WO2022106304A1 - Compositions comprising mefentrifluconazole - Google Patents

Compositions comprising mefentrifluconazole Download PDF

Info

Publication number
WO2022106304A1
WO2022106304A1 PCT/EP2021/081461 EP2021081461W WO2022106304A1 WO 2022106304 A1 WO2022106304 A1 WO 2022106304A1 EP 2021081461 W EP2021081461 W EP 2021081461W WO 2022106304 A1 WO2022106304 A1 WO 2022106304A1
Authority
WO
WIPO (PCT)
Prior art keywords
methyl
phenyl
plant
pyridine
plants
Prior art date
Application number
PCT/EP2021/081461
Other languages
French (fr)
Inventor
Markus Gewehr
Manuel Medinger
Lutz Brahm
Original Assignee
BASF Agro B.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF Agro B.V. filed Critical BASF Agro B.V.
Publication of WO2022106304A1 publication Critical patent/WO2022106304A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P3/00Fungicides
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/64Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with three nitrogen atoms as the only ring hetero atoms
    • A01N43/647Triazoles; Hydrogenated triazoles
    • A01N43/6531,2,4-Triazoles; Hydrogenated 1,2,4-triazoles

Definitions

  • Typical problems arising in the control of phytopathogenic fungi are the need to reduce the dosage rates and/or improve the fungicidal activity of the used active ingredients, to reduce or avoid unfavorable environmental or toxicological effects whilst still allowing effective control of the fungi, as well as combining knock-down activity with prolonged control, that is, fast action with long lasting action.
  • Anions of useful acid addition salts are primarily chloride, bromide, fluoride, hydrogensulfate, sulfate, dihydrogenphosphate, hydrogenphosphate, phosphate, nitrate, bicarbonate, carbonate, hexafluorosilicate, hexafluorophosphate, benzoate, and the anions of Ci-C4-alkanoic acids, preferably formate, acetate, propionate and butyrate. They can be formed by reacting such inventive compound with an acid of the corresponding anion, preferably of hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid or nitric acid.
  • inorganic acids examples include hydrohalic acids, such as hydrogen fluoride, hydrogen chloride, hydrogen bromide and hydrogen iodide, carbonic acid, sulfuric acid, phosphoric acid and nitric acid.
  • Mefentrifluconazole (I) is commercially available.
  • Compound (11-1) is known from WO 2019/173665. It has the general formula
  • - C14 demethylase inhibitors triazoles: azaconazole (B.1.1), bitertanol (B.1.2), bromu- conazole (B.1.3), cyproconazole (B.1.4), difenoconazole (B.1.5), diniconazole (B.1.6), dinicona- zole-M (B.1.7), epoxiconazole (B.1.8), fenbuconazole (B.1.9), fluquinconazole (B.1.10), flusi- lazole (B.1.11), flutriafol (B.1.12), hexaconazole (B.1.13), imibenconazole (B.1.14), ipconazole (B.1.15), metconazole (B.1.16), myclobutanil (B.1.17), oxpoconazole (B.1.18), paclobutrazole (B.1.19), penconazole (B.1.20), propi
  • Acetylcholine esterase (AChE) inhibitors aldicarb, alanycarb, bendiocarb, benfuracarb, butocarboxim, butoxycarboxim, carbaryl, carbofuran, carbosulfan, ethiofencarb, fenobucarb, formetanate, furathiocarb, isoprocarb, methiocarb, methomyl, metolcarb, oxamyl, pirimicarb, propoxur, thiodicarb, thiofanox, trimethacarb, XMC, xylylcarb, triazamate; acephate, aza- methiphos, azinphos-ethyl, azinphosmethyl, cadusafos, chlorethoxyfos, chlorfenvinphos, chlormephos, chlorpyrifos, chlorpyrifos-methyl, coumaphos, cyanopho
  • O.2 GABA-gated chloride channel antagonists endosulfan, chlordane; ethiprole, fipronil, flufiprole, pyrafluprole, pyriprole;
  • Juvenile hormone mimics hydroprene, kinoprene, methoprene; fenoxycarb, pyri proxyfen;
  • Inhibitors of the of acetyl CoA carboxylase spirodiclofen, spiromesifen, spirotetramat, spiropidion;
  • the total weight ratios of compositions comprising at least one microbial pesticide in the form of viable microbial cells including dormant forms can be determined using the amount of CFU of the respective microorganism to calculate the total weight of the respective active component with the following equation that 1 x 10 10 CFU equals one gram of total weight of the respective active component.
  • Colony forming unit is measure of viable microbial cells.
  • CFU may also be understood as the number of (juvenile) individual nematodes in case of nematode biopesticides, such as Steinernema feltiae.
  • the biopesticides from group L1) and/or L2) may also have insecticidal, acaricidal, mollus- cidal, pheromone, nematicidal, plant stress reducing, plant growth regulator, plant growth promoting and/or yield enhancing activity.
  • the biopesticides from group L3) and/or L4) may also have fungicidal, bactericidal, viricidal, plant defense activator, plant stress reducing, plant growth regulator, plant growth promoting and/or yield enhancing activity.
  • the biopesticides from group L5) may also have fungicidal, bactericidal, viricidal, plant defense activator, insecticidal, acaricidal, molluscidal, pheromone and/or nematicidal activity.
  • velezensis FZB42 isolated from soil in Brandenburg, Germany (DSM 23117; J. Plant Dis. Prot. 105, 181— 197, 1998; e. g. RhizoVital® 42 from AbiTEP GmbH, Germany), B. a. ssp. plantarum or B. velezensis MBI600 isolated from faba bean in Sutton Bonington, Nottinghamshire, U.K. at least before 1988 (also called 1430; NRRL B-50595; US 2012/0149571 A1; e. g. Integral® from BASF Corp., USA), B. a. ssp. plantarum or B.
  • japonicum 532c isolated from Wisconsin field in U.S.A. (Nitragin 61A152; Can. J. Plant. Sci. 70, 661-666, 1990; e. g. in Rhizoflo®, Histick®, Hicoat® Super from BASF Agricultural Specialties Ltd., Canada), B. japonicum E-109 variant of strain USDA 138 (INTA E109, SEMIA 5085; Eur. J. Soil Biol. 45, 28-35, 2009; Biol. Fertil. Soils 47, 81-89, 2011); B. japonicum strains deposited at SEMIA known from Appl. Environ. Microbiol.
  • Paenibacillus alvei NAS6G6 isolated from the rhizosphere of grasses in South Africa at least before 2008 (WO 2014/029697; NRRL B-50755; e.g. BAC-UP from BASF Agricultural Specialities (Pty) Ltd., South Africa), Paenibacillus strains isolated from soil samples from a variety of European locations including Germany: P. epiphyticus Lu17015 (WO 2016/020371; DSM 26971), P. polymyxa ssp. plantarum Lu16774 (WO 2016/020371; DSM 26969), P. p. ssp.
  • oilseed rape mustard, olives, sunflowers, coconut, cocoa beans, castor oil plants, oil palms, ground nuts, or soybeans; cucurbits, e. g. squashes, cucumber, or melons; fiber plants, e. g. cotton, flax, hemp, or jute; citrus fruits, e. g. oranges, lemons, grapefruits, or mandarins; vegetables, e. g. spinach, lettuce, asparagus, cabbages, carrots, onions, tomatoes, potatoes, cucurbits, or paprika; lauraceous plants, e. g. avocados, cinnamon, or camphor; energy and raw material plants, e. g.
  • corn, field corn, soybean, oilseed rape, sugar cane, or oil palm corn; tobacco; nuts; coffee; tea; bananas; vines (table grapes and grape juice grape vines); hop; turf; sweet leaf (also called Stevia); natural rubber plants; or ornamental and forestry plants, e. g. flowers, shrubs, broad-leaved trees, or evergreens (conifers, eucalypts, etc.); on the plant propagation material, such as seeds; and on the crop material of these plants.
  • Transgenic canola events comprising herbicide tolerance genes are for example, but not excluding others, MON88302, HCR-1, HCN10, HCN28, HCN92, MS1 , MS8, PHY14, PHY23, PHY35, PHY36, RF1 , RF2 and RF3.
  • Transgenes to provide insect resistance preferably are toxin genes of Bacillus spp. and synthetic variants thereof, like cry1A, crylAb, cry1Ab-Ac, crylAc, cry1A.1O5, cry1 F, cry1 Fa2, cry2Ab2, cry2Ae, mcry3A, ecry3.1Ab, cry3Bb1, cry34Ab1, cry35Ab1, cry9C, vip3A(a), vip3Aa20.
  • transgenes of plant origin such as genes coding for protease inhibitors, like CpTI and pinll, can be used.
  • a further approach uses transgenes such as dvsnf7 to produce double-stranded RNA in plants.
  • Preferred combinations of traits are combinations of herbicide tolerance traits to different groups of herbicides, combinations of insect tolerance to different kind of insects, in particular tolerance to lepidopteran and coleopteran insects, combinations of herbicide tolerance with one or several types of insect resistance, combinations of herbicide tolerance with increased yield as well as combinations of herbicide tolerance and tolerance to abiotic conditions.
  • Pseudocercosporella herpotrichoides (syn. Oculimacula yallundae, O. acuformis'. eyespot, teleomorph: Tapesia yallundae) on cereals, e. g. wheat or barley; Pseudoperonospora (downy mildew) on various plants, e. g. P. cubensis on cucurbits or P. humili on hop; Pseudopezicula tracheiphila (red fire disease or .rotbrenner’, anamorph: Phialophora) on vines; Puccinia spp.
  • oli- gandrum on mushrooms Ramularia spp., e. g. R. collo-cygni (Ramularia leaf spots, Physiological leaf spots) on barley, R. areola (teleomorph: Mycosphaerella areola) on cotton and R. beticola on sugar beets; Rhizoctonia spp. on cotton, rice, potatoes, turf, corn, oilseed rape, potatoes, sugar beets, vegetables and various other plants, e. g. R. solani (root and stem rot) on soybeans, R. solani (sheath blight) on rice or R.
  • R. solani root and stem rot
  • rolfsii (syn. Athelia rolfsii) on soybeans, peanut, vegetables, corn, cereals and ornamentals; Septoria spp. on various plants, e. g. S. glycines (brown spot) on soybeans, S. tritici (syn. Zymoseptoria tritici, Septoria blotch) on wheat and S. (syn. Stagonospora) nodorum (Stagonospora blotch) on cereals; Uncinula (syn. Erysiphe) necator (powdery mildew, anamorph: Oidium tuckeri) on vines; Setosphaeria spp.
  • Stored products of animal origin are hides, leather, furs, hairs and alike.
  • "stored products” is understood to denote natural substances of plant origin and their processed forms, more preferably fruits and their processed forms, such as pomes, stone fruits, soft fruits and citrus fruits and their processed forms, where application of compounds I and compositions thereof can also prevent disadvantageous effects such as decay, discoloration or mold.
  • protection of materials is to be understood to denote the protection of technical and non-living materials, such as adhesives, glues, wood, paper, paperboard, textiles, leather, paint dispersions, plastics, cooling lubricants, fiber, or fabrics against the infestation and destruction by harmful microorganisms, such as fungi and bacteria.
  • the amount of active substance applied depends on the kind of application area and on the desired effect. Amounts customarily applied in the protection of materials are 0.001 g to 2 kg, preferably 0.005 g to 1 kg, of active substance per cubic meter of treated material.
  • Suitable surfactants are surface-active compounds, such as anionic, cationic, nonionic and amphoteric surfactants, block polymers, polyelectrolytes, and mixtures thereof. Such surfactants can be used as emulsifier, dispersant, solubilizer, wetter, penetration enhancer, protective col- loid, or adjuvant. Examples of surfactants are listed in McCutcheon’s, Vol.1: Emulsifiers & Detergents, McCutcheon’s Directories, Glen Rock, USA, 2008 (International Ed. or North American Ed.).
  • Emulsions (EW, EO, ES)
  • active ingredients 50-80 wt% of active ingredients are ground finely with addition of dispersants and wetting agents (e.g. sodium lignosulfonate and alcohol ethoxylate) ad 100 wt% and prepared as water- dispersible or water-soluble granules by means of technical appliances (e. g. extrusion, spray tower, fluidized bed). Dilution with water gives a stable dispersion or solution of the active substance.
  • dispersants and wetting agents e.g. sodium lignosulfonate and alcohol ethoxylate
  • An oil phase comprising 5-50 wt% of active ingredients, 0-40 wt% water insoluble organic solvent (e.g. aromatic hydrocarbon), 2-15 wt% acrylic monomers (e.g. methylmethacrylate, methacrylic acid and a di- or triacrylate) are dispersed into an aqueous solution of a protective colloid (e.g. polyvinyl alcohol). Radical polymerization initiated by a radical initiator results in the formation of poly(meth)acrylate microcapsules.
  • an oil phase comprising 5-50 wt% of an inventive mixture according to the invention, 0-40 wt% water insoluble organic solvent (e.g. aromatic hydrocarbon), and an isocyanate monomer (e.g.
  • the resulting agrochemical compositions generally comprise between 0.01 and 95%, preferably between 0.1 and 90%, in particular between 0.5 and 75%, by weight of active substances.
  • the active substances are employed in a purity of from 90% to 100%, preferably from 95% to 100% (according to NMR spectrum).
  • kits for preparing a usable fungicidal composition comprising a) a composition comprising mefentrifluconazole and at least one auxiliary; and b) a composition comprising at least one component II) and at least one auxiliary; and optionally c) a composition comprising at least one auxiliary and optionally a further active component as defined herein.
  • compositions When preparing the compositions, it is preferred to employ the pure active compounds, to which further active compounds against pests, such as insecticides, herbicides, fungicides or else herbicidal or growth-regulating active compounds or fertilizers can be added as further active components according to need.
  • pests such as insecticides, herbicides, fungicides or else herbicidal or growth-regulating active compounds or fertilizers can be added as further active components according to need.
  • the separate or joint application of the compounds of the inventive compositions is carried out by spraying or dusting the seeds, the seedlings, the plants or the soils before or after sowing of the plants or before or after emergence of the plants.
  • the content of the mixture of the active ingredients is from 0.001 to 80 weight %, preferably from 0.01 to 50 weight % and most preferably from 0.01 to 15 weight %.
  • E expected efficacy expressed in % of the untreated control, when using the mixture of the active compounds A and B at the concentrations a and b x efficacy, expressed in % of the untreated control, when using the active compound A at the concentration a y efficacy, expressed in % of the untreated control, when using the active compound B at the concentration b.
  • the active compounds were formulated separately as a stock solution having a concentration of 10000 ppm in dimethyl sulfoxide.
  • the stock solutions were mixed according to the ratio, pipetted onto a micro titer plate (MTP) and diluted with water to the stated concentrations.
  • MTP micro titer plate

Abstract

The present invention relates to compositions comprising mefentrifluconazole and a compound selected from (II-1) [(1S,2S)-1-methyl-2-(o-tolyl)propyl] (2S)-2-[(4-methoxy-3-propanoyloxy-pyridine-2-carbonyl)amino]propanoate and (II-2) N-methoxy-N-[[4-[5-(trifluoromethyl)-1,2,4-oxadiazol-3-yl]phenyl]methyl]-cyclopropanecarboxamide, including agriculturally acceptable salts thereof. Further, the invention relates to the use of such compositions and methods for controlling harmful fungi using such compositions.

Description

Compositions comprising mefentrifluconazole
Description
The present invention relates to compositions comprising
I) mefentrifluconazole (I) and
II) a compound selected from:
(11-1) [(1S,2S)-1-methyl-2-(o-tolyl)propyl] (2S)-2-[(4-methoxy-3-propanoyloxy- pyridine-2-carbonyl)amino]propanoate and
(I I-2) N-methoxy-N-[[4-[5-(trifluoromethyl)-1,2,4-oxadiazol-3-yl]phenyl]methyl]- cyclopropanecarboxamide including agriculturally acceptable salts thereof.
The invention also relates to a method for controlling phytopathogenic harmful fungi, using the compositions as described above. In such a method, the fungi, their habitat, their locus or the plants to be protected against fungal attack, the soil or plant propagation material are treated with a fungicidally effective amount of a composition according to the present invention.
Moreover, the invention also relates to a use of a composition according to the present invention for controlling phytopathogenic fungi.
Further, the invention relates to a method for improving the health of plants, wherein the plants, the locus where the plants are growing or are expected to grow, or plant propagation material from which the plants grow, are treated with an effective amount of a composition according to the present invention.
Moreover, the invention also relates to a use of a composition according to the present invention for improving the health of plants, preferably for improving plant yield.
Additionally, the invention relates to a method for protection of plant propagation material, preferably seeds, from phytopathogenic fungi, comprising contacting the plant propagation materials with a composition according to the present invention.
Moreover, the invention also relates to a use of a composition according to the present invention for protection of plant propagation material, preferably seeds, from phytopathogenic fungi.
Typical problems arising in the control of phytopathogenic fungi are the need to reduce the dosage rates and/or improve the fungicidal activity of the used active ingredients, to reduce or avoid unfavorable environmental or toxicological effects whilst still allowing effective control of the fungi, as well as combining knock-down activity with prolonged control, that is, fast action with long lasting action.
Another problem in relation to the use of fungicides is that the repeated and exclusive applica- tion of an individual fungicidal compound leads in many cases to a rapid selection of harmful fungi, which have developed natural or adapted resistance against the active compound in question. Therefore, there is a need for fungicidal agents that help prevent or overcome resistance.
It was therefore an object of the present invention to provide fungicidal compositions which solve at least one problem outlined above.
We have found that this object is achieved by the compositions according to the present invention. Especially, it has been found that the compositions according to the present invention show markedly enhanced fungicidal action compared to the control rates with the individual compounds. In order to achieve said enhanced fungicidal action component (I) and component (II) can be applied simultaneously, that is jointly or separately, or in succession.
It has been found that the action of the compositions according to the present invention goes far beyond the fungicidal action of the active compounds alone (synergistic action).
The term "fungicidally effective amount" denotes an amount of the composition or of the components of the composition, which is sufficient for controlling harmful fungi on cultivated plants or in the protection of stored products or harvest or of materials and which does not result in a substantial damage to the treated plants, the treated stored products or harvest, or to the treated materials. Such an amount can vary in a broad range and is dependent on various factors, such as the fungal species to be controlled, the treated cultivated plant, stored product, harvest or material, the climatic conditions, desired pesticidal effect and duration, locus, mode of application, and the like.
"Locus" means a plant, plant propagation material (preferably seed), soil, area, material or environment in which a pest is growing or may grow.
The term "plant propagation material" is to be understood to denote all the generative parts of the plant, such as seeds; and vegetative plant materials, such as cuttings and tubers (e. g. potatoes), which can be used for the multiplication of the plant. This includes seeds, roots, fruits, tubers, bulbs, rhizomes, shoots, sprouts and other parts of plants; including seedlings and young plants, which are to be transplanted after germination or after emergence from soil. These young plants may also be protected before transplantation by a total or partial treatment by immersion or pouring. In a particularly preferred embodiment, the term propagation material denotes seeds.
The term “plant health” or “health of the plant(s)” comprises various sorts of improvements of plants that are not connected to the control of pests. For example, advantageous properties that may be mentioned are improved crop characteristics including: emergence, crop yields, protein content, oil content, starch content, more developed root system (improved root growth), improved stress tolerance (e.g. against drought, heat, salt, UV, water, cold), reduced ethylene (reduced production and/or inhibition of reception), tillering increase, increase in plant height, bigger leaf blade, less dead basal leaves, stronger tillers, greener leaf color, pigment content, photosynthetic activity, less input needed (such as fertilizers or water), less seeds needed, more productive tillers, earlier flowering, early grain maturity, less plant verse (lodging), increased shoot growth, enhanced plant vigor, increased plant stand and early and better germination; or any other advantages familiar to a person skilled in the art.
The term “agriculturally acceptable salts” encompass especially the salts of those cations or the acid addition salts of those acids whose cations and anions, respectively, have no adverse effect on the fungicidal action of said compounds. Suitable cations are thus in particular the ions of the alkali metals, preferably sodium and potassium, of the alkaline earth metals, preferably calcium, magnesium and barium, of the transition metals, preferably manganese, copper, zinc and iron, and also the ammonium ion which, if desired, may carry one to four Ci-C4-alkyl substituents and/or one phenyl or benzyl substituent, preferably diisopropylammonium, tetramethylammonium, tetrabutylammonium, trimethylbenzylammonium, furthermore phosphonium ions, sulfonium ions, preferably tri(Ci-C4-alkyl)sulfonium, and sulfoxonium ions, preferably tri(Ci-C4-alkyl)sulfoxonium. Anions of useful acid addition salts are primarily chloride, bromide, fluoride, hydrogensulfate, sulfate, dihydrogenphosphate, hydrogenphosphate, phosphate, nitrate, bicarbonate, carbonate, hexafluorosilicate, hexafluorophosphate, benzoate, and the anions of Ci-C4-alkanoic acids, preferably formate, acetate, propionate and butyrate. They can be formed by reacting such inventive compound with an acid of the corresponding anion, preferably of hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid or nitric acid.
Examples of inorganic acids are hydrohalic acids, such as hydrogen fluoride, hydrogen chloride, hydrogen bromide and hydrogen iodide, carbonic acid, sulfuric acid, phosphoric acid and nitric acid.
Suitable organic acids are, for example, formic acid and alkanoic acids, such as acetic acid, trifluoroacetic acid, trichloroacetic acid and propionic acid, and also glycolic acid, thiocyanic acid, lactic acid, succinic acid, citric acid, benzoic acid and other arylcarboxylic acids, cinnamic acid, oxalic acid, alkylsulfonic acids (sulfonic acids having straight-chain or branched alkyl radicals of 1 to 20 carbon atoms), arylsulfonic acids or aryldisulfonic acids (aromatic radicals, such as phenyl and naphthyl, which carry one or two sulfonic acid groups), alkylphosphonic acids (phosphonic acids having straight-chain or branched alkyl radicals with 1 to 20 carbon atoms), arylphosphonic acids or aryldiphosphonic acids (aromatic radicals, such as phenyl and naphthyl, which carry one or two phosphoric acid radicals), where the alkyl or aryl radicals may carry further substituents, for example p-toluenesulfonic acid, salicylic acid, p-aminosalicylic acid, 2- phenoxybenzoic acid, 2-acetoxybenzoic acid etc. Suitable metal ions are in particular the ions of the elements of the second main group, in particular calcium and magnesium, of the third and fourth main group, in particular aluminum, tin and lead, and also of the elements of transition groups one to eight, in particular chromium, manganese, iron, cobalt, nickel, copper, zinc, and others. Particular preference is given to the metal ions of the elements of transition groups of the fourth period. The metals can be present in the various valencies that they can assume.
Mefentrifluconazole (I) is commercially available. Compound (11-1) is known from WO 2019/173665. It has the general formula
Figure imgf000005_0002
Compound (11-2) is known from WO 2018/177894 and WO 2020/212513. It has the general formula
Figure imgf000005_0001
Compounds (I) and (II) comprise chiral centers and are generally obtained in the form of racemates. The R- and S-enantiomers thereof can be separated and isolated in pure form with methods known by the skilled person, e.g. by using chiral HPLC.
Therefore, chiral compounds (I) and (II) may be used invention in form of
- a racemic mixture of the of the (R)-enantiomer and the (S)-enantiomer;
- a mixture with any other proportions of the (R)-enantiomer and the (S)-enantiomer;
- pure (R)-enantiomer or
- pure (S)-enantiomer.
According to one embodiment, the composition of the present invention comprises compounds (I) and (11-1).
According to another embodiment, the composition of the present invention comprises compounds (I) and (II-2).
The weight ratio of component (I) and component (II) is generally from 20000:1 to 1 :20000, preferably from 500:1 to 1 :500, more preferably from 100:1 to 1 :100, most preferably from 50:1 to 1 :50 and in particular from 20: 1 to 1 :20, including ratios from 15: 1 to 1 : 15, from 10:1 to 1 :10, 9:1 to 1 :9, from 8:1 to 1 :8, from 7:1 to 1 :7, from 6:1 to 1 :6, from 5:1 to 1 :5, from 4:1 to 1 :4, from 3:1 to 1 :3, from 2:1 to 1 :2, or 1 :1.
The weight ratios of component (I) and component (II) can also be from 20000:1 to 1 :1 , preferably from 500:1 to 1 :1 , more preferably from 100:1 to 1 :1 , most preferably from 50:1 to 1 :1 and in particular from 20: 1 to 1 : 1 , including ratios from 15: 1 to 1 : 1 , from 10: 1 to 1 : 1 , 9: 1 to 1 : 1 , from 8: 1 to 1 :1 , from 7:1 to 1 :1 , from 6:1 to 1 :1 , from 5:1 to 1 :1 , from 4:1 to 1 :1 , from 3:1 to 1 :1 , from 2:1 to 1 :1.
The weight ratio of component (I) and component (II) can also be from 1 :1 to 1 :20000, preferably from 1 :1 to 1 :500, more preferably from 1 :1 to 1 :100, most preferably from 1 :1 to 1 :50 and in particular from 1 :1 to 1 :20, including ratios from 1 :1 to 1 :15, from 1 :1 to 1 :10, 1 :1 to 1 :9, from 1 :1 to 1 :8, from 1 :1 to 1 :7, from 1 :1 to 1 :6, from 1 :1 to 1 :5, from 1 :1 to 1 :4, from 1 :1 to 1 :3, from 2:1 to 1 :2.
The compositions according to the present invention can further contain one or more active ingredients selected from insecticides, fungicides, herbicides as additional active ingredient(s) as component (III), provided that components (II) and (III) are different from each other.
Component (III) can be selected from:
A) Respiration inhibitors
- Inhibitors of complex III at Qo site: azoxystrobin (A.1.1), coumethoxystrobin (A.1.2), coumoxystrobin (A.1.3), dimoxystrobin (A.1.4), enestroburin (A.1.5), fenaminstrobin (A.1.6), fenoxystrobin/flufenoxystrobin (A.1.7), fluoxastrobin (A.1.8), kresoxim-methyl (A.1.9), mande- strobin (A.1.10), metominostrobin (A.1.11), orysastrobin (A.1.12), picoxystrobin (A.1.13), pyra- clostrobin (A.1.14), pyrametostrobin (A.1.15), pyraoxystrobin (A.1.16), trifloxystrobin (A.1.17), 2-(2-(3-(2,6-dichlorophenyl)-1-methyl-allylideneaminooxymethyl)-phenyl)-2-methoxyimino- /V-methyl-acetamide (A.1.18), pyribencarb (A.1.19), triclopyricarb/chlorodincarb (A.1.20), fa- moxadone (A.1.21), fenamidone (A.1.22), methyl-/V-[2-[(1 ,4-dimethyl-5-phenyl-pyrazol-3- yl)oxylmethyl]phenyl]-/\/-methoxy-carbamate (A.1.23), metyltetraprole (A.1.24), (Z,2E)-5-[1-(2,4- dichlorophenyl)pyrazol-3-yl]-oxy-2-methoxyimino-/\/,3-dimethyl-pent-3-enamide (A.1.25), (Z,2E)-5-[1-(4-chlorophenyl)pyrazol-3-yl]oxy-2-methoxyimino-/\/,3-dimethyl-pent-3-enamide
(A.1.26), pyriminostrobin (A.1.27), bifujunzhi (A.1.28), 2-(ortho-((2,5-dimethylphenyl-oxy- methylen)phenyl)-3-methoxy-acrylic acid methylester (A.1.29);
- inhibitors of complex III at Qi site: cyazofamid (A.2.1), amisulbrom (A.2.2), [(6S,7R,8R)-8-benzyl-3-[(3-hydroxy-4-methoxy-pyridine-2-carbonyl)amino]-6-methyl-4,9-dioxo- 1 ,5-dioxonan-7-yl] 2-methylpropanoate (A.2.3), fenpicoxamid (A.2.4), florylpicoxamid (A.2.5), [(1 S,2S)-2-(4-fluoro-2-methyl-phenyl)-1 ,3-dimethyl-butyl] (2S)-2-[(3-hydroxy-4-methoxy-pyridine- 2-carbonyl)amino]propanoate (A.2.6), [(1 S,2S)-2-(2,4-dimethylphenyl)-1 ,3-dimethyl-butyl] (2S)- 2-[(3-hydroxy-4-methoxy-pyridine-2-carbonyl)amino]propanoate (A.2.7), [(1 S,2S)-2-(2,4-di- fluorophenyl)-1 ,3-dimethyl-butyl] (2S)-2-[(3-hydroxy-4-methoxy-pyridine-2-carbonyl)amino]- propanoate (A.2.8), [(1 S,2S)-2-(2-fluoro-4-methyl-phenyl)-1 ,3-dimethyl-butyl] (2S)-2-[(3-hydroxy- 4-methoxy-pyridine-2-carbonyl)amino]propanoate (A.2.9), [(1 S,2S)-2-(4-fluoro-2-methyl-phenyl)- 1 ,3-dimethyl-butyl] (2S)-2-[(3-acetoxy-4-methoxy-pyridine-2-carbonyl)amino]propanoate
(A.2.10), [(1 S,2S)-2-(2,4-dimethylphenyl)-1 ,3-dimethyl-butyl] (2S)-2-[(3-acetoxy-4-methoxy- pyridine-2-carbonyl)amino]propanoate (A.2.11), [(1 S,2S)-2-(2,4-difluorophenyl)-1 ,3-dimethyl- butyl] (2S)-2-[(3-acetoxy-4-methoxy-pyridine-2-carbonyl)amino]propanoate (A.2.12), [(1 S,2S)-2- (2-fluoro-4-methyl-phenyl)-1 ,3-dimethyl-butyl] (2S)-2-[(3-acetoxy-4-methoxy-pyridine-2-car- bonyl)amino]propanoate (A.2.13), [2-[[(1 S)-2-[(1 S,2S)-2-(4-fluoro-2-methyl-phenyl)-1 ,3-dimethyl- butoxy]-1-methyl-2-oxo-ethyl]carbamoyl]-4-methoxy-3-pyridyl]oxymethyl 2-methylpropanoate (A.2.14), [2-[[(1 S)-2-[(1 S,2S)-2-(2,4-dimethylphenyl)-1 ,3-dimethyl-butoxy]-1-methyl-2-oxo- ethyl]carbamoyl]-4-methoxy-3-pyridyl]oxymethyl 2-methylpropanoate (A.2.15), [2-[[(1 S)-2- [(1 S,2S)-2-(2,4-difluorophenyl)-1 ,3-dimethyl-butoxy]-1-methyl-2-oxo-ethyl]carbamoyl]-4- methoxy-3-pyridyl]oxymethyl 2-methylpropanoate (A.2.16), [2-[[(1 S)-2-[(1 S,2S)-2-(2-fluoro- 4-methyl-phenyl)-1 ,3-dimethyl-butoxy]-1-methyl-2-oxo-ethyl]carbamoyl]-4-methoxy-3-pyri- dyl]oxymethyl 2-methylpropanoate (A.2.17), [(1 S,2S)-1-methyl-2-(o-tolyl)propyl] (2S)-2-[(3- acetoxy-4-methoxy-pyridine-2-carbonyl)amino]propanoate (A.2.18), [(1 S,2S)-1-methyl-2-(o- tolyl)propyl] (2S)-2-[(4-methoxy-3-propanoyloxy-pyridine-2-carbonyl)amino]propanoate (A.2.19), [(1 S,2S)-1-methyl-2-(o-tolyl)propyl] (2S)-2-[(3-hydroxy-4-methoxy-pyridine-2- carbonyl)amino]propanoate (A.2.20), [4-methoxy-2-[[(1 S)-1-methyl-2-[(1 S,2S)-1-methyl-2-(o- tolyl)propoxy]-2-oxo-ethyl]carbamoyl]-3-pyridyl] 2-methylpropanoate (A.2.21), [(1 S,2S)-2-(2,4- dimethylphenyl)-1-methyl-propyl] (2S)-2-[(3-acetoxy-4-methoxy-pyridine-2- carbonyl)amino]propanoate (A.2.22), [2-[[(1 S)-2-[(1 S,2S)-2-(2,4-dimethylphenyl)-1-methyl- propoxy]-1-methyl-2-oxo-ethyl]carbamoyl]-4-methoxy-3-pyridyl] 2-methylpropanoate (A.2.23), [(1 S,2S)-2-(2,4-dimethylphenyl)-1-methyl-propyl] (2S)-2-[(3-hydroxy-4-methoxy-pyridine- 2-carbonyl)amino]propanoate (A.2.24), [(1 S,2S)-2-(2,6-dimethylphenyl)-1-methyl-propyl] (2S)-2- [(3-acetoxy-4-methoxy-pyridine-2-carbonyl)amino]propanoate (A.2.25), [2-[[(1 S)-2-[(1 S,2S)-2- (2,6-dimethylphenyl)-1-methyl-propoxy]-1-methyl-2-oxo-ethyl]carbamoyl]-4-methoxy-3-pyridyl] 2-methylpropanoate (A.2.26), [(1 S,2S)-2-(2,6-dimethylphenyl)-1-methyl-propyl] (2S)-2-[(3- hydroxy-4-methoxy-pyridine-2-carbonyl)amino]propanoate (A.2.27), [(1 S,2S)-2-[4-fluoro-2- (trifluoromethyl)phenyl]-1-methyl-propyl] (2S)-2-[(3-acetoxy-4-methoxy-pyridine-2- carbonyl)amino]propanoate (A.2.28), [2-[[(1 S)-2-[(1 S,2S)-2-[4-fluoro-2-(trifluoromethyl)phenyl]- 1 -methyl-propoxy]-1 -methyl-2-oxo-ethyl]carbamoyl]-4-methoxy-3-pyridyl] 2-methylpropanoate (A.2.29), [(1 S,2S)-2-[4-fluoro-2-(trifluoromethyl)phenyl]-1-methyl-propyl] (2S)-2-[(3-hydroxy-4- methoxy-pyridine-2-carbonyl)amino]propanoate (A.2.30), [(1 S,2S)-2-(4-fluoro-2-methyl-phenyl)-
1-methyl-propyl] (2S)-2-[(3-acetoxy-4-methoxy-pyridine-2-carbonyl)amino]propanoate (A.2.31), [2-[[(1 S)-2-[(1 S,2S)-2-(4-fluoro-2-methyl-phenyl)-1-methyl-propoxy]-1-methyl-2-oxo- ethyl]carbamoyl]-4-methoxy-3-pyridyl] 2-methylpropanoate (A.2.32), [(1 S,2S)-2-(4-fluoro-2- methyl-phenyl)-1-methyl-propyl] (2S)-2-[(3-hydroxy-4-methoxy-pyridine-2- carbonyl)amino]propanoate (A.2.33), [(1 S,2S)-1-methyl-2-[2-(trifluoromethyl)phenyl]propyl] (2S)-
2-[(3-acetoxy-4-methoxy-pyridine-2-carbonyl)amino]propanoate (A.2.34), [4-methoxy-2-[[(1 S)-1- methyl-2-[(1 S,2S)-1-methyl-2-[2-(trifluoromethyl)phenyl]propoxy]-2-oxo-ethyl]carbamoyl]-3- pyridyl] 2-methylpropanoate (A.2.35), [(1 S,2S)-1-methyl-2-[2-(trifluoromethyl)phenyl]propyl] (2S)-2-[(3-hydroxy-4-methoxy-pyridine-2-carbonyl)amino]propanoate (A.2.36), [(1 S,2S)-2-(4- fluoro-2,6-dimethyl-phenyl)-1-methyl-propyl] (2S)-2-[(3-acetoxy-4-methoxy-pyridine-2- carbonyl)amino]propanoate (A.2.37), [2-[[(1 S)-2-[(1 S,2S)-2-(4-fluoro-2,6-dimethyl-phenyl)-1- methyl-propoxy]-1-methyl-2-oxo-ethyl]carbamoyl]-4-methoxy-3-pyridyl] 2-methylpropanoate
(A.2.38), [(1 S,2S)-2-(4-fluoro-2,6-dimethyl-phenyl)-1-methyl-propyl] (2S)-2-[(3-hydroxy-4-meth- oxy-pyridine-2-carbonyl)amino]propanoate (A.2.39);
- inhibitors of complex II: benodanil (A.3.1), benzovindiflupyr (A.3.2), bixafen (A.3.3), bos- calid (A.3.4), carboxin (A.3.5), fenfuram (A.3.6), fluopyram (A.3.7), flutolanil (A.3.8), fluxapyrox- ad (A.3.9), furametpyr (A.3.10), isofetamid (A.3.11), isopyrazam (A.3.12), mepronil (A.3.13), oxycarboxin (A.3.14), penflufen (A.3.15), penthiopyrad (A.3.16), pydiflumetofen (A.3.17), pyrazi- flumid (A.3.18), sedaxane (A.3.19), tecloftalam (A.3.20), thifluzamide (A.3.21), inpyrfluxam (A.3.22), pyrapropoyne (A.3.23), fluindapyr (A.3.24), N-[2-[2-chloro-4-(trifluoro- methyl)phenoxy]phenyl]-3-(difluoromethyl)-5-fluoro-1-methyl-pyrazole-4-carboxamide (A.3.25), methyl (E)-2-[2-[(5-cyano-2-methyl-phenoxy)methyl]phenyl]-3-methoxy-prop-2-enoate (A.3.26), isoflucypram (A.3.27), 2-(difluoromethyl)-/V-(1 , 1 ,3-trimethyl-indan-4-yl)pyridine-3-carboxamide (A.3.28), 2-(difluoromethyl)-/V-[(3R)-1 ,1 ,3-trimethylindan-4-yl]pyridine-3-carboxamide (A.3.29), 2-(difluoromethyl)-/V-(3-ethyl-1,1-dimethyl-indan-4-yl)pyridine-3-carboxamide (A.3.30), 2- (difluoromethyl)-/V-[(3R)-3-ethyl-1 ,1-dimethyl-indan-4-yl]pyridine-3-carboxamide (A.3.31), 2- (difluoromethyl)-/V-(1 ,1-dimethyl-3-propyl-indan-4-yl)pyridine-3-carboxamide (A.3.31), 2- (difluoromethyl)-/V-[(3R)-1 ,1-dimethyl-3-propyl-indan-4-yl]pyridine-3-carboxamide (A.3.33), 2- (difluoromethyl)-/V-(3-isobutyl-1,1-dimethyl-indan-4-yl)pyridine-3-carboxamide (A.3.34), 2- (difluoromethyl)-/V-[(3R)-3-isobutyl-1 ,1-dimethyl-indan-4-yl]pyridine-3-carboxamide (A.3.35), cyclobutrifluram (A.3.36);
- other respiration inhibitors: diflumetorim (A.4.1); nitrophenyl derivates: binapacryl (A.4.2), dinobuton (A.4.3), dinocap (A.4.4), fluazinam (A.4.5), meptyldinocap (A.4.6), ferimzone (A.4.7); organometal compounds: fentin salts, e. g. fentin-acetate (A.4.8), fentin chloride (A.4.9) or fentin hydroxide (A.4.10); ametoctradin (A.4.11); silthiofam (A.4.12);
B) Sterol biosynthesis inhibitors (SBI fungicides)
- C14 demethylase inhibitors: triazoles: azaconazole (B.1.1), bitertanol (B.1.2), bromu- conazole (B.1.3), cyproconazole (B.1.4), difenoconazole (B.1.5), diniconazole (B.1.6), dinicona- zole-M (B.1.7), epoxiconazole (B.1.8), fenbuconazole (B.1.9), fluquinconazole (B.1.10), flusi- lazole (B.1.11), flutriafol (B.1.12), hexaconazole (B.1.13), imibenconazole (B.1.14), ipconazole (B.1.15), metconazole (B.1.16), myclobutanil (B.1.17), oxpoconazole (B.1.18), paclobutrazole (B.1.19), penconazole (B.1.20), propiconazole (B.1.21), prothioconazole (B.1.22), simeconazole (B.1.23), tebuconazole (B.1.24), tetraconazole (B.1.25), triadimefon (B.1.26), triadimenol (B.1.27), triticonazole (B.1.28), uniconazole (B.1.29), 2-(2,4-difluorophenyl)-1 ,1-difluoro-3- (tetrazol-1-yl)-1-[5-[4-(2,2,2-trifluoroethoxy)phenyl]-2-pyridyl]propan-2-ol (B.1.30), 2-(2,4- difluorophenyl)-1 ,1-difluoro-3-(tetrazol-1-yl)-1-[5-[4-(trifluoromethoxy)phenyl]-2-pyridyl]propan-2- ol (B.1.31), 4-[[6-[2-(2,4-difluorophenyl)-1,1-difluoro-2-hydroxy-3-(5-sulfanyl-1 ,2,4-triazol-1- yl)propyl]-3-pyridyl]oxy]benzonitrile (B.1.32), ipfentrifluconazole (B.1.33), mefentrifluconazole (B.1.34), (2R)-2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1-(1,2,4-triazol-1-yl)propan-2-ol (B.1.35), (2S)-2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1-(1,2,4-triazol-1-yl)propan-2-ol (B.1.36), 2-(chloromethyl)-2-methyl-5-(p-tolylmethyl)-1-(1,2,4-triazol-1-ylmethyl)cyclopentanol (B.1.37); imidazoles: imazalil (B.1.38), pefurazoate (B.1.39), prochloraz (B.1.40), triflumizol (B.1.41); pyrimidines, pyridines, piperazines: fenarimol (B.1.42), pyrifenox (B.1.43), triforine (B.1.44), [3-(4-chloro-2-fluoro-phenyl)-5-(2,4-difluorophenyl)isoxazol-4-yl]-(3-pyridyl)methanol (B.1.45), 4-[[6-[2-(2,4-difluorophenyl)-1 ,1-difluoro-2-hydroxy-3-(1,2,4-triazol-1-yl)propyl]-3- pyridyl]oxy]benzonitrile (B.1.46), 2-[6-(4-bromophenoxy)-2-(trifluoromethyl)-3-pyridyl]-1-(1 ,2,4- triazol-1-yl)propan-2-ol (B.1.47), 2-[6-(4-chlorophenoxy)-2-(trifluoromethyl)-3-pyridyl]-1-(1 ,2,4-tri- azol-1-yl)propan-2-ol (B.1.48);
- Delta14-reductase inhibitors: aldimorph (B.2.1), dodemorph (B.2.2), dodemorph-acetate (B.2.3), fenpropimorph (B.2.4), tridemorph (B.2.5), fenpropidin (B.2.6), piperalin (B.2.7), spirox- amine (B.2.8);
- Inhibitors of 3-keto reductase: fenhexamid (B.3.1); - Other Sterol biosynthesis inhibitors: chlorphenomizole (B.4.1);
C) Nucleic acid synthesis inhibitors
- phenylamides or acyl amino acid fungicides: benalaxyl (C.1.1), benalaxyl-M (C.1.2), kiral- axyl (C.1.3), metalaxyl (C.1.4), metalaxyl-M (C.1.5), ofurace (C.1.6), oxadixyl (C.1.7);
- other nucleic acid synthesis inhibitors: hymexazole (C.2.1), octhilinone (C.2.2), oxolinic acid (C.2.3), bupirimate (C.2.4), 5-fluorocytosine (C.2.5), 5-fluoro-2-(p-tolylmethoxy)pyrimidin- 4-amine (C.2.6), 5-fluoro-2-(4-fluorophenylmethoxy)pyrimidin-4-amine (C.2.7), 5-fluoro- 2-(4-chlorophenylmethoxy)pyrimidin-4 amine (C.2.8);
D) Inhibitors of cell division and cytoskeleton
- tubulin inhibitors: benomyl (D.1.1), carbendazim (D.1.2), fuberidazole (D1.3), thiabendazole (D.1.4), thiophanate-methyl (D.1.5), pyridachlometyl (D.1.6), /\/-ethyl-2-[(3-ethynyl-8- methyl-6-quinolyl)oxy]butanamide (D.1.8), /\/-ethyl-2-[(3-ethynyl-8-methyl-6-quinolyl)oxy]-2- methylsulfanyl-acetamide (D.1.9), 2-[(3-ethynyl-8-methyl-6-quinolyl)oxy]-/\/-(2-fluoroethyl)butan- amide (D.1.10), 2-[(3-ethynyl-8-methyl-6-quinolyl)oxy]-/\/-(2-fluoroethyl)-2-methoxy-acetamide (D.1.11), 2-[(3-ethynyl-8-methyl-6-quinolyl)oxy]-/\/-propyl-butanamide (D.1.12), 2-[(3-ethynyl-8- methyl-6-quinolyl)oxy]-2-methoxy-/\/-propyl-acetamide (D.1.13), 2-[(3-ethynyl-8-methyl-6- quinolyl)oxy]-2-methylsulfanyl-/\/-propyl-acetamide (D.1.14), 2-[(3-ethynyl-8-methyl-6- quinolyl)oxy]-/V-(2-fluoroethyl)-2-methylsulfanyl-acetamide (D.1.15), 4-(2-bromo-4-fluoro- phenyl)-/V-(2-chloro-6-fluoro-phenyl)-2,5-dimethyl-pyrazol-3-amine (D.1.16);
- other cell division inhibitors: diethofencarb (D.2.1), ethaboxam (D.2.2), pencycuron (D.2.3), fluopicolide (D.2.4), zoxamide (D.2.5), metrafenone (D.2.6), pyriofenone (D.2.7), phen- amacril (D.2.8);
E) Inhibitors of amino acid and protein synthesis
- methionine synthesis inhibitors: cyprodinil (E.1.1), mepanipyrim (E.1.2), pyrimethanil (E.1.3);
- protein synthesis inhibitors: blasticidin-S (E.2.1), kasugamycin (E.2.2), kasugamycin hy- drochloride-hydrate (E.2.3), mildiomycin (E.2.4), streptomycin (E.2.5), oxytetracyclin (E.2.6);
F) Signal transduction inhibitors
- MAP / histidine kinase inhibitors: fluoroimid (F.1.1), iprodione (F.1.2), procymidone (F.1.3), vinclozolin (F.1.4), fludioxonil (F.1.5);
- G protein inhibitors: quinoxyfen (F.2.1);
G) Lipid and membrane synthesis inhibitors
- Phospholipid biosynthesis inhibitors: edifenphos (G.1.1), iprobenfos (G.1.2), pyrazophos (G.1.3), isoprothiolane (G.1.4);
- lipid peroxidation: dicloran (G.2.1), quintozene (G.2.2), tecnazene (G.2.3), tolclofos-methyl (G.2.4), biphenyl (G.2.5), chloroneb (G.2.6), etridiazole (G.2.7), zinc thiazole (G.2.8);
- phospholipid biosynthesis and cell wall deposition: dimethomorph (G.3.1), flumorph (G.3.2), mandipropamid (G.3.3), pyrimorph (G.3.4), benthiavalicarb (G.3.5), iprovalicarb (G.3.6), valifenalate (G.3.7);
- compounds affecting cell membrane permeability and fatty acides: propamocarb (G.4.1);
- inhibitors of oxysterol binding protein: oxathiapiprolin (G.5.1), fluoxapiprolin (G.5.3), 4-[1-[2-[3-(difluoromethyl)-5-methyl-pyrazol-1-yl]acetyl]-4-piperidyl]-/\/-tetralin-1-yl-pyridine- 2-carboxamide (G.5.4), 4-[1-[2-[3,5-bis(difluoromethyl)pyrazol-1-yl]acetyl]-4-piperidyl]-/\/-tetralin- 1-yl-pyridine-2-carboxamide (G.5.5), 4-[1-[2-[3-(difluoromethyl)-5-(trifluoromethyl)pyrazol-1- yl]acetyl]-4-piperidyl]-/V-tetralin-1-yl-pyridine-2-carboxamide (G.5.6), 4-[1-[2-[5-cyclopropyl-3- (difluoromethyl)pyrazol-1-yl]acetyl]-4-piperidyl]-/V-tetralin-1-yl-pyridine-2-carboxamide (G.5.7), 4- [1 -[2-[5-methyl-3-(trifluoromethyl)pyrazol-1 -yl]acetyl]-4-piperidyl]-/\/-tetralin-1 -yl-pyridine-2- carboxamide (G.5.8), 4-[1-[2-[5-(difluoromethyl)-3-(trifluoromethyl)pyrazol-1-yl]acetyl]-4- piperidyl]-/V-tetralin-1-yl-pyridine-2-carboxamide (G.5.9), 4-[1-[2-[3,5-bis(trifluoromethyl)pyrazol-
1-yl]acetyl]-4-piperidyl]-/\/-tetralin-1-yl-pyridine-2-carboxamide (G.5.10), (4-[1-[2-[5-cyclopropyl- 3-(trifluoromethyl)pyrazol-1-yl]acetyl]-4-piperidyl]-/\/-tetralin-1-yl-pyridine-2-carboxamide (G.5.11);
H) Inhibitors with Multi Site Action
- inorganic active substances: Bordeaux mixture (H.1.1), copper (H.1.2), copper acetate (H.1.3), copper hydroxide (H.1.4), copper oxychloride (H.1.5), basic copper sulfate (H.1.6), sulfur (H.1.7);
- thio- and dithiocarbamates: ferbam (H.2.1), mancozeb (H.2.2), maneb (H.2.3), metam (H.2.4), metiram (H.2.5), propineb (H.2.6), thiram (H.2.7), zineb (H.2.8), ziram (H.2.9);
- organochlorine compounds: anilazine (H.3.1), chlorothalonil (H.3.2), captafol (H.3.3), captan (H.3.4), folpet (H.3.5), dichlofluanid (H.3.6), dichlorophen (H.3.7), hexachlorobenzene (H.3.8), pentachlorphenole (H.3.9) and its salts, phthalide (H.3.10), tolylfluanid (H.3.11);
- guanidines and others: guanidine (H.4.1), dodine (H.4.2), dodine free base (H.4.3), guazatine (H.4.4), guazatine-acetate (H.4.5), iminoctadine (H.4.6), iminoctadine-triacetate (H.4.7), iminoctadine-tris(albesilate) (H.4.8), dithianon (H.4.9), 2,6-dimethyl-1/7,5/7-[1 ,4]di- thiino[2,3-c:5,6-c']dipyrrole-1 ,3,5,7(2/7,6/-/)-tetraone (H.4.10);
I) Cell wall synthesis inhibitors
- inhibitors of glucan synthesis: validamycin (1.1.1), polyoxin B (1.1.2);
- melanin synthesis inhibitors: pyroquilon (1.2.1), tricyclazole (1.2.2), carpropamid (1.2.3), dicyclomet (1.2.4), fenoxanil (1.2.5);
J) Plant defence inducers
- acibenzolar-S-methyl (J.1.1), probenazole (J.1.2), isotianil (J.1.3), tiadinil (J.1.4), prohexa- dione-calcium (J.1.5); phosphonates: fosetyl (J.1.6), fosetyl-aluminum (J.1.7), phosphorous acid and its salts (J.1.8), calcium phosphonate (J.1.11), potassium phosphonate (J.1.12), potassium or sodium bicarbonate (J.1.9), 4-cyclopropyl-/V-(2,4-dimethoxyphenyl)thiadiazole-5-carboxamide (J.1.10);
K) Unknown mode of action
- bronopol (K.1.1), chinomethionat (K.1.2), cyflufenamid (K.1.3), cymoxanil (K.1.4), dazomet (K.1.5), debacarb (K.1.6), diclocymet (K.1.7), diclomezine (K.1.8), difenzoquat (K.1.9), di- fenzoquat-methylsulfate (K.1.10), diphenylamin (K.1.11), fenitropan (K.1.12), fenpyrazamine (K.1.13), flumetover (K.1.14), flusulfamide (K.1.15), flutianil (K.1.16), harpin (K.1.17), metha- sulfocarb (K.1.18), nitrapyrin (K.1.19), nitrothal-isopropyl (K.1.20), tolprocarb (K.1.21), oxin- copper (K.1.22), proquinazid (K.1.23), tebufloquin (K.1.24), tecloftalam (K.1.25), triazoxide
(K.1 .26), /V -(4-(4-chloro-3-trifluoromethyl-phenoxy)-2,5-dimethyl-phenyl)-/\/-ethyl-/\/-methyl formamidine (K.1.27), /V -(4-(4-fluoro-3-trifluoromethyl-phenoxy)-2,5-dimethyl-phenyl)-/\/-ethyl-/\/- methyl formamidine (K.1.28), /V -[4-[[3-[(4-chlorophenyl)methyl]-1 ,2,4-thiadiazol-5-yl]oxy]-2,5- dimethyl-phenyl]-/V-ethyl-/V-methyl-formamidine (K.1 .29), /V-(5-bromo-6-indan-2-yloxy-2-methyl- 3-pyridyl)-/V-ethyl-/V-methyl-formamidine (K.1.30), /\/-[5-bromo-6-[1-(3,5-difluorophenyl)ethoxy]-
2-methyl-3-pyridyl]-/V-ethyl-/V-methyl-formamidine (K.1.31), /\/-[5-bromo-6-(4- isopropylcyclohexoxy)-2-methyl-3-pyridyl]-/V-ethyl-/V-methyl-formamidine (K.1.32), /V -[5-bromo- 2-methyl-6-(1-phenylethoxy)-3-pyridyl]-/V-ethyl-/V-methyl-formamidine (K.1 .33), /\/-(2-methyl-5- trifluoromethyl-4-(3-trimethylsilanyl-propoxy)-phenyl)-/\/-ethyl-/\/-methyl formamidine (K.1.34), / - (5-difluoromethyl-2-methyl-4-(3-trimethylsilanyl-propoxy)-phenyl)-/\/-ethyl-/\/-methyl formamidine (K.1 .35), 2-(4-chloro-phenyl)-/V-[4-(3,4-dimethoxy-phenyl)-isoxazol-5-yl]-2-prop-2-ynyloxy- acetamide (K.1.36), 3-[5-(4-chloro-phenyl)-2,3-dimethyl-isoxazolidin-3-yl]-pyridine (pyrisoxazole) (K.1.37), 3-[5-(4-methylphenyl)-2,3-dimethyl-isoxazolidin-3-yl]-pyridine (K.1.38), 5-chloro-1 -(4,6- dimethoxy-pyrimidin-2-yl)-2-methyl-1 /-/-benzoimidazole (K.1.39), ethyl (Z)-3-amino-2-cyano-3- phenyl-prop-2-enoate (K.1.40), picarbutrazox (K.1.41), pentyl /\/-[6-[[(Z)-[(1-methyltetrazol-5-yl)- phenyl-methylene]amino]oxymethyl]-2-pyridyl]carbamate (K.1.42), but-3-ynyl /\/-[6-[[(Z)-[(1- methyltetrazol-5-yl)-phenyl-methylene]amino]oxymethyl]-2-pyridyl]carbamate (K.1.43), ipflufenoquin (K.1.44), quinofumelin (K.1.47), benziothiazolinone (K.1.48), bromothalonil (K.1.49), 2-(6-benzyl-2-pyridyl)quinazoline (K.1.50), 2-[6-(3-fluoro-4-methoxy-phenyl)-5-methyl- 2-pyridyl]quinazoline (K.1.51), dichlobentiazox (K.1.52), /\/-(2,5-dimethyl-4-phenoxy-phenyl)-/\/- ethyl-/V-methyl-formamidine (K.1.53), aminopyrifen (K.1.54), fluopimomide (K.1.55), A/'-[5- bromo-2-methyl-6-(1-methyl-2-propoxy-ethoxy)-3-pyridyl]-N-ethyl-N-methyl-formamidine (K.1.56), N'-[4-(4,5-dichlorothiazol-2-yl)oxy-2,5-dimethyl-phenyl]-N-ethyl-N-methyl-formamidine (K.1 .57), N-(2-fluorophenyl)-4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3-yl]benzamide (K.1.58), N- methyl-4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3-yl]benzenecarbothioamide (K.1 .59);
L) Biopesticides
L1) Microbial pesticides with fungicidal, bactericidal, viricidal and/or plant defense activator activity: Ampelomyces quisqualis, Aspergillus flavus, Aureobasidium pullulans, Bacillus altitudinis, B. amyloliquefaciens, B. amyloliquefaciens ssp. plantarum (also referred to as B. velezensis), B. megaterium, B. mojavensis, B. mycoides, B. pumilus, B. simplex, B. solisalsi, B. subtilis, B. subtilis var. amyloliquefaciens, B. velezensis, Candida oleophila, C. saitoana, Clavi- bacter michiganensis (bacteriophages), Coniothyrium minitans, Cryphonectria parasitica, Cryptococcus albidus, Dilophosphora alopecuri, Fusarium oxysporum, Clonostachys rosea f. catenulate (also named Gliocladium catenulatum), Gliocladium roseum, Lysobacter antibioticus, L. enzymogenes, Metschnikowia fructicola, Microdochium dimerum, Microsphaeropsis ochracea, Muscodor al bus, Paenibacillus alvei, Paenibacillus epiphyticus, P. polymyxa, Pantoea vagans, Penicillium bilaiae, Phlebiopsis gigantea, Pseudomonas sp., Pseudomonas chloraphis, Pseudo- zyma flocculosa, Pichia anomala, Pythium oligandrum, Sphaerodes mycoparasitica, Streptomy- ces griseoviridis, S. lydicus, S. violaceusniger, Talaromyces flavus, Trichoderma asperelloides, T. asperellum, T. atroviride, T. fertile, T. gamsii, T. harmatum, T. harzianum, T. polysporum, T. stromaticum, T. virens, T. viride, Typhula phacorrhiza, Ulocladium oudemansii, Verticillium dahlia, zucchini yellow mosaic virus (avirulent strain);
L2) Biochemical pesticides with fungicidal, bactericidal, viricidal and/or plant defense activator activity: harpin protein, Reynoutria sachalinensis extract;
L3) Microbial pesticides with insecticidal, acaricidal, molluscidal and/or nematicidal activity: Agrobacterium radiobacter, Bacillus cereus, B. firmus, B. thuringiensis, B. thuringiensis ssp. aizawai, B. t. ssp. israelensis, B. t. ssp. galleriae, B. t. ssp. kurstaki, B. t. ssp. tenebrionis, Beau- veria bassiana, B. brongniartii, Burkholderia spp., Chromobacterium subtsugae, Cydia pomonel- la granulovirus (CpGV), Cryptophlebia leucotreta granulovirus (CrleGV), Flavobacterium spp., Helicoverpa armigera nucleopolyhedrovirus (HearNPV), Helicoverpa zea nucleopolyhedrovirus (HzNPV), Helicoverpa zea single capsid nucleopolyhedrovirus (HzSNPV), Heterorhabditis bac- teriophora, Isaria fumosorosea, Lecanicillium longisporum, L. muscarium, Metarhizium anisopliae, M. anisopliae var. anisopliae, M. anisopliae var. acridum, Nomuraea rileyi, Paecilomyces fumosoroseus, P. lilacinus, Paenibacillus popilliae, Pasteuria spp., P. nishizawae, P. penetrans, P. ramosa, P. thornea, P. usgae, Pseudomonas fluorescens, Spodoptera littoralis nucleopolyhedrovirus (SpliNPV), Steinernema carpocapsae, S. feltiae, S. kraussei, Streptomyces galbus, S. microflavus',
L4) Biochemical pesticides with insecticidal, acaricidal, molluscidal, pheromone and/or nematicidal activity: L-carvone, citral, (E,Z)-7,9-dodecadien-1-yl acetate, ethyl formate, (E,Z)- 2,4-ethyl decadienoate (pear ester), (Z,Z,E)-7,11,13-hexadecatrienal, heptyl butyrate, isopropyl myristate, lavanulyl senecioate, cis-jasmone, 2-methyl 1-butanol, methyl eugenol, methyl jasmonate, (E,Z)-2,13-octadecadien-1-ol, (E,Z)-2,13-octadecadien-1-ol acetate, (E,Z)-3,13- octadecadien-1-ol, (R)-1-octen-3-ol, pentatermanone, (E,Z,Z)-3,8,11-tetradecatrienyl acetate, (Z,E)-9,12-tetradecadien-1-yl acetate, (Z)-7-tetradecen-2-one, (Z)-9-tetradecen-1-yl acetate, (Z)- 11-tetradecenal, (Z)-11-tetradecen-1-ol, extract of Chenopodium ambrosiodes, Neem oil, Quil- lay extract;
L5) Microbial pesticides with plant stress reducing, plant growth regulator, plant growth promoting and/or yield enhancing activity: Azospirillum amazonense, A. brasilense, A. lipofer- um, A. irakense, A. halopraeferens, Bradyrhizobium spp., B. elkanii, B. japonicum, B. liao- ningense, B. lupini, Delftia acidovorans, Glomus intraradices, Mesorhizobium spp., Rhizobium leguminosarum bv. phaseoli, R. I. bv. trifolii, R. I. bv. viciae, R. tropici, Sinorhizobium melilotr,
O) Insecticides from classes O.1 to 0.29
O.1 Acetylcholine esterase (AChE) inhibitors: aldicarb, alanycarb, bendiocarb, benfuracarb, butocarboxim, butoxycarboxim, carbaryl, carbofuran, carbosulfan, ethiofencarb, fenobucarb, formetanate, furathiocarb, isoprocarb, methiocarb, methomyl, metolcarb, oxamyl, pirimicarb, propoxur, thiodicarb, thiofanox, trimethacarb, XMC, xylylcarb, triazamate; acephate, aza- methiphos, azinphos-ethyl, azinphosmethyl, cadusafos, chlorethoxyfos, chlorfenvinphos, chlormephos, chlorpyrifos, chlorpyrifos-methyl, coumaphos, cyanophos, demeton-S-methyl, diazinon, dichlorvos/ DDVP, dicrotophos, dimethoate, dimethylvinphos, disulfoton, EPN, ethion, ethoprophos, famphur, fenamiphos, fenitrothion, fenthion, fosthiazate, heptenophos, imicyafos, isofenphos, isopropyl O-(methoxyaminothio-phosphoryl) salicylate, isoxathion, malathion, me- carbam, methamidophos, methidathion, mevinphos, monocrotophos, naled, omethoate, oxyde- meton-methyl, parathion, parathion-methyl, phenthoate, phorate, phosalone, phosmet, phos- phamidon, phoxim, pirimiphos- methyl, profenofos, propetamphos, prothiofos, pyraclofos, pyri- daphenthion, quinalphos, sulfotep, tebupirimfos, temephos, terbufos, tetrachlorvinphos, thi- ometon, triazophos, trichlorfon, vamidothion;
O.2 GABA-gated chloride channel antagonists: endosulfan, chlordane; ethiprole, fipronil, flufiprole, pyrafluprole, pyriprole;
0.3 Sodium channel modulators: acrinathrin, allethrin, d-cis-trans allethrin, d-trans allethrin, bifenthrin, kappa-bifenthrin, bioallethrin, bioallethrin S-cylclopentenyl, bioresmethrin, cyclopro- thrin, cyfluthrin, beta-cyfluthrin, cyhalothrin, lambda-cyhalothrin, gamma-cyhalothrin, cyperme- thrin, alpha-cypermethrin, beta-cypermethrin, theta-cypermethrin, zeta-cypermethrin, cyphe- nothrin, deltamethrin, empenthrin, esfenvalerate, etofenprox, fen propath rin, fenvalerate, flucy- thrinate, flumethrin, tau-fluvalinate, halfenprox, heptafluthrin, imiprothrin, meperfluthrin, meto- fluthrin, momfluorothrin, epsilon-momfluorothrin, permethrin, phenothrin, prallethrin, profluthrin, pyrethrin (pyrethrum), resmethrin, silafluofen, tefluthrin, kappa-tefluthrin, tetramethylfluthrin, tet- ramethrin, tralomethrin, transfluthrin; DDT, methoxychlor;
0.4 Nicotinic acetylcholine receptor (nAChR) agonists: acetamiprid, clothianidin, cycloxaprid, dinotefuran, imidacloprid, nitenpyram, thiacloprid, thiamethoxam; 4,5-dihydro-/V-nitro-
1-(2-oxiranylmethyl)-1/7-imidazol-2-amine, (2E)-1-[(6-chloropyridin-3-yl)methyl]-/\/-nitro-
2-pentylidenehydrazinecarboximidamide; 1-[(6-chloropyridin-3-yl)methyl]-7-methyl-8-nitro- 5-propoxy-1,2,3,5,6,7-hexahydroimidazo[1,2-a]pyridine; nicotine; sulfoxaflor, flupyradifurone, triflumezopyrim, (3R)-3-(2-chlorothiazol-5-yl)-8-methyl-5-oxo-6-phenyl-2,3-dihydrothiazolo[3,2- a]pyrimidin-8-ium-7-olate, (3S)-3-(6-chloro-3-pyridyl)-8-methyl-5-oxo-6-phenyl-2,3-di- hydrothiazolo[3,2-a]pyrimidin-8-ium-7-olate, (3S)-8-methyl-5-oxo-6-phenyl-3-pyrimidin-5-yl-2,3- dihydrothiazolo[3,2-a]pyrimidin-8-ium-7-olate, (3R)-3-(2-chlorothiazol-5-yl)-8-methyl-5-oxo-6-[3- (trifluoromethyl)phenyl]-2,3-dihydrothiazolo[3,2-a]pyrimidin-8-ium-7-olate; (3R)-3-(2- chlorothiazol-5-yl)-6-(3,5-dichlorophenyl)-8-methyl-5-oxo-2,3-dihydrothiazolo[3,2-a]pyrimidin-8- ium-7-olate, (3R)-3-(2-chlorothiazol-5-yl)-8-ethyl-5-oxo-6-phenyl-2,3-dihydrothiazolo[3,2- a]pyrimidin-8-ium-7-olate;
O.5 Nicotinic acetylcholine receptor allosteric activators: spinosad, spinetoram;
0.6 Chloride channel activators: abamectin, emamectin benzoate, ivermectin, lepimectin, milbemectin;
0.7 Juvenile hormone mimics: hydroprene, kinoprene, methoprene; fenoxycarb, pyri proxyfen;
0.8 miscellaneous non-specific (multi-site) inhibitors: methyl bromide and other alkyl halides; chloropicrin, sulfuryl fluoride, borax, tartar emetic;
0.9 Chordotonal organ TRPV channel modulators: pymetrozine, pyrifluquinazon;
0.10 Mite growth inhibitors: clofentezine, hexythiazox, diflovidazin; etoxazole;
0.11 Microbial disruptors of insect midgut membranes: Bacillus thuringiensis, Bacillus sphaericus and the insecticdal proteins they produce: Bacillus thuringiensis subsp. israelensis, Bacillus sphaericus, Bacillus thuringiensis subsp. aizawai, Bacillus thuringiensis subsp. kurstaki, Bacillus thuringiensis subsp. tenebrionis, the Bt crop proteins: CrylAb, CrylAc, Cryl Fa, Cry2Ab, mCry3A, Cry3Ab, Cry3Bb, Cry34/35Ab1;
0.12 Inhibitors of mitochondrial ATP synthase: diafenthiuron; azocyclotin, cyhexatin, fenbutatin oxide, propargite, tetradifon;
0.13 Uncouplers of oxidative phosphorylation via disruption of the proton gradient: chlorfenapyr, DNOC, sulfluramid;
0.14 Nicotinic acetylcholine receptor (nAChR) channel blockers: bensultap, cartap hydrochloride, thiocyclam, thiosultap sodium;
0.15 Inhibitors of the chitin biosynthesis type 0: bistrifluron, chlorfluazuron, diflubenzuron, flucycloxuron, flufenoxuron, hexaflumuron, lufenuron, novaluron, noviflumuron, teflubenzuron, triflumuron;
0.16 Inhibitors of the chitin biosynthesis type 1: buprofezin;
0.17 Moulting disruptors: cyromazine;
0.18 Ecdyson receptor agonists: methoxyfenozide, tebufenozide, halofenozide, fufenozide, chromafenozide;
0.19 Octopamin receptor agonists: amitraz; 0.20 Mitochondrial complex III electron transport inhibitors: hydramethylnon, acequinocyl, fluacrypyrim, bifenazate;
0.21 Mitochondrial complex I electron transport inhibitors: fenazaquin, fenpyroximate, pyrim- idifen, pyridaben, tebufenpyrad, tolfenpyrad; rotenone;
0.22 Voltage-dependent sodium channel blockers: indoxacarb, metaflumizone, 2-[2-(4-cy- anophenyl)-1-[3-(trifluoromethyl)phenyl]ethylidene]-/\/-[4-(difluoromethoxy)phenyl]-hydrazine- carboxamide, /V-(3-chloro-2-methylphenyl)-2-[(4-chlorophenyl)-[4-[methyl(methylsulfonyl)- amino]phenyl]methylene]-hydrazinecarboxamide;
0.23 Inhibitors of the of acetyl CoA carboxylase: spirodiclofen, spiromesifen, spirotetramat, spiropidion;
0.24 Mitochondrial complex IV electron transport inhibitors: aluminium phosphide, calcium phosphide, phosphine, zinc phosphide, cyanide;
0.25 Mitochondrial complex II electron transport inhibitors: cyenopyrafen, cyflumetofen;
0.26 Ryanodine receptor-modulators: flubendiamide, chlorantraniliprole, cyantraniliprole, cyclaniliprole, tetraniliprole; (R)-3-chloro-/V1-{2-methyl-4-[1 ,2,2,2 -tetrafluoro-l-(trifluoromethyl)- ethyl]phenyl}-/\/2-(1-methyl-2-methylsulfonylethyl)phthalamide, (S)-3-chloro-/V1-{2-methyl- 4-[1 ,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl]phenyl}-/\/2-(1-methyl-2-methylsulfonylethyl)- phthalamide, methyl-2-[3,5-dibromo-2-({[3-bromo-1-(3-chloropyridin-2-yl)-1/7-pyrazol-5-yl]- carbonyl}amino)benzoyl]-1 ,2-dimethylhydrazinecarboxylate; /\/-[4,6-dichloro-2-[(diethyl-lambda- 4-sulfanylidene)carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3- carboxamide; /V-[4-chloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3- chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide; /\/-[4-chloro-2-[(di-2-propyl-lambda- 4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3- carboxamide; /V-[4,6-dichloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-phenyl]-2-(3- chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide; /\/-[4,6-dibromo-2-[(diethyl-lambda- 4-sulfanylidene)carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3- carboxamide; /V-[2-(5-amino-1 ,3,4-thiadiazol-2-yl)-4-chloro-6-methylphenyl]-3-bromo-1-(3- chloro-2-pyridinyl)-1/7-pyrazole-5-carboxamide; 3-chloro-1-(3-chloro-2-pyridinyl)-/V-[2,4-dichloro- 6-[[(1-cyano-1-methylethyl)amino]carbonyl]phenyl]-1/7-pyrazole-5-carboxamide; tetra- chlorantraniliprole; /V-[4-chloro-2-[[(1 ,1-dimethylethyl)amino]carbonyl]-6-methylphenyl]-1-(3- chloro-2-pyridinyl)-3-(fluoromethoxy)-1/7-pyrazole-5-carboxamide; cyhalodiamide;
0.27: Chordotonal organ modulators - undefined target site: flonicamid;
0.28. insecticidal compounds of unknown or uncertain mode of action: afidopyropen, afox- olaner, azadirachtin, amidoflumet, benzoximate, broflanilide, bromopropylate, chinomethionat, cryolite, dicloromezotiaz, dicofol, flufenerim, flometoquin, fluensulfone, fluhexafon, fluopyram, fluralaner, metoxadiazone, piperonyl butoxide, pyflubumide, pyridalyl, tioxazafen, 11-(4-chloro- 2,6-dimethylphenyl)-12-hydroxy-1 ,4-dioxa-9-azadispiro[4.2.4.2]-tetradec-11-en-10-one, 3-(4’- fluoro-2,4-dimethylbiphenyl-3-yl)-4-hydroxy-8-oxa-1-azaspiro[4.5]dec-3-en-2-one, 1-[2-fluoro-4- methyl-5-[(2,2,2-trifluoroethyl)sulfinyl]phenyl]-3-(trifluoromethyl)-1/7-1 ,2,4-triazole-5-amine, Bacillus firmus 1-1582; flupyrimin; fluazaindolizine; 4-[5-(3,5-dichlorophenyl)-5-(trifluoromethyl)-4/7- isoxazol-3-yl]-2-methyl-/\/-(1-oxothietan-3-yl)benzamide; fluxametamide; 5-[3-[2,6-dichloro-4- (3,3-dichloroallyloxy)phenoxy]propoxy]-1/7-pyrazole; 4-cyano-/V-[2-cyano-5-[[2,6-dibromo- 4-[1 ,2,2,3,3,3-hexafluoro-1-(trifluoromethyl)propyl]phenyl]carbamoyl]phenyl]-2-methyl- benzamide; 4-cyano-3-[(4-cyano-2-methyl-benzoyl)amino]-/\/-[2,6-dichloro-4-[1 ,2,2,3,3,3-he- xafluoro-1-(trifluoromethyl)propyl]phenyl]-2-fluoro-benzamide; /\/-[5-[[2-chloro-6-cyano-
4-[1 ,2,2,3,3,3-hexafluoro-1-(trifluoromethyl)propyl]phenyl]carbamoyl]-2-cyano-phenyl]-4-cyano- 2-methyl-benzamide; /\/-[5-[[2-bromo-6-chloro-4-[2, 2, 2-trifluoro-1 -hydroxy-1 -(trifluoromethyl)- ethyl]phenyl]carbamoyl]-2-cyano-phenyl]-4-cyano-2-methyl-benzamide; /V-[5-[[2-bromo-6-chlo- ro-4-[1 ,2,2,3,3,3-hexafluoro-1-(trifluoromethyl)propyl]phenyl]carbamoyl]-2-cyano-phenyl]-
4-cyano-2-methyl-benzamide; 4-cyano-/V-[2-cyano-5-[[2,6-dichloro-4-[1 ,2,2,3,3,3-hexafluoro-
1-(trifluoromethyl)propyl]phenyl]carbamoyl]phenyl]-2-methyl-benzamide; 4-cyano-/V-[2-cyano-
5-[[2,6-dichloro-4-[1 ,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl]phenyl]carbamoyl]phenyl]-2-methyl- benzamide; /V-[5-[[2-bromo-6-chloro-4-[1 ,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl]phenyl]carba- moyl]-2-cyano-phenyl]-4-cyano-2-methyl-benzamide; 2-(1 ,3-dioxan-2-yl)-6-[2-(3-pyridinyl)-5-thi- azolyl]-pyridine; 2-[6-[2-(5-fluoro-3-pyridinyl)-5-thiazolyl]-2-pyridinyl]-pyrimidine; 2-[6-[2-(3-pyridi- nyl)-5-thiazolyl]-2-pyridinyl]-pyrimidine; /V-methylsulfonyl-6-[2-(3-pyridyl)thiazol-5-yl]pyridine-
2-carboxamide; /V-methylsulfonyl-6-[2-(3-pyridyl)thiazol-5-yl]pyridine-2-carboxamide; 1-[(6-chlo- ro-3-pyridinyl)methyl]-1 ,2,3,5,6,7-hexahydro-5-methoxy-7-methyl-8-nitro-imidazo[1 ,2-a]pyridine; 1-[(6-chloropyridin-3-yl)methyl]-7-methyl-8-nitro-1 ,2,3,5,6,7-hexahydroimidazo[1 ,2-a]pyridin-5-ol;
1-isopropyl-/V,5-dimethyl-/\/-pyridazin-4-yl-pyrazole-4-carboxamide; 1-(1 ,2-dimethylpropyl)- /\/-ethyl-5-methyl-/\/-pyridazin-4-yl-pyrazole-4-carboxamide; A/,5-dimethyl-/\/-pyridazin-4-yl-1 - (2,2,2-trifluoro-1-methyl-ethyl)pyrazole-4-carboxamide; 1-[1-(1-cyanocyclopropyl)ethyl]-/\/-ethyl- 5-methyl-/V-pyridazin-4-yl-pyrazole-4-carboxamide; /\/-ethyl-1-(2-fluoro-1-methyl-propyl)-
5-meth-yl-/V-pyridazin-4-yl-pyrazole-4-carboxamide; 1-(1 ,2-dimethylpropyl)-/V,5-dimethyl- /V-pyridazin-4-yl-pyrazole-4-carboxamide; 1-[1-(1-cyanocyclopropyl)ethyl]-/\/,5-dimethyl-/\/-pyri- dazin-4-yl-pyrazole-4-carboxamide; /V-methyl-1-(2-fluoro-1-methyl-propyl]-5-methyl-/\/-pyridazin- 4-yl-pyrazole-4-carboxamide; 1-(4,4-difluorocyclohexyl)-/V-ethyl-5-methyl-/\/-pyridazin-4-yl-pyr- azole-4-carboxamide; 1-(4,4-difluorocyclohexyl)-/V,5-dimethyl-/\/-pyridazin-4-yl-pyrazole-4-car- boxamide, /\/-(1 -methylethyl)-2-(3-pyridinyl)-2/7-indazole-4-carboxamide; /V-cyclopropyl-
2-(3-pyridinyl)-2/7-indazole-4-carboxamide; /V-cyclohexyl-2-(3-pyridinyl)-2/7-indazole-4-carbox- amide; 2-(3-pyridinyl)-/V-(2,2,2-trifluoroethyl)-2/7-indazole-4-carboxamide; 2-(3-pyridinyl)- /V-[(tetrahydro-2-furanyl)methyl]-2/7-indazole-5-carboxamide; methyl 2-[[2-(3-pyridinyl)-2/7- indazol-5-yl]carbonyl]hydrazinecarboxylate; /V-[(2,2-difluorocyclopropyl)methyl]-2-(3-pyridinyl)- 2/7-indazole-5-carboxamide; /V-(2,2-difluoropropyl)-2-(3-pyridinyl)-2/7-indazole-5-carboxamide; 2-(3-pyridinyl )-/V-(2-pyrimidinylmethyl )-2/7-indazole-5-carboxamide; /V-[(5-methyl-2-pyrazinyl)- methyl]-2-(3-pyridinyl)-2/7-indazole-5-carboxamide, tyclopyrazoflor; sarolaner, lotilaner, /V-[4-chloro-3-[[(phenylmethyl)amino]carbonyl]phenyl]-1-methyl-3-(1 , 1 ,2,2, 2-pentafluoroethyl)-
4-(trifluoromethyl)-1/7-pyrazole-5-carboxamide; 2-(3-ethylsulfonyl-2-pyridyl)-3-methyl-6- (trifluoromethyl)imidazo[4,5-b]pyridine, 2-[3-ethylsulfonyl-5-(trifluoromethyl)-2-pyridyl]-3-methyl-
6-(trifluoromethyl)imidazo[4,5-b]pyridine, isocycloseram, /\/-[4-chloro-3-
(cyclopropylcarbamoyl)phenyl]-2-methyl-5-(1 , 1 ,2,2, 2-pentafluoroethyl)-4-(trifluoromethyl)- pyrazole-3-carboxamide, /V-[4-chloro-3-[(1-cyanocyclopropyl)carbamoyl]phenyl]-2-methyl-
5-(1 ,1 ,2,2,2-pentafluoroethyl)-4-(trifluoromethyl)pyrazole-3-carboxamide; acynonapyr; benzpy- rimoxan; tigolaner; chloro-/V-(1-cyanocyclopropyl)-5-[1-[2-methyl-5-(1 ,1 ,2,2,2-pentafluoroethyl)- 4-(trifluoromethyl)pyrazol-3-yl]pyrazol-4-yl]benzamide, oxazosulfyl, [(2S,3R,4R,5S,6S)-3,5- dimethoxy-6-methyl-4-propoxy-tetrahydropyran-2-yl]-/\/-[4-[1-[4-(trifluoromethoxy)phenyl]- 1 ,2,4-triazol-3-yl]phenyl]carbamate, [(2S,3R,4R,5S,6S)-3,4,5-trimethoxy-6-methyl-tetrahydro- pyran-2-yl] N-[4-[1-[4-(trifluoromethoxy)phenyl]-1 ,2,4-triazol-3-yl]phenyl]carbamate, [(2S,3R,4R,5S,6S)-3,5-dimethoxy-6-methyl-4-propoxy-tetrahydropyran-2-yl]-/\/-[4-[1-[4-
(1 , 1 ,2,2,2-pentafluoroethoxy)phenyl]-1 ,2,4-triazol-3-yl]phenyl]carbamate, [(2S,3R,4R,5S,6S)- 3,4,5-trimethoxy-6-methyl-tetrahydropyran-2-yl]-/\/-[4-[1-[4-(1 ,1 ,2,2,2-pentafluoroethoxy)phenyl]- 1 ,2,4-triazol-3-yl]phenyl]carbamate, (2Z)-3-(2-isopropylphenyl)-2-[(E)-[4-[1-[4-(1 ,1 ,2,2,2- pentafluoroethoxy)phenyl]-1 ,2,4-triazol-3-yl]phenyl]methylenehydrazono]thiazolidin-4-one; 2-(6- chloro-3-ethylsulfonyl-imidazo[1 ,2-a]pyridin-2-yl)-3-methyl-6-(trifluoromethyl)imidazo- [4,5-b]pyridine, 2-(6-bromo-3-ethylsulfonyl-imidazo[1 ,2-a]pyridin-2-yl)-3-methyl-6-(trifluoro- methyl)imidazo[4,5-b]pyridine, 2-(3-ethylsulfonyl-6-iodo-imidazo[1 ,2-a]pyridin-2-yl)-3-methyl-6- (trifluoromethyl)imidazo[4,5-b]pyridine, 2-[3-ethylsulfonyl-6-(trifluoromethyl)imidazo- [1 ,2-a]pyridin-2-yl]-3-methyl-6-(trifluoromethyl)imidazo[4,5-b]pyridine, 2-(7-chloro-3-ethyl- sulfonyl-imidazo[1 ,2-a]pyridin-2-yl)-3-methyl-6-(trifluoromethyl)imidazo[4,5-b]pyridine, 2-(3-ethylsulfonyl-7-iodo-imidazo[1 ,2-a]pyridin-2-yl)-3-methyl-6-(trifluoromethyl)imidazo- [4,5-b]pyridine, 3-ethylsulfonyl-6-iodo-2-[3-methyl-6-(trifluoromethyl)imidazo[4,5-b]pyridin-2-yl]- imidazo[1 ,2-a]pyridine-8-carbonitrile, 2-[3-ethylsulfonyl-8-fluoro-6-(trifluoromethyl)imidazo[1 ,2- a]pyridin-2-yl]-3-methyl-6-(trifluoromethyl)imidazo[4,5-b]pyridine, 2-[3-ethylsulfonyl-7- (trifluoromethyl)imidazo[1 ,2-a]pyridin-2-yl]-3-methyl-6-(trifluoromethylsulfinyl)imidazo- [4,5-b]pyridine, 2-[3-ethylsulfonyl-7-(trifluoromethyl)imidazo[1 ,2-a]pyridin-2-yl]-3-methyl-6-(tri- fluoromethyl)imidazo[4,5-c]pyridine, 2-(6-bromo-3-ethylsulfonyl-imidazo[1 ,2-a]pyridin-2-yl)-6-(tri- fluoromethyl)pyrazolo[4,3-c]pyridine.
The active substances referred to as component III, their preparation and their activity e. g. against harmful fungi is known (cf.: http://www.alanwood.net/pesticides/); these substances are commercially available. The compounds described by IIIPAC nomenclature, their preparation and their pesticidal activity are also known (cf. Can. J. Plant Sci. 48(6), 587-94, 1968;
EP-A 141 317; EP-A 152 031 ; EP-A 226 917; EP-A 243 970; EP-A 256 503; EP-A 428 941 ;
EP-A 532 022; EP-A 1 028 125; EP-A 1 035 122; EP-A 1 201 648; EP-A 1 122 244, JP 2002316902; DE 19650197; DE 10021412; DE 102005009458; US 3,296,272;
US 3,325,503; WO 98/46608; WO 99/14187; WO 99/24413; WO 99/27783; WO 00/29404;
WO 00/46148; WO 00/65913; WO 01/54501 ; WO 01/56358; WO 02/22583; WO 02/40431 ;
WO 03/10149; WO 03/11853; WO 03/14103; WO 03/16286; WO 03/53145; WO 03/61388;
WO 03/66609; WO 03/74491 ; WO 04/49804; WO 04/83193; WO 05/120234; WO 05/123689;
WO 05/123690; WO 05/63721 ; WO 05/87772; WO 05/87773; WO 06/15866; WO 06/87325; WO 06/87343; WO 07/82098; WO 07/90624, WO 10/139271 , WO 11/028657, WO 12/168188, WO 07/006670, WO 11/77514; WO 13/047749, WO 10/069882, WO 13/047441 , WO 03/16303, WO 09/90181 , WO 13/007767, WO 13/010862, WO 13/127704, WO 13/024009, WO 13/24010, WO 13/047441 , WO 13/162072, WO 13/092224, WO 11/135833, CN 1907024, CN 1456054, CN 103387541 , CN 1309897, WO 12/84812, CN 1907024, WO 09094442, WO 14/60177, WO 13/116251 , WO 08/013622, WO 15/65922, WO 94/01546, EP 2865265, WO 07/129454, WO 12/165511 , WO 11/081174, WO 13/47441 , WO 16/156241 , WO 16/162265). Some compounds are identified by their CAS Registry Number which is separated by hyphens into three parts, the first consisting from two up to seven digits, the second consisting of two digits, and the third consisting of a single digit.
According to the invention, the solid material (dry matter) of the biopesticides (with the exception of oils such as Neem oil) are considered as active components (e. g. to be obtained after drying or evaporation of the extraction or suspension medium in case of liquid formulations of the microbial pesticides). The weight ratios and percentages used for a biological extract such as Quillay extract are based on the total weight of the dry content (solid material) of the respective extract(s).
The total weight ratios of compositions comprising at least one microbial pesticide in the form of viable microbial cells including dormant forms, can be determined using the amount of CFU of the respective microorganism to calculate the total weight of the respective active component with the following equation that 1 x 1010 CFU equals one gram of total weight of the respective active component. Colony forming unit is measure of viable microbial cells. In addition, CFU may also be understood as the number of (juvenile) individual nematodes in case of nematode biopesticides, such as Steinernema feltiae.
In the ternary mixtures, i.e. compositions comprising the component I) and component II) and component III), the weight ratio of component I) and component II) depends from the properties of the active substances used, usually it is in the range of from 1 :100 to 100:1 , regularly from 1 :50 to 50: 1 , preferably from 1 :20 to 20: 1 , more preferably from 1 : 10 to 10:1 and in particular from 1 :4 to 4:1 , and the weight ratio of component 1) and component 3) usually it is in the range of from 1 : 100 to 100: 1 , regularly from 1 :50 to 50: 1 , preferably from 1 :20 to 20: 1 , more preferably from 1 : 10 to 10:1 and in particular from 1 :4 to 4: 1. Any further active components are, if desired, added in a ratio of from 20:1 to 1 :20 to the component II). These ratios are also suitable for mixtures applied by seed treatment.
When mixtures comprising microbial pesticides are employed in crop protection, the application rates range from 1 x 106 to 5 x 1016 (or more) CFU/ha, preferably from 1 x 108 to 1 x 1013 CFU/ha, and even more preferably from 1 x 109 to 5 x 1015 CFU/ha and in particular from 1 x 1012 to 5 x 1014 CFU/ha. In the case of nematodes as microbial pesticides (e. g. Steinernema feltiae), the application rates regularly range from 1 x 105 to 1 x 1012 (or more), preferably from 1 x 108 to 1 x 1011, more preferably from 5 x 108 to 1 x 101° individuals (e. g. in the form of eggs, juvenile or any other live stages, preferably in an infective juvenile stage) per ha.
When mixtures comprising microbial pesticides are employed in seed treatment, the application rates generally range from 1 x 106 to 1 x 1012 (or more) CFU/seed, preferably from 1 x 106 to 1 x 109 CFU/seed. Furthermore, the application rates with respect to seed treatment generally range from 1 x 107 to 1 x 1014 (or more) CFU per 100 kg of seed, preferably from 1 x 109 to 1 x 1012 CFU per 100 kg of seed.
The biopesticides from group L1) and/or L2) may also have insecticidal, acaricidal, mollus- cidal, pheromone, nematicidal, plant stress reducing, plant growth regulator, plant growth promoting and/or yield enhancing activity. The biopesticides from group L3) and/or L4) may also have fungicidal, bactericidal, viricidal, plant defense activator, plant stress reducing, plant growth regulator, plant growth promoting and/or yield enhancing activity. The biopesticides from group L5) may also have fungicidal, bactericidal, viricidal, plant defense activator, insecticidal, acaricidal, molluscidal, pheromone and/or nematicidal activity.
The microbial pesticides, in particular those from groups L1), L3) and L5), embrace not only the isolated, pure cultures of the respective microorganism as defined herein, but also its cell- free extract, its suspension in a whole broth culture and a metabolite-containing culture medium or a purified metabolite obtained from a whole broth culture of the microorganism. Many of these biopesticides have been deposited under deposition numbers mentioned herein (the prefices such as ATCC or DSM refer to the acronym of the respective culture collection, for details see e. g. here: http://www. wfcc.info/ccinfo/collection/by acronym/), are referred to in literature, registered and/or are commercially available: mixtures of Aureobasidium pullu- lans DSM 14940 and DSM 14941 isolated in 1989 in Konstanz, Germany (e. g. blastospores in Blossom Protect® from bio-ferm GmbH, Austria), Azospirillum brasilense Sp245 originally isolated in wheat reagion of South Brazil (Passo Fundo) at least prior to 1980 (BR 11005; e. g. GELFIX® Gramineas from BASF Agricultural Specialties Ltd., Brazil), A. brasilense strains Ab-V5 and Ab-V6 (e. g. in AzoMax from Novozymes BioAg Produtos papra Agricultura Ltda., Quattro Barras, Brazil or Simbiose-Maiz® from Simbiose-Agro, Brazil; Plant Soil 331 , 413-425, 2010), Bacillus amyloliquefaciens strain AP-188 (NRRL B-50615 and B-50331 ; US 8,445,255); B. amy- loliquefaciens ssp. plantarum strains formerly also sometimes referred to as B. subtilis, recently together with B. methylotrophicus, and B. velezensis classified as B. velezensis (I nt. J. Syst. Evol. Microbiol. 66, 1212-1217, 2016): B. a. ssp. plantarum or B. velezensis D747 isolated from air in Kikugawa-shi, Japan (US 20130236522 A1 ; FERM BP-8234; e. g. Double Nickel™ 55 WDG from Certis LLC, USA), B. a. ssp. plantarum or B. velezensis FZB24 isolated from soil in Brandenburg, Germany (also called SB3615; DSM 96-2; J. Plant Dis. Prot. 105, 181-197, 1998; e. g. Taegro® from Novozyme Biologicals, Inc., USA), B. a. ssp. plantarum or B. velezensis FZB42 isolated from soil in Brandenburg, Germany (DSM 23117; J. Plant Dis. Prot. 105, 181— 197, 1998; e. g. RhizoVital® 42 from AbiTEP GmbH, Germany), B. a. ssp. plantarum or B. velezensis MBI600 isolated from faba bean in Sutton Bonington, Nottinghamshire, U.K. at least before 1988 (also called 1430; NRRL B-50595; US 2012/0149571 A1; e. g. Integral® from BASF Corp., USA), B. a. ssp. plantarum or B. velezensis QST-713 isolated from peach orchard in 1995 in California, U.S.A. (NRRL B-21661; e. g. Serenade® MAX from Bayer Crop Science LP, USA), B. a. ssp. plantarum or B. velezensis TJ 1000 isolated in 1992 in South Dakoda, U.S.A, (also called 1 BE; ATCC BAA-390; CA 2471555 A1 ; e. g. QuickRoots™ from TJ Technologies, Watertown, SD, USA); B. firmus CNCM 1-1582, a variant of parental strain EIP-N1 (CNCM I- 1556) isolated from soil of central plain area of Israel (WO 2009/126473, US 6,406,690; e. g. Votivo® from Bayer CropScience LP, USA), B. pumilus GHA 180 isolated from apple tree rhizosphere in Mexico (IDAC 260707-01; e. g. PRO-MIX® BX from Premier Horticulture, Quebec, Canada), B. pumilus INR-7 otherwise referred to as BU-F22 and BU-F33 isolated at least before 1993 from cucumber infested by Erwinia tracheiphila (NRRL B-50185, NRRL B-50153; US 8,445,255), B. pumilus KFP9F isolated from the rhizosphere of grasses in South Africa at least before 2008 (NRRL B-50754; WO 2014/029697; e. g. BAC-UP or FUSION-P from BASF Agricultural Specialities (Pty) Ltd., South Africa), B. pumilus QST 2808 was isolated from soil collected in Pohnpei, Federated States of Micronesia, in 1998 (NRRL B-30087; e. g. Sonata® or Ballad® Plus from Bayer Crop Science LP, USA), B. simplex ABU 288 (NRRL B-50304; US 8,445,255), B. subtilis FB17 also called UD 1022 or UD10-22 isolated from red beet roots in North America (ATCC PTA-11857; System. Appl. Microbiol. 27, 372-379, 2004; US 2010/0260735; WO 2011/109395); B. thuringiensis ssp. aizawai ABTS-1857 isolated from soil taken from a lawn in Ephraim, Wisconsin, U.S.A., in 1987 (also called ABG-6346; ATCC SD- 1372; e. g. XenTari® from BioFa AG, Munsingen, Germany), B. t. ssp. kurstaki ABTS-351 identical to HD-1 isolated in 1967 from diseased Pink Bollworm black larvae in Brownsville, Texas, U.S.A. (ATCC SD-1275; e. g. Dipel® DF from Valent BioSciences, IL, USA), B. t. ssp. kurstaki SB4 isolated from E. saccharina larval cadavers (NRRL B-50753; e. g. Beta Pro® from BASF Agricultural Specialities (Pty) Ltd., South Africa), B. t. ssp. tenebrionis NB-176-1 , a mutant of strain NB-125, a wild type strain isolated in 1982 from a dead pupa of the beetle Tenebrio molitor (DSM 5480; EP 585215 B1; e. g. Novodor® from Valent BioSciences, Switzerland), Beauveria bassiana GHA (ATCC 74250; e. g. BotaniGard® 22WGP from Laverlam Int. Corp., USA), B. bassiana JW-1 (ATCC 74040; e. g. Naturalis® from CBC (Europe) S.r.l., Italy), B. bassiana PPRI 5339 isolated from the larva of the tortoise beetle Conchyloctenia punctata (NRRL 50757; e. g. BroadBand® from BASF Agricultural Specialities (Pty) Ltd., South Africa), Brady- rhizobium elkanii strains SEMIA 5019 (also called 29W) isolated in Rio de Janeiro, Brazil and SEMIA 587 isolated in 1967 in the State of Rio Grande do Sul, from an area previously inoculated with a North American isolate, and used in commercial inoculants since 1968 (Appl. Environ. Microbiol. 73(8), 2635, 2007; e. g. GELFIX 5 from BASF Agricultural Specialties Ltd., Brazil), B. japonicum 532c isolated from Wisconsin field in U.S.A. (Nitragin 61A152; Can. J. Plant. Sci. 70, 661-666, 1990; e. g. in Rhizoflo®, Histick®, Hicoat® Super from BASF Agricultural Specialties Ltd., Canada), B. japonicum E-109 variant of strain USDA 138 (INTA E109, SEMIA 5085; Eur. J. Soil Biol. 45, 28-35, 2009; Biol. Fertil. Soils 47, 81-89, 2011); B. japonicum strains deposited at SEMIA known from Appl. Environ. Microbiol. 73(8), 2635, 2007: SEMIA 5079 isolated from soil in Cerrados region, Brazil by Embrapa-Cerrados used in commercial inoculants since 1992 (CPAC 15; e. g. GELFIX 5 or ADHERE 60 from BASF Agricultural Specialties Ltd., Brazil), B. japonicum SEMIA 5080 obtained under lab condtions by Embrapa- Cerrados in Brazil and used in commercial inoculants since 1992, being a natural variant of SEMIA 586 (CB1809) originally isolated in U.S.A. (CPAC 7; e. g. GELFIX 5 or ADHERE 60 from BASF Agricultural Specialties Ltd., Brazil); Burkholderia sp. A396 isolated from soil in Nikko, Japan, in 2008 (NRRL B-50319; WO 2013/032693; Marrone Bio Innovations, Inc., USA), Coni- othyrium minitans CON/M/91-08 isolated from oilseed rape (WO 1996/021358; DSM 9660; e. g. Contans® WG, Intercept® WG from Bayer CropScience AG, Germany), harpin (alpha-beta) protein (Science 257, 85-88, 1992; e. g. Messenger™ or HARP-N-Tek from Plant Health Care pic, U.K.), Helicoverpa armigera nucleopolyhedrovirus (HearNPV) (J. Invertebrate Pathol. 107, 112-126, 2011; e. g. Helicovex® from Adermatt Biocontrol, Switzerland; Diplomata® from Kop- pert, Brazil; Vivus® Max from AgBiTech Pty Ltd., Queensland, Australia), Helicoverpa zea single capsid nucleopolyhedrovirus (HzSNPV) (e. g. Gemstar® from Certis LLC, USA), Helicoverpa zea nucleopolyhedrovirus ABA-NPV-U (e. g. Heligen® from AgBiTech Pty Ltd., Queensland, Australia), Heterorhabditis bacteriophora (e. g. Nemasys® G from BASF Agricultural Specialities Limited, UK), Isaria fumosorosea Apopka-97 isolated from mealy bug on gynura in Apopka, Florida, U.S.A. (ATCC 20874; Biocontrol Science Technol. 22(7), 747-761 , 2012; e. g. PFR- 97™ or PreFeRal® from Certis LLC, USA), Metarhizium anisopliae var. anisopliae F52 also called 275 or V275 isolated from codling moth in Austria (DSM 3884, ATCC 90448; e. g. Met52® Novozymes Biologicals BioAg Group, Canada), Metschnikowia fructicola 277 isolated from grapes in the central part of Israel (US 6,994,849; NRRL Y-30752; e. g. formerly Shemer® from Agrogreen, Israel), Paecilomyces ilacinus 251 isolated from infected nematode eggs in the Philippines (AGAL 89/030550; WO1991/02051; Crop Protection 27, 352-361 , 2008; e. g. Bio- Act®from Bayer CropScience AG, Germany and MeloCon® from Certis, USA), Paenibacillus alvei NAS6G6 isolated from the rhizosphere of grasses in South Africa at least before 2008 (WO 2014/029697; NRRL B-50755; e.g. BAC-UP from BASF Agricultural Specialities (Pty) Ltd., South Africa), Paenibacillus strains isolated from soil samples from a variety of European locations including Germany: P. epiphyticus Lu17015 (WO 2016/020371; DSM 26971), P. polymyxa ssp. plantarum Lu16774 (WO 2016/020371; DSM 26969), P. p. ssp. plantarum strain Lu17007 (WO 2016/020371; DSM 26970); Pasteuria nishizawae Pn1 isolated from a soybean field in the mid-2000s in Illinois, U.S.A. (ATCC SD-5833; Federal Register 76(22), 5808, February 2, 2011; e.g. Clariva™ PN from Syngenta Crop Protection, LLC, USA), Penicillium bilaiae (also called P. bilaii) strains ATCC 18309 (= ATCC 74319), ATCC 20851 and/or ATCC 22348 (= ATCC 74318) originally isolated from soil in Alberta, Canada (Fertilizer Res. 39, 97-103, 1994; Can. J. Plant Sci. 78(1), 91-102, 1998; US 5,026,417, WO 1995/017806; e. g. Jump Start®, Provide® from Novozymes Biologicals BioAg Group, Canada), Reynoutria sachalinensis extract (EP 0307510 B1; e. g. Regalia® SC from Marrone BioInnovations, Davis, CA, USA or Milsana® from BioFa AG, Germany), Steinernema carpocapsae (e. g. Millenium® from BASF Agricultural Specialities Limited, UK), S. feltiae (e. g. Nemashield® from BioWorks, Inc., USA; Nemasys® from BASF Agricultural Specialities Limited, UK), Streptomyces microflavus NRRL B-50550
(WO 2014/124369; Bayer CropScience, Germany), Trichoderma asperelloides JM41 R isolated in South Africa (NRRL 50759; also referred to as T. fertile’, e. g. Trichoplus® from BASF Agricultural Specialities (Pty) Ltd., South Africa), T. harzianum T-22 also called KRL-AG2 (ATCC 20847; BioControl 57, 687-696, 2012; e. g. Plantshield® from BioWorks Inc., USA or SabrEx™ from Advanced Biological Marketing Inc., Van Wert, OH, USA).
The compositions of the present invention are suitable as fungicides effective against a broad spectrum of phytopathogenic fungi, including soil-borne fungi, in particular from the classes of Plasmodiophoromycetes, Peronosporomycetes (syn. Oomycetes), Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes, and Deuteromycetes (syn. Fungi imperfecti). They can be used in crop protection as foliar fungicides, fungicides for seed dressing, and soil fungicides.
The compositions of the present invention are preferably useful in the control of phytopathogenic fungi on various cultivated plants, such as cereals, e. g. wheat, rye, barley, triticale, oats, or rice; beet, e. g. sugar beet or fodder beet; fruits, e. g. pomes (apples, pears, etc.), stone fruits (e.g. plums, peaches, almonds, cherries), or soft fruits, also called berries (strawberries, raspberries, blackberries, gooseberries, etc.); leguminous plants, e. g. lentils, peas, alfalfa, or soybeans; oil plants, e. g. oilseed rape, mustard, olives, sunflowers, coconut, cocoa beans, castor oil plants, oil palms, ground nuts, or soybeans; cucurbits, e. g. squashes, cucumber, or melons; fiber plants, e. g. cotton, flax, hemp, or jute; citrus fruits, e. g. oranges, lemons, grapefruits, or mandarins; vegetables, e. g. spinach, lettuce, asparagus, cabbages, carrots, onions, tomatoes, potatoes, cucurbits, or paprika; lauraceous plants, e. g. avocados, cinnamon, or camphor; energy and raw material plants, e. g. corn, field corn, soybean, oilseed rape, sugar cane, or oil palm; corn; tobacco; nuts; coffee; tea; bananas; vines (table grapes and grape juice grape vines); hop; turf; sweet leaf (also called Stevia); natural rubber plants; or ornamental and forestry plants, e. g. flowers, shrubs, broad-leaved trees, or evergreens (conifers, eucalypts, etc.); on the plant propagation material, such as seeds; and on the crop material of these plants.
Most preferably, compositions of the present invention are used for controlling fungi on soybeans (including determinated and indeterminated soybeans).
The term "cultivated plants" is to be understood as including plants which have been modified by mutagenesis or genetic engineering to provide a new trait to a plant or to modify an already present trait. Mutagenesis includes random mutagenesis using X-rays or mutagenic chemicals, but also targeted mutagenesis to create mutations at a specific locus of a plant genome. Targeted mutagenesis frequently uses oligonucleotides or proteins like CRISPR/Cas, zinc-finger nucleases, TALENs or meganucleases. Genetic engineering usually uses recombinant DNA techniques to create modifications in a plant genome which under natural circumstances cannot readily be obtained by cross breeding, mutagenesis or natural recombination. Typically, one or more genes are integrated into the genome of a plant to add a trait or improve or modify a trait. These integrated genes are also referred to as transgenes, while plant com- prising such transgenes are referred to as transgenic plants. The process of plant transformation usually produces several transformation events, wich differ in the genomic locus in which a transgene has been integrated. Plants comprising a specific transgene on a specific genomic locus are usually described as comprising a specific “event”, which is referred to by a specific event name. Traits which have been introduced in plants or have been modified include herbicide tolerance, insect resistance, increased yield and tolerance to abiotic conditions, like drought. Herbicide tolerance has been created by using mutagenesis and genetic engineering. Plants which have been rendered tolerant to acetolactate synthase (ALS) inhibitor herbicides by mutagenesis and breeding are e.g. available under the name Clearfield®. Herbicide tolerance to glyphosate, glufosinate, 2,4-D, dicamba, oxynil herbicides, like bromoxynil and ioxynil, sulfonylurea herbicides, ALS inhibitors and 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitors, like isoxaflutole and mesotrione, has been created via the use of transgenes.
Transgenes to provide herbicide tolerance traits comprise: for tolerance to glyphosate: cp4 epsps, epsps grg23ace5, mepsps, 2mepsps, gat4601, gat4621, goxv247; for tolerance to glufosinate: pat and bar, for tolerance to 2,4-D: aad-1 , aad-12; for tolerance to dicamba: dmo; for tolerance to oxynil herbicies: bxn; for tolerance to sulfonylurea herbicides: zm-hra, csr1-2, gm-hra, S4-HrA; for tolerance to ALS inhibitors: csr1-2; and for tolerance to HPPD inhibitors: hppdPF, W336, avhppd-03.
Transgenic corn events comprising herbicide tolerance genes include, but are not limited to, DAS40278, MON801 , MON802, MON809, MON810, MON832, MON87411, MON87419, MON87427, MON88017, MON89034, NK603, GA21, MZHG0JG, HCEM485, VCO-01981-5, 676, 678, 680, 33121 , 4114, 59122, 98140, Bt10, Bt176, CBH-351, DBT418, DLL25, MS3, MS6, MZIR098, T25, TC1507 and TC6275. Transgenic soybean events comprising herbicide tolerance genes include, but are not limited to, GTS 40-3-2, MON87705, MON87708, MON87712, MON87769, MON89788, A2704-12, A2704-21, A5547-127, A5547-35, DP356043, DAS44406-6, DAS68416-4, DAS-81419-2, GU262, SYHT0H2, W62, W98, FG72 and CV127. Transgenic cotton events comprising herbicide tolerance genes include, but are not limited to, 19-51a, 31707, 42317, 81910, 281-24-236, 3006-210-23, BXN10211, BXN10215, BXN10222, BXN10224, MON1445, MON1698, MON88701 , MON88913, GHB119, GHB614, LLCotton25, T303-3 and T304-40. Transgenic canola events comprising herbicide tolerance genes are for example, but not excluding others, MON88302, HCR-1, HCN10, HCN28, HCN92, MS1 , MS8, PHY14, PHY23, PHY35, PHY36, RF1 , RF2 and RF3.
Transgenes to provide insect resistance preferably are toxin genes of Bacillus spp. and synthetic variants thereof, like cry1A, crylAb, cry1Ab-Ac, crylAc, cry1A.1O5, cry1 F, cry1 Fa2, cry2Ab2, cry2Ae, mcry3A, ecry3.1Ab, cry3Bb1, cry34Ab1, cry35Ab1, cry9C, vip3A(a), vip3Aa20. In addition, transgenes of plant origin, such as genes coding for protease inhibitors, like CpTI and pinll, can be used. A further approach uses transgenes such as dvsnf7 to produce double-stranded RNA in plants.
Transgenic corn events comprising genes for insecticidal proteins or double stranded RNA include, but are not limited to, Bt10, Bt11, Bt176, MON801, MON802, MON809, MON810, MON863, MON87411, MON88017, MON89034, 33121 , 4114, 5307, 59122, TC1507, TC6275, CBH-351 , MIR162, DBT418 and MZIR098. Transgenic soybean events comprising genes for insecticidal proteins include, but are not limited to, MON87701 , MON87751 and DAS-81419. Transgenic cotton events comprising genes for insecticidal proteins include, but are not limited to, SGK321 , MON531 , MON757, MON1076, MON15985, 31707, 31803, 31807, 31808, 42317, BNLA-601, Event!, COT67B, COT102, T303-3, T304-40, GFM Cry1A, GK12, MLS 9124, 281- 24-236, 3006-210-23, GHB119 and SGK321. Cultivated plants with increased yield have been created by using the transgene athb17 (e.g. corn event MON87403), or bbx32 (e.g. soybean event MON87712).
Cultivated plants comprising a modified oil content have been created by using the transgenes: gm-fad2-1 , Pj.D6D, Nc.Fad3, fad2-1A and fatb1-A (e.g. soybean events 260-05, MON87705 and MON87769).
Tolerance to abiotic conditions, such as drought, has been created by using the transgene cspB (corn event MON87460) and Hahb-4 (soybean event IND-00410-5).
Traits are frequently combined by combining genes in a transformation event or by combining different events during the breeding process resulting in a cultivated plant with stacked traits. Preferred combinations of traits are combinations of herbicide tