RU2138950C1 - Мутантный штамм бактерий bacillus thuringiensis subsp, tenebrionis dsm 5480 - продуцент дельта-эндотоксина, способ получения препарата на основе дельта-эндотоксина, пестицидная композиция, содержащая дельта-эндотоксин, способ борьбы с вредными сельскохозяйственными насекомыми, способ получения мутантных штаммов бактерий bacillus thuringiensis subsp, tenebrionis - продуцентов дельта-эндотоксина - Google Patents

Мутантный штамм бактерий bacillus thuringiensis subsp, tenebrionis dsm 5480 - продуцент дельта-эндотоксина, способ получения препарата на основе дельта-эндотоксина, пестицидная композиция, содержащая дельта-эндотоксин, способ борьбы с вредными сельскохозяйственными насекомыми, способ получения мутантных штаммов бактерий bacillus thuringiensis subsp, tenebrionis - продуцентов дельта-эндотоксина Download PDF

Info

Publication number
RU2138950C1
RU2138950C1 SU5052261A SU5052261A RU2138950C1 RU 2138950 C1 RU2138950 C1 RU 2138950C1 SU 5052261 A SU5052261 A SU 5052261A SU 5052261 A SU5052261 A SU 5052261A RU 2138950 C1 RU2138950 C1 RU 2138950C1
Authority
RU
Russia
Prior art keywords
endotoxin
delta
bacillus thuringiensis
strain
dsm
Prior art date
Application number
SU5052261A
Other languages
English (en)
Inventor
Гуртлер Ханне
Шоусбо Петерсен Анетте
Original Assignee
Эбботт Лабораториз
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DK580589A external-priority patent/DK580589D0/da
Priority claimed from DK627489A external-priority patent/DK627489D0/da
Application filed by Эбботт Лабораториз filed Critical Эбботт Лабораториз
Application granted granted Critical
Publication of RU2138950C1 publication Critical patent/RU2138950C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/32Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Bacillus (G)
    • C07K14/325Bacillus thuringiensis crystal peptides, i.e. delta-endotoxins
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/20Bacteria; Substances produced thereby or obtained therefrom
    • A01N63/22Bacillus
    • A01N63/23B. thuringiensis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/07Bacillus
    • C12R2001/075Bacillus thuringiensis

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Dentistry (AREA)
  • Agronomy & Crop Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental Sciences (AREA)
  • Biomedical Technology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Plant Pathology (AREA)
  • Pest Control & Pesticides (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

Изобретение относится к биотехнологии, в частности к средствам биологической борьбы с вредными насекомыми. Получен новый штамм бактерий Bacillus thuringiensis subsp. tenebrionis DSM 5480, продуцирующий 3282-4169 ВТТ US/г дельта-эндотоксина. Штамм получают путем облучения γ-излучением родительского штамма Bacillus thuringiensis DSM 2830, выращивания на среде, способствующей получению аспорогенных или олигоспорогенных мутантов, с последующим отбором полученных полупрозрачных колоний и пересевом их на среду, не содержащую летучих компонентов. Вновь полученные клетки выдерживают при 90oC в течение часа, затем их инкубируют при 30oС до получения аспорогенных колоний. Из них отбирают бактерии, засевают в производственную среду. Затем отбирают бактерии, продуцирующие максимальное количество дельта-эндотоксина. На основе полученного дельта-эндотоксина готовят композиции для борьбы с сельскохозяйственными вредителями. Изобретение позволяет увеличить выход дельта-эндотоксина в 2-3 раза по сравнению с родительским штаммом и повысить эффективность в борьбе с сельскохозяйственными насекомыми. 6 с. и 9 з.п. ф-лы, 8 табл.

Description

Коммерческие препараты Bacillus thuringiensis широко используются во всем мире как биологическое средство борьбы с вредными насекомыми. Достоинствами этих бактериальных инсектицидов является их высокая селективность по отношению к очень узкому кругу насекомых-мишеней и биологическая разлагаемость.
Коммерческие препараты Bacillus thuringiensis могут использоваться вплоть до сбора урожая, не оказывая при этом вредного действия. Bacillus thuringiensis представляют собой палочкообразные аэробные спорообразующие бактерии, уникальная особенность которых состоит в том, что в процессе споруляции они продуцируют одно или более включений, так называемых параспоральных кристаллов. Эти кристаллы состоят из высокомолекулярных белков, называемых дельта-эндотоксинами. Эти дельта-эндотоксины являются активным компонентом выпускаемых коммерческих препаратов Bacillus thuringiensis.
Идентифицировано большое количество штаммов Bacillus thuringiensis с различным спектром насекомых хозяев. По своим флагеллярным антигенам они разделяются на различные подвиды. Особый интерес представляют подвиды Bacillus thuringiensis kurstaki и aizawai, israelensis и tenebrionis, использующиеся для контроля соответственно чешуекрылых, двукрылых и жесткокрылых вредных насекомых.
Впервые сообщение о выделении токсичных по отношению к жесткокрылым Bacillus thuringiensis было опубликовано в 1983 году (A.Krieg и др., Z. and Ent. 96, 500 - 508, европейский патент EP 0149162 A2).
Этот изолят под названием Bacillus thuringiensis subsp. tenebrionis был депонирован в Немецкой коллекции микроорганизмов под номером DSM 2803. Bacillus thuringiensis subsp. tenebrionis был выделен в 1982 году из мертвой куколки мучного червя Tenebrio molitor (Tenebrionidae, Coleoptera). Этот штамм продуцирует в каждой клетке одну спору и один или более инсектицидных параспоральных кристаллов, имеющих форму плоских пластин с кромкой длиной примерно 0,8 - 1,5 мкм. Он относится к серотипу H8a, 8b и прототипу C Bacillus thuringiensis (Krieg и др. , System. Appl. Microbiol. 9, 138-141, 1987, патент США 4766203, 1988).
Он токсичен только по отношению к некоторым питающимся листьями личинками жуков (chrysomelidae), но не оказывает действия на гусениц (Lepidoptera), комаров (Diptera) и других насекомых.
Было показано, что Bacillus thuringiensis subsp. tenebrionis позволяет эффективно контролировать личинок колорадского жука. После поглощения кристаллов и спор, продуцируемых Bacillus thuringiensis subsp. tenebrionis, или выделенных кристаллов личинки и до некоторой степени взрослые особи колорадского жука (Leptinotarsa decemlineata) перестают есть. Личинки на стадии развития L1-L3 погибают в течение 1 - 3 дней (Schnetter и др., в Fundamental & applied aspects of invertebrate pathology, под редакцией R.A.Samson и др., Proceeding of the 4th Int. colloguium of Invertebrate Pathology, стр. 555, 1986).
Недавно было обнаружено, что помимо кристаллов, активных по отношению к жесткокрылым, Bacillus thuringiensis subsp. tenebrionis продуцирует и другие параспоральные кристаллы, палочкообразной, сфероидальной или пластинчатой формы (A. M. Huger и A.Krieg, J. Appl. Ent. 108, 490-497, 1989). Активность этих вторых кристаллов пока не изучена.
На основе Bacillus thuringiensis subsp. tenebrionis были разработаны четыре коммерческих продукта для контроля жесткокрылых вредных насекомых: NOVOPOR® (фирма Novo Nordis k A/s). TRIDENT® (фирма Sandor), Di Terra® (фирма Abbott Laboratories Inc.) и Foil® (фирма Ecogen).
В 1986 году было опубликовано сообщение о выделении другого токсичного для жесткокрылых насекомых штамма Bacillus thuringiensis (Hernnstadt и др., Bio/Technology, т. 4, 305-308, 1986, патент США 4764372, 1988). Этот штамм под названием "Bacillus thuringiensis subsp. sorn diego", M7, депонирован в Northern Regional Researeh Laborotory, США под номером NRRL B-15939. На его основе фирмой Mycogen Corp. выпущен коммерческий продукт.
Сравнительные исследования Bacillus thuringiensis subsp. tenebrionis, DSM 2803, и Bacillus thuringiensis subsp. san diego", NRRL-B15939, включавшие фенотипическую характеристику вегетативных клеток, характеристику токсического параспорального кристалла и анализ плазмида ДНК, показали однако, что "Bacillus thuringiensis subsp. san diego" фактически идентичен ранее выделенному штамму DSM 2803, Bacillus thuringiensis subsp. tenebrionis (Krieg и др. , J. Appl. Ent. 104, 417-424, 1987). Кроме того, нуклеотидные последовательности и производные аминокислотные последовательности активных по отношению к жесткокрылым дельта-эндотоксинных генов Bacillus thuringiensis subsp. tenebrionis и "Bacillus thuringiensis suhsp. san diego" также идентичны.
В тех же самых условиях вышеупомянутые кристаллы второго типа "Bacillus thuringiensis suhsp. san diego" (A.M. Huoger & A. Krieg, J. Appl. Ent 108. 490-497, 1989).
Согласно H. de Barjac & E. Frachon (Entomophaga 35 (2), 233-240, 1990) изолят "Sandiego" аналогичен "tenebrionis", и поэтому нет оснований рассматривать их как различные подвиды.
Возможность использования штаммов Bacillus thuringiensis для контроля жесткокрылых вредных насекомых зависит от эффективности и экономичности способа получения активных по отношению к жесткокрылым токсинов и активности получаемого продукта. Последняя в свою очередь зависит от количества дельта-эндотоксинов, которые могут быть получены путем ферментации активных по отношению к жесткокрылым штаммов Bacillus thuringiensis.
B. thurihgiensis уже давно используются для получения инсектицидов. Однако, хотя предпочтительным было бы использование мутантов B. thuringiensis с более высоким выходом дельта-эндотоксинов, однако такие мутанты не были описаны. Мутанты, продуцирующие дельта-эндотоксины с более высоким выходом, позволили бы разработать более экономичные и эффективные способы получения токсинов B. thuringiensis и дали бы возможность получать продукты B. thuringiensis такой же стоимости, но с более высокой активностью. Последнее, в свою очередь, было бы целесообразно и для потребителя с точки зрения хранения и использования меньших количеств пестицидных композиций для обработки определенных площадей. Кроме того, в этом случае потребителю понадобится меньшее количество контейнеров для хранения таких композиций, что ослабит воздействие их на окружающую среду.
В литературе отсутствует описание усовершенствования способов получения дельта-эндотоксинов с помощью Bacillus thuringiensis subsp. tenebrionis путем мутации.
Одна из проблем использования для контроля личинок жуков в частности B. thuringiensis subsp. tehebrinis связана со сравнительно низкой активностью этих композиций, что требует применения довольно больших количеств их для обработки определенных площадей, а именно 5 - 10 л/га по сравнению с 1 - 2 л/га большинства других продуктов B. thuringiensis и других инсектицидов.
Отсюда следует необходимость получения продуктов с более высокой активностью.
Одним из путей решения этой проблемы является получение более концентрированных препаратов. Это однако привело бы к удорожанию их производства, которое не компенсировалось бы экономией при хранении и транспортировке.
Более изящным решением было бы создание мутантов существующих штаммов B. thuringiensis, способных продуцировать значительно большие количества дельта-эндотоксинов на клетку.
Краткое описание сущности изобретения.
Настоящее изобретение, таким образом, относится к вариантным или мутантным штаммам Bacillus thuringiensis, способным продуцировать значительно большие количества токсинов, чем родительский штамм.
Настоящее изобретение относится также к таким обладающим высокой продуцирующей способностью варианты или мутантам B. thuringiensis, относящимся к подвидам tenebrionis.
Предметом настоящего изобретения являются также использование таких вариантов или мутантов штаммов Bacillus thuringiensis для получения пестицидных продуктов и пестицидные композиции, включающие в качестве активного компонента дельта-эндотоксины, продуцированные вариантом или мутантом штаммов Bacullus thuringiensis в соответствии с изобретением.
Предметом настоящего изобретения далее является способ контроля вредных насекомых путем обработки заявляемыми композициями площадей с подлежащими контролю вредными насекомыми, чувствительными к содержащимися в композициях дельта-токсинам.
Предметом настоящего изобретения являются, кроме того, способы селекции или мутации и селекции штаммов B. thuringiensis для получения их вариантов или мутантов, способных продуцировать значительно большие количества дельта-эндотоксинов, чем их родительский штамм.
Депонирование микроорганизмов
В целях подробного описания настоящего изобретения мутант Bacillus thuringiensis subsp. tenebrionis, продуцирующий большие количества дельта-эндотоксина, был депонирован в Немецкой коллекции микроорганизмов и клеточных культур GmbH, Mascheroderueglb, D-3300 Braunschulig, Федеративная Республика Германия. Это было сделано в целях патентования на указанную ниже дату. DSM, будучи международным депозитарием в соответствии с Будапештским договором, обеспечивает постоянство депонированных микроорганизмов в соответствии с параграфом 9 указанного договора.
Дата депонирования - 10 августа 1989 года
Регистрационный номер депозитора - NB 176-1
Обозначение в DSM - DSM 5480
Мутант DSM 5480 был получен путем мутации штамма Basillus thuringiensis subsp. tehibrionis DSM 5526, который также был депонирован в соответствии с Будапештским договором в нижеуказанный срок под нижеуказанным номером.
Дата депонирования - 14 сентября 1989 года
Регистрационный номер депозитора - NB 125
Обозначение в DSM - DSM 5526
Подробное описание изобретения
Предметом настоящего изобретения являются варианты или мутанты Bacillus thuringiensis, продуцирующие активные дельта-эндотоксины в значительно больших количествах по сравнению с их родительским штаммом.
Под выражением "в значительно больших количествах" в данном описании имеется в виду по меньшей мере в два или большее число раз больших количествах.
И в случае вышеуказанного предмета изобретения в его общем аспекте, и в случае более конкретных его аспектов, о которых будет сказано ниже, дельта-эндотоксины, продуцируемые мутантом B. thuringiensis, активны по отношению к тем же вредным насекомым, что и дельта-эндотоксины, продуцируемые их родительским штаммом, а именно к чешуекрылым (мутанты штаммов B. thuringiensis subsp. kurstaki и subsp. aizawai), двукрылым (мутанты штамма B. thuringiensis subsp. inraelensis) или жесткокрылым (мутанты штамма B. thuringiensis subsp. tenebrionis).
Одним из предметов настоящего изобретения является штамм B. thuringiensis, относящийся к подвиду tenibrionis. Продуцируемый им дельта-эндотоксин обладает активностью по отношению к жесткокрылым.
В этом плане по предпочтительному варианту осуществления изобретения вариант или мутант штамма B. thuringiensis subsp. tenebrionis способны продуцировать более чем в три раза большее количество дельта-эндотоксина по сравнению со штаммом DSM 2803.
В соответствии с другими вариантами осуществления настоящее изобретения включает варианты или мутанты штаммов B. thuringiensis subsp. tenebrionis, способные продуцировать параспоральный кристалл с длиной кромки 2 или более мкм.
