RU2174679C2 - Электрохимический способ - Google Patents

Электрохимический способ Download PDF

Info

Publication number
RU2174679C2
RU2174679C2 RU98111192/28A RU98111192A RU2174679C2 RU 2174679 C2 RU2174679 C2 RU 2174679C2 RU 98111192/28 A RU98111192/28 A RU 98111192/28A RU 98111192 A RU98111192 A RU 98111192A RU 2174679 C2 RU2174679 C2 RU 2174679C2
Authority
RU
Russia
Prior art keywords
potential
cell
concentration
current
preceding paragraphs
Prior art date
Application number
RU98111192/28A
Other languages
English (en)
Other versions
RU98111192A (ru
Inventor
Аластэр Мак Индоу ХОДЖЕС
Томас Уильям БЕК
Оддвар ЙОХАНСЕН
Ян Эндрю МАКСВЕЛЛ
Original Assignee
ЮСФ Фильтрейшн энд Сепарейшнс Груп Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ЮСФ Фильтрейшн энд Сепарейшнс Груп Инк. filed Critical ЮСФ Фильтрейшн энд Сепарейшнс Груп Инк.
Publication of RU98111192A publication Critical patent/RU98111192A/ru
Application granted granted Critical
Publication of RU2174679C2 publication Critical patent/RU2174679C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • C12Q1/005Enzyme electrodes involving specific analytes or enzymes
    • C12Q1/006Enzyme electrodes involving specific analytes or enzymes for glucose
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • C12Q1/004Enzyme electrodes mediator-assisted
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3272Test elements therefor, i.e. disposable laminated substrates with electrodes, reagent and channels

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Emergency Medicine (AREA)
  • Hematology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Primary Cells (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Hybrid Cells (AREA)
  • Fuel Cell (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

Изобретение может быть использовано для определения концентрации анолита в носителе. Технический результат изобретения заключается в улучшении точности измерения, сокращении времени измерения, исключение влияния кислорода и повышение надежности. Способ определения концентрации восстановленной (или окисленной) формы веществ окисления-восстановления в электрохимической ячейке, содержащей рабочий электрод и противоэлектрод, удаленный от рабочего электрода так, что продукты реакции от противоэлектрода достигают рабочего электрода, включает этапы приложения электрического потенциала между электродами так, что окисление-восстановление является контролируемым посредством диффузии, определение тока как функции времени, оценки величины тока стационарного состояния, изменение полярности потенциала, повторного определения тока как функции времени и оценки измененного стационарного состояния потенциала. 12 з.п. ф-лы, 11 ил., 1 табл.

Description

Настоящее изобретение относится к электрохимическому способу для определения концентрации анолита в носителе и к устройству, пригодному для использования при осуществлении способа.
Описанное изобретение является усовершенствованием или модификацией изобретения, описанного в ожидающей решения заявке PCT/AU96/00365, содержание которой включено в качестве ссылки.
Изобретение будет описано с частной ссылкой на биодатчик, приспособленный для измерения концентрации глюкозы в крови, но специалистам должно быть понятно, что изобретение не ограничивается таким конкретным применением и является пригодным к другим аналитическим определениям.
Известно измерение концентрации составляющей, подлежащей анализу, в водном жидком образце посредством помещения образца в зону реакции в электрохимической ячейке, содержащей два электрода, имеющих импеданс, который делает его пригодным для амперометрического измерения. Подлежащему анализу компоненту позволяют реагировать непосредственно с электродом или непосредственно или опосредованно с реагентом окисления-восстановления для образования окисляемого (или восстанавливаемого) вещества в количестве, соответствующем концентрации подлежащего анализу соединения. Количество присутствующего окисляемого (или восстанавливаемого) вещества затем оценивается электрохимически. Обычно этот способ требует достаточного удаления электродов так, чтобы продукты электролиза на одном электроде не могли реагировать с другим электродом и взаимодействовать с процессами на другом электроде в течение периода измерения.
В ожидающей решения заявке описан новый способ определения концентрации восстановленной (или окисленной) формы веществ окисления-восстановления в электрохимической ячейке, содержащей рабочий электрод и противоэлектрод (или противоэлектрод/электрод сравнения), удаленный от рабочего электрода. Способ включает приложение разности электрических потенциалов между электродами, удаление рабочего электрода от противоэлектрода так, чтобы продукты реакции от противоэлектрода достигали рабочего электрода, и выбор потенциала рабочего электрода так, чтобы скорость электроокисления восстановленной формы вещества (или электровосстановление окисленной формы) была контролируемой посредством диффузии. Определяя ток как функцию времени после подачи потенциала и перед достижением тока стационарного состояния, а затем оценивая величину тока стационарного состояния, описанный ранее способ позволяет оценить коэффициент диффузии и/или концентрацию восстановленной (или окисленной) формы вещества.
Ожидающая решения заявка демонстрирует этот способ со ссылкой на использование "тонкослойной" ячейки, использующей систему GOD/Ферроцианид. Используемый здесь термин "тонкослойная электрохимическая ячейка" относится к ячейке, имеющей близко расположенные электроды так, что продукты реакции от противоэлектрода достигали рабочего электрода. На практике удаление электродов в такой ячейке для измерения глюкозы в крови должно быть менее 500 мкм, предпочтительно менее 200 мкм.
Химизм, используемый в демонстрируемой электрохимической ячейке, является следующим:
глюкоза + GOD ---> глюконовая кислота + GOD* (1)
GOD* + 2феррицианид ---> GOD + 2ферроцианид (2)
где GOD является ферментом глюкозо-оксидазой, a GOD* является "активированным" ферментом. Феррицианид ([Fe(CN)6]3-) является "промежуточным веществом" ("посредником"), который возвращает GOD* в его каталитическое состояние. GOD, ферментный катализатор, не потребляется во время реакции до тех пор, пока присутствует посредник. Ферроцианид ([Fe(CN)6] 4-) является продуктом общей реакции. В идеале изначально не существует ферроцианида, хотя на практике часто имеется небольшое количество. После того как реакция завершена, концентрация ферроцианида (измеренная электрохимически) указывает начальную концентрацию глюкозы. Общая реакция является суммой реакций 1 и 2:
Глюкоза + 2феррицианид ---> глюконовая кислота + 2ферроцианид (3)
"Глюкоза" относится конкретно к β-D-глюкозе.
Предшествующий уровень техники имеет ряд недостатков. Во-первых, требуемый размер образца является больше, чем необходимо. Обычно было бы предпочтительно иметь возможность проводить измерения на образцах уменьшенного объема, так как это, в свою очередь, дает возможность использовать менее "агрессивные" способы получения проб.
Во-вторых, обычно желательно улучшить точность измерения и устранить или уменьшить изменения, возникающие, например, из-за асимметрии или других факторов, вносимых во время массового производства микроячеек.
В третьих, обычно желательно сократить время, которое требуется для проведения измерения. Протоколы теста, используемые в современных коммерчески доступных электрохимических датчиках глюкозы, включают в себя заранее заданный период ожидания в начале теста, в течение которого фермент реагирует с глюкозой, для получения вещества, которое воспринимается электрохимически. Этот начальный период является фиксированным на максимуме, необходимом для достижения требуемой реакции при всех условиях использования.
В четвертых, желательно устранить изменения из-за кислорода. Кислород может обильно присутствовать в крови или растворенным в плазме или связанным в гемоглобине. Он может быть также введен во время "прокалывания пальца", когда капля крови малого объема и с большой площадью поверхности подвергается воздействию атмосферы перед введением в ячейку. Кислород может взаимодействовать, так как кислород является посредником для GOD. Реакция является следующей:
глюкоза + GOD ---> глюконовая кислота + GOD* (4)
GOD* +кислород+вода ---> GOD + перекись водорода (5)
Общая реакция такова:
GOD глюкоза+вода+кислород ---> глюконовая кислота+ перекись водорода (6)
В большинстве случаев усложнение, связанное с кислородом, также действующим в качестве посредника, является нежелательным, просто из-за того, что концентрация конечного ферроцианида более не является прямо пропорциональной концентрации начального содержания глюкозы. Вместо этого, начальная концентрация глюкозы затем является связанной и с конечной концентрацией ферроцианида и перекиси водорода.
Задачей изобретения является создание усовершенствованного способа определения концентрации анолита в носителе, который избегает или значительно улучшает известные недостатки. Задачей предпочтительных форм изобретения является создание биодатчика с улучшенной точностью и/или надежностью и/или скоростью.
Согласно одному аспекту, изобретение заключается в способе определения концентрации восстановленной (или окисленной) формы веществ окисления - восстановления в электрохимической ячейке, содержащей рабочий электрод и противоэлектрод, удаленный от рабочего электрода на заранее заданное расстояние, указанный способ содержит этапы:
(а) приложение электрического потенциала между электродами, причем электроды удалены так, что продукты реакции от противоэлектрода достигают рабочего электрода посредством диффузии, и в котором потенциал рабочего электрода является таким, что скорость электроокисления восстановленной формы (или окисленной формы) веществ окисления - восстановления является контролируемой посредством диффузии,
(b) определение тока как функции времени после приложения потенциала и прежде достижения стационарного состояния,
(с) оценка величины тока стационарного состояния,
(d) прерывание или изменение полярности потенциала,
(e) повторение этапа (b) и этапа (с).
Изобретение исходит из открытия, что если полярность является реверсивной (т. е. анод становится катодом и наоборот) после достижения током начального стационарного состояния, то второй переходный процесс тока может наблюдаться и после периода времени, когда достигнуто второе стационарное состояние. Это является полезным для диагностики и для уменьшения влияния асимметрии ячейки и других факторов, которые влияют на переходный процесс тока. Это также обеспечивает большую надежность и/или точность оценки посредством разрешения проведения измерений повторяющимся образом, используя реверсивную полярность. Таким же образом, если потенциал прерывается на время, достаточное для того, чтобы профиль концентрации вернулся в случайное состояние, а затем подан повторно, то этапы (b) и (c) могут быть повторены.
Согласно второму аспекту, изобретение заключается в способе, согласно первому аспекту, для измерения концентрации глюкозы в образце посредством ячейки, имеющей рабочий электрод, противоэлектрод, ферментный катализатор и посредник окисления-восстановления, содержащий этапы работы ячейки при потенциале выше, чем потенциал реакции окисления-восстановления так, чтобы окислить перекись водорода на аноде, а затем проведении способа согласно первому аспекту.
Таким образом, влияние кислорода может быть коренным образом улучшено, как объясняется ниже более подробно.
Согласно третьему аспекту, изобретение заключается в способе, согласно первому или второму аспекту, в котором образцу позволяют реагировать с ферментным катализатором и посредником окисления-восстановления, содержащем этапы:
(а) приложение потенциала между электродами прежде или во время заполнения ячейки,
(b) измерение увеличения тока как функции времени,
(с) определение или предсказание исходя из измерения на этапе (b) времени завершения реакции с указанным катализатором, и
(d) последующее прерывание или изменение полярности потенциала.
Изобретение будет более подробно описано посредством примера и со ссылкой на сопроводительные чертежи, на которых:
фиг. 1 демонстрирует реакцию, проходящую в ячейке, согласно изобретению,
фиг. 2 изображает профиль концентрации по электрохимической ячейке, согласно изобретению, перед приложением электрического потенциала, после приложения потенциала, перед достижением стационарного состояния и в стационарном состоянии,
фиг. 3 изображает временную зависимость тока до и после приложения электрического потенциала,
фиг. 4 изображает профиль концентрации ферроцианида в электрохимической ячейке, согласно изобретению, до изменения полярности, после изменения и до достижения стационарного состояния и в стационарном состоянии,
фиг. 5 изображает временную зависимость тока до и после изменения полярности,
фиг. 6 изображает временную зависимость тока до и после прерывания поданного потенциала в течение 15 секунд,
фиг. 7 изображает реакции в электрохимической ячейке с перекисью водорода,
фиг. 8 изображает временную зависимость тока, когда подают начальный потенциал, достаточный для окисления перекиси водорода,
фиг. 9 изображает ячейку, приведенную на фиг. 7, в плане,
фиг. 10 изображает вариант осуществления ячейки, подходящей для использования в изобретении, в поперечном сечении по линии 10-10 на фиг. 9,
фиг. 11 изображает ячейку, приведенную на фиг. 7, в сечении при виде сзади.
На фиг. 9, 10 и 11 изображена (не в масштабе) в качестве примера электрохимическая ячейка, подходящая для использования в способе, согласно изобретению.
Ячейка содержит полиэфирную сердцевину 4 размером приблизительно 18х5 мм и толщиной 100 мкм, имеющую круглое отверстие 8 диаметром 3,4 мм. Отверстие 8 определяет цилиндрическую боковую стенку 10 ячейки. Приклеенным к одной стороне средней части 4 является полиэфирный лист 1, имеющий напыленное покрытие из палладия 2. Напыленное покрытие наносится при давлении от 4 до 6 мбар в атмосфере газообразного аргона для получения однородной толщины покрытия, равной приблизительно 100 - 1000 ангстрем. Лист склеен посредством адгезива 3 с средней частью 4 с палладием 2 со смежной сердцевиной 4 и закрывает отверстие 8.
Второй полиэфирный слой 7, имеющий второе напыленное покрытие из палладия 6, приклеен посредством контактного адгезива 5 к другой стороне средней части 4 и закрывает отверстие 8. Посредством этого образуется ячейка, имеющая цилиндрическую боковую стенку 10 и закрытую с каждого конца металлическим палладием. Сборка имеет паз 9 для подачи раствора, который должен быть впущен в ячейку или должен поступить посредством фитильного питания или капиллярным действием и для разрешения вытекания воздуха. Металлические пленки 2, 6 соединены с помощью подходящих электрических соединений или приспособлений, посредством которых могут быть поданы потенциалы и измерен ток. Ячейка загружается GOD и ферроцианидом в сухой форме. Схематически ячейка изображена на фиг. 1.
При использовании в соответствии со способом каплю крови вводят в ячейку по пазу 9 посредством капиллярного действия и позволяют реагировать.
Средство электрохимического измерения концентрации ферроцианида после завершения реакции может быть рассмотрено со ссылкой на фиг. 1.
В тонкослойной ячейке начальная концентрация ферроцианида и феррицианида (после завершения "ферментной" реакции) равна во всей ячейке (рассматриваемая ось проходит между электродами). Профиль концентрации ферроцианида приведен на фиг. 2.
Когда прикладывают конкретный потенциал к ячейке, то феррицианид преобразуется в ферроцианид на катоде, а ферроцианид преобразуется в феррицианид на аноде. Химизм построен так, что после завершения реакции еще имеется избыток феррицианида по сравнению с ферроцианидом. По этой причине процесс, который ограничивает завершение электрохимического процесса, является процессом преобразования ферроцианида в феррицианид на аноде, просто потому, что ферроцианид находится в значительно меньшей концентрации. Дальнейшим этапом, ограничивающим скорость реакции ферроцианида, является диффузия ферроцианида к аноду. Через некоторое время достигается стационарное состояние, при котором профиль концентрации ферроцианида и феррицианида остается постоянным (см. фиг. 2).
Поэтому существует две ограничивающие ситуации: вначале 20 ферроцианид равномерно распределен по ячейке. Затем после того, как на ячейку подан известный потенциал в течение некоторого периода времени, достигается профиль 23 концентрации стационарного состояния ферроцианида. "Переходный процесс" 22 отражает измеряемый ток в ячейке, когда концентрация изменяется от начального состояния к конечному стационарному состоянию 23. Это показано на фиг. 3 в виде функции времени. Обнаружено, что изменения тока во времени во время этого "переходного" периода зависят от общей концентрации ферроцианида и коэффициента диффузии ферроцианида.
Решая уравнения диффузии для этой ситуации, можно видеть, что переходный процесс может быть адекватно описан следующим уравнением за ограниченный вычисляемый временной диапазон:
Figure 00000002
,
где i является измеренным током, iss является током в стационарном состоянии, D является коэффициентом диффузии ферроцианида в ячейке, L является расстоянием между анодом и катодом, a t является временем.
Это является простым решением общего уравнения диффузии. Однако возможно использовать другие решения. Конечный ток в стационарном состоянии также зависит от общей концентрации ферроцианида и коэффициента диффузии ферроцианида. Ток в стационарном состоянии может также быть моделирован с помощью теории диффузии и задается так:
Figure 00000003
,
где F является постоянной Фарадея, C начальной концентрацией ферроцианида, а A - площадью рабочего электрода. Посредством начальной концентрации задается невозмущенная концентрация (показана позицией 20 на фиг. 2).
Анализ тока, наблюдаемого во время переходного процесса, а также в стационарном состоянии, позволяет вычислить и концентрацию и коэффициент диффузии ферроцианида, а также начальную концентрацию глюкозы.
Такой анализ достигается вычерчиванием графика
Figure 00000004

