation Secure transmission system
JP2001016253A (ja) 1999-06-29 2001-01-19 Hitachi Ltd 残留tcpコネクション切断方法
EP1071296A1 (en) 1999-07-22 2001-01-24 Alcatel Method to multi-cast data packets to mobile stations, and related gateway, service and routing nodes
US6067290A (en) 1999-07-30 2000-05-23 Gigabit Wireless, Inc. Spatial multiplexing in a cellular network
US6779051B1 (en) 1999-07-30 2004-08-17 Nortel Networks Corporation Determining an end point of a GRE tunnel
JP2003529232A (ja) 1999-08-02 2003-09-30 クゥアルコム・インコーポレイテッド ハイブリッドgsm/cdmaネットワークでのセルブロードキャスト
EP1075123A1 (en) 1999-08-06 2001-02-07 Lucent Technologies Inc. Dynamic home agent system for wireless communication systems
EP1209657A4 (en) 1999-08-10 2006-08-23 Fujitsu Ltd MEMORY CARD
JP2001053654A (ja) 1999-08-16 2001-02-23 Matsushita Electric Ind Co Ltd 信号分離装置、信号分離方法及び記録媒体
JP3704003B2 (ja) 1999-08-16 2005-10-05 株式会社東芝 無線基地局装置、無線端末装置及び情報通信方法
US6449488B1 (en) 1999-08-25 2002-09-10 Lucent Technologies Inc. Quality of service based CDMA broadcast scheduler
US6289455B1 (en) 1999-09-02 2001-09-11 Crypotography Research, Inc. Method and apparatus for preventing piracy of digital content
AU7357700A (en) 1999-09-08 2001-04-10 Qualcomm Incorporated System and method for automatically determining when to answer incoming packet data calls in a wireless communication network
US6363480B1 (en) * 1999-09-14 2002-03-26 Sun Microsystems, Inc. Ephemeral decryptability
DE60023924T2 (de) 1999-09-17 2006-05-24 Motorola, Inc., Schaumburg Verfahren und vorrichtung zur sendeleistungssteuerung
US6366776B1 (en) 1999-09-29 2002-04-02 Trw Inc. End-to-end transmission techniques for a processing satellite system
KR100636110B1 (ko) 1999-10-29 2006-10-18 삼성전자주식회사 엠펙-4 송수신용 시그널링을 지원하는 단말기
WO2001033771A1 (fr) 1999-11-01 2001-05-10 Sony Corporation Systeme et procede de transmission d'information, emetteur et recepteur, dispositif et procede de traitement de donnees ainsi que support enregistre
JP4423517B2 (ja) * 1999-11-05 2010-03-03 ソニー株式会社 データ処理装置およびデータ処理方法、並びに記録媒体
JP3549788B2 (ja) 1999-11-05 2004-08-04 三菱電機株式会社 多段符号化方法、多段復号方法、多段符号化装置、多段復号装置およびこれらを用いた情報伝送システム
JP2001134193A (ja) 1999-11-09 2001-05-18 Haneda Hume Pipe Co Ltd 外出表示タグ
US6529740B1 (en) 1999-12-10 2003-03-04 Motorola, Inc. Group radio with subscriber-radio controlled channel selection
US6963544B1 (en) * 1999-12-10 2005-11-08 Lucent Technologies Inc. System for statistically multiplexing real-time and non-real-time voice and data traffic in a wireless system
JP3721906B2 (ja) 1999-12-15 2005-11-30 株式会社日立製作所 移動通信システム及び移動通信システムにおけるマルチキャスト方法
US6832314B1 (en) 1999-12-15 2004-12-14 Ericsson, Inc. Methods and apparatus for selective encryption and decryption of point to multi-point messages
JP2001177523A (ja) 1999-12-16 2001-06-29 Mitsubishi Electric Corp マルチキャスト通信方法
US6798791B1 (en) 1999-12-16 2004-09-28 Agere Systems Inc Cluster frame synchronization scheme for a satellite digital audio radio system
SE519221C2 (sv) 1999-12-17 2003-02-04 Ericsson Telefon Ab L M Icke-transparent kommunikation där bara dataramar som detekterats som korrekta skickas vidare av basstationen
US6608841B1 (en) 1999-12-30 2003-08-19 Nokia Networks Oy System and method for achieving robust IP/UDP/RTP header compression in the presence of unreliable networks
US6654384B1 (en) 1999-12-30 2003-11-25 Aperto Networks, Inc. Integrated self-optimizing multi-parameter and multi-variable point to multipoint communication system
US7190687B1 (en) 2000-01-04 2007-03-13 Qualcomm Incorporated Method and apparatus for requesting point-to-point protocol (PPP) instances from a packet data services network
AU2001236570A1 (en) 2000-01-28 2001-08-07 Ibeam Broadcasting Corporation Method and apparatus for encoder-based distribution of live video and other streaming content
IL150607A0 (en) 2000-01-28 2003-02-12 Qualcomm Inc Method and apparatus for channel optimization during point-to-point protocol (ppp) session requests
US8046795B2 (en) 2000-02-03 2011-10-25 Sony Corporation Method and system for directing the generation of a video media event in a generation system based on a media event protocol file such that the video media event remains visible at a predetermined location in a second web page while a user navigates from a first web page to the second web page which does not refer to the video media event
US6956833B1 (en) 2000-02-08 2005-10-18 Sony Corporation Method, system and devices for wireless data storage on a server and data retrieval
US6915272B1 (en) 2000-02-23 2005-07-05 Nokia Corporation System and method of secure payment and delivery of goods and services
US6490259B1 (en) 2000-02-24 2002-12-03 Telcordia Technologies, Inc. Active link layer and intra-domain mobility for IP networks
US6751218B1 (en) 2000-02-26 2004-06-15 Avaya Technology Corp. Method and system for ATM-coupled multicast service over IP networks
US7016351B1 (en) 2000-02-29 2006-03-21 Cisco Technology, Inc. Small group multicast in a computer network
US20010036834A1 (en) 2000-03-03 2001-11-01 Subir Das Supporting fast intra-domain handoffs and paging in wireless cellular networks
EP1134977A1 (en) 2000-03-06 2001-09-19 Irdeto Access B.V. Method and system for providing copies of scrambled content with unique watermarks, and system for descrambling scrambled content
JP2001320372A (ja) 2000-03-13 2001-11-16 Hyundai Electronics Ind Co Ltd 統合インターネットプロトコル網で統合加入者サーバの機能的モデリングを通した統合加入者管理装置及びその方法
US6523069B1 (en) 2000-03-13 2003-02-18 Yahoo! Inc. Transmission of multicast media between networks
JP2001268535A (ja) 2000-03-15 2001-09-28 Nec Corp インターネット放送課金システム
US6952454B1 (en) 2000-03-22 2005-10-04 Qualcomm, Incorporated Multiplexing of real time services and non-real time services for OFDM systems
FI20000700A (fi) * 2000-03-24 2001-09-25 Nokia Mobile Phones Ltd Parannetun tehonsäästöominaisuuden omaava matkapuhelin
US6539242B1 (en) 2000-03-31 2003-03-25 Qualcomm Incorporated Efficient detection of general paging messages in poor signal to noise environments
SG109450A1 (en) 2000-04-06 2005-03-30 Ntt Docomo Inc Multicast signal transmission power control method and base station using the same
US7200230B2 (en) 2000-04-06 2007-04-03 Macrovision Corporation System and method for controlling and enforcing access rights to encrypted media
DE60040724D1 (de) 2000-04-07 2008-12-18 Irdeto Access Bv Datenverschlüsselungs und -entschlüsselungssystem
CN1243455C (zh) 2000-04-14 2006-02-22 株式会社Ntt都科摩 多点传播服务系统及多点传播服务方法并信息递送装置和无线电终端及无线电基地台
US7076468B2 (en) 2000-04-28 2006-07-11 Hillegass James C Method and system for licensing digital works
US20010055298A1 (en) 2000-05-10 2001-12-27 John Baker Apparatus and system to provide wireless data services through a wireless access integrated node
JP3662473B2 (ja) 2000-05-12 2005-06-22 株式会社エヌ・ティ・ティ・ドコモ マルチキャストサービス提供方法及び情報配信装置
JP4436960B2 (ja) 2000-05-16 2010-03-24 日本電気株式会社 パケット通信システムおよび移動通信システム
JP2001333032A (ja) 2000-05-23 2001-11-30 Matsushita Electric Ind Co Ltd 限定受信システム
JP2001344429A (ja) * 2000-05-31 2001-12-14 Noritsu Koki Co Ltd 情報配信システム、情報配信装置、情報受信装置、情報配信方法、情報配信プログラムを記録した記録媒体、情報受信方法、情報受信プログラムを記録した記録媒体
US6898285B1 (en) 2000-06-02 2005-05-24 General Instrument Corporation System to deliver encrypted access control information to support interoperability between digital information processing/control equipment
US6738942B1 (en) 2000-06-02 2004-05-18 Vitesse Semiconductor Corporation Product code based forward error correction system
CN1442019A (zh) 2000-06-07 2003-09-10 通用器材公司 对媒体回放系统内容输送的按时付费系统
JP3668673B2 (ja) 2000-06-09 2005-07-06 株式会社日立コミュニケーションテクノロジー エラー訂正符号の構成方法、復号方法、伝送装置、ネットワーク
JP3552648B2 (ja) 2000-06-20 2004-08-11 インターナショナル・ビジネス・マシーンズ・コーポレーション アドホック無線通信用データ送受システム及びアドホック無線通信用データ送受方法
JP2002001113A (ja) 2000-06-27 2002-01-08 Nippon Sanso Corp 圧力変動吸着分離用の吸着剤及び吸着筒並びに装置
US6598203B1 (en) 2000-06-28 2003-07-22 Northrop Grumman Corporation Parallel punctured convolutional encoder
AU2001271704A1 (en) 2000-06-29 2002-01-14 Cachestream Corporation Digital rights management
GB2364211A (en) 2000-06-30 2002-01-16 Nokia Oy Ab A terminal comprising two receivers for receiving an encrypted first signal from a first network and a decryption second signal from a second network
JP3742282B2 (ja) 2000-06-30 2006-02-01 株式会社東芝 放送受信方法および放送受信装置および情報配信方法および情報配信装置
US20020002541A1 (en) 2000-06-30 2002-01-03 Williams Eddie H. Online digital content library
JP2002027417A (ja) 2000-07-10 2002-01-25 Matsushita Electric Ind Co Ltd 番組蓄積方法及び番組蓄積装置
JP2002026835A (ja) 2000-07-10 2002-01-25 Matsushita Electric Ind Co Ltd 限定受信方法およびシステム
US7203314B1 (en) 2000-07-21 2007-04-10 The Directv Group, Inc. Super encrypted storage and retrieval of media programs with modified conditional access functionality
EP1303537B1 (en) 2000-07-25 2006-09-27 The Sir Mortimer B. Davis-Jewish General Hospital Ho-1 suppressor as a diagnostic and prognostic test for dementing diseases
US6862684B1 (en) 2000-07-28 2005-03-01 Sun Microsystems, Inc. Method and apparatus for securely providing billable multicast data
AU2001282446B2 (en) 2000-08-11 2007-01-04 Nds Limited System and method for pre-encryption of transmitted content
JP4254031B2 (ja) 2000-08-21 2009-04-15 ソニー株式会社 記録装置、携帯端末、管理サーバ、情報処理方法、および記録媒体
ATE307452T1 (de) 2000-08-25 2005-11-15 Research In Motion Ltd System und verfahren zur implementierung des verbesserten transportschicht- sicherheitsprotokolls
JP3578710B2 (ja) 2000-09-11 2004-10-20 シャープ株式会社 マルチチャンネル放送受信方法およびマルチチャンネル放送受信装置
US6879573B1 (en) 2000-09-15 2005-04-12 Lucent Technologies Inc. Channel sharing by diverse multiframes in a wireless communications network
KR100461884B1 (ko) * 2000-09-15 2004-12-14 엘지전자 주식회사 메시지 전달부 신호 메시지 고속 전달 방법
JP2002217894A (ja) 2000-09-28 2002-08-02 Hitachi Ltd データ配信サービス方法
US6564211B1 (en) 2000-10-04 2003-05-13 Lsi Logic Corporation Fast flexible search engine for longest prefix match
KR100358120B1 (ko) 2000-10-20 2002-10-25 한국전자통신연구원 동일대역 인접채널 방식의 디지털 오디오 방송 전송 시스템
US6804520B1 (en) 2000-11-01 2004-10-12 Telefonaktiebolaget Lm Ericsson (Publ) Temporary service interruption for high speed data transfer
US6819930B1 (en) 2000-11-03 2004-11-16 Lucent Technologies Inc. Apparatus and method for use in allocating a channel resource in wireless multiple access communications systems
JP4691244B2 (ja) 2000-11-10 2011-06-01 株式会社東芝 限定受信システムの限定受信装置及びセキュリティモジュール、限定受信システム、限定受信装置認証方法及び暗号通信方法
FR2816773B1 (fr) 2000-11-10 2004-11-26 France Telecom Module, dispositif et procede de decodage a haut debit, d'un code concatene
US7046672B2 (en) 2000-11-16 2006-05-16 Microsoft Corporation Robust, inferentially synchronized transmission of compressed transport-layer-protocol headers
US7301946B2 (en) * 2000-11-22 2007-11-27 Cisco Technology, Inc. System and method for grouping multiple VLANs into a single 802.11 IP multicast domain
US7079511B2 (en) 2000-12-06 2006-07-18 Qualcomm, Incorporated Method and apparatus for handoff of a wireless packet data services connection
FR2818062B1 (fr) 2000-12-07 2003-04-11 Thomson Multimedia Sa Methode de transmission securisee de donnees numeriques d'une source vers un recepteur
JP2002175505A (ja) 2000-12-08 2002-06-21 Citizen Watch Co Ltd 携帯型情報装置、個人認証システム及び認証データ消去方法
US6857075B2 (en) 2000-12-11 2005-02-15 Lucent Technologies Inc. Key conversion system and method
EP1215905B2 (en) * 2000-12-15 2010-04-21 Panasonic Corporation Reception apparatus having a storage unit for recording a scrambled broadcast signal and broadcast apparatus for scrambling a signal to be broadcast, and associated methods
US7039180B1 (en) 2000-12-20 2006-05-02 Cisco Technology, Inc. Method and apparatus for enabling multiple protocol communication over a network
US6760602B2 (en) 2000-12-22 2004-07-06 Motorola, Inc. Mobile communication system with improved base station control
US20020091931A1 (en) 2001-01-05 2002-07-11 Quick Roy Franklin Local authentication in a communication system
US7278164B2 (en) 2001-01-05 2007-10-02 Revit Technology Corporation Software usage/procurement management
US7668315B2 (en) 2001-01-05 2010-02-23 Qualcomm Incorporated Local authentication of mobile subscribers outside their home systems
US7133353B2 (en) 2001-01-08 2006-11-07 Telefonaktiebolaget Lm Ericsson (Publ) CDMA system using quasi-orthogonal codes
US6920119B2 (en) 2001-01-09 2005-07-19 Motorola, Inc. Method for scheduling and allocating data transmissions in a broad-band communications system
US7290063B2 (en) 2001-01-10 2007-10-30 Nokia Corporation Relocating context information in header compression
JP2002216040A (ja) 2001-01-18 2002-08-02 Nippon Telegraph & Telephone East Corp コンテンツ配信システムおよび方法
US7036023B2 (en) 2001-01-19 2006-04-25 Microsoft Corporation Systems and methods for detecting tampering of a computer system by calculating a boot signature
NZ536782A (en) 2001-01-31 2005-10-28 Ntt Docomo Inc System for program delivery to a storage module of a mobile terminal
JP2002232962A (ja) 2001-02-07 2002-08-16 Kddi Corp 移動通信認証インターワーキング方式
US6725459B2 (en) 2001-02-09 2004-04-20 Scientific-Atlanta, Inc. Descrambling device for use in a conditional access system
US7266687B2 (en) * 2001-02-16 2007-09-04 Motorola, Inc. Method and apparatus for storing and distributing encryption keys
US6879690B2 (en) 2001-02-21 2005-04-12 Nokia Corporation Method and system for delegation of security procedures to a visited domain
US7301968B2 (en) * 2001-03-02 2007-11-27 Pmc-Sierra Israel Ltd. Communication protocol for passive optical network topologies
US6763025B2 (en) 2001-03-12 2004-07-13 Advent Networks, Inc. Time division multiplexing over broadband modulation method and apparatus
JP2002353951A (ja) 2001-03-19 2002-12-06 Sony Corp デジタルコンテンツ配送装置及び配送方法
US7693508B2 (en) 2001-03-28 2010-04-06 Qualcomm Incorporated Method and apparatus for broadcast signaling in a wireless communication system
US6909702B2 (en) 2001-03-28 2005-06-21 Qualcomm, Incorporated Method and apparatus for out-of-band transmission of broadcast service option in a wireless communication system
US8077679B2 (en) 2001-03-28 2011-12-13 Qualcomm Incorporated Method and apparatus for providing protocol options in a wireless communication system
US7349425B2 (en) 2001-03-28 2008-03-25 Qualcomm Incorporated Method and apparatus for overhead messaging in a wireless communication system
EP1378145A1 (en) 2001-03-28 2004-01-07 QUALCOMM Incorporated Method and apparatus for channel management for point-to-multipoint services in a communication system
US8121296B2 (en) 2001-03-28 2012-02-21 Qualcomm Incorporated Method and apparatus for security in a data processing system
US9100457B2 (en) 2001-03-28 2015-08-04 Qualcomm Incorporated Method and apparatus for transmission framing in a wireless communication system
US6707801B2 (en) 2001-03-28 2004-03-16 Qualcomm Incorporated Method and apparatus for data transport in a wireless communication system
US7031666B2 (en) 2001-03-28 2006-04-18 Qualcomm Incorporated. Method and apparatus for header compression in a wireless communication system
JP3920583B2 (ja) 2001-03-29 2007-05-30 株式会社日立製作所 通信セキュリティ保持方法及びその実施装置並びにその処理プログラム
TW502190B (en) 2001-04-11 2002-09-11 Taiwan Cellular Corp Commodity ordering method of wireless mobile communication network and information processing system thereof
US7203837B2 (en) 2001-04-12 2007-04-10 Microsoft Corporation Methods and systems for unilateral authentication of messages
JP3819729B2 (ja) 2001-04-20 2006-09-13 株式会社エヌ・ティ・ティ・ドコモ データ安全化通信装置及びその方法
TW508958B (en) 2001-05-03 2002-11-01 Far Eastone Telecomm Co Ltd Instantaneous polling utilizing a message service mobile phone Network
US6856800B1 (en) 2001-05-14 2005-02-15 At&T Corp. Fast authentication and access control system for mobile networking
US7995603B2 (en) * 2001-05-22 2011-08-09 Nds Limited Secure digital content delivery system and method over a broadcast network
FI111776B (fi) 2001-05-28 2003-09-15 Nokia Corp Ohjausviestien välittäminen pakettidataverkon ohjauskanavilla
BR0210611A (pt) 2001-06-22 2004-08-10 Paperless Interactive Newspape Transmissão multimìdia, serviços de transmissão para telefone celular e outros usuários e cartão sim modificado e dispositvos afins para permitir tal recepção de transmissão
CN1647070A (zh) 2001-06-22 2005-07-27 诺萨·欧莫贵 用于知识检索、管理、交付和表示的系统和方法
US7900042B2 (en) 2001-06-26 2011-03-01 Ncipher Corporation Limited Encrypted packet inspection
US6983410B2 (en) 2001-07-02 2006-01-03 Qualcomm, Incorporated System and method for a frame re-transmission in a broadcast communication system
US6996739B2 (en) * 2001-07-11 2006-02-07 Sun Microsystems, Inc. Accumulator memory for performing operations on block operands
US6781999B2 (en) 2001-07-23 2004-08-24 Airvana, Inc. Broadcasting and multicasting in wireless communication
US6829741B1 (en) 2001-07-27 2004-12-07 Centillium Communications, Inc. Forward error correction (FEC) based on SONET/SDH framing
US7114175B2 (en) 2001-08-03 2006-09-26 Nokia Corporation System and method for managing network service access and enrollment
JP3783587B2 (ja) 2001-08-06 2006-06-07 日本電気株式会社 情報販売システム及びそれに用いる情報販売方法並びにそのプログラム
DE10138718A1 (de) 2001-08-07 2003-02-20 Siemens Ag Verfahren zur Übermittlung von Chiffrierungsinformationen an Teilnehmer einer Multicast-Gruppe
AU2002368273A1 (en) 2001-08-09 2004-07-08 Honeywell International Inc. Secure aircraft communications addressing and reporting system (acars)
US6895546B2 (en) 2001-08-16 2005-05-17 Broad-Light Ltd. System and method for encoding and decoding data utilizing modified reed-solomon codes
US7787389B2 (en) 2001-08-20 2010-08-31 Qualcomm Incorporated Method and system for utilization of an outer decoder in a broadcast services communication system
US7185362B2 (en) * 2001-08-20 2007-02-27 Qualcomm, Incorporated Method and apparatus for security in a data processing system
US6731936B2 (en) 2001-08-20 2004-05-04 Qualcomm Incorporated Method and system for a handoff in a broadcast communication system
US20040120527A1 (en) 2001-08-20 2004-06-24 Hawkes Philip Michael Method and apparatus for security in a data processing system
US20030054807A1 (en) 2001-09-17 2003-03-20 Liangchi Hsu Apparatus, and associated method, for facilitating multicast and broadcast services in a radio communication system
US6701482B2 (en) 2001-09-20 2004-03-02 Qualcomm Incorporated Method and apparatus for coding bits of data in parallel
JP2003099327A (ja) 2001-09-21 2003-04-04 Yoichi Akase データ再生方法および終端装置
EP1483900A1 (en) 2001-09-25 2004-12-08 Thomson Licensing S.A. Ca system for broadcast dtv using multiple keys for different service providers and service areas
US7237108B2 (en) * 2001-09-26 2007-06-26 General Instrument Corporation Encryption of streaming control protocols and their headers
KR100819493B1 (ko) 2001-09-28 2008-04-07 엘지전자 주식회사 무선랜을 이용한 엠펙 데이터 송수신 장치
JP3841337B2 (ja) 2001-10-03 2006-11-01 日本放送協会 コンテンツ送信装置、コンテンツ受信装置およびコンテンツ送信プログラム、コンテンツ受信プログラム
US7184789B2 (en) 2001-10-03 2007-02-27 Qualcomm, Incorporated Method and apparatus for data packet transport in a wireless communication system using an internet protocol
US7697523B2 (en) 2001-10-03 2010-04-13 Qualcomm Incorporated Method and apparatus for data packet transport in a wireless communication system using an internet protocol
US7352868B2 (en) 2001-10-09 2008-04-01 Philip Hawkes Method and apparatus for security in a data processing system
US7649829B2 (en) 2001-10-12 2010-01-19 Qualcomm Incorporated Method and system for reduction of decoding complexity in a communication system
JP2003124927A (ja) 2001-10-15 2003-04-25 Sony Corp 相互認証システム及び相互認証方法、相互認証装置、並びに記憶媒体
FR2831360B1 (fr) 2001-10-19 2004-02-06 Viaccess Sa Protocole interactif de gestion a distance du controle d'acces a des informations embrouillees
US6987764B2 (en) 2001-11-05 2006-01-17 Qualcomm, Incorporated Method and apparatus for selecting a packet data serving node for multi-cast/broadcast services
US7181620B1 (en) 2001-11-09 2007-02-20 Cisco Technology, Inc. Method and apparatus providing secure initialization of network devices using a cryptographic key distribution approach
JP4292736B2 (ja) 2001-11-15 2009-07-08 ソニー株式会社 伝送システム、伝送方法
US6885874B2 (en) 2001-11-27 2005-04-26 Motorola, Inc. Group location and route sharing system for communication units in a trunked communication system
US6882850B2 (en) 2001-12-03 2005-04-19 Sprint Spectrum L.P. Method and system for zone-based capacity control
CA2468938A1 (en) 2001-12-07 2003-06-19 Qualcomm Incorporated Apparatus and method of using a ciphering key in a hybrid communications network
US7382881B2 (en) 2001-12-07 2008-06-03 Telefonaktiebolaget L M Ericsson (Publ) Lawful interception of end-to-end encrypted data traffic
EP1452027B1 (en) 2001-12-10 2006-08-02 International Business Machines Corporation Access to encrypted broadcast content
FR2833446B1 (fr) 2001-12-12 2004-04-09 Viaccess Sa Protocole de controle du mode d'acces a des donnees transmises en mode point a point ou point multi-point
NZ533176A (en) 2001-12-25 2005-10-28 Ntt Docomo Inc Device and method for restricting content access and storage
US7076657B2 (en) 2001-12-28 2006-07-11 Siemens Communications, Inc. Use of short message service (SMS) for secure transactions
US8126127B2 (en) 2002-01-16 2012-02-28 Qualcomm Incorporated Method and apparatus for provision of broadcast service information
US6970689B2 (en) 2002-02-15 2005-11-29 Broadcom Corporation Programmable mixer for reducing local oscillator feedthrough and radio applications thereof
US7006844B2 (en) * 2002-02-19 2006-02-28 Nokia Corporation Adaptive power control for multicast transmission
JP3609788B2 (ja) 2002-02-27 2005-01-12 株式会社東芝 放送信号記録装置
JP3857610B2 (ja) 2002-03-05 2006-12-13 株式会社エヌ・ティ・ティ・ドコモ 承継保証装置、通信装置、プログラム、及び記録媒体
JP4104356B2 (ja) 2002-03-18 2008-06-18 東芝ソリューション株式会社 放送システム、受信装置及びプログラム
AU2003214411A1 (en) 2002-03-27 2003-10-13 British Telecommunications Public Limited Company Key management protocol
JP2003297015A (ja) 2002-03-29 2003-10-17 Toshiba Corp コンテンツ保存端末及びこのコンテンツ保存端末にコンテンツを配信する配信サーバ装置
JP3818504B2 (ja) 2002-04-15 2006-09-06 ソニー株式会社 情報処理装置および方法、並びにプログラム
JP4192498B2 (ja) 2002-05-17 2008-12-10 日本電気株式会社 コンテンツ転送方法、そのプログラム、そのシステム及びサーバ
US7529463B2 (en) 2002-05-22 2009-05-05 Panasonic Corporation Speculative recording device
JP4220303B2 (ja) 2002-05-22 2009-02-04 パナソニック株式会社 投機録画装置、及びそのシステム
US7197072B1 (en) 2002-05-30 2007-03-27 Intervideo, Inc. Systems and methods for resetting rate control state variables upon the detection of a scene change within a group of pictures
JP4276411B2 (ja) 2002-06-28 2009-06-10 インクリメント・ピー株式会社 通信機器認証システム、通信機器認証方法、通信機器認証装置、通信機器認証用プログラムおよび情報記録媒体
US7646737B2 (en) 2002-08-02 2010-01-12 Qualcomm Incorporated Multimode wireless device system provision validation and acquisition method and apparatus
JP4125564B2 (ja) 2002-08-22 2008-07-30 アーベル・システムズ株式会社 暗号化/復号鍵の鍵生成方法、暗号化/復号鍵の鍵生成装置、暗号化/復号鍵の鍵生成プログラムならびにコンピュータで読取可能な記録媒体
KR20040021039A (ko) 2002-09-02 2004-03-10 엘지전자 주식회사 고밀도 광디스크의 에러정정 방법
EP1547304B1 (en) 2002-09-13 2007-11-14 Telefonaktiebolaget LM Ericsson (publ) Secure broadcast/multicast service
JP2004186768A (ja) 2002-11-29 2004-07-02 Toshiba Corp 放送受信装置、放送受信方法及びavネットワークシステム
US7319757B2 (en) 2003-01-02 2008-01-15 Intel Corporation Wireless communication device and method for over-the-air application service
US7599655B2 (en) 2003-01-02 2009-10-06 Qualcomm Incorporated Method and apparatus for broadcast services in a communication system
US7424115B2 (en) 2003-01-30 2008-09-09 Nokia Corporation Generating asymmetric keys in a telecommunications system
US7146130B2 (en) 2003-02-24 2006-12-05 Qualcomm Incorporated Wireless local access network system detection and selection
US20040202329A1 (en) 2003-04-11 2004-10-14 Samsung Electronics Co., Ltd. Method and system for providing broadcast service using encryption in a mobile communication system
CN1281561C (zh) 2003-04-23 2006-10-25 中国科学院上海有机化学研究所 一种具有1,6-亚甲基-[10]-轮烯基本骨架的化合物及其用途
US7181196B2 (en) 2003-05-15 2007-02-20 Lucent Technologies Inc. Performing authentication in a communications system
US7275157B2 (en) 2003-05-27 2007-09-25 Cisco Technology, Inc. Facilitating 802.11 roaming by pre-establishing session keys
US7574196B2 (en) 2003-06-30 2009-08-11 Nokia Corporation Method and a system for charging a streaming connection in a mobile packet radio system
US8098818B2 (en) 2003-07-07 2012-01-17 Qualcomm Incorporated Secure registration for a multicast-broadcast-multimedia system (MBMS)
US8718279B2 (en) 2003-07-08 2014-05-06 Qualcomm Incorporated Apparatus and method for a secure broadcast system
US20050010859A1 (en) 2003-07-09 2005-01-13 Mcdonough Carol P. System for processing documents and associated ancillary information
US7308100B2 (en) 2003-08-18 2007-12-11 Qualcomm Incorporated Method and apparatus for time-based charging for broadcast-multicast services (BCMCS) in a wireless communication system
US8724803B2 (en) 2003-09-02 2014-05-13 Qualcomm Incorporated Method and apparatus for providing authenticated challenges for broadcast-multicast communications in a communication system
JP2006074656A (ja) 2004-09-06 2006-03-16 Yokogawa Electric Corp 前方向誤り訂正方法とそれを用いた通信方法および通信装置
KR100843072B1 (ko) 2005-02-03 2008-07-03 삼성전자주식회사 무선 네트워크 시스템 및 이를 이용한 통신 방법
KR100628566B1 (ko) 2005-04-25 2006-09-26 삼성전자주식회사 무선랜에서 보안 정보 형성 방법
EP2279630A4 (en) 2008-04-24 2015-03-11 Nokia Corp METHOD, DEVICE AND COMPUTER PROGRAM PRODUCT FOR PROVIDING INTERNET PROTOCOL MULTICAST TRANSPORT
US20100012432A1 (en) * 2008-07-17 2010-01-21 Noel Larry M Collapsible Sawhorse
US20100022124A1 (en) * 2008-07-25 2010-01-28 Kuen-Ming Shie Coaxial cable connector

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0636963A2 (en) * 1993-07-30 1995-02-01 International Business Machines Corporation Authentication system using one-time passwords
RU2115249C1 (ru) * 1994-02-28 1998-07-10 Моторола, Инк. Способ эфирной перенастройки по ключу множества групп связи
US5481613A (en) * 1994-04-15 1996-01-02 Northern Telecom Limited Computer network cryptographic key distribution system
US6044154A (en) * 1994-10-31 2000-03-28 Communications Devices, Inc. Remote generated, device identifier key for use with a dual-key reflexive encryption security system
RU2147792C1 (ru) * 1996-04-29 2000-04-20 Моторола, Инк. Использование шифровального сервера для шифрования сообщений
US5956404A (en) * 1996-09-30 1999-09-21 Schneier; Bruce Digital signature with auditing bits
US6073122A (en) * 1997-08-15 2000-06-06 Lucent Technologies Inc. Cryptographic method and apparatus for restricting access to transmitted programming content using extended headers
JP2001177513A (ja) * 1999-12-15 2001-06-29 Nippon Telegr & Teleph Corp <Ntt> 通信システムにおける認証方法、センタ装置、認証プログラムを記録した記録媒体
EP1117204A3 (en) * 2000-01-14 2003-10-01 Hewlett-Packard Company, A Delaware Corporation Authorization infrastructure based on public key cryptography

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WILLIAN STALLINGS, Cryptography & Network security, Prentice-Hall, New Jersey, 1995. c.402-406, 413-417, 421-424. *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2510972C2 (ru) * 2008-12-12 2014-04-10 Континенталь Аутомотиве Гмбх Способ эксплуатации сенсорного устройства и сенсорное устройство
RU2491747C1 (ru) * 2009-06-23 2013-08-27 Сименс Акциенгезелльшафт Защищенная от манипулирования передача данных между автоматизированными приборами
RU2614369C2 (ru) * 2012-09-17 2017-03-24 Нокиа Текнолоджиз Ой Защита при обеспечении мобильности между серверами mbms
RU2689308C2 (ru) * 2014-09-25 2019-05-27 Сони Корпорейшн Устройство беспроводной связи, способ беспроводной связи и программа
US11182490B2 (en) 2017-03-23 2021-11-23 Microsoft Technology Licensing, Llc Obfuscation of user content in user data files
RU2764393C2 (ru) * 2017-03-23 2022-01-17 МАЙКРОСОФТ ТЕКНОЛОДЖИ ЛАЙСЕНСИНГ, ЭлЭлСи Конфигурируемые примечания для высококонфиденциального пользовательского контента
US11544402B2 (en) 2017-03-23 2023-01-03 Microsoft Technology Licensing, Llc Annotations for privacy-sensitive user content in user applications
RU2768196C2 (ru) * 2017-08-04 2022-03-23 БИТДЕФЕНДЕР АйПиАр МЕНЕДЖМЕНТ ЛТД Защищённое запоминающее устройство
RU2768196C9 (ru) * 2017-08-04 2022-05-13 БИТДЕФЕНДЕР АйПиАр МЕНЕДЖМЕНТ ЛТД Защищённое запоминающее устройство
RU2718217C1 (ru) * 2019-04-05 2020-03-31 Открытое Акционерное Общество "Информационные Технологии И Коммуникационные Системы" Способ обеспечения передачи зашифрованных данных со сменой ключей шифрования и имитозащиты в цифровой системе передачи данных

Also Published As

Publication number Publication date
JP2005537689A (ja) 2005-12-08
EP1436939B1 (en) 2020-04-08
CA2463542C (en) 2013-02-12
WO2003032573A2 (en) 2003-04-17
HK1076553A1 (en) 2006-01-20
ES2796115T3 (es) 2020-11-25
RU2004114212A (ru) 2005-10-27
EP2204939A2 (en) 2010-07-07
EP2204939B1 (en) 2020-03-18
AU2002342014B2 (en) 2008-03-13
EP2204940A2 (en) 2010-07-07
US8983065B2 (en) 2015-03-17
CN1633778A (zh) 2005-06-29
ES2791681T3 (es) 2020-11-05
US20080226073A1 (en) 2008-09-18
EP1436939A2 (en) 2004-07-14
JP4732687B2 (ja) 2011-07-27
CN100481762C (zh) 2009-04-22
EP2204940A3 (en) 2012-07-04
CN101515851A (zh) 2009-08-26
US7352868B2 (en) 2008-04-01
CA2463542A1 (en) 2003-04-17
EP2204940B1 (en) 2020-04-01
IL161312A0 (en) 2004-09-27
KR100967323B1 (ko) 2010-07-05
TWI256223B (en) 2006-06-01
KR20050034607A (ko) 2005-04-14
US20030070092A1 (en) 2003-04-10
MXPA04003335A (es) 2004-07-08
CN101515851B (zh) 2014-09-10
BR0213214A (pt) 2006-05-23
EP2204939A3 (en) 2012-06-13
HK1137269A1 (en) 2010-07-23
AU2002342014C1 (en) 2008-10-30
WO2003032573A3 (en) 2003-10-30

Similar Documents

Publication Publication Date Title
RU2333608C2 (ru) Способ и устройство для обеспечения защиты в системе обработки данных
CA2442656C (en) Method and apparatus for security in a data processing system
JP5307220B2 (ja) 移動通信システムにおける安全なデータ伝送のための方法および装置
AU2002342014A1 (en) Method and apparatus for security in a data processing system
BRPI0213214B1 (pt) Safety method and equipment in a data processing system