Согласно другому варианту осуществления настоящее изобретение включает варианты или мутанты штаммов B. thuringiensis subsp. tenebrionis с частотой споруляции в 10-100 или даже в 106 раз меньше частоты споруляции родительского штамма DSM 2803.
В частности, настоящее изобретение относится к депонированному штамму B. thuringiensis subsp. tenebrionsis DSM 5480.
В процессе работы над настоящим изобретением был выделен мутант штамма B. thuringiensis subsp. tenebrionsis (DSM 5480), продуцирующий в два с лишним раза большее количество дельта-эндотоксина, чем его родительский штамм (DSM 5526). Данные фазоконтрастной микроскопии, сканирующей электронной микроскопии и просвечивающей электронной микроскопии свидетельствуют о том, что высокая продуцирующая способность этого мутанта связана с изменениями регуляции продуцирования дельта-эндотоксина по сравнению со споруляцией, следствием чего является продуцирование кристаллов белка более чем в пять раз крупных, чем кристаллы, продуцируемые известными штаммами Bacillus thuringiensis, активными по отношению к жесткокрылым. По-видимому, в данном случае пропадает тесная связь между образованием кристаллов и споруляцией, и мутант продуцирует большие количества дельта-эндотоксина до начала споруляции.
Согласно одному из аспектов настоящего изобретения предметом его является использование заявляемых вариантов или мутантом штаммов для получения инсектицидных препаратов на основе B.thuringiеnsis. В соответствии с предлагаемым способом вариант или мутант штамма B. thuringiensis выращивают в подходящей культуральной среде, включающей источники углерода, азота и другие компоненты, известные специалисту в данной области, в течение определенного времени, после чего из среды извлекают образующиеся дельта-эндотоксины.
В соответствии с другим аспектом настоящего изобретения полученные вышеописанным образом дельта-эндотоксины B. thuringiensis используют в качестве активного компонента пестицидных композиций.
В таких композициях дельта-эндотоксины в соответствии с настоящим изобретением могут использоваться как сами по себе, так и в комбинации с другими обладающими биоцидной активностью продуктами.
Настоящее изобретение относится далее к таким пестицидным композициям или препаратам, включающим дельта-эндотоксин в соответствии с настоящим изобретением в смеси с приемлемыми с точки зрения сельского хозяйства разбавителями или носителями.
Предметом настоящего изобретения, кроме того, являются такие пестицидные композиции или препараты, включающие дельта-эндотоксин B. thuringiensis, в жидкой форме с активностью не менее 15000 BTTU/г, что соответствует концентрации инсектицидного по отношению к жесткокрылым кристаллического белка как минимум 3 весов.%, или в твердой форме с активностью не менее 50000 BTTU/г, что соответствует концентрации инсектицидного по отношению к жесткокрылым кристаллического белка как минимум 10 весов.%.
Предметом настоящего изобретения, в частности, являются пестицидные композиции на основе DSM 5480, имеющие по меньшей мере вдвое большую активность по сравнению с пестицидными композициями на основе DSM 2803 или других активных по отношению к жесткокрылым штаммов Btt.
Композиции в соответствии с настоящим изобретением могут быть получены в любой форме, используемой при получении агрохимикатов, например, в форме суспензии, дисперсии, водной эмульсии, порошка для опыливания, диспергируемого порошка, концентрата эмульсии или гранулята. Кроме того, они могут выпускаться в виде препаратов, готовых для непосредственного употребления, или в виде концентратов или первичных композиций, которые перед употреблением необходимо разбавлять определенным количеством воды или другого разбавителя.
Концентрация обладающих инсектицидной активностью дельта-эндотоксинов B. thuringiensis в композициях в соответствии с настоящим изобретением при использовании их индивидуально или в комбинации с другими пестицидами для обработки растений предпочтительно находится в пределах от примерно 0,5 до примерно 25, наиболее предпочтительно 1-15 весов.%.
Предметом настоящего изобретения является также способ контроля вредных насекомых, по которому зараженные такими насекомыми площади обрабатывают пестицидной композицией в соответствии с изобретением.
Указанными вредными насекомыми, в частности, являются насекомые, относящиеся к группе чешуекрылых, двукрылых и жесткокрылых, предпочтительно к жесткокрылым, таким как колорадский жук.
По предпочтительному варианту осуществления изобретения контроль вредных насекомых может осуществляться путем обработки площадей жидкими (из расчета 1,14 л/0,4 га) или твердыми (из расчета 227 г/0,.4 га) пестицидными композициями.
Активные препараты или композиции B. thuringiensis в соответствии с настоящим изобретением могут использоваться непосредственно для обработки растений, например, путем опрыскивания или опыливания, в момент появления на них вредных насекомых. Предпочтительным способом обработки является опрыскивание. Как правило, желательно производить обработку на ранних стадиях развития личинок, так как в это время ущерб, наносимый растениями, является минимальным.
По одному из способов мутации штаммов Bacillus thuringiensis и селекции мутантов, способных продуцировать значительно большие количества дельта-эндотоксинов, чем их родительские штаммы, родительский штамм;
I) обрабатывают мутагеном;
II) обработанные мутанты выращивают на среде, подходящей для селекции аспорогенных и/или олигоспорогенных штаммов;
III) отбирают полупрозрачные колонии и выращивают их в среде, не летучей при нагревании; и
IV) отбирают истинно аспорогенные штаммы, подвергая колонии термообработке.
По предпочтительному варианту этого способа отобранные таким образом колонии выращивают в обычной производственной питательной среде и окончательно отбирают штаммы, способные продуцировать большие количества дельта-эндотоксина.
На стадии (I) указанного способа в качестве мутагена можно использовать любой подходящий химический мутаген, например N-метил-N-нитро-N-нитрозогуанидин или этилметансульфонат. По другому варианту родительский штамм может быть подвергнут электромагнитному облучению, например γ-, рентгеновскому или УФ-облучению.
На стадии (II) подходящей средой может быть модифицированная питательная споруляционная среда, включающая фосфат (NSMP-среда), описанная Johnson'om и др. в "Spores VI" под ред. P. Gerhardt'a и др., стр. 248-254, 1975.
На стадии (IV) предлагаемого способа в качестве подходящей среды можно использовать среду NSMP с добавкой MgCl2 и Gelrite, Kelco.
По другому варианту обеспечивающие высокие выхода варианты или мутанты в соответствии с настоящим изобретением могут быть получены путем выращивания родительского штамма в жидкой среде и отбора спонтанных мутантов или вариантов после распыления культуральной жидкости на агарной среде, пригодной для селекции аспорогенных и/или олигоспорогенных мутантов.
В качестве других методов выделения, обеспечивающих высокий выход вариантов или мутантов в соответствии с настоящим изобретением можно упомянуть отделение массы таких мутантов непосредственно путем центрифугирования или с помощью других средств, используемых для разделения масс.
Пример 1
Выделяли мутант B. thuringiensis subsp. tenebrionis, обеспечивающий получение дельта-эндотоксина в два с лишним раза большем количестве. Фазоконтрастная микроскопия, сканирующая электронная микроскопия и просвечивающая электронная микроскопия свидетельствует о том, что высокая продуцирующая способность этого мутанта связана с изменениями регуляции продуцирования дельта-эндотоксина по сравнению со споруляцией, что приводит к продуцированию кристаллов белка в пять с лишним раз более крупных, чем кристаллы, продуцируемые известными активными по отношению к жесткокрылым штаммами Bacillus thuringiensis. По-видимому, в этом случае исчезает тесная взаимосвязь между образованием кристаллов и споруляцией, и мутант продуцирует большие количества дельта-эндотоксина до споруляции.
Получение обладающего высокой продуцирующей способностью мутанта
Споры штамма DSM 5526 B. thuringiensis subsp. tenebrionis облучали γ-излучением дозой 7 кГи. Облученные споры распределяли на агаровых пластинках NSMP (модифицированная питательная споруляционная среда, включающая фосфат, описанная Johnson'om и др. в "Spore VI", под ред. P. Gerhardt'a и др., стр. 248-254, 1975) - среде, подходящей для отделения аспорогенных и/или олигоспорогенных мутантов.
Пластинки агара NSMP инкубировали при 30oC в течение 2 - 3 дней, отбирали полупрозрачные колонии и переносили их на гельритовые пластины NSMP (среда NSMP с добавкой 0,57 г/л MgCl2 и 20 г/л Gelrite, Kelco).
Гельритовые пластины NSMP инкубировали в течение часа при 90oC и затем в течение 1 - 2 дней при 30oC.
Отбирали хорошо развивающиеся в этих условиях на гельритовых пластинах NSMP мутанты. Таким образом удавалось отсеивать все аспорогенные мутанты, так как они переставали размножаться после термообработки.
Отобранные мутанты выращивали во встряхиваемых колбах с производственной питательной средой. Количество продуцируемого дельта-эндотоксина определяли иммунологическими методами, описание которых приведено ниже.
Отбирали только мутанты, продуцирующие значительно большие количества дельта-эндотоксина, чем родительский штамм.
Морфологию выделенных мутантов на твердой среде и в жидких средах изучали с помощью фазоконтрастной микроскопии (х 2500) и сканирующей и просвечивающей электронной микроскопии. Подсчитывали количество образующихся спор и кристаллов и определяли размер кристаллов белка.
Из полученных мутантов был выделен один (DSM 5480), отличающийся исключительной способностью продуцировать дельта-эндотоксин.
Количество дельта-эндотоксина, продуцируемого мутантом DSM 5480, сравнивали с количеством дельта-эндотоксина, продуцируемого DSM 2803, исходным изолятом Bacillus thuringiensis subsp. tenebrionis, штаммом DSM 5526 Bacillus thuringiensis subsp. tenebrionis, используемым для получения NOVODOR®, штаммом NB178 Bacillus thuringiensis subsp. tenebrionis, выделенным из продукта фирмы Sandoz TRIDENT® 1989 на основе Bacillus thuringiensis tenebrionis, штаммом NB 198, выделенным из продукта фирмы Sandoz TRIDENT® 1990 на основе B. thuringiensis subsp. tenebrionis, штаммом NRRL-B-115939 "Bacillus thuringiensis subsp. san diego" и штаммом NB 197, выделенным из продукта фирмы Mycogen Mo-ONE® от 1990 на основе B. thuringiensis subsp. san diego". Как видно из таблицы 1 примера 2, мутант повышенной эффективности в отношении выхода в соответствии с настоящим изобретением продуцирует в 2 - 3,5 раза большее количество дельта-эндотоксина, чем известные активные по отношению к жесткокрылым штаммам Bacillus thuringiensis.
Пример 2
В данном примере сравнивались количества дельта-эндотоксина, продуцируемого мутантом DSM 5480 Bacullus thuringiensis subspecies tenebrionis и штаммами Bacullus thuringiensis subspecies tenebrionis DSM 2803 (исходный изолят Bacullus thuringiensis subsp. tenebrionis), DSM 5526 (производственный штамм фирмы Novo-Nordisk) и NB 178 и NB 198 (производственные штаммы фирмы Sandoz), а также Bacullus thuringiensis subsp. san diego, штаммами NRRL-B 15939 и NB 197 (производственные штаммы фирмы Mycogen) в производственной среде. Каждый из перечисленных штаммов выращивали в течение 17 часов при 30oC на косячках агара следующего состава (в г/л дистиллированной воды):
пептон, Difco - 5 г
мясной экстракт, Difco - 3 г
агар, Difco - 20 г
pH - 7,0
5 мл суспензии клеток каждого штамма переносили затем в baffle-донные колбы Эрленмейера на 500 мл со 100 мл производственной питательной среды. Производственная питательная среда имела следующий состав (количества компонентов указаны в г на л водопроводной воды):
соевая мука - 50 г
гидролизованный крахмал - 40 г
KHPPO4 - 1,77 г
K2HPO4 - 4,53 г
pH - 7,0
Инокулированное содержимое колб инкубировали при 30oC при встряхивании (250 об. /мин). После инкубации в течение 96 часов культуральную жидкость анализировали на содержание дельта-эндотоксина иммуногологическими методами.
Количество дельта-эндотоксина, продуцируемого тем или иным штаммом, определяли с помощью ракетного иммуноэлектрофореза по Лауреллу (RIE) и фотометрического иммуноанализа (RIA), с использованием антител по отношению к очищенным кристаллам белка из Bacillus thuringiensis subsp. tenebrionis.
Отбирали по 400 мг культуральной жидкости из каждого опыта, добавляли к отобранным пробам по 7 мл тринатрийфосфатного буфера (0,125 М, pH 12) и встряхивали суспензии в течение часа для солюбилизации дельта-эндотоксионных белков.
Пробы затем центрифугировали при 3500 об. /мин в течение 15 минут и анализировали надосадочную жидкость на содержание дельта-эндотоксина с помощью ракетного иммуноэлектрофореза по Лауреллу в сыворотку по отношению к очищенным кристаллам белка B. thuringiensis subsp. tenebrionis. Для определения количества дельта-эндотоксина использовали стандарты с известным содержанием кристаллов белка.
Концентрацию кристаллического белка также определяли с помощью фотометрического иммуноанализа. Кристаллические белки растворяли в щелочном растворе. Растворенные белки осаждали их антителами. Скорость реакции определяли турбодиметрически. Для определения количества дельта-эндотоксина использовали стандарты с известным содержанием кристаллического белка.
Используемые в ходе анализа для получения антител кристаллические антигены получали из кристаллов, выделенных из B. thuringiensis subsp. tenebrionis.
Поликлональные антитела индуцировали путем инъекции кроликам подкожно раз в две недели 0,25 мл кристаллического антигена.
Полученные результаты приведены в нижеследующих таблицах 1a и 1b. Выхода дельта-эндотоксина выражали в BTTU/г (единицы на г культуральной жидкости, определенные с помощью ракетного иммуноэлектрофореза по Лауреллу (RIE) или фотометрического иммуноанализа (RIA)). Величина, полученная для чистого кристаллического белка B. thuringiensis subsp. tenebrionis, равна 50000 BTTU/г. Величины, приведенные в таблице 1a (см. в конце описания), представляют собой средние из 6 - 7, а в таблице 1b - из 3 независимых опытов по ферментации.
Из таблиц Ia и Ib видно, что DSM 5480 продуцирует в три с лишним раза больше дельта-эндотоксина, чем родительский штамм Bacillus thuringiensis subsp. tenebrionis (DSM 2803) и "Bacillus thuringiensis subsp. san diego" штамм NRRL-B 15939) и в два с лишним раза больше, чем используемые в настоящее время для получения коммерческих продуктов штаммы Bacillus thuringiensis subsp. tenebrionis.
Фазоконтрастная микроскопия, сканирующая электронная микроскопия и просвечивающая электронная микроскопия Bacillus thuringiensis subsp. tenebrionis, мутанта DSM 5480, показали, что кристаллы белка, продуцируемые этим мутантом, намного крупнее соответствующих кристаллов белка, продуцируемых штаммами Bacillus thuringiensis subsp. tenebrionis DSM 2803, DSM 5526, NB 178 и NB 198, а также штаммами "Bacillus thuringiensis subsp. san diego" NRRL-B 15939 и NB 197.
Культуральную жидкость мутанта Bacillus thuringiensis subsp. tenebrionis DSM 5480 испытывали на активность по отношению к личинкам колорадского жука. Большее количество дельта-эндотоксина, продуцированного мутантом DSM 5480 (это было установлено с помощью иммунологических методов) отражалось на биологической активности по отношению к личинкам колорадского жука.
Пример 3
В данном примере сравнивались процессы споруляции и образования параспоральных кристаллов под действием штаммов B. thuringiensis subsp. tenebrionis DSM 2803, DSM 5526, NB 178 и NB 198 и мутанта DSM 5480, а также штаммов "B. thuringiensis subsp. san diego" NRRL-B 15939 и NB 197 на твердой и в жидкой средах.
Каждый из перечисленных штаммов выращивали в течение 2 дней при 30oC на агаровых пластинах следующего состава (в г на л дистиллированной воды):
пептон, Difco - 5 г
мясной экстракт, Difco - 3 г
агар, Difco - 20 г
pH - 7,0
Каждый из перечисленных штаммов выращивали также в жидкой среде. Все штаммы выращивали на агаровых косячках в течение 17 часов при 30oC. По 5 мл суспензии клеток каждого из штаммов переносили затем в baffle-донные колбы Эрленмейера на 500 мл со 100 мл питательной среды.
Питательная среда имела следующий состав (в г на л водопроводной воды):
Жидкая среда
дрожжевой экстракт - 5 г
триптон - 5 г
глюкоза - 1 г
KH2PO4 - 0,8 г
pH - 7,0
Инокулированное содержание колб инкубировали при 30oC в течение 96 часов при встряхивании (250 об./мин).
Морфологию штаммов на твердой среде и в жидкой среде изучали ежедневно с помощью фазоконтрастной микроскопии (х 2500). Подсчитывая количество спор и кристаллов, а также определяли размер параспоральных кристаллов. Отдельные пробы изучали, кроме того, с помощью сканирующей и просвечивающей электронной микроскопии.
Все штаммы B. thuringiensis subsp. tenebrionis (DSM 2803, DSM 5526, NB 178 и NB 198) и "B. thuringiensis subsp. san diego" (NRRL-B 15939 и NB 197) хорошо спорулировались в обеих средах. Перед лизисом каждая клетка содержала спору и параспоральный кристалл. К моменту лизиса клетки длина кристаллов находилась в пределах от 0,4 до 0,9 - 1,1 мкм. Средняя длина кристаллов равнялась 0,6 - 0,7 мкм.
Мутант DSM 5480 продуцировал лишь небольшое количество спор (< 106 спор/мл) на твердой среде и в вышеуказанной жидкой среде. Перед лизисом в большинстве клеток находился огромный кристалл, но не было спор. Размер кристаллов белка находился в пределах от 0,4 - 0,7 до 5,0 мкм. В среднем длина кристалла составляла 2,2 - 2,3 мкм.
Ультраструктурный анализ клеток, выращенных в этих средах, выполненный с помощью просвечивающей электронной микроскопии, показал, что процесс споруляции в мутанте начался, но не закончился к моменту лизиса клеток. В различных клетках процесс споруляции дошел до разных стадий. В клетках, в которых процесс споруляции достиг лишь стадии 11 (образование предспоры Septum), кристаллы белка заполнили весь объем клеток.
В производственной питательной среде (пример 2) указанный мутант продуцировал большее количество спор (107 - 108 спор/мл). В этой среде частота споруляции мутанта в 10 - 100 раз меньше, чем в случае родительского штамма.
Таким образом, мутант сохранял свою способность продуцировать нормальные споры. Однако частота споруляции, по всей видимости, сильно зависит от состава питательной среды.
Размеры кристаллов белка, продуцируемых отдельными штаммами, приведены в таблицах IIa и IIb (см. в конце описания).
Из таблиц IIa и IIb видно, что мутант DSM 5480 продуцирует значительно более крупные кристаллы белка, чем любой из известных штаммов B.t., активных по отношению к жесткокрылым.
Из полученных данных следует, что регуляция продуцирования дельта-эндоксина в отношении споруляции претерпела изменение в мутанте.
По-видимому, мутант продуцирует кристаллы белка до развития спор, благодаря чему клетки оказываются в состоянии продуцировать дельта-эндотоксин в течение более длительного времени. В результате к моменту лизиса клеток продуцируются значительно более крупные кристаллы, чем в случае родительского штамма.
В зависимости от наличия в питательной среде тех или иных питательных веществ и размера кристаллов белка к моменту споруляции нормальные споры начинают развиваться до лизиса клеток.
Пример 4
В данном примере мутант Btt DSM 5480 с высокой продуцирующей способностью использовался для получения высокоактивных продуктов для контроля личинок колорадского жука.
Ферментацию DSM 5480 осуществляли в описанной в примере 2 производственной питательной среде в аэрируемом промышленном фенментере с перемешивающим устройством. Через 96 часов культуральную жидкость отделяли путем центрифугирования в непрерывной центрифуге.
Концентрированную расслоившуюся эмульсию, содержащую активные кристаллы белка, стабилизировали путем добавления микробных консервирующих добавок и pH ее устанавливали равным 5,0.
Часть этой эмульсии высушивали в распылительной сушилке и затем использовали для получения смачивающегося порошка. Оставшуюся часть эмульсии непосредственно использовали для получения двух водных текучих концентратов (FC).
Смачивающийся порошок имел состав, приведенный в таблице Ш. Состав обеих жидких текучих композиций приведен в таблице IV (см. в конце описания).
Поверхностно-активные вещества были выбраны из большого числа суспензий вспомогательных добавок и смачивателей, обычно использующихся при получении пестицидов для сельского хозяйства.
В качестве антислеживающего агента использовали гидрофильный диоксид кремния, а инертный носитель был выбран из числа обычно использующихся инертных наполнителей, таких как бентониты, неорганические соли и глины.
В качестве консервирующих добавок в FC использовали добавки, применяющиеся в пищевой и косметической промышленности. В качестве регулятора pH использовали неорганическую кислоту.
Пример 5
Для проверки биологической активности мутанта Btt DSM 5480 с высокой продуцирующей способностью по отношению к основному вредному насекомому, личинкам колорадского жука, были проведены полевые испытания. Для сравнения использовали два коммерческих продукта: Triden® и M-one®. В качестве культуры, на которой проводились испытания, использовали картофель.
Растения картофеля трижды опрыскивали испытуемым препаратом: 20 июля, 27 июля и 3 августа (второе поколение личинок). В конце описания (табл. IVa) приведены используемые препараты и дозировки.
Средний % контроля личинок колорадского жука по сравнению с необработанными контрольными растениями приведен в таблице V. Необработанные контрольные растения были очень сильно поражены колорадским жуком: 370 личинок на 20 растений I-го и 904 личинки на 20 растений 8-го августа.
Приведенные результаты убедительно свидетельствует о том, что препараты, полученные на основе мутанта DSM 5480 с высокой продуцирующей способностью обладают высокой эффективностью в отношении контроля личинок колорадского жука при полевых испытаниях. Кристаллы белка, продуцируемые штаммом с высокой продуцирующей способностью, проявляют 100%-ную активность при использовании их в виде NOVODOR®FC при расходе 1,71 л, а также дают хорошие результаты при использовании их в виде TRIDENT'а при расходе 4,56 л и M-one' а при расходе 2,28 л.

Claims (15)

1. Мутантный штамм бактерий Bacillus thuringiensis subsp. tenebrionis DSM 5480 - продуцент дельта-эндотоксина.
2. Способ получения препарата на основе дельта-эндотоксина путем выращивания штамма бактерий Bacillus thuringiensis на питательной среде, содержащий источники углерода, азота и минеральные соли с последующим выделением продукта, содержащего дельта-эндотоксин, отличающийся тем, что из бактерий Bacillus thuringiensis используют штамм Bacillus thuringiensis subsp. tenebrionis DSM 5480.
3. Способ по п.2, отличающийся тем, что продукт выделяют в индивидуальном виде или в комбинации с клетками бактерий и/или со спорами и смешивают его с наполнителем, приемлемым для сельского хозяйства.
4. Пестицидная композиция, содержащая дельта-эндотоксин, отличающаяся тем, что она содержит дельта-эндотоксин, полученный из штамма бактерий Bacillus thuringiensis subsp. tenebrionis DSM 5480.
5. Пестицидная композиция по п.4, отличающаяся тем, что она дополнительно содержит разбавитель или носитель, приемлемый для сельского хозяйства.
6. Жидкая пестицидная композиция, отличающаяся тем, что она содержит разбавитель и дельта-эндотоксин, полученный на основе штамма Bacillus thuringiensis subsp. tenebrionis DSM 5480, с активностью не менее 15000 ед/г, что соответствует концентрации в препарате эндотоксина, активного по отношению к жесткокрылым насекомым, не менее 3,0 вес.%.
7. Жидкая пестицидная композиция по п.6, отличающаяся тем, что она дополнительно содержит поверхностно-активное вещество.
8. Твердая пестицидная композиция, содержащая дельта-эндотоксин и носитель, отличающаяся тем, что она содержит дельта-эндотоксин, полученный на основе штамма бактерий Bacillus thuringiensis subsp. tenebrionis DSM 5480, с активностью 50000 ед/г, что соответствует концентрации в препарате эндотоксина, активного по отношению к жесткокрылым насекомым не менее 10 вес.%.
9. Твердая пестицидная композиция по п.8, отличающаяся тем, что она дополнительно содержит поверхностно-активное вещество.
10. Способ борьбы с вредными сельскохозяйственными насекомыми путем обработки растений препаратом, содержащим дельта-эндотоксин, отличающийся тем, что используют препарат, содержащий дельта-эндотоксин, полученный на основе штамма бактерий Bacillus thuringiensis subsp. tenebrionis DSM 5480.
11. Способ получения мутантных штаммов бактерий Bacillus thuringiensis subsp. tenebrionis продуцентов дельта-эндотоксина, отличающийся тем, что родительский штамм Bacillus thuringiensis subsp. tenebrionis обрабатывают мутагеном, обработанные мутанты выращивают на среде, способствующей получению аспорогенных и/или олигоспорогенных мутантов, из полученных колоний отбирают полупрозрачные колонии и из них бактерии пересеивают на твердую питательную среду, не содержащую летучие компоненты, выдерживают при температуре 90oC в течение часа, а затем инкубируют при температуре 30oC до получения аспорогенных колоний, из них отбирают клетки бактерий, засеивают на производственную питательную среду и отбирают штаммы, продуцирующие наибольшее количество дельта-эндотоксина.
12. Способ по п.11, отличающийся тем, что в качестве мутагена используют ультрафиолетовые излучения.
13. Способ по п.11, отличающийся тем, что в качестве питательной среды, способствующей получению аспорогенных и/или олигоспорогенных мутантов, используют споруляционную среду, содержащую фосфат.
14. Способ по пп. 11-13, отличающийся тем, что в качестве питательной среды для пересева клеток бактерий используют среду NSMP, дополнительно содержащую 0,57 г/л MgCl2 и 20 г/л гельрита Kelco.
15. Способ по пп.11-14, отличающийся тем, что в качестве родительского штамма используют штамм Bacillus thuringiensis subsp. tenebrionis DSM 2803.
Приоритет по пунктам:
17.11.89 - по пп.1, 2, 4, 5, 10-15 и п.3, исключая признак, касающийся выделение эндотоксина в комбинации с клетками и/или спорами;
12.12.89 - по пп.6-9 и п.3 - признак, касающийся выделения эндотоксина в комбинации с клетками или спорами.
SU5052261A 1989-11-17 1990-11-16 Мутантный штамм бактерий bacillus thuringiensis subsp, tenebrionis dsm 5480 - продуцент дельта-эндотоксина, способ получения препарата на основе дельта-эндотоксина, пестицидная композиция, содержащая дельта-эндотоксин, способ борьбы с вредными сельскохозяйственными насекомыми, способ получения мутантных штаммов бактерий bacillus thuringiensis subsp, tenebrionis - продуцентов дельта-эндотоксина RU2138950C1 (ru)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DK580589A DK580589D0 (da) 1989-11-17 1989-11-17 Mutant
DK5805/89 1989-12-12
DK627489A DK627489D0 (da) 1989-12-12 1989-12-12 Mutant
DK6274/89 1989-12-12
PCT/DK1990/000294 WO1991007481A1 (en) 1989-11-17 1990-11-16 Mutants or variants of bacillus thuringiensis producing high yields of delta endotoxin

Publications (1)

Publication Number Publication Date
RU2138950C1 true RU2138950C1 (ru) 1999-10-10

Family

ID=26067985

Family Applications (1)

Application Number Title Priority Date Filing Date
SU5052261A RU2138950C1 (ru) 1989-11-17 1990-11-16 Мутантный штамм бактерий bacillus thuringiensis subsp, tenebrionis dsm 5480 - продуцент дельта-эндотоксина, способ получения препарата на основе дельта-эндотоксина, пестицидная композиция, содержащая дельта-эндотоксин, способ борьбы с вредными сельскохозяйственными насекомыми, способ получения мутантных штаммов бактерий bacillus thuringiensis subsp, tenebrionis - продуцентов дельта-эндотоксина

Country Status (20)

Country Link
EP (1) EP0585215B1 (ru)
JP (1) JP2950614B2 (ru)
KR (1) KR0157065B1 (ru)
AT (1) ATE184645T1 (ru)
AU (1) AU647056B2 (ru)
BG (1) BG61699B1 (ru)
CA (1) CA2068734C (ru)
DE (2) DE585215T1 (ru)
DK (1) DK0585215T3 (ru)
ES (1) ES2060568T3 (ru)
FI (1) FI103130B (ru)
GR (2) GR940300021T1 (ru)
HU (1) HU214685B (ru)
NO (1) NO305131B1 (ru)
RO (1) RO109862B1 (ru)
RU (1) RU2138950C1 (ru)
SK (1) SK281286B6 (ru)
TR (1) TR28902A (ru)
WO (1) WO1991007481A1 (ru)
YU (1) YU48440B (ru)

Families Citing this family (139)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6270760B1 (en) * 1989-12-18 2001-08-07 Valent Biosciences, Inc. Production of Bacillus thuringiensis integrants
US5187091A (en) * 1990-03-20 1993-02-16 Ecogen Inc. Bacillus thuringiensis cryiiic gene encoding toxic to coleopteran insects
IL99928A0 (en) * 1990-11-08 1992-08-18 Agricultural Genetics Co Biological control of pests
US5264364A (en) * 1991-01-31 1993-11-23 Ecogen Inc. Bacillus thuringiensis cryIIIc(B) toxin gene and protein toxic to coleopteran insects
ZA932792B (en) * 1992-05-12 1993-11-16 Aeci Ltd Insecticide composition
WO1994028724A1 (en) * 1993-06-10 1994-12-22 Ecogen Inc. Bacillus thuringiensis strains capable of producing large amonts of insecticidal crystal proteins
IL110299A0 (en) * 1993-07-15 1994-10-21 Novo Nordisk Entotech Inc Formation of and methods for the production of large bacillus thuringiensis crystals with increased pesticidal activity
WO1997027305A1 (en) * 1996-01-26 1997-07-31 Abbott Laboratories Production of bacillus thuringiensis integrants
US5804180A (en) * 1996-07-17 1998-09-08 Ecogen, Inc. Bacillus thuringiensis strains showing improved production of certain lepidopteran-toxic crystal proteins
US6063756A (en) 1996-09-24 2000-05-16 Monsanto Company Bacillus thuringiensis cryET33 and cryET34 compositions and uses therefor
US5965428A (en) * 1996-10-08 1999-10-12 Ecogen, Inc. Chimeric lepidopteran-toxic crystal proteins
KR100458765B1 (ko) * 2001-12-24 2004-12-03 학교법인 동아대학교 파리목 해충에 대해 방제효과를 가지는 바실러스슈린지에스 균주 및 이를 이용한 미생물 살충제의 제조방법
WO2014056780A1 (en) 2012-10-12 2014-04-17 Basf Se A method for combating phytopathogenic harmful microbes on cultivated plants or plant propagation material
WO2014082879A1 (en) 2012-11-27 2014-06-05 Basf Se Substituted [1,2,4]triazole compounds
WO2014082871A1 (en) 2012-11-27 2014-06-05 Basf Se Substituted 2-[phenoxy-phenyl]-1-[1,2,4]triazol-1-yl-ethanol compounds and their use as fungicides
US20150313229A1 (en) 2012-11-27 2015-11-05 Basf Se Substituted [1,2,4] Triazole Compounds
EP2928873A1 (en) 2012-11-27 2015-10-14 Basf Se Substituted 2-[phenoxy-phenyl]-1-[1,2,4]triazol-1-yl-ethanol compounds and their use as fungicides
WO2014086854A1 (en) 2012-12-04 2014-06-12 Basf Agro B.V., Arnhem (Nl) Compositions comprising a quillay extract and a plant growth regulator
WO2014086850A1 (en) 2012-12-04 2014-06-12 Basf Agro B.V., Arnhem (Nl) Compositions comprising a quillay extract and a fungicidal inhibitor of respiratory complex ii
WO2014086856A1 (en) 2012-12-04 2014-06-12 Basf Agro B.V., Arnhem (Nl) Compositions comprising a quillay extract and a biopesticide
EP2746255A1 (en) 2012-12-19 2014-06-25 Basf Se Substituted [1,2,4]triazole and imidazole compounds
WO2014095555A1 (en) 2012-12-19 2014-06-26 Basf Se New substituted triazoles and imidazoles and their use as fungicides
EP2746279A1 (en) 2012-12-19 2014-06-25 Basf Se Fungicidal imidazolyl and triazolyl compounds
EP2746278A1 (en) 2012-12-19 2014-06-25 Basf Se Substituted [1,2,4]triazole and imidazole compounds
EP2746277A1 (en) 2012-12-19 2014-06-25 Basf Se Fungicidal imidazolyl and triazolyl compounds
EP2935224A1 (en) 2012-12-19 2015-10-28 Basf Se New substituted triazoles and imidazoles and their use as fungicides
EP2935236B1 (en) 2012-12-19 2017-11-29 Basf Se Substituted [1,2,4]triazole compounds and their use as fungicides
WO2014095534A1 (en) 2012-12-19 2014-06-26 Basf Se New substituted triazoles and imidazoles and their use as fungicides
EP2746266A1 (en) 2012-12-19 2014-06-25 Basf Se New substituted triazoles and imidazoles and their use as fungicides
WO2014095381A1 (en) 2012-12-19 2014-06-26 Basf Se Fungicidal imidazolyl and triazolyl compounds
EP2746256A1 (en) 2012-12-19 2014-06-25 Basf Se Fungicidal imidazolyl and triazolyl compounds
EP2746262A1 (en) 2012-12-19 2014-06-25 Basf Se Substituted [1,2,4]triazole and imidazole compounds for combating phytopathogenic fungi
EP2746263A1 (en) 2012-12-19 2014-06-25 Basf Se Alpha-substituted triazoles and imidazoles
US20150329501A1 (en) 2012-12-19 2015-11-19 Basf Se Substituted [1,2,4]triazole compounds and their use as fungicides
EP2746260A1 (en) 2012-12-21 2014-06-25 Basf Se Substituted [1,2,4]triazole and imidazole compounds
EP2746258A1 (en) 2012-12-21 2014-06-25 Basf Se Substituted [1,2,4]triazole and imidazole compounds
EP2746257A1 (en) 2012-12-21 2014-06-25 Basf Se Substituted [1,2,4]triazole and imidazole compounds
EP2746259A1 (en) 2012-12-21 2014-06-25 Basf Se Substituted [1,2,4]triazole and imidazole compounds
WO2014124850A1 (en) 2013-02-14 2014-08-21 Basf Se Substituted [1,2,4]triazole and imidazole compounds
BR112015018853B1 (pt) 2013-03-20 2021-07-13 Basf Corporation Mistura, composição agroquímica, método para controlar fungos fitopatogênicos, método para proteção do material de propagação dos vegetais e semente revestida
WO2015011615A1 (en) 2013-07-22 2015-01-29 Basf Corporation Mixtures comprising a trichoderma strain and a pesticide
WO2015036059A1 (en) 2013-09-16 2015-03-19 Basf Se Fungicidal pyrimidine compounds
WO2015036058A1 (en) 2013-09-16 2015-03-19 Basf Se Fungicidal pyrimidine compounds
CN106061254B (zh) 2013-10-18 2019-04-05 巴斯夫农业化学品有限公司 农药活性羧酰胺衍生物在土壤和种子施用和处理方法中的用途
US10053432B2 (en) 2013-12-12 2018-08-21 Basf Se Substituted [1,2,4]triazole and imidazole compounds
US20160318897A1 (en) 2013-12-18 2016-11-03 Basf Se Azole compounds carrying an imine-derived substituent
WO2015104422A1 (en) 2014-01-13 2015-07-16 Basf Se Dihydrothiophene compounds for controlling invertebrate pests
EP2924027A1 (en) 2014-03-28 2015-09-30 Basf Se Substituted [1,2,4]triazole and imidazole fungicidal compounds
US9968092B2 (en) 2014-04-17 2018-05-15 Basf Se Combination of novel nitrification inhibitors and biopesticides as well as combination of (thio)phosphoric acid triamides and biopesticides
EP2962568A1 (en) 2014-07-01 2016-01-06 Basf Se Mixtures comprising a bacillus amyliquefaciens ssp. plantarum strain and a pesticide
EP2949649A1 (en) 2014-05-30 2015-12-02 Basf Se Fungicide substituted [1,2,4]triazole and imidazole compounds
EP2949216A1 (en) 2014-05-30 2015-12-02 Basf Se Fungicidal substituted alkynyl [1,2,4]triazole and imidazole compounds
EP2952512A1 (en) 2014-06-06 2015-12-09 Basf Se Substituted [1,2,4]triazole compounds
EP2952506A1 (en) 2014-06-06 2015-12-09 Basf Se Substituted [1,2,4]triazole and imidazole compounds
EP2952507A1 (en) 2014-06-06 2015-12-09 Basf Se Substituted [1,2,4]triazole compounds
CN107075712A (zh) 2014-10-24 2017-08-18 巴斯夫欧洲公司 改变固体颗粒的表面电荷的非两性、可季化和水溶性聚合物
CN111742937A (zh) * 2015-01-16 2020-10-09 瓦伦特生物科学有限责任公司 苏云金芽孢杆菌库尔斯塔克亚种和苏云金芽孢杆菌鲇泽亚种组合制剂
WO2016128239A1 (en) 2015-02-11 2016-08-18 Basf Se Pesticidal mixture comprising a pyrazole compound and a biopesticide
AU2016231152A1 (en) 2015-03-11 2017-09-28 Basf Agrochemical Products B.V. Pesticidal mixture comprising a carboxamide compound and a biopesticide
CN107592790B (zh) 2015-03-11 2022-03-25 巴斯夫农业化学品有限公司 包含羧酰胺化合物和生物农药的农药混合物
EP3111763A1 (en) 2015-07-02 2017-01-04 BASF Agro B.V. Pesticidal compositions comprising a triazole compound
EP3383183B1 (en) 2015-11-30 2020-05-27 Basf Se Compositions containing cis-jasmone and bacillus amyloliquefaciens
EP3205209A1 (en) 2016-02-09 2017-08-16 Basf Se Mixtures and compositions comprising paenibacillus strains or metabolites thereof and other biopesticides
US20190200612A1 (en) 2016-09-13 2019-07-04 Basf Se Fungicidal mixtures i comprising quinoline fungicides
WO2018149754A1 (en) 2017-02-16 2018-08-23 Basf Se Pyridine compounds
JP7160486B2 (ja) 2017-03-28 2022-10-25 ビーエーエスエフ ソシエタス・ヨーロピア 殺生物剤化合物
WO2018184882A1 (en) 2017-04-06 2018-10-11 Basf Se Pyridine compounds
US20210179620A1 (en) 2017-06-16 2021-06-17 Basf Se Mesoionic imidazolium compounds and derivatives for combating animal pests
WO2018234202A1 (en) 2017-06-19 2018-12-27 Basf Se SUBSTITUTED PYRIMIDINIUM COMPOUNDS AND DERIVATIVES FOR CONTROLLING HARMFUL ANIMALS
WO2018234488A1 (en) 2017-06-23 2018-12-27 Basf Se SUBSTITUTED CYCLOPROPYL DERIVATIVES
EP3453706A1 (en) 2017-09-08 2019-03-13 Basf Se Pesticidal imidazole compounds
WO2019057660A1 (en) 2017-09-25 2019-03-28 Basf Se INDOLE AND AZAINDOLE COMPOUNDS HAVING 6-CHANNEL SUBSTITUTED ARYL AND HETEROARYL CYCLES AS AGROCHEMICAL FUNGICIDES
WO2019072906A1 (en) 2017-10-13 2019-04-18 Basf Se IMIDAZOLIDINE PYRIMIDINIUM COMPOUNDS FOR CONTROL OF HARMFUL ANIMALS
WO2019121143A1 (en) 2017-12-20 2019-06-27 Basf Se Substituted cyclopropyl derivatives
US11512054B2 (en) 2017-12-21 2022-11-29 Basf Se Pesticidal compounds
JP7479285B2 (ja) 2018-01-09 2024-05-08 ビーエーエスエフ ソシエタス・ヨーロピア 硝化阻害剤としてのシリルエチニルヘタリール化合物
WO2019137995A1 (en) 2018-01-11 2019-07-18 Basf Se Novel pyridazine compounds for controlling invertebrate pests
AU2019226360A1 (en) 2018-02-28 2020-08-27 Basf Se Use of alkoxypyrazoles as nitrification inhibitors
CA3089381A1 (en) 2018-02-28 2019-09-06 Basf Se Use of pyrazole propargyl ethers as nitrification inhibitors
WO2019166560A1 (en) 2018-02-28 2019-09-06 Basf Se Use of n-functionalized alkoxy pyrazole compounds as nitrification inhibitors
WO2019175712A1 (en) 2018-03-14 2019-09-19 Basf Corporation New uses for catechol molecules as inhibitors to glutathione s-transferase metabolic pathways
WO2019175713A1 (en) 2018-03-14 2019-09-19 Basf Corporation New catechol molecules and their use as inhibitors to p450 related metabolic pathways
WO2019224092A1 (en) 2018-05-22 2019-11-28 Basf Se Pesticidally active c15-derivatives of ginkgolides
WO2020002472A1 (en) 2018-06-28 2020-01-02 Basf Se Use of alkynylthiophenes as nitrification inhibitors
EP3826983B1 (en) 2018-07-23 2024-05-15 Basf Se Use of substituted 2-thiazolines as nitrification inhibitors
WO2020020765A1 (en) 2018-07-23 2020-01-30 Basf Se Use of a substituted thiazolidine compound as nitrification inhibitor
EP3613736A1 (en) 2018-08-22 2020-02-26 Basf Se Substituted glutarimide derivatives
EP3628158A1 (en) 2018-09-28 2020-04-01 Basf Se Pesticidal mixture comprising a mesoionic compound and a biopesticide
EP3643705A1 (en) 2018-10-24 2020-04-29 Basf Se Pesticidal compounds
EP3887357A1 (en) 2018-11-28 2021-10-06 Basf Se Pesticidal compounds
US20230031024A1 (en) 2018-12-18 2023-02-02 Basf Se Substituted pyrimidinium compounds for combating animal pests
EP3696177A1 (en) 2019-02-12 2020-08-19 Basf Se Heterocyclic compounds for the control of invertebrate pests
EP3730489A1 (en) 2019-04-25 2020-10-28 Basf Se Heteroaryl compounds as agrochemical fungicides
EP3769623A1 (en) 2019-07-22 2021-01-27 Basf Se Mesoionic imidazolium compounds and derivatives for combating animal pests
CN113923987B (zh) 2019-05-29 2024-10-01 巴斯夫欧洲公司 用于防除动物害虫的介离子咪唑鎓化合物和衍生物
EP3766879A1 (en) 2019-07-19 2021-01-20 Basf Se Pesticidal pyrazole derivatives
WO2021170463A1 (en) 2020-02-28 2021-09-02 BASF Agro B.V. Methods and uses of a mixture comprising alpha-cypermethrin and dinotefuran for controlling invertebrate pests in turf
CN115443267A (zh) 2020-04-28 2022-12-06 巴斯夫欧洲公司 杀害虫化合物
EP3903582A1 (en) 2020-04-28 2021-11-03 Basf Se Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors ii
EP3909950A1 (en) 2020-05-13 2021-11-17 Basf Se Heterocyclic compounds for the control of invertebrate pests
EP3945089A1 (en) 2020-07-31 2022-02-02 Basf Se Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors v
EP3960727A1 (en) 2020-08-28 2022-03-02 Basf Se Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors vi
EP3939961A1 (en) 2020-07-16 2022-01-19 Basf Se Strobilurin type compounds and their use for combating phytopathogenic fungi
WO2022017836A1 (en) 2020-07-20 2022-01-27 BASF Agro B.V. Fungicidal compositions comprising (r)-2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1- (1,2,4-triazol-1-yl)propan-2-ol
EP3970494A1 (en) 2020-09-21 2022-03-23 Basf Se Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors viii
EP4236691A1 (en) 2020-10-27 2023-09-06 BASF Agro B.V. Compositions comprising mefentrifluconazole
WO2022090069A1 (en) 2020-11-02 2022-05-05 Basf Se Compositions comprising mefenpyr-diethyl
WO2022106304A1 (en) 2020-11-23 2022-05-27 BASF Agro B.V. Compositions comprising mefentrifluconazole
EP4011208A1 (en) 2020-12-08 2022-06-15 BASF Corporation Microparticle compositions comprising fluopyram
CN116829521A (zh) 2021-02-02 2023-09-29 巴斯夫欧洲公司 Dcd和烷氧基吡唑作为硝化抑制剂的协同增效作用
EP4043444A1 (en) 2021-02-11 2022-08-17 Basf Se Substituted isoxazoline derivatives
JP2024519813A (ja) 2021-05-18 2024-05-21 ビーエーエスエフ ソシエタス・ヨーロピア 殺菌剤としての新規な置換ピリジン
US20240270727A1 (en) 2021-05-18 2024-08-15 Basf Se New substituted pyridines as fungicide
WO2022243109A1 (en) 2021-05-18 2022-11-24 Basf Se New substituted quinolines as fungicides
CN117355504A (zh) 2021-05-21 2024-01-05 巴斯夫欧洲公司 乙炔基吡啶化合物作为硝化抑制剂的用途
CN117440946A (zh) 2021-05-21 2024-01-23 巴斯夫欧洲公司 N-官能化的烷氧基吡唑化合物作为硝化抑制剂的用途
WO2022268810A1 (en) 2021-06-21 2022-12-29 Basf Se Metal-organic frameworks with pyrazole-based building blocks
EP4119547A1 (en) 2021-07-12 2023-01-18 Basf Se Triazole compounds for the control of invertebrate pests
KR20240042636A (ko) 2021-08-02 2024-04-02 바스프 에스이 (3-피리딜)-퀴나졸린
CA3227653A1 (en) 2021-08-02 2023-02-09 Wassilios Grammenos (3-quinolyl)-quinazoline
EP4140986A1 (en) 2021-08-23 2023-03-01 Basf Se Pyrazine compounds for the control of invertebrate pests
EP4140995A1 (en) 2021-08-27 2023-03-01 Basf Se Pyrazine compounds for the control of invertebrate pests
EP4151631A1 (en) 2021-09-20 2023-03-22 Basf Se Heterocyclic compounds for the control of invertebrate pests
WO2023072670A1 (en) 2021-10-28 2023-05-04 Basf Se Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors x
WO2023072671A1 (en) 2021-10-28 2023-05-04 Basf Se Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors ix
EP4194453A1 (en) 2021-12-08 2023-06-14 Basf Se Pyrazine compounds for the control of invertebrate pests
EP4198033A1 (en) 2021-12-14 2023-06-21 Basf Se Heterocyclic compounds for the control of invertebrate pests
EP4198023A1 (en) 2021-12-16 2023-06-21 Basf Se Pesticidally active thiosemicarbazone compounds
EP4238971A1 (en) 2022-03-02 2023-09-06 Basf Se Substituted isoxazoline derivatives
WO2023203066A1 (en) 2022-04-21 2023-10-26 Basf Se Synergistic action as nitrification inhibitors of dcd oligomers with alkoxypyrazole and its oligomers
EP4342885A1 (en) 2022-09-20 2024-03-27 Basf Se N-(3-(aminomethyl)-phenyl)-5-(4-phenyl)-5-(trifluoromethyl)-4,5-dihydroisoxazol-3-amine derivatives and similar compounds as pesticides
EP4361126A1 (en) 2022-10-24 2024-05-01 Basf Se Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors xv
WO2024104823A1 (en) 2022-11-16 2024-05-23 Basf Se New substituted tetrahydrobenzoxazepine
WO2024104818A1 (en) 2022-11-16 2024-05-23 Basf Se Substituted benzodiazepines as fungicides
WO2024104822A1 (en) 2022-11-16 2024-05-23 Basf Se Substituted tetrahydrobenzodiazepine as fungicides
WO2024104815A1 (en) 2022-11-16 2024-05-23 Basf Se Substituted benzodiazepines as fungicides
EP4389210A1 (en) 2022-12-21 2024-06-26 Basf Se Heteroaryl compounds for the control of invertebrate pests
WO2024165343A1 (en) 2023-02-08 2024-08-15 Basf Se New substituted quinoline compounds for combatitng phytopathogenic fungi
WO2024194038A1 (en) 2023-03-17 2024-09-26 Basf Se Substituted pyridyl/pyrazidyl dihydrobenzothiazepine compounds for combatting phytopathogenic fungi

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4277564A (en) * 1980-01-09 1981-07-07 The United States Of America As Represented By The Secretary Of Agriculture Preparing entomocidal products with oligosporogenic mutants of bacillus thuringiensis
CA1193564A (en) * 1982-07-09 1985-09-17 University Of Western Ontario Mutated microorganism with toxin inclusion for pest control
DE3346138A1 (de) * 1983-12-21 1985-07-11 Boehringer Mannheim Gmbh, 6800 Mannheim Bacillus thuringiensis var. tenebrionis sowie ein insektizid wirkendes, hieraus erhaeltliches praeparat bzw. toxin sowie deren verwendung zur bekaempfung von coleoptera
US4764372A (en) * 1985-03-22 1988-08-16 Mycogen Corporation Compositions containing bacillus thuringiensis toxin toxic to beetles of the order coleoptera, and uses thereof
DE3541893A1 (de) * 1985-11-27 1987-06-11 Basf Ag Verfahren zur herstellung sporenfreier, konzentrierter protein-praeparate von mueckentoxischem bacillus thuringiensis serovar. israelensis sowie mikroorganismus zur durchfuehrung des verfahrens bzw. verfahren zur gewinnung des mikroorganismus
JPS62146593A (ja) * 1985-12-16 1987-06-30 マイコゲン コ−ポレ−シヨン バシラス・スリンギエンシスの安定なspo−cry+変異株の製法
JP2775150B2 (ja) * 1987-03-04 1998-07-16 ノバルティス アクチエンゲゼルシャフト 蚊類毒性のバシラス・ツリンギーンシス・セロバル.イスラエレンシスの、胞子不含の、濃縮した蛋白質製剤の製法並びに該方法を実施するための微生物及び該微生物を収得する方法
ES2063051T3 (es) * 1987-12-24 1995-01-01 Zeneca Ltd Cepas bacterianas.
US4999192A (en) * 1988-02-12 1991-03-12 Mycogen Corporation Novel coleopteran-active bacillus thuringiensis isolate
US4966765A (en) * 1988-02-23 1990-10-30 Mycogen Corporation Novel coleopteran-active Bacillus thuringiensis isolate
US4996155A (en) * 1988-03-04 1991-02-26 Mycogen Corporation Bacillus thuringiensis gene encoding a coleopteran-active toxin
US4990332A (en) * 1988-10-25 1991-02-05 Mycogen Corporation Novel lepidopteran-active Bacillus thuringiensis isolate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
С.И. Алиханян Селекция промышленных микроорганизмов. - 1968, 151, 163, 197. Тезисы докладов на совещании по вопросам получения высокопродуктивных и фагоустойчивых культур энтомопатогенных бактерий. Москва, 14-16 октября 1969, c. 33-34. *

Also Published As

Publication number Publication date
ES2060568T3 (es) 2000-01-01
BG96488A (bg) 1993-12-24
DE585215T1 (de) 1994-07-28
DE69033291D1 (de) 1999-10-21
ES2060568T1 (es) 1994-12-01
CA2068734C (en) 1999-12-28
AU647056B2 (en) 1994-03-17
TR28902A (tr) 1997-08-04
ATE184645T1 (de) 1999-10-15
HU214685B (hu) 1998-04-28
AU6736490A (en) 1991-06-13
EP0585215A1 (en) 1994-03-09
CA2068734A1 (en) 1991-05-18
WO1991007481A1 (en) 1991-05-30
JPH05501955A (ja) 1993-04-15
FI922205A (fi) 1992-05-14
HUT64581A (en) 1994-01-28
DE69033291T2 (de) 2000-05-11
EP0585215B1 (en) 1999-09-15
KR927003790A (ko) 1992-12-18
HU9201628D0 (en) 1992-08-28
FI922205A0 (fi) 1992-05-14
FI103130B1 (fi) 1999-04-30
FI103130B (fi) 1999-04-30
BG61699B1 (bg) 1998-03-31
SK562990A3 (en) 2001-02-12
GR3031815T3 (en) 2000-02-29
RO109862B1 (ro) 1995-06-30
YU218590A (sh) 1993-05-28
YU48440B (sh) 1998-07-10
KR0157065B1 (ko) 1998-10-15
SK281286B6 (sk) 2001-02-12
NO305131B1 (no) 1999-04-06
DK0585215T3 (da) 2000-03-27
NO921950L (no) 1992-07-13
NO921950D0 (no) 1992-05-15
JP2950614B2 (ja) 1999-09-20
GR940300021T1 (en) 1994-04-29

Similar Documents

Publication Publication Date Title
RU2138950C1 (ru) Мутантный штамм бактерий bacillus thuringiensis subsp, tenebrionis dsm 5480 - продуцент дельта-эндотоксина, способ получения препарата на основе дельта-эндотоксина, пестицидная композиция, содержащая дельта-эндотоксин, способ борьбы с вредными сельскохозяйственными насекомыми, способ получения мутантных штаммов бактерий bacillus thuringiensis subsp, tenebrionis - продуцентов дельта-эндотоксина
US5006336A (en) Novel coleopteran-active bacillus thuringiensis isolate
JP2571842B2 (ja) 新規なバチルス・スリンギエンシス菌株、それらの分離方法および関連する組成物
CA1184137A (en) Bacterial insecticide and production thereof
US5302387A (en) Bacillus thuringiensis isolates active against cockroaches and genes encoding cockroach-active toxins
JPH10504451A (ja) 新規の双翅類活性化合物及びバチルス チューリングエンシス株
US5279962A (en) Mutants or variants of Bacillus thuringiensis producing high yields of delta endotoxin
AU639896B2 (en) Novel bacillus thuringiensis strains
JPH0358904A (ja) 新規なバシラス・スリンギエンシス分離体
JPH0515364A (ja) 新規なバシラス菌株及び害虫防除剤
HRP920198A2 (en) Mutants or variants of bacillus thuringiensis producing high yields of delta toxin
CZ562990A3 (cs) Mutant mikroorganismu Bacillus thuringiensis deponovaný jako subsp. tenebrionis DSM 5480, způsob jeho přípravy a pesticidní prostředek, který ho obsahuje
PL166433B1 (pl) Sposób wytwarzania owadobójczego produktu wytwarzanego przez B. thuringlensis PL PL PL PL PL PL
IL86242A (en) Transconjugant bacillus thuringiensis strains, insecticidal compositions containing them and method for their use