в зависимости от времени, который является, по существу, линейным в течение ограниченного и вычисляемого времени и таким образом, может быть проанализирован посредством линейной наименьшей квадратичной регрессии. Так как L является постоянным для заданной ячейки, измерение i как функции времени и iss таким образом дает возможность вычислить значение коэффициента диффузии посредника окисления-восстановления и определить концентрацию анолита.
Это находится в противоречии с током Коттрелла, который измеряют в известном способе. Измеряя ток Коттрелла в известные моменты времени после приложения потенциала к электродам датчика, возможно только определить концентрацию продукта, умноженную на квадратный корень из коэффициента диффузии. Поэтому из одного тока Коттрелла невозможно определить концентрацию посредника независимо от его коэффициента диффузии.
Другим возможным способом анализа данных является использование вариаций тока во времени вскоре после этапа приложения потенциала к электродам. В этот период времени ток может быть адекватно описан уравнением Коттрелла (Cottrell). То есть:
i - FAD1/2C/(pi1/2t1/2) Уравнение 4
Посредством наименьшей квадратичной регрессии на графике i от 1/t1/2 значение FAD1/2C/pi1/2 может быть оценено, исходя из наклона графика. Если ток iss стационарного состояния задается, как и прежде, то посредством объединения наклона графика, заданного выше, с током стационарного состояния может быть оценено значение концентрации ферроцианида, независимо от коэффициента диффузии ферроцианида в ячейке. Это задается посредством:
C = 2 наклон2pi/(FALiass) Уравнение 5
В примере, согласно настоящему изобретению, образец крови подают в тонкослойную ячейку, содержащую систему GOD/ферроцианид так, как описано выше со ссылкой на фиг. 7, 8 и 9. Как показано на фиг. 3, после предоставления короткого времени 20 для реакции, подают электрический потенциал между электродами, начинает течь ток, когда подают потенциал 21, но затем спадает в виде переходного процесса 22 до уровня 23 стационарного состояния. Коэффициент диффузии и/или концентрация глюкозы выводятся посредством измерения тока как функции времени и посредством оценки тока стационарного состояния.
Согласно настоящему изобретению, ток затем прерывают или изменяют полярность, например, посредством подходящего переключателя. Если полярность изменена, то наблюдают второй переходный процесс, а второе стационарное состояние достигают через дополнительный период времени, хотя профиль является обратным. Лежащее в основе изменение профиля концентрации ферроцианида в ячейке схематически изображено на фиг. 4. Начальный профиль концентрации до изменения полярности тока обозначен 23. Новый профиль концентрации стационарного состояния изображен как 25. Профиль концентрации переходного процесса обозначен 24.
Решая уравнения диффузии для такой ситуации, можно обнаружить, что переходный ток описывается посредством:
Figure 00000005

Поэтому просто переоценить коэффициент диффузии и концентрацию для условий измененной полярности. Теоретически результаты должны быть независимы от типа переходного процесса или полярности. Практически, результаты могут отличаться из-за факторов, влияющих на переходный процесс, таких, как негомогенности образца, состояния электродов, или более важно, из- за асимметрии конструкции ячейки. Это измерение поэтому является полезным для диагностики ячейки, а также дает возможность получить большую точность посредством проведения повторяющихся измерений и усреднения с измененной полярностью.
Аналогично, если прерывают подачу потенциала после достижения стационарного состояния, начальный профиль концентрации должен быть повторно установлен в течение короткого времени (например, 4 сек).
Когда начальное состояние повторно установлено (или аппроксимировано), потенциал может быть повторно подан, а процедура повторена без изменения полярности тока. Фиг. 6 изображает график тока в зависимости от времени, аналогичный, графику на фиг. 3, но имеющей прерванный потенциал 26 и поданный повторно через 15 сек 27, получая новый ток 28 переходного процесса, а затем состояние 29.
Как указано ранее, присутствие кислорода в крови оказывает влияние, в результате чего концентрация конечного ферроцианида не является прямо пропорциональной начальному содержанию глюкозы. Вместо этого, начальное содержание глюкозы относится к конечной концентрации ферроцианида плюс перекиси водорода. Однако заявители обнаружили, что перекись водорода может быть окислена на аноде при известном потенциале, который выше, чем для реакции окисления-восстановления ферроцианида/феррицианида. Общий электрохимический путь показан на фиг. 7. Реакция перекиси водорода является следующей:
перекись водорода ---> кислород + 2H+ + 2e'' Уравнение 7
Если во время периода реакции фермента подают потенциал (фиг. 8) к ячейке, который является достаточным для окисления перекиси водорода, то далее в течение этого времени будет иметь место следующее:
(a) глюкоза будет реагировать до глюконовой кислоты,
(b) будут получаться ферроцианид и перекись водорода,
(c) окисление-восстановление ферроцианида/феррицианида будет в конечном счете достигать стационарного состояния,
(d) перекись должна быть окислена на аноде, а электроны использованы для преобразования феррицианида в ферроцианид.
Вообще, по истечении периода времени (приблизительно 2,5 сек на фиг. 8) при постоянном потенциале вся перекись водорода должна быть преобразована в кислород (который затем является катализатором, и будет возвращен для более полного завершения химизма фермента до тех пор, пока глюкоза не будет израсходована), и электроны использованы для преобразования феррицианида в ферроцианид.
На этом этапе (60 сек на фиг. 8) подают обратный потенциал. То есть, полярность ячеек переключается, но теперь при более низком потенциале, пригодном для реакции окисления-восстановления феррицианида/ферроцианида. Ферроцианид конечного стационарного состояния будет снова отражать начальную концентрацию глюкозы. Это может быть проанализировано описанным ранее способом для определения общей концентрации глюкозы в начальном образце.
Используя способ по изобретению, реакционная фаза теста может быть управляема электрохимически без взаимодействия с фазой измерения. Когда реакция завершается, можно продолжить измерять без дополнительной задержки. Время ожидания будет изменяться от теста к тесту и должно быть минимально необходимым для любого конкретного образца и ячейки, принимая во внимание изменения активности фермента от ячейки к ячейке, так же как и разность температур и концентраций глюкозы. Это находится в резком контрасте с предшествующим уровнем, когда измерение задерживали на максимальное время, требуемое для реакции после разрешения всех этих факторов. В настоящем способе реакционная фаза управляется приложением потенциала между двумя электродами, например - 300 мВ, как только ячейка начинает заполняться образцом.
С целью получения преимущества потенциал подают непрерывно от времени, когда определено заполнение ячейки, хотя в менее предпочтительных вариантах осуществления потенциал может быть кратковременно прерван после того, как ячейку начинают заполнять.
Линейный профиль концентрации восстановленного посредника вскоре достигается в ячейке. Когда более восстановленный посредник производится реакцией фермента с глюкозой, этот линейный профиль концентрации становится круче и ток увеличивается. Когда реакция завершается, ток более не увеличивается. Этот момент может быть определен хорошо известными средствами и фаза измерения в тесте может быть начата.
Конечная точка реакции может быть также оценена посредством подгонки теоретического уравнения кинетики к кривой зависимости тока от времени, полученной во время этой части теста. Это уравнение может предсказывать степень выполнения реакции в любое время, предоставляя таким образом сведения, когда будет достигнута конечная точка без ожидания ее получения. Это дополнительно уменьшит время теста. Например, можно подогнать уравнение для кривой измеренного импульсного тока от времени. Это уравнение может затем предсказать, что в момент времени X реакция будет завершена, например, на 90%. Если измерить концентрацию в момент времени X, значение надо разделить на 0,90 для получения правильной концентрации.
Измерение концентрации в такой системе выполняют посредством изменения потенциала, т.е. приложением +300 мВ между электродами. Затем получают кривую тока от времени, которая является той же, что и при втором переходном процессе в эксперименте с двойным переходным процессом, т.е. посредством преобразования тока i, измеренного во время фазы измерения, можно получить график ln(i/iss-1) в зависимости от времени, который имеет наклон -4pi2D/12 и пересекает ln (4). Обычный анализ может быть использован для получения концентрации глюкозы.
Как очевидно специалистам из вышеизложенного, вместо подгонки теоретического уравнения кинетики к кривой зависимости тока от времени, конечная точка реакции также может быть оценена посредством подгонки эмпирической функции к по меньшей мере части кривой тока от времени. Эта функция может разрешить экстраполяцию кривой измеренного тока на более длительное время, когда ожидается окончание реакции. Примером такого подхода является случай, когда кривую обратной величины тока вычерчивают в зависимости от обратной величины времени и подгоняют посредством прямой линии. Эта прямая линия может быть затем использована для предсказания тока на длительные времена, когда ожидается, что реакция должна, по существу, завершиться. Затем может быть установлено отношение предсказанного тока на длительное время к предсказанному току, соответствующего фазе измерения концентрации в тесте. Это отношение может быть использовано для коррекции оценки концентрации, полученной во время фазы измерения, до значения, сопутствующего реакции, по существу, достигающей конечной точки.
В некоторых ситуациях может быть трудно или невозможно узнать расстояние между электродами в электрохимической ячейке. Например, очень малые расстояния (10 мкм) может быть очень трудно изготовить или повторно измерить. В таких ситуациях использование информации от двух примыкающих ячеек может быть использовано для вычисления концентрации анолита в образце без информации о разделении ячейки, если одна из этих ячеек содержит известную концентрацию анолита или соответствующий восстановленный посредник перед добавлением образца. Альтернативно, известное количество анолита или восстановленного посредника может быть добавлено в образец, предназначенный для одной из двух ячеек перед добавлением образца в ячейку. Другой вариант имеет место, если обе ячейки содержат заранее определенный анолит или концентрацию восстановленного посредника, но каждый имеет различную концентрацию. Еще одним вариантом является случай, если два различных заранее определенных количества анолита или восстановленного посредника добавляют к двум частям образца, которые затем добавляют к примыкающим ячейкам.
Две электрохимических ячейки затем используют обычным способом, и для каждой ячейки измеряют следующие величины: ток стационарного состояния (iss) и наклон прямой линии, определенной ln(i/iss-1) в зависимости от времени, где i является измеренным током. Зная эти значения, а также зная разность концентрации анолита или восстановленного посредника между двумя ячейками, которые известны (они равны значению намеренно добавленного к одной ячейке), можно вычислить концентрацию анолита или восстановленного посредника в образце, не зная разделяющего электроды расстояния.
Указанные действия можно использовать вместе с третьей ячейкой, которая используется для измерения фонового тока или концентрации из-за тока, вызванного, например, восстановленным посредником, образованного посредством применения и сушки, каталитического влияния поверхности металла, окисления поверхности металла, компонентов образца, которые воздействуют на анолит или посредник, электрохимически восприимчивых соединений образца и т.п. Эта фоновая концентрация или ток должны быть вычтены из значения, измеренного из двух ячеек, описанных выше, для вычисления верных значений для каждой ячейки, получающегося из анолита в образце, а в одном случае также анолита или восстановленного посредника, намеренно добавленных к ячейке или образцу.
Как ясно специалистам из описания, способ подходит для использования с автоматической измерительной аппаратурой. Ячейки описанного вида могут быть снабжены электрическими соединениями с аппаратурой, снабженной микропроцессором или другим программируемым электронным управлением и схемами отображения, которые приспособлены к проведению требуемых измерений, выполнению требуемых вычислений и отображению результата. Способ может быть применен для измерения концентрации анолитов, отличных от глюкозы, и в жидкостях, отличных от крови.
Способ может быть выполнен с использованием ячеек другого дизайна и/или конструкции и использованием известных катализаторов и систем окисления-восстановления, отличных от описанных выше.
Например, другие хорошо известные способы системы реагентов, такие как представленные в таблице, но не ограничивающие изобретение, могут быть использованы.

Claims (13)

1. Способ определения концентрации восстановленной (или окисленной) формы веществ окисления-восстановления в электрохимической ячейке, содержащей рабочий электрод и противоэлектрод, удаленный от рабочего электрода на заданное расстояние, который содержит этапы: (а) приложения электрического потенциала между электродами, причем электроды удалены так, что продукты реакции от противоэлектрода достигают рабочего электрода посредством диффузии, и в котором потенциал рабочего электрода является таким, что скорость электроокисления восстановленной формы (или окисленной формы) веществ окисления-восстановления является контролируемой посредством диффузии; (b) определения тока как функции времени после приложения потенциала и до установления стационарного состояния; (с) оценки величины тока стационарного состояния; (d) прерывание или изменение полярности потенциала; (е) повторение этапов определения и оценки.
2. Способ по п.1, в котором полярность изменяют на этапе прерывания.
3. Способ по п.1 или 2, в котором электроды разделены менее чем на 500 мкм.
4. Способ по любому из предшествующих пунктов, в котором электроды разделены менее чем на 200 мкм.
5. Способ по любому из предшествующих пунктов, в котором рабочий электрод вытянут в плоскости параллельной и обращенной к плоскости, в которой вытянут противоэлектрод.
6. Способ по п.1, в котором потенциал изменяют повторяющимся образом, а концентрацию веществ оценивают как среднее результатов, полученных до каждого изменения.
7. Способ по любому из предшествующих пунктов, в котором ячейка содержит фермент и посредник окисления-восстановления.
8. Способ по любому из предшествующих пунктов, в котором ячейка содержит GOD.
9. Способ по любому из предшествующих пунктов, в котором ячейка содержит феррицианид.
10. Способ по любому из предшествующих пунктов, в котором образцу позволяют реагировать с ферментным катализатором и посредником окисления-восстановления, причем указанный способ содержит предшествующий этап работы ячейки при потенциале большем, чем потенциал реакции окисления-восстановления так, чтобы окислить перекись водорода на аноде.
11. Способ по любому из предшествующих пунктов, в котором образцу позволяют реагировать с ферментным катализатором и посредником окисления-восстановления и который дополнительно содержит этапы: (а) приложения электрического потенциала между электродами до и во время наполнения ячейки; (b) измерения увеличения тока как функции времени; (с) определение или предсказание, исходя из измерений на этапе измерения, времени завершения реакции с указанным катализатором и (d) затем прерывание или изменение полярности потенциала.
12. Способ по любому из предшествующих пунктов, дополнительно содержащий вторую ячейку с известной концентрацией анолита или восстановленного посредника и в котором вторую ячейку используют для калибровки первого.
13. Способ по любому из предшествующих пунктов, в котором анолит известной концентрации или восстановленный посредник добавляют к анолиту и используют для калибровки.
RU98111192/28A 1995-11-16 1996-11-15 Электрохимический способ RU2174679C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AUPN6619 1995-11-16
AUPN6619A AUPN661995A0 (en) 1995-11-16 1995-11-16 Electrochemical cell 2

Publications (2)

Publication Number Publication Date
RU98111192A RU98111192A (ru) 2000-06-10
RU2174679C2 true RU2174679C2 (ru) 2001-10-10

Family

ID=3790943

Family Applications (4)

Application Number Title Priority Date Filing Date
RU98111492/28A RU2202781C2 (ru) 1995-11-16 1996-11-15 Электрохимический элемент
RU98111192/28A RU2174679C2 (ru) 1995-11-16 1996-11-15 Электрохимический способ
RU2000104734/28A RU2243545C2 (ru) 1995-11-16 2000-02-24 Электрохимический элемент
RU2002135727/28A RU2305279C2 (ru) 1995-11-16 2002-12-27 Устройство и способ для определения концентрации восстановленной формы или окисленной формы окислительно-восстановительного вещества в жидкой пробе

Family Applications Before (1)

Application Number Title Priority Date Filing Date
RU98111492/28A RU2202781C2 (ru) 1995-11-16 1996-11-15 Электрохимический элемент

Family Applications After (2)

Application Number Title Priority Date Filing Date
RU2000104734/28A RU2243545C2 (ru) 1995-11-16 2000-02-24 Электрохимический элемент
RU2002135727/28A RU2305279C2 (ru) 1995-11-16 2002-12-27 Устройство и способ для определения концентрации восстановленной формы или окисленной формы окислительно-восстановительного вещества в жидкой пробе

Country Status (16)

Country Link
US (3) US6179979B1 (ru)
EP (5) EP0882226B1 (ru)
JP (2) JP3863184B2 (ru)
KR (5) KR100741187B1 (ru)
CN (8) CN1105304C (ru)
AT (4) ATE553212T1 (ru)
AU (3) AUPN661995A0 (ru)
BR (2) BR9611514A (ru)
CA (3) CA2236850C (ru)
DE (3) DE69628948T2 (ru)
DK (4) DK0967480T3 (ru)
ES (4) ES2365981T3 (ru)
HK (6) HK1018096A1 (ru)
IL (5) IL124494A (ru)
RU (4) RU2202781C2 (ru)
WO (2) WO1997018464A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2444006C2 (ru) * 2006-09-18 2012-02-27 Александер АДЛАССНИГ Способ определения концентраций пероксида водорода и устройство для его осуществления (варианты)

Families Citing this family (302)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6413410B1 (en) 1996-06-19 2002-07-02 Lifescan, Inc. Electrochemical cell
AUPN661995A0 (en) * 1995-11-16 1995-12-07 Memtec America Corporation Electrochemical cell 2
AUPP238898A0 (en) * 1998-03-12 1998-04-09 Usf Filtration And Separations Group Inc. Heated electrochemical cell
US6863801B2 (en) * 1995-11-16 2005-03-08 Lifescan, Inc. Electrochemical cell
US6638415B1 (en) 1995-11-16 2003-10-28 Lifescan, Inc. Antioxidant sensor
US6632349B1 (en) * 1996-11-15 2003-10-14 Lifescan, Inc. Hemoglobin sensor
DK0958495T3 (da) * 1997-02-06 2003-03-10 Therasense Inc In vitro analysand sensor med lille volumen
AUPO581397A0 (en) 1997-03-21 1997-04-17 Memtec America Corporation Sensor connection means
AUPO585797A0 (en) 1997-03-25 1997-04-24 Memtec America Corporation Improved electrochemical cell
AU758963B2 (en) * 1997-08-13 2003-04-03 Lifescan, Inc. Method and apparatus for automatic analysis
AU781184B2 (en) * 1997-08-13 2005-05-12 Lifescan, Inc. Method and apparatus for automatic analysis
AUPO855897A0 (en) * 1997-08-13 1997-09-04 Usf Filtration And Separations Group Inc. Automatic analysing apparatus II
US6036924A (en) 1997-12-04 2000-03-14 Hewlett-Packard Company Cassette of lancet cartridges for sampling blood
DE19753847A1 (de) 1997-12-04 1999-06-10 Roche Diagnostics Gmbh Analytisches Testelement mit Kapillarkanal
DE19753850A1 (de) 1997-12-04 1999-06-10 Roche Diagnostics Gmbh Probennahmevorrichtung
US5997817A (en) * 1997-12-05 1999-12-07 Roche Diagnostics Corporation Electrochemical biosensor test strip
US8071384B2 (en) 1997-12-22 2011-12-06 Roche Diagnostics Operations, Inc. Control and calibration solutions and methods for their use
US7407811B2 (en) * 1997-12-22 2008-08-05 Roche Diagnostics Operations, Inc. System and method for analyte measurement using AC excitation
US7390667B2 (en) * 1997-12-22 2008-06-24 Roche Diagnostics Operations, Inc. System and method for analyte measurement using AC phase angle measurements
AU779350B2 (en) * 1998-03-12 2005-01-20 Lifescan, Inc. Heated electrochemical cell
US6878251B2 (en) * 1998-03-12 2005-04-12 Lifescan, Inc. Heated electrochemical cell
AU743852B2 (en) * 1998-03-12 2002-02-07 Lifescan, Inc. Heated electrochemical cell
US6475360B1 (en) 1998-03-12 2002-11-05 Lifescan, Inc. Heated electrochemical cell
US6652734B1 (en) * 1999-03-16 2003-11-25 Lifescan, Inc. Sensor with improved shelf life
US6391005B1 (en) 1998-03-30 2002-05-21 Agilent Technologies, Inc. Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
US6591125B1 (en) 2000-06-27 2003-07-08 Therasense, Inc. Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
US6338790B1 (en) 1998-10-08 2002-01-15 Therasense, Inc. Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
US6475372B1 (en) * 2000-02-02 2002-11-05 Lifescan, Inc. Electrochemical methods and devices for use in the determination of hematocrit corrected analyte concentrations
US6193873B1 (en) * 1999-06-15 2001-02-27 Lifescan, Inc. Sample detection to initiate timing of an electrochemical assay
AU5747100A (en) * 1999-06-18 2001-01-09 Therasense, Inc. Mass transport limited in vivo analyte sensor
US7276146B2 (en) 2001-11-16 2007-10-02 Roche Diagnostics Operations, Inc. Electrodes, methods, apparatuses comprising micro-electrode arrays
US20050103624A1 (en) * 1999-10-04 2005-05-19 Bhullar Raghbir S. Biosensor and method of making
KR100445489B1 (ko) 1999-11-15 2004-08-21 마츠시타 덴끼 산교 가부시키가이샤 바이오 센서, 박막 전극 형성 방법, 정량 장치, 및 정량방법
US6676815B1 (en) 1999-12-30 2004-01-13 Roche Diagnostics Corporation Cell for electrochemical analysis of a sample
US6716577B1 (en) 2000-02-02 2004-04-06 Lifescan, Inc. Electrochemical test strip for use in analyte determination
US6571651B1 (en) * 2000-03-27 2003-06-03 Lifescan, Inc. Method of preventing short sampling of a capillary or wicking fill device
US6612111B1 (en) 2000-03-27 2003-09-02 Lifescan, Inc. Method and device for sampling and analyzing interstitial fluid and whole blood samples
JP4932118B2 (ja) * 2000-03-28 2012-05-16 ダイアビ−ティ−ズ・ダイアグノスティックス・インコ−ポレイテッド 高速応答グルコースセンサ
US6908593B1 (en) 2000-03-31 2005-06-21 Lifescan, Inc. Capillary flow control in a fluidic diagnostic device
US6488827B1 (en) * 2000-03-31 2002-12-03 Lifescan, Inc. Capillary flow control in a medical diagnostic device
EP1292825B1 (en) 2000-03-31 2006-08-23 Lifescan, Inc. Electrically-conductive patterns for monitoring the filling of medical devices
AU2001261145B2 (en) 2000-05-03 2005-08-11 The United States Government, As Represented By The Department Of The Navy Biological identification system with integrated sensor chip
AU2007209797B2 (en) * 2000-07-14 2010-06-03 Lifescan, Inc. Electrochemical method for measuring chemical reaction rates
RU2278612C2 (ru) 2000-07-14 2006-06-27 Лайфскен, Инк. Иммуносенсор
WO2002006788A2 (en) * 2000-07-14 2002-01-24 Usf Filtration And Separations Group Inc. Electrochemical method for measuring chemical reaction rates
US6444115B1 (en) 2000-07-14 2002-09-03 Lifescan, Inc. Electrochemical method for measuring chemical reaction rates
CA2733852A1 (en) * 2000-07-14 2002-01-24 Lifescan, Inc. Electrochemical method for measuring chemical reaction rates
AU2006203606B2 (en) * 2000-07-14 2007-05-17 Lifescan, Inc. Electrochemical method for measuring chemical reaction rates
HUP0302819A2 (en) * 2000-08-29 2003-12-29 Nestle Sa Flexible container having flat walls
US7182853B2 (en) * 2000-09-22 2007-02-27 University Of Dayton Redox control/monitoring platform for high throughput screening/drug discovery applications
DE10057832C1 (de) 2000-11-21 2002-02-21 Hartmann Paul Ag Blutanalysegerät
US8641644B2 (en) 2000-11-21 2014-02-04 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
EP2096435B1 (en) * 2000-11-30 2014-11-12 Panasonic Healthcare Co., Ltd. Method of quantifying substrate
US6620310B1 (en) * 2000-12-13 2003-09-16 Lifescan, Inc. Electrochemical coagulation assay and device
US7144495B2 (en) 2000-12-13 2006-12-05 Lifescan, Inc. Electrochemical test strip with an integrated micro-needle and associated methods
US6558528B1 (en) 2000-12-20 2003-05-06 Lifescan, Inc. Electrochemical test strip cards that include an integral dessicant
EP1369684A4 (en) * 2001-01-17 2009-07-22 Arkray Inc QUANTITATIVE ANALYSIS PROCESS AND QUANTITATIVE ANALYZER WITH SENSOR
US6572745B2 (en) * 2001-03-23 2003-06-03 Virotek, L.L.C. Electrochemical sensor and method thereof
US6855243B2 (en) * 2001-04-27 2005-02-15 Lifescan, Inc. Electrochemical test strip having a plurality of reaction chambers and methods for using the same
US6896778B2 (en) * 2001-06-04 2005-05-24 Epocal Inc. Electrode module
US7981056B2 (en) 2002-04-19 2011-07-19 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US6875613B2 (en) 2001-06-12 2005-04-05 Lifescan, Inc. Biological fluid constituent sampling and measurement devices and methods
US7682318B2 (en) 2001-06-12 2010-03-23 Pelikan Technologies, Inc. Blood sampling apparatus and method
US6501976B1 (en) 2001-06-12 2002-12-31 Lifescan, Inc. Percutaneous biological fluid sampling and analyte measurement devices and methods
ES2352998T3 (es) 2001-06-12 2011-02-24 Pelikan Technologies Inc. Accionador eléctrico de lanceta.
AU2002315177A1 (en) 2001-06-12 2002-12-23 Pelikan Technologies, Inc. Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties
US6837988B2 (en) * 2001-06-12 2005-01-04 Lifescan, Inc. Biological fluid sampling and analyte measurement devices and methods
US7025774B2 (en) 2001-06-12 2006-04-11 Pelikan Technologies, Inc. Tissue penetration device
US6793632B2 (en) 2001-06-12 2004-09-21 Lifescan, Inc. Percutaneous biological fluid constituent sampling and measurement devices and methods
US9226699B2 (en) 2002-04-19 2016-01-05 Sanofi-Aventis Deutschland Gmbh Body fluid sampling module with a continuous compression tissue interface surface
US9795747B2 (en) 2010-06-02 2017-10-24 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US9427532B2 (en) 2001-06-12 2016-08-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8337419B2 (en) 2002-04-19 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US6721586B2 (en) 2001-06-12 2004-04-13 Lifescan, Inc. Percutaneous biological fluid sampling and analyte measurement devices and methods
DE60239132D1 (de) 2001-06-12 2011-03-24 Pelikan Technologies Inc Gerät zur erhöhung der erfolgsrate im hinblick auf die durch einen fingerstich erhaltene blutausbeute
EP1404235A4 (en) 2001-06-12 2008-08-20 Pelikan Technologies Inc METHOD AND DEVICE FOR A LANZETTING DEVICE INTEGRATED ON A BLOOD CARTRIDGE CARTRIDGE
US7879211B2 (en) 2001-07-13 2011-02-01 Arkray, Inc. Analyzing instrument, lancet-integrated attachment for concentration measuring device provided with analyzing instrument, and body fluid sampling tool
US20030036202A1 (en) 2001-08-01 2003-02-20 Maria Teodorcyzk Methods and devices for use in analyte concentration determination assays
US6939310B2 (en) 2001-10-10 2005-09-06 Lifescan, Inc. Devices for physiological fluid sampling and methods of using the same
AU2002340079A1 (en) * 2001-10-10 2003-04-22 Lifescan Inc. Electrochemical cell
US7018843B2 (en) * 2001-11-07 2006-03-28 Roche Diagnostics Operations, Inc. Instrument
US20030116447A1 (en) 2001-11-16 2003-06-26 Surridge Nigel A. Electrodes, methods, apparatuses comprising micro-electrode arrays
CA2467043C (en) * 2001-11-16 2006-03-14 North Carolina State University Biomedical electrochemical sensor array and method of fabrication
US6749887B1 (en) 2001-11-28 2004-06-15 Lifescan, Inc. Solution drying system
US6689411B2 (en) 2001-11-28 2004-02-10 Lifescan, Inc. Solution striping system
US6856125B2 (en) 2001-12-12 2005-02-15 Lifescan, Inc. Biosensor apparatus and method with sample type and volume detection
US6946067B2 (en) * 2002-01-04 2005-09-20 Lifescan, Inc. Method of forming an electrical connection between an electrochemical cell and a meter
US6872358B2 (en) 2002-01-16 2005-03-29 Lifescan, Inc. Test strip dispenser
US8260393B2 (en) 2003-07-25 2012-09-04 Dexcom, Inc. Systems and methods for replacing signal data artifacts in a glucose sensor data stream
US8010174B2 (en) 2003-08-22 2011-08-30 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US20030180814A1 (en) * 2002-03-21 2003-09-25 Alastair Hodges Direct immunosensor assay
US20060134713A1 (en) 2002-03-21 2006-06-22 Lifescan, Inc. Biosensor apparatus and methods of use
US20030186446A1 (en) 2002-04-02 2003-10-02 Jerry Pugh Test strip containers and methods of using the same
US7297122B2 (en) 2002-04-19 2007-11-20 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8579831B2 (en) 2002-04-19 2013-11-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7648468B2 (en) 2002-04-19 2010-01-19 Pelikon Technologies, Inc. Method and apparatus for penetrating tissue
US7491178B2 (en) 2002-04-19 2009-02-17 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7198606B2 (en) 2002-04-19 2007-04-03 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with analyte sensing
US7481776B2 (en) 2002-04-19 2009-01-27 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US6837976B2 (en) * 2002-04-19 2005-01-04 Nova Biomedical Corporation Disposable sensor with enhanced sample port inlet
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7291117B2 (en) 2002-04-19 2007-11-06 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8784335B2 (en) 2002-04-19 2014-07-22 Sanofi-Aventis Deutschland Gmbh Body fluid sampling device with a capacitive sensor
US7547287B2 (en) 2002-04-19 2009-06-16 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7717863B2 (en) 2002-04-19 2010-05-18 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7175642B2 (en) 2002-04-19 2007-02-13 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US7371247B2 (en) 2002-04-19 2008-05-13 Pelikan Technologies, Inc Method and apparatus for penetrating tissue
US6942770B2 (en) * 2002-04-19 2005-09-13 Nova Biomedical Corporation Disposable sub-microliter volume biosensor with enhanced sample inlet
US7901362B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7909778B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7229458B2 (en) 2002-04-19 2007-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9248267B2 (en) 2002-04-19 2016-02-02 Sanofi-Aventis Deustchland Gmbh Tissue penetration device
US8702624B2 (en) 2006-09-29 2014-04-22 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US7674232B2 (en) 2002-04-19 2010-03-09 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8267870B2 (en) 2002-04-19 2012-09-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling with hybrid actuation
US7976476B2 (en) 2002-04-19 2011-07-12 Pelikan Technologies, Inc. Device and method for variable speed lancet
US7892183B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US8221334B2 (en) 2002-04-19 2012-07-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7232451B2 (en) 2002-04-19 2007-06-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9795334B2 (en) 2002-04-19 2017-10-24 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7331931B2 (en) 2002-04-19 2008-02-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7343188B2 (en) * 2002-05-09 2008-03-11 Lifescan, Inc. Devices and methods for accessing and analyzing physiological fluid
GB0211449D0 (en) * 2002-05-17 2002-06-26 Oxford Biosensors Ltd Analyte measurement
US7291256B2 (en) * 2002-09-12 2007-11-06 Lifescan, Inc. Mediator stabilized reagent compositions and methods for their use in electrochemical analyte detection assays
US9017544B2 (en) 2002-10-04 2015-04-28 Roche Diagnostics Operations, Inc. Determining blood glucose in a small volume sample receiving cavity and in a short time period
US7118916B2 (en) * 2002-10-21 2006-10-10 Lifescan, Inc. Method of reducing analysis time of endpoint-type reaction profiles
US8574895B2 (en) 2002-12-30 2013-11-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
US7144485B2 (en) * 2003-01-13 2006-12-05 Hmd Biomedical Inc. Strips for analyzing samples
DK1633235T3 (da) 2003-06-06 2014-08-18 Sanofi Aventis Deutschland Apparat til udtagelse af legemsvæskeprøver og detektering af analyt
WO2006001797A1 (en) 2004-06-14 2006-01-05 Pelikan Technologies, Inc. Low pain penetrating
US8206565B2 (en) 2003-06-20 2012-06-26 Roche Diagnostics Operation, Inc. System and method for coding information on a biosensor test strip
US7452457B2 (en) * 2003-06-20 2008-11-18 Roche Diagnostics Operations, Inc. System and method for analyte measurement using dose sufficiency electrodes
US7645421B2 (en) 2003-06-20 2010-01-12 Roche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
WO2004113901A1 (en) 2003-06-20 2004-12-29 Roche Diagnostics Gmbh Test strip with slot vent opening
US8058077B2 (en) * 2003-06-20 2011-11-15 Roche Diagnostics Operations, Inc. Method for coding information on a biosensor test strip
US8679853B2 (en) * 2003-06-20 2014-03-25 Roche Diagnostics Operations, Inc. Biosensor with laser-sealed capillary space and method of making
US7645373B2 (en) * 2003-06-20 2010-01-12 Roche Diagnostic Operations, Inc. System and method for coding information on a biosensor test strip
US7488601B2 (en) 2003-06-20 2009-02-10 Roche Diagnostic Operations, Inc. System and method for determining an abused sensor during analyte measurement
US8148164B2 (en) 2003-06-20 2012-04-03 Roche Diagnostics Operations, Inc. System and method for determining the concentration of an analyte in a sample fluid
US8071030B2 (en) 2003-06-20 2011-12-06 Roche Diagnostics Operations, Inc. Test strip with flared sample receiving chamber
US7718439B2 (en) 2003-06-20 2010-05-18 Roche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
KR100845163B1 (ko) * 2003-06-20 2008-07-09 에프. 호프만-라 로슈 아게 전기화학 바이오센서에 관한 장치 및 방법
US7597793B2 (en) * 2003-06-20 2009-10-06 Roche Operations Ltd. System and method for analyte measurement employing maximum dosing time delay
US7220034B2 (en) * 2003-07-11 2007-05-22 Rudolph Technologies, Inc. Fiber optic darkfield ring light
US20190357827A1 (en) 2003-08-01 2019-11-28 Dexcom, Inc. Analyte sensor
US20080119703A1 (en) 2006-10-04 2008-05-22 Mark Brister Analyte sensor
JP5022033B2 (ja) * 2003-08-21 2012-09-12 アガマトリックス, インコーポレイテッド 電気化学的特性のアッセイのための方法および装置
US20140121989A1 (en) 2003-08-22 2014-05-01 Dexcom, Inc. Systems and methods for processing analyte sensor data
US8282576B2 (en) 2003-09-29 2012-10-09 Sanofi-Aventis Deutschland Gmbh Method and apparatus for an improved sample capture device
JP4458802B2 (ja) * 2003-10-02 2010-04-28 パナソニック株式会社 血液中のグルコースの測定方法およびそれに用いるセンサ
WO2005037095A1 (en) 2003-10-14 2005-04-28 Pelikan Technologies, Inc. Method and apparatus for a variable user interface
US8364231B2 (en) 2006-10-04 2013-01-29 Dexcom, Inc. Analyte sensor
EP2316331B1 (en) 2003-12-09 2016-06-29 Dexcom, Inc. Signal processing for continuous analyte sensor
US7822454B1 (en) 2005-01-03 2010-10-26 Pelikan Technologies, Inc. Fluid sampling device with improved analyte detecting member configuration
WO2005065414A2 (en) 2003-12-31 2005-07-21 Pelikan Technologies, Inc. Method and apparatus for improving fluidic flow and sample capture
CN1914331A (zh) 2004-02-06 2007-02-14 拜尔健康护理有限责任公司 作为生物传感器的内部参照的可氧化种类和使用方法
CN100370249C (zh) * 2004-03-04 2008-02-20 五鼎生物技术股份有限公司 一种降低电流式生物传感器测量偏差的方法
US9101302B2 (en) * 2004-05-03 2015-08-11 Abbott Diabetes Care Inc. Analyte test device
CN103901092B (zh) * 2004-05-14 2016-07-06 拜尔健康护理有限责任公司 检测生物分析物的伏安测量系统
US8828203B2 (en) 2004-05-20 2014-09-09 Sanofi-Aventis Deutschland Gmbh Printable hydrogels for biosensors
WO2005114159A1 (en) * 2004-05-21 2005-12-01 Agamatrix, Inc. Electrochemical cell and method of making an electrochemical cell
EP1765194A4 (en) 2004-06-03 2010-09-29 Pelikan Technologies Inc METHOD AND APPARATUS FOR MANUFACTURING A DEVICE FOR SAMPLING LIQUIDS
US9775553B2 (en) 2004-06-03 2017-10-03 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
US7556723B2 (en) * 2004-06-18 2009-07-07 Roche Diagnostics Operations, Inc. Electrode design for biosensor
US7569126B2 (en) 2004-06-18 2009-08-04 Roche Diagnostics Operations, Inc. System and method for quality assurance of a biosensor test strip
US8343074B2 (en) 2004-06-30 2013-01-01 Lifescan Scotland Limited Fluid handling devices
US20060002817A1 (en) 2004-06-30 2006-01-05 Sebastian Bohm Flow modulation devices
US7512432B2 (en) 2004-07-27 2009-03-31 Abbott Laboratories Sensor array
JP2006170974A (ja) 2004-12-15 2006-06-29 F Hoffmann-La Roche Ag 分析試験エレメント上での液体試料の分析用分析システム
US8652831B2 (en) 2004-12-30 2014-02-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte measurement test time
ATE372515T1 (de) * 2005-03-03 2007-09-15 Apex Biotechnology Corp Methode zur reduzierung der messabweichung von amperometrischen biosensoren
US7547382B2 (en) 2005-04-15 2009-06-16 Agamatrix, Inc. Determination of partial fill in electrochemical strips
US7645374B2 (en) 2005-04-15 2010-01-12 Agamatrix, Inc. Method for determination of analyte concentrations and related apparatus
US7517439B2 (en) * 2005-04-15 2009-04-14 Agamatrix, Inc. Error detection in analyte measurements based on measurement of system resistance
US7344626B2 (en) * 2005-04-15 2008-03-18 Agamatrix, Inc. Method and apparatus for detection of abnormal traces during electrochemical analyte detection
US7964089B2 (en) 2005-04-15 2011-06-21 Agamatrix, Inc. Analyte determination method and analyte meter
GB0509919D0 (en) * 2005-05-16 2005-06-22 Ralph Ellerker 1795 Ltd Improvements to door closure system
US8016154B2 (en) * 2005-05-25 2011-09-13 Lifescan, Inc. Sensor dispenser device and method of use
US8192599B2 (en) * 2005-05-25 2012-06-05 Universal Biosensors Pty Ltd Method and apparatus for electrochemical analysis
US8323464B2 (en) 2005-05-25 2012-12-04 Universal Biosensors Pty Ltd Method and apparatus for electrochemical analysis
KR101321296B1 (ko) 2005-07-20 2013-10-28 바이엘 헬스케어 엘엘씨 게이트형 전류 측정법 온도 결정 방법
US8298389B2 (en) 2005-09-12 2012-10-30 Abbott Diabetes Care Inc. In vitro analyte sensor, and methods
US7846311B2 (en) * 2005-09-27 2010-12-07 Abbott Diabetes Care Inc. In vitro analyte sensor and methods of use
JP5671205B2 (ja) * 2005-09-30 2015-02-18 バイエル・ヘルスケア・エルエルシー ゲート化ボルタンメトリー
US7749371B2 (en) 2005-09-30 2010-07-06 Lifescan, Inc. Method and apparatus for rapid electrochemical analysis
US8163162B2 (en) * 2006-03-31 2012-04-24 Lifescan, Inc. Methods and apparatus for analyzing a sample in the presence of interferents
US8529751B2 (en) 2006-03-31 2013-09-10 Lifescan, Inc. Systems and methods for discriminating control solution from a physiological sample
GB0607205D0 (en) * 2006-04-10 2006-05-17 Diagnoswiss Sa Miniaturised biosensor with optimized anperimetric detection
EP1909096A1 (en) * 2006-10-04 2008-04-09 Infopia Co., Ltd. Biosensor
EP2074415A1 (en) * 2006-10-05 2009-07-01 Lifescan Scotland Limited A test strip comprising patterned electrodes
EP2957908A1 (en) * 2006-10-05 2015-12-23 Lifescan Scotland Limited Methods for determining an analyte concentration using signal processing algorithms
US9046480B2 (en) 2006-10-05 2015-06-02 Lifescan Scotland Limited Method for determining hematocrit corrected analyte concentrations
ES2375288T3 (es) * 2006-10-05 2012-02-28 Lifescan Scotland Limited Procedimiento para determinar concentraciones de analito corregidas con hematocrito.
ES2397663T3 (es) * 2006-10-05 2013-03-08 Lifescan Scotland Limited Sistemas y procedimientos para determinar una concentración de un analito sustancialmente independiente del hematocrito
WO2008049074A2 (en) * 2006-10-18 2008-04-24 Agamatrix, Inc. Error detection in analyte measurements based on measurement of system resistance
US7771583B2 (en) * 2006-10-18 2010-08-10 Agamatrix, Inc. Electrochemical determination of analytes
JP5244116B2 (ja) 2006-10-24 2013-07-24 バイエル・ヘルスケア・エルエルシー 過渡減衰電流測定法
US7646166B2 (en) * 2006-12-06 2010-01-12 Gm Global Technology Operations, Inc. Method and apparatus for modeling diffusion in an electrochemical system
US8808515B2 (en) * 2007-01-31 2014-08-19 Abbott Diabetes Care Inc. Heterocyclic nitrogen containing polymers coated analyte monitoring device and methods of use
US7875461B2 (en) * 2007-07-24 2011-01-25 Lifescan Scotland Limited Test strip and connector
US8101062B2 (en) 2007-07-26 2012-01-24 Nipro Diagnostics, Inc. System and methods for determination of analyte concentration using time resolved amperometry
BRPI0814202B1 (pt) * 2007-07-26 2019-10-29 Home Diagnostics Inc métodos e sistemas de determinação da concentração de produto de análise em amostra fluida
CN101377473B (zh) * 2007-08-31 2012-04-25 中国科学院过程工程研究所 一种快速的定量电分析方法
US7943022B2 (en) 2007-09-04 2011-05-17 Lifescan, Inc. Analyte test strip with improved reagent deposition
EP2535703B1 (en) * 2007-09-24 2021-11-03 Ascensia Diabetes Care Holdings AG Multi-electrode biosensor system
US8778168B2 (en) 2007-09-28 2014-07-15 Lifescan, Inc. Systems and methods of discriminating control solution from a physiological sample
TWI516601B (zh) * 2007-10-26 2016-01-11 環球生物醫療感測器私人有限公司 電化學檢測之裝置及方法
US8001825B2 (en) 2007-11-30 2011-08-23 Lifescan, Inc. Auto-calibrating metering system and method of use
WO2009076302A1 (en) 2007-12-10 2009-06-18 Bayer Healthcare Llc Control markers for auto-detection of control solution and methods of use
EP3690058B1 (en) 2007-12-10 2021-12-29 Ascensia Diabetes Care Holdings AG Handheld measurement device for rapid-read gated amperometry
US8097674B2 (en) * 2007-12-31 2012-01-17 Bridgestone Corporation Amino alkoxy-modified silsesquioxanes in silica-filled rubber with low volatile organic chemical evolution
US8603768B2 (en) 2008-01-17 2013-12-10 Lifescan, Inc. System and method for measuring an analyte in a sample
EP2254471A4 (en) * 2008-03-17 2012-07-25 Isense Corp DETECTION ASSEMBLY OF ANALYTES AND METHODS AND APPARATUSES FOR INSERTING ANALYTE DETECTOR THEREOF
WO2009126900A1 (en) 2008-04-11 2009-10-15 Pelikan Technologies, Inc. Method and apparatus for analyte detecting device
US8551320B2 (en) 2008-06-09 2013-10-08 Lifescan, Inc. System and method for measuring an analyte in a sample
CN105353013B (zh) 2008-07-10 2020-01-14 安晟信医疗科技控股公司 识别样本中的电离物质的方法
RU2546862C2 (ru) * 2008-12-08 2015-04-10 БАЙЕР ХЕЛТКЭА ЭлЭлСи Биосенсорная система и тестовые сенсоры для определения концентрации анализируемого вещества (варианты)
US9375169B2 (en) 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
US20100213057A1 (en) 2009-02-26 2010-08-26 Benjamin Feldman Self-Powered Analyte Sensor
US20100219085A1 (en) * 2009-02-27 2010-09-02 Edwards Lifesciences Corporation Analyte Sensor Offset Normalization
EP2408368B1 (en) * 2009-03-16 2020-04-29 ARKRAY, Inc. Method of continuously measuring substance concentration
TWI388823B (zh) 2009-04-09 2013-03-11 Bionime Corp 一種判斷樣品佈滿狀況的偵測方法
RU2553387C2 (ru) * 2009-06-30 2015-06-10 Лайфскен, Инк. Способы определения концентрации аналита и устройство для расчета терапевтической дозы базального инсулина
WO2011002791A2 (en) * 2009-06-30 2011-01-06 Lifescan Scotland Limited Systems for diabetes management and methods
WO2011002768A1 (en) * 2009-06-30 2011-01-06 Lifescan, Inc. Analyte testing method and system
EP2459730B1 (en) 2009-07-27 2016-12-07 Suresensors LTD Improvements relating to sensor devices
KR101102525B1 (ko) * 2009-09-03 2012-01-03 한국수력원자력 주식회사 전기화학적 수화학 기술을 이용한 고온 냉각수의 화학상태 감지방법
EP2482712B1 (en) * 2009-09-29 2014-05-07 Lifescan Scotland Limited Analyte testing method and device for diabetes management
US8221994B2 (en) 2009-09-30 2012-07-17 Cilag Gmbh International Adhesive composition for use in an immunosensor
US8877034B2 (en) 2009-12-30 2014-11-04 Lifescan, Inc. Systems, devices, and methods for measuring whole blood hematocrit based on initial fill velocity
US8101065B2 (en) 2009-12-30 2012-01-24 Lifescan, Inc. Systems, devices, and methods for improving accuracy of biosensors using fill time
CN102121914B (zh) * 2010-01-11 2013-09-11 明志科技大学 电化学供电方法及其装置
BR112012021590A2 (pt) 2010-02-25 2016-09-13 Lifescan Scotland Ltd detecção de capacitância em ensaio eletroquímico
EP2538834A1 (en) 2010-02-25 2013-01-02 Lifescan Scotland Limited Analyte testing method and system with safety warnings for insulin dosing
US8742773B2 (en) 2010-02-25 2014-06-03 Lifescan Scotland Limited Capacitance detection in electrochemical assay with improved response
US8773106B2 (en) 2010-02-25 2014-07-08 Lifescan Scotland Limited Capacitance detection in electrochemical assay with improved sampling time offset
RU2553097C2 (ru) 2010-02-25 2015-06-10 Лайфскэн Скотлэнд Лимитед Способ испытания аналита и система оповещения о тенденциях показаний в сторону повышения и понижения уровня глюкозы в крови
US20110208435A1 (en) 2010-02-25 2011-08-25 Lifescan Scotland Ltd. Capacitance detection in electrochemical assays
US8965476B2 (en) 2010-04-16 2015-02-24 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
SG186179A1 (en) 2010-06-07 2013-01-30 Bayer Healthcare Llc Slope-based compensation including secondary output signals
CA2803678A1 (en) * 2010-06-30 2012-01-05 Lifescan Scotland Limited Method, system and device to ensure statistical power for average pre and post-prandial glucose difference messaging
WO2012012341A1 (en) 2010-07-19 2012-01-26 Cilag Gmbh International System and method for measuring an analyte in a sample
JP2013532836A (ja) 2010-08-02 2013-08-19 シラグ・ゲーエムベーハー・インターナショナル 対照溶液におけるグルコース結果の温度補正の精度を改善するためのシステム及び方法
US8468680B2 (en) 2010-08-24 2013-06-25 Roche Diagnostics Operations, Inc. Biosensor test member and method for making the same
KR20130075776A (ko) 2010-09-17 2013-07-05 아가매트릭스, 인코포레이티드 테스트 스트립들을 부호화하는 방법 및 장치
US8603323B2 (en) * 2010-09-20 2013-12-10 Lifescan, Inc. Apparatus and process for improved measurements of a monitoring device
US8617370B2 (en) 2010-09-30 2013-12-31 Cilag Gmbh International Systems and methods of discriminating between a control sample and a test fluid using capacitance
US8932445B2 (en) 2010-09-30 2015-01-13 Cilag Gmbh International Systems and methods for improved stability of electrochemical sensors
US20120122197A1 (en) * 2010-11-12 2012-05-17 Abner David Jospeh Inkjet reagent deposition for biosensor manufacturing
WO2012066278A1 (en) 2010-11-15 2012-05-24 Lifescan Scotland Limited Server-side initiated communication with analyte meter-side completed data transfer
US10034629B2 (en) 2011-01-06 2018-07-31 James L. Say Sensor module with enhanced capillary flow
EP2697650B1 (en) 2011-04-15 2020-09-30 Dexcom, Inc. Advanced analyte sensor calibration and error detection
AU2012264417B2 (en) * 2011-05-27 2014-06-12 Lifescan Scotland Limited Peak offset correction for analyte test strip
EP2737078B1 (en) 2011-07-27 2017-11-01 Agamatrix, Inc. Reagents for electrochemical test strips
US9903830B2 (en) 2011-12-29 2018-02-27 Lifescan Scotland Limited Accurate analyte measurements for electrochemical test strip based on sensed physical characteristic(s) of the sample containing the analyte
ES2656497T3 (es) 2012-03-30 2018-02-27 Lifescan Scotland Limited Método de detección de estado de pila y almacenamiento y sistema en control médico
US9201038B2 (en) * 2012-07-24 2015-12-01 Lifescan Scotland Limited System and methods to account for interferents in a glucose biosensor
DK3403995T3 (da) 2012-08-15 2021-04-19 Lockheed Martin Energy Llc Jernhexacyanider med høj opløselighed
JP6246211B2 (ja) 2012-09-07 2017-12-13 シラグ・ゲーエムベーハー・インターナショナルCilag GMBH International 電気化学センサ及びそれらの製造のための方法
US9494555B2 (en) 2012-09-24 2016-11-15 Cilag Gmbh International System and method for measuring an analyte in a sample and calculating glucose results to account for physical characteristics of the sample
US9005426B2 (en) * 2012-09-28 2015-04-14 Cilag Gmbh International System and method for determining hematocrit insensitive glucose concentration
US9080196B2 (en) * 2012-09-28 2015-07-14 Cilag Gmbh International System and method for determining hematocrit insensitive glucose concentration
US8926369B2 (en) 2012-12-20 2015-01-06 Lifescan Scotland Limited Electrical connector for substrate having conductive tracks
EP2746759B1 (en) * 2012-12-23 2016-09-07 Tyson Bioresearch, Inc. Method of detecting concentration of an analyte in a sample with a test strip
US9261478B2 (en) 2013-02-12 2016-02-16 Cilag Gmbh International System and method for measuring an analyte in a sample and calculating hematocrit-insensitive glucose concentrations
US10168313B2 (en) 2013-03-15 2019-01-01 Agamatrix, Inc. Analyte detection meter and associated method of use
US9523653B2 (en) 2013-05-09 2016-12-20 Changsha Sinocare Inc. Disposable test sensor with improved sampling entrance
KR102131408B1 (ko) 2013-06-13 2020-07-08 에스케이이노베이션 주식회사 중첩형 나노 전극쌍 제조방법 및 이를 이용한 공중부유형 센서
US10545132B2 (en) 2013-06-25 2020-01-28 Lifescan Ip Holdings, Llc Physiological monitoring system communicating with at least a social network
US9482635B2 (en) 2013-06-25 2016-11-01 Animas Corporation Glucose-measurement systems and methods presenting icons
US9529503B2 (en) 2013-06-27 2016-12-27 Lifescan Scotland Limited Analyte-measurement system recording user menu choices
US9835578B2 (en) 2013-06-27 2017-12-05 Lifescan Scotland Limited Temperature compensation for an analyte measurement determined from a specified sampling time derived from a sensed physical characteristic of the sample containing the analyte
US9435764B2 (en) 2013-06-27 2016-09-06 Lifescan Scotland Limited Transient signal error trap for an analyte measurement determined from a specified sampling time derived from a sensed physical characteristic of the sample containing the analyte
US9435762B2 (en) 2013-06-27 2016-09-06 Lifescan Scotland Limited Fill error trap for an analyte measurement determined from a specified sampling time derived from a sensed physical characteristic of the sample containing the analyte
CN104345079A (zh) * 2013-08-02 2015-02-11 达尔生技股份有限公司 判断方法
TWI637167B (zh) 2013-08-07 2018-10-01 日商愛科來股份有限公司 Substance measuring method and measuring device using electrochemical biosensor
US9459231B2 (en) 2013-08-29 2016-10-04 Lifescan Scotland Limited Method and system to determine erroneous measurement signals during a test measurement sequence
US9243276B2 (en) 2013-08-29 2016-01-26 Lifescan Scotland Limited Method and system to determine hematocrit-insensitive glucose values in a fluid sample
US9828621B2 (en) 2013-09-10 2017-11-28 Lifescan Scotland Limited Anomalous signal error trap for an analyte measurement determined from a specified sampling time derived from a sensed physical characteristic of the sample containing the analyte
ES2776355T3 (es) 2013-10-16 2020-07-30 Lockheed Martin Energy Llc Procedimiento y aparato para la medición de estado de carga transitorio usando potenciales de entrada/salida
RU2558599C2 (ru) * 2013-10-18 2015-08-10 Федеральное государственное бюджетное учреждение науки Институт механики Уральского отделения РАН Способ изготовления фоточувствительной серебро-палладиевой резистивной пленки
US10833340B2 (en) * 2013-11-01 2020-11-10 Lockheed Martin Energy, Llc Apparatus and method for determining state of charge in a redox flow battery via limiting currents
WO2015073286A1 (en) 2013-11-15 2015-05-21 Lockheed Martin Advanced Energy Storage, Llc Methods for determining state of charge and calibrating reference electrodes in a redox flow battery
US9291593B2 (en) 2013-11-22 2016-03-22 Cilag Gmbh International Dual-chamber analytical test strip
US9518951B2 (en) 2013-12-06 2016-12-13 Changsha Sinocare Inc. Disposable test sensor with improved sampling entrance
US20150176049A1 (en) 2013-12-23 2015-06-25 Cilag Gmbh International Determining usability of analytical test strip
US9897566B2 (en) 2014-01-13 2018-02-20 Changsha Sinocare Inc. Disposable test sensor
US9939401B2 (en) 2014-02-20 2018-04-10 Changsha Sinocare Inc. Test sensor with multiple sampling routes
US20160091451A1 (en) 2014-09-25 2016-03-31 Lifescan Scotland Limited Accurate analyte measurements for electrochemical test strip to determine analyte measurement time based on measured temperature, physical characteristic and estimated analyte value
US20160091450A1 (en) 2014-09-25 2016-03-31 Lifescan Scotland Limited Accurate analyte measurements for electrochemical test strip to determine analyte measurement time based on measured temperature, physical characteristic and estimated analyte value and their temperature compensated values
GB2531728A (en) * 2014-10-27 2016-05-04 Cilag Gmbh Int Method for determining diffusion
MX2017004887A (es) 2014-12-08 2017-07-27 Lockheed Martin Advanced Energy Storage Llc Sistemas electroquimicos que incorporan determinacion espectroscopica in situ del estado de carga.
US10197522B2 (en) 2015-03-18 2019-02-05 Materion Corporation Multilayer constructs for metabolite strips providing inert surface and mechanical advantage
US10378098B2 (en) * 2015-03-18 2019-08-13 Materion Corporation Methods for optimized production of multilayer metal/transparent conducting oxide (TCO) constructs
PL3220137T3 (pl) 2016-03-14 2019-07-31 F. Hoffmann-La Roche Ag Sposób wykrywania udziału zakłócającego w biosensorze
JP6778058B2 (ja) * 2016-08-31 2020-10-28 シスメックス株式会社 センサアセンブリ、被検物質のモニタリングシステムおよび被検物質のモニタリング方法
US10903511B2 (en) 2016-11-29 2021-01-26 Lockheed Martin Energy, Llc Flow batteries having adjustable circulation rate capabilities and methods associated therewith
US11147920B2 (en) 2017-04-18 2021-10-19 Lifescan Ip Holdings, Llc Diabetes management system with automatic basal and manual bolus insulin control
EP3457121A1 (en) * 2017-09-18 2019-03-20 Roche Diabetes Care GmbH Electrochemical sensor and sensor system for detecting at least one analyte
RU2743884C1 (ru) * 2020-08-05 2021-03-01 Общество с ограниченной ответственностью «Техохрана» Способ и устройство обнаружения электрохимического осаждения
CN111912697B (zh) * 2020-08-14 2023-03-07 南京原码科技合伙企业(有限合伙) 一种病原微生物的快速浓缩装置及方法
WO2023219648A1 (en) 2022-05-09 2023-11-16 Lockheed Martin Energy, Llc Flow battery with a dynamic fluidic network

Family Cites Families (191)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US453340A (en) * 1891-06-02 Wagon-bed elevator
JPS546595Y2 (ru) 1972-05-04 1979-03-28
SE399768B (sv) * 1975-09-29 1978-02-27 Lilja Jan E Kyvett for provtagning, blandning av, provet med ett reagensmedel och direkt utforande av, serskilt optisk, analys av det med reagensmedlet blandade provet
US4053381A (en) 1976-05-19 1977-10-11 Eastman Kodak Company Device for determining ionic activity of components of liquid drops
US4076596A (en) 1976-10-07 1978-02-28 Leeds & Northrup Company Apparatus for electrolytically determining a species in a fluid and method of use
JPS5912135B2 (ja) 1977-09-28 1984-03-21 松下電器産業株式会社 酵素電極
NL7903113A (nl) 1978-05-05 1979-11-07 Baker Chem Co J T Kinetische meting van glucoseconcentraties in lichaamsvloeistoffen en daartoe te gebruiken preparaten.
US4254546A (en) 1978-09-11 1981-03-10 Ses, Incorporated Photovoltaic cell array
US4233029A (en) 1978-10-25 1980-11-11 Eastman Kodak Company Liquid transport device and method
US4254083A (en) 1979-07-23 1981-03-03 Eastman Kodak Company Structural configuration for transport of a liquid drop through an ingress aperture
JPS5594560U (ru) 1978-12-20 1980-06-30
DE2913553C2 (de) 1979-04-04 1981-09-17 Boehringer Mannheim Gmbh, 6800 Mannheim Verfahren und Reagenz zur enzymatischen Bestimmung von Enzymsubstraten
JPS5827352B2 (ja) 1979-08-31 1983-06-08 旭硝子株式会社 電極層付着イオン交換膜の製造法
US4307188A (en) 1979-09-06 1981-12-22 Miles Laboratories, Inc. Precursor indicator compositions
US4301412A (en) 1979-10-29 1981-11-17 United States Surgical Corporation Liquid conductivity measuring system and sample cards therefor
US4301414A (en) 1979-10-29 1981-11-17 United States Surgical Corporation Disposable sample card and method of making same
US4303887A (en) 1979-10-29 1981-12-01 United States Surgical Corporation Electrical liquid conductivity measuring system
US4511659A (en) 1983-03-04 1985-04-16 Esa, Inc. Liquid chromatograph with electrochemical detector and method
US4404065A (en) 1980-01-14 1983-09-13 Enviromental Sciences Associates, Inc. Electrochemical detection system and method of analysis
SE419903B (sv) 1980-03-05 1981-08-31 Enfors Sven Olof Enzymelektrod
US4774039A (en) 1980-03-14 1988-09-27 Brunswick Corporation Dispersing casting of integral skinned highly asymmetric polymer membranes
US4629563B1 (en) 1980-03-14 1997-06-03 Memtec North America Asymmetric membranes
US4404066A (en) 1980-08-25 1983-09-13 The Yellow Springs Instrument Company Method for quantitatively determining a particular substrate catalyzed by a multisubstrate enzyme
JPS6017344Y2 (ja) 1980-11-14 1985-05-28 凸版印刷株式会社 装飾磁石
JPS57118152A (en) 1981-01-14 1982-07-22 Matsushita Electric Ind Co Ltd Enzyme electrode
DE3103464C2 (de) 1981-02-02 1984-10-11 Gkss - Forschungszentrum Geesthacht Gmbh, 2054 Geesthacht Dichtungsrahmen für Elektrodialyse-Membranstapel
JPS612060Y2 (ru) 1981-02-09 1986-01-23
DE3110879A1 (de) 1981-03-20 1982-09-30 Philips Patentverwaltung Gmbh, 2000 Hamburg Elektrochemolumineszenzzelle
DE3278334D1 (en) 1981-10-23 1988-05-19 Genetics Int Inc Sensor for components of a liquid mixture
US4431004A (en) 1981-10-27 1984-02-14 Bessman Samuel P Implantable glucose sensor
JPS593345A (ja) 1982-06-30 1984-01-10 Hitachi Ltd 妨害成分除去用電極を装備した溶存酸素計
DE3228542A1 (de) 1982-07-30 1984-02-02 Siemens AG, 1000 Berlin und 8000 München Verfahren zur bestimmung der konzentration elektrochemisch umsetzbarer stoffe
US4552840A (en) 1982-12-02 1985-11-12 California And Hawaiian Sugar Company Enzyme electrode and method for dextran analysis
US5682884A (en) 1983-05-05 1997-11-04 Medisense, Inc. Strip electrode with screen printing
US5509410A (en) 1983-06-06 1996-04-23 Medisense, Inc. Strip electrode including screen printing of a single layer
CA1219040A (en) 1983-05-05 1987-03-10 Elliot V. Plotkin Measurement of enzyme-catalysed reactions
CA1226036A (en) 1983-05-05 1987-08-25 Irving J. Higgins Analytical equipment and sensor electrodes therefor
US4533440A (en) 1983-08-04 1985-08-06 General Electric Company Method for continuous measurement of the sulfite/sulfate ratio
US4517291A (en) 1983-08-15 1985-05-14 E. I. Du Pont De Nemours And Company Biological detection process using polymer-coated electrodes
SE8305704D0 (sv) * 1983-10-18 1983-10-18 Leo Ab Cuvette
US4508613A (en) * 1983-12-19 1985-04-02 Gould Inc. Miniaturized potassium ion sensor
GB2154735B (en) 1984-01-27 1987-07-15 Menarini Sas Reagent for determining blood glucose content
US4591550A (en) 1984-03-01 1986-05-27 Molecular Devices Corporation Device having photoresponsive electrode for determining analytes including ligands and antibodies
US4554064A (en) 1984-03-28 1985-11-19 Imasco-Cdc Research Foundation Dual working-electrode electrochemical detector for high performance liquid chromatography
US5443710A (en) 1984-05-09 1995-08-22 Research Foundation, The City University Of New York Microelectrodes and their use in a cathodic electrochemical current arrangement with telemetric application
JPS60244853A (ja) * 1984-05-21 1985-12-04 Matsushita Electric Works Ltd バイオセンサ
JPS60250246A (ja) * 1984-05-25 1985-12-10 Matsushita Electric Works Ltd バイオセンサを用いた測定法
DE3568874D1 (en) 1984-06-13 1989-04-20 Ares Serono Inc Photometric instruments, their use in methods of optical analysis, and ancillary devices therefor
US5141868A (en) 1984-06-13 1992-08-25 Internationale Octrooi Maatschappij "Octropa" Bv Device for use in chemical test procedures
JPS612060A (ja) * 1984-06-15 1986-01-08 Matsushita Electric Works Ltd バイオセンサ
SE8403628D0 (sv) 1984-07-09 1984-07-09 Cerac Inst Sa Vetskefordelningsanordning vid forskremningsmaskiner
US5171689A (en) 1984-11-08 1992-12-15 Matsushita Electric Industrial Co., Ltd. Solid state bio-sensor
JPS61198691A (ja) 1985-02-27 1986-09-03 Stanley Electric Co Ltd 発光ダイオ−ド
JPH052007Y2 (ru) 1985-04-22 1993-01-19
US4897173A (en) 1985-06-21 1990-01-30 Matsushita Electric Industrial Co., Ltd. Biosensor and method for making the same
US4664119A (en) 1985-12-04 1987-05-12 University Of Southern California Transcutaneous galvanic electrode oxygen sensor
SU1351627A2 (ru) 1986-03-27 1987-11-15 Томский инженерно-строительный институт Фильтрующий элемент
JPH0661266B2 (ja) * 1986-03-28 1994-08-17 三菱化成株式会社 固定化酵素薄膜
AU598820B2 (en) 1986-06-20 1990-07-05 Molecular Devices Corporation Zero volume electrochemical cell
JPS636451A (ja) 1986-06-27 1988-01-12 Terumo Corp 酵素センサ
GB8617661D0 (en) 1986-07-18 1986-08-28 Malvern Instr Ltd Laser doppler velocimetry
GB8618022D0 (en) 1986-07-23 1986-08-28 Unilever Plc Electrochemical measurements
US4828705A (en) 1986-10-31 1989-05-09 Kingston Technologies, Inc. Pressure-dependent anisotropic-transport membrane system
JP2514083B2 (ja) 1986-11-28 1996-07-10 ユニリーバー・ナームローゼ・ベンノートシヤープ 電気化学的測定装置
EP0278647A3 (en) 1987-02-09 1989-09-20 AT&T Corp. Electronchemical processes involving enzymes
GB2201248B (en) 1987-02-24 1991-04-17 Ici Plc Enzyme electrode sensors
JPS63211692A (ja) 1987-02-27 1988-09-02 株式会社日立製作所 両面配線基板
JPS63139246U (ru) 1987-03-03 1988-09-13
US5269903A (en) * 1987-03-13 1993-12-14 Yoshito Ikariyama Microbioelectrode and method of fabricating the same
US4955947A (en) 1987-05-14 1990-09-11 Ace Orthopedic Manufacturing Pressure sensor
JPS63317097A (ja) 1987-06-19 1988-12-26 Matsushita Electric Ind Co Ltd バイオセンサ
US4963815A (en) 1987-07-10 1990-10-16 Molecular Devices Corporation Photoresponsive electrode for determination of redox potential
US4812221A (en) * 1987-07-15 1989-03-14 Sri International Fast response time microsensors for gaseous and vaporous species
US5064516A (en) 1987-07-16 1991-11-12 Gas Research Institute Measuring gas levels
US4790925A (en) 1987-09-18 1988-12-13 Mine Safety Appliances Company Electrochemical gas sensor
GB2212262B (en) 1987-11-09 1992-07-22 Solinst Canada Ltd Liquid level detector
US5108564A (en) 1988-03-15 1992-04-28 Tall Oak Ventures Method and apparatus for amperometric diagnostic analysis
US5128015A (en) * 1988-03-15 1992-07-07 Tall Oak Ventures Method and apparatus for amperometric diagnostic analysis
GB2215846B (en) 1988-03-23 1992-04-22 Nat Res Dev Method and apparatus for measuring the type and concentration of ion species in liquids
DE68924026T3 (de) * 1988-03-31 2008-01-10 Matsushita Electric Industrial Co., Ltd., Kadoma Biosensor und dessen herstellung.
JP2502665B2 (ja) 1988-03-31 1996-05-29 松下電器産業株式会社 バイオセンサ
FR2630546B1 (fr) 1988-04-20 1993-07-30 Centre Nat Rech Scient Electrode enzymatique et son procede de preparation
JPH01294453A (ja) 1988-05-12 1989-11-28 Youken:Kk 容器の蓋
CA1316572C (en) 1988-07-18 1993-04-20 Martin J. Patko Precalibrated, disposable, electrochemical sensors
GB8817421D0 (en) 1988-07-21 1988-08-24 Medisense Inc Bioelectrochemical electrodes
GB2224356A (en) 1988-10-31 1990-05-02 Plessey Co Plc Biosensor device
EP0375864A3 (en) 1988-12-29 1991-03-20 International Business Machines Corporation Cache bypass
US5089320A (en) 1989-01-09 1992-02-18 James River Ii, Inc. Resealable packaging material
US5089112A (en) 1989-03-20 1992-02-18 Associated Universities, Inc. Electrochemical biosensor based on immobilized enzymes and redox polymers
US5312590A (en) 1989-04-24 1994-05-17 National University Of Singapore Amperometric sensor for single and multicomponent analysis
US5236567A (en) 1989-05-31 1993-08-17 Nakano Vinegar Co., Ltd. Enzyme sensor
DE3921528A1 (de) 1989-06-30 1991-01-10 Draegerwerk Ag Messzelle fuer den elektrochemischen gasnachweis
DE3921526A1 (de) 1989-06-30 1991-01-10 Draegerwerk Ag Diffusionsbarriere mit temperaturfuehler fuer einen elektrochemischen gassensor
GB2235050B (en) * 1989-08-14 1994-01-05 Sieger Ltd Electrochemical gas sensor
CA2024548C (en) 1989-09-05 2002-05-28 David Issachar Analyte specific chemical sensor
DE68925727T2 (de) 1989-09-15 1996-07-04 Hewlett Packard Gmbh Methode zur Bestimmung der optimalen Arbeitsbedingungen in einem elektrochemischen Detektor und elektrochemischer Detektor, diese Methode benutzend
GB8922126D0 (en) 1989-10-02 1989-11-15 Normalair Garrett Ltd Oxygen monitoring method and apparatus
DE69025134T2 (de) 1989-11-24 1996-08-14 Matsushita Electric Ind Co Ltd Verfahren zur Herstellung eines Biosensors
JPH0758270B2 (ja) 1989-11-27 1995-06-21 山武ハネウエル株式会社 感湿素子の製造方法
US5243516A (en) 1989-12-15 1993-09-07 Boehringer Mannheim Corporation Biosensing instrument and method
US5288636A (en) 1989-12-15 1994-02-22 Boehringer Mannheim Corporation Enzyme electrode system
US5508171A (en) 1989-12-15 1996-04-16 Boehringer Mannheim Corporation Assay method with enzyme electrode system
DE4003194A1 (de) 1990-02-03 1991-08-08 Boehringer Mannheim Gmbh Verfahren und sensorelektrodensystem zur elektrochemischen bestimmung eines analyts oder einer oxidoreduktase sowie verwendung hierfuer geeigneter verbindungen
US5858188A (en) 1990-02-28 1999-01-12 Aclara Biosciences, Inc. Acrylic microchannels and their use in electrophoretic applications
CA2036435A1 (en) 1990-03-26 1991-09-27 Paul J. Anderson Reagent unit
GB2244135B (en) 1990-05-04 1994-07-13 Gen Electric Co Plc Sensor devices
US5243526A (en) 1990-05-18 1993-09-07 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Output control apparatus for vehicle
US5059908A (en) 1990-05-31 1991-10-22 Capital Controls Company, Inc. Amperimetric measurement with cell electrode deplating
JPH0466112A (ja) 1990-07-03 1992-03-02 Ube Ind Ltd 膜輸送における輸送条件の決定方法
US5320732A (en) 1990-07-20 1994-06-14 Matsushita Electric Industrial Co., Ltd. Biosensor and measuring apparatus using the same
ZA92803B (en) 1991-02-06 1992-11-25 Igen Inc Method and apparatus for magnetic microparticulate based luminescene asay including plurality of magnets
ATE182369T1 (de) 1991-02-27 1999-08-15 Boehringer Mannheim Corp Stabilisierung eines enzym enthaltenden reagenz zur bestimmung eines analyten
US5192415A (en) 1991-03-04 1993-03-09 Matsushita Electric Industrial Co., Ltd. Biosensor utilizing enzyme and a method for producing the same
JP3118015B2 (ja) 1991-05-17 2000-12-18 アークレイ株式会社 バイオセンサーおよびそれを用いた分離定量方法
JPH04343065A (ja) 1991-05-17 1992-11-30 Ngk Spark Plug Co Ltd バイオセンサ
DE4123348A1 (de) 1991-07-15 1993-01-21 Boehringer Mannheim Gmbh Elektrochemisches analysesystem
DE69219686T2 (de) 1991-07-29 1997-09-11 Mochida Pharm Co Ltd Verfahren und Vorrichtung zur Verwendung in spezifischen Bindungstests
JP3135959B2 (ja) 1991-12-12 2001-02-19 アークレイ株式会社 バイオセンサーおよびそれを用いた分離定量方法
US5388163A (en) 1991-12-23 1995-02-07 At&T Corp. Electret transducer array and fabrication technique
AU3104293A (en) * 1992-01-14 1993-07-15 Commonwealth Scientific And Industrial Research Organisation Viscometer
JP3084877B2 (ja) 1992-01-21 2000-09-04 松下電器産業株式会社 グルコースセンサの製造方法
RU2046361C1 (ru) * 1992-01-27 1995-10-20 Веревкин Валерий Иванович Устройство для измерения удельной электропроводности жидких сред
DE69318332T2 (de) 1992-03-12 1998-09-03 Matsushita Electric Ind Co Ltd Biosensor mit einem Katalysator aus Phosphat
JP3063393B2 (ja) 1992-05-12 2000-07-12 東陶機器株式会社 バイオセンサ及びその製造方法
GB9215972D0 (en) * 1992-07-28 1992-09-09 Univ Manchester Improved analytical method
JP2541081B2 (ja) 1992-08-28 1996-10-09 日本電気株式会社 バイオセンサ及びバイオセンサの製造・使用方法
DE69333945T2 (de) 1992-09-04 2006-06-29 Matsushita Electric Industrial Co., Ltd., Kadoma Flache Elektrode
FR2695481B1 (fr) * 1992-09-07 1994-12-02 Cylergie Gie Dispositif de mesure ampérométrique comportant un capteur électrochimique.
EP0600607A3 (en) 1992-10-28 1996-07-03 Nakano Vinegar Co Ltd Coulometric analysis method and a device therefor.
JP3167464B2 (ja) 1992-11-26 2001-05-21 富士電機株式会社 インバータの故障診断装置
US5372932A (en) 1992-12-22 1994-12-13 Eastman Kodak Company Analytical element and method for the determination of a specific binding ligand using a 4-hydroxy or 4-alkoxyarylacetamide as stabilizer
FR2701117B1 (fr) * 1993-02-04 1995-03-10 Asulab Sa Système de mesures électrochimiques à capteur multizones, et son application au dosage du glucose.
JPH06310746A (ja) 1993-04-27 1994-11-04 Hitachi Ltd 電気化学素子
US5385846A (en) 1993-06-03 1995-01-31 Boehringer Mannheim Corporation Biosensor and method for hematocrit determination
US5366609A (en) * 1993-06-08 1994-11-22 Boehringer Mannheim Corporation Biosensing meter with pluggable memory key
US5405511A (en) 1993-06-08 1995-04-11 Boehringer Mannheim Corporation Biosensing meter with ambient temperature estimation method and system
US5413690A (en) 1993-07-23 1995-05-09 Boehringer Mannheim Corporation Potentiometric biosensor and the method of its use
GB9325189D0 (en) 1993-12-08 1994-02-09 Unilever Plc Methods and apparatus for electrochemical measurements
US5399256A (en) 1994-01-07 1995-03-21 Bioanalytical Systems, Inc. Electrochemical detector cell
AU1911795A (en) 1994-02-09 1995-08-29 Abbott Laboratories Diagnostic flow cell device
GB9402591D0 (en) 1994-02-10 1994-04-06 Univ Cranfield Hexacyanoferrate (III) modified carbon electrodes
US5762770A (en) 1994-02-21 1998-06-09 Boehringer Mannheim Corporation Electrochemical biosensor test strip
US5437999A (en) * 1994-02-22 1995-08-01 Boehringer Mannheim Corporation Electrochemical sensor
AUPM506894A0 (en) 1994-04-14 1994-05-05 Memtec Limited Novel electrochemical cells
JP3027306B2 (ja) 1994-06-02 2000-04-04 松下電器産業株式会社 バイオセンサおよびその製造方法
US5518590A (en) 1994-06-21 1996-05-21 Pennzoil Products Company Electrochemical sensors for motor oils and other lubricants
GB9415499D0 (en) 1994-08-01 1994-09-21 Bartlett Philip N Electrodes and their use in analysis
DE4445948C2 (de) 1994-12-22 1998-04-02 Draegerwerk Ag Verfahren zum Betreiben einer amperometrischen Meßzelle
GB9501841D0 (en) 1995-01-31 1995-03-22 Co Ordinated Drug Dev Improvements in and relating to carrier particles for use in dry powder inhalers
US6153069A (en) 1995-02-09 2000-11-28 Tall Oak Ventures Apparatus for amperometric Diagnostic analysis
JPH0862179A (ja) 1995-02-13 1996-03-08 Hitachi Ltd 電解質分析装置
US5517313A (en) 1995-02-21 1996-05-14 Colvin, Jr.; Arthur E. Fluorescent optical sensor
US5651869A (en) 1995-02-28 1997-07-29 Matsushita Electric Industrial Co., Ltd. Biosensor
US5607565A (en) 1995-03-27 1997-03-04 Coulter Corporation Apparatus for measuring analytes in a fluid sample
DE19511732C2 (de) 1995-03-31 1999-02-11 Tracto Technik Verfahren zum Verlegen von Rohrleitungen im Erdreich zwischen Kontrollschächten
US5527446A (en) 1995-04-13 1996-06-18 United States Of America As Represented By The Secretary Of The Air Force Gas sensor
US5620579A (en) 1995-05-05 1997-04-15 Bayer Corporation Apparatus for reduction of bias in amperometric sensors
US5695947A (en) 1995-06-06 1997-12-09 Biomedix, Inc. Amperometric cholesterol biosensor
US5567302A (en) 1995-06-07 1996-10-22 Molecular Devices Corporation Electrochemical system for rapid detection of biochemical agents that catalyze a redox potential change
AUPN363995A0 (en) * 1995-06-19 1995-07-13 Memtec Limited Electrochemical cell
US6413410B1 (en) 1996-06-19 2002-07-02 Lifescan, Inc. Electrochemical cell
US5665215A (en) 1995-09-25 1997-09-09 Bayer Corporation Method and apparatus for making predetermined events with a biosensor
US5628890A (en) 1995-09-27 1997-05-13 Medisense, Inc. Electrochemical sensor
US6174420B1 (en) 1996-11-15 2001-01-16 Usf Filtration And Separations Group, Inc. Electrochemical cell
US6521110B1 (en) 1995-11-16 2003-02-18 Lifescan, Inc. Electrochemical cell
AUPP238898A0 (en) 1998-03-12 1998-04-09 Usf Filtration And Separations Group Inc. Heated electrochemical cell
AUPN661995A0 (en) * 1995-11-16 1995-12-07 Memtec America Corporation Electrochemical cell 2
US6863801B2 (en) 1995-11-16 2005-03-08 Lifescan, Inc. Electrochemical cell
IL116921A (en) 1996-01-26 2000-11-21 Yissum Res Dev Co Electrochemical system for determination of an analyte in a liquid medium
JP3584594B2 (ja) 1996-02-19 2004-11-04 松下電器産業株式会社 pHセンサ及びイオン水生成器
JPH09236570A (ja) 1996-03-04 1997-09-09 Matsushita Electric Ind Co Ltd pHセンサ及びイオン水生成器
JP3577824B2 (ja) 1996-03-08 2004-10-20 松下電器産業株式会社 pHセンサ及びイオン水生成器
US5707502A (en) 1996-07-12 1998-01-13 Chiron Diagnostics Corporation Sensors for measuring analyte concentrations and methods of making same
AUPO229696A0 (en) 1996-09-13 1996-10-10 Memtec America Corporation Analytic cell
DE69720391T2 (de) 1996-12-20 2004-02-12 Matsushita Electric Industrial Co., Ltd., Kadoma Cholesterinsensor und Verfahren zu seiner Herstellung
NZ336910A (en) 1997-02-06 2001-09-28 Xanthon Inc Electrochemical probes for detection of molecular interactions and drug discovery
AUPO581397A0 (en) 1997-03-21 1997-04-17 Memtec America Corporation Sensor connection means
AUPO585797A0 (en) 1997-03-25 1997-04-24 Memtec America Corporation Improved electrochemical cell
DE29709141U1 (de) 1997-05-24 1997-08-28 Kurt-Schwabe-Institut für Meß- und Sensortechnik e.V., 04736 Meinsberg Membranbedeckter elektrochemischer Gassensor
US6071391A (en) 1997-09-12 2000-06-06 Nok Corporation Enzyme electrode structure
US5997817A (en) 1997-12-05 1999-12-07 Roche Diagnostics Corporation Electrochemical biosensor test strip
JP3874321B2 (ja) 1998-06-11 2007-01-31 松下電器産業株式会社 バイオセンサ
US6251260B1 (en) 1998-08-24 2001-06-26 Therasense, Inc. Potentiometric sensors for analytic determination
US6338790B1 (en) 1998-10-08 2002-01-15 Therasense, Inc. Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
JP4066112B2 (ja) 1999-01-28 2008-03-26 株式会社スーパーシリコン研究所 ワイヤソーの制御方法及びワイヤソー
JP3572241B2 (ja) 2000-03-29 2004-09-29 京セラ株式会社 空燃比センサ素子
US6193873B1 (en) 1999-06-15 2001-02-27 Lifescan, Inc. Sample detection to initiate timing of an electrochemical assay
US6413395B1 (en) 1999-12-16 2002-07-02 Roche Diagnostics Corporation Biosensor apparatus
WO2002006788A2 (en) 2000-07-14 2002-01-24 Usf Filtration And Separations Group Inc. Electrochemical method for measuring chemical reaction rates
US6544212B2 (en) 2001-07-31 2003-04-08 Roche Diagnostics Corporation Diabetes management system
US6780756B1 (en) 2003-02-28 2004-08-24 Texas Instruments Incorporated Etch back of interconnect dielectrics

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2444006C2 (ru) * 2006-09-18 2012-02-27 Александер АДЛАССНИГ Способ определения концентраций пероксида водорода и устройство для его осуществления (варианты)

Also Published As

Publication number Publication date
DE69628948D1 (de) 2003-08-07
AU7555096A (en) 1997-06-05
IL124495A (en) 2003-06-24
CN1445540A (zh) 2003-10-01
AU7554996A (en) 1997-06-05
AU705313B2 (en) 1999-05-20
KR20030096453A (ko) 2003-12-31
IL133994A0 (en) 2002-03-10
RU2243545C2 (ru) 2004-12-27
CN1445541A (zh) 2003-10-01
USRE42567E1 (en) 2011-07-26
CN1105304C (zh) 2003-04-09
CA2577229C (en) 2008-01-08
EP0923722A4 (en) 2001-01-24
EP1236995A1 (en) 2002-09-04
EP1362922A1 (en) 2003-11-19
EP0967480A2 (en) 1999-12-29
BR9611513B1 (pt) 2008-11-18
IL124494A (en) 2000-08-31
KR100741187B1 (ko) 2007-07-19
DK0967480T3 (da) 2003-10-27
KR100628860B1 (ko) 2006-09-27
HK1060597A1 (en) 2004-08-13
CA2577229A1 (en) 1997-05-22
EP0967480A3 (en) 2001-01-17
IL124495A0 (en) 1999-01-26
KR19990067672A (ko) 1999-08-25
CN1763518A (zh) 2006-04-26
ES2197572T3 (es) 2004-01-01
IL124494A0 (en) 1999-01-26
KR100741181B1 (ko) 2007-07-19
CA2236850C (en) 2004-06-01
ES2384166T3 (es) 2012-07-02
ATE508358T1 (de) 2011-05-15
DK1362922T3 (da) 2012-05-07
HK1104604A1 (en) 2008-01-18
HK1028914A1 (en) 2001-03-09
EP0882226A1 (en) 1998-12-09
IL172879A0 (en) 2006-06-11
CN1254840A (zh) 2000-05-31
ES2365981T3 (es) 2011-10-14
EP0923722A1 (en) 1999-06-23
US6179979B1 (en) 2001-01-30
KR20060097067A (ko) 2006-09-13
ATE553212T1 (de) 2012-04-15
AUPN661995A0 (en) 1995-12-07
CA2236850A1 (en) 1997-05-22
BR9611514A (pt) 1999-09-14
ATE244401T1 (de) 2003-07-15
KR19990067673A (ko) 1999-08-25
EP0967480B1 (en) 2003-07-02
JP2000500571A (ja) 2000-01-18
CA2236848C (en) 2007-05-15
EP0923722B1 (en) 2011-05-04
CN1928541A (zh) 2007-03-14
DK0882226T3 (da) 2003-06-23
DE69628588T2 (de) 2003-12-24
RU2305279C2 (ru) 2007-08-27
CN1204399A (zh) 1999-01-06
CN1160564C (zh) 2004-08-04
DE69628948T2 (de) 2003-12-24
ES2195019T3 (es) 2003-12-01
DE69628588D1 (de) 2003-07-10
CN1445540B (zh) 2010-05-12
KR100468550B1 (ko) 2005-05-24
HK1018096A1 (en) 1999-12-10
EP0882226B1 (en) 2003-06-04
HK1018097A1 (en) 1999-12-10
CN1932500B (zh) 2011-07-27
AU705165B2 (en) 1999-05-20
CA2236848A1 (en) 1997-05-22
JP3863184B2 (ja) 2006-12-27
WO1997018465A1 (en) 1997-05-22
DK0923722T3 (da) 2011-06-14
CN100409008C (zh) 2008-08-06
ATE242477T1 (de) 2003-06-15
JP2000500572A (ja) 2000-01-18
RU2202781C2 (ru) 2003-04-20
CN1104645C (zh) 2003-04-02
DE69638367D1 (de) 2011-06-16
CN1204400A (zh) 1999-01-06
KR20050042506A (ko) 2005-05-09
CN1932500A (zh) 2007-03-21
KR100655357B1 (ko) 2007-12-04
IL132089A (en) 2004-05-12
US5942102A (en) 1999-08-24
WO1997018464A1 (en) 1997-05-22
EP1362922B1 (en) 2012-04-11
EP0882226A4 (en) 2001-01-17
HK1049513A1 (zh) 2003-05-16
BR9611513A (pt) 1999-09-14

Similar Documents

Publication Publication Date Title
RU2174679C2 (ru) Электрохимический способ
US9075004B2 (en) Electrochemical cell
US6475360B1 (en) Heated electrochemical cell
US6284125B1 (en) Electrochemical cell
US8877035B2 (en) Gated amperometry methods
US20030080001A1 (en) Heated electrochemical cell
JP2006105615A (ja) 電気化学的測定方法およびそれを使用した測定装置
Zhao et al. A Portable Fill‐and‐Flow Channel Biosensor with an Electrode to Predict the Effect of Interferences
AU735132B2 (en) Electrochemical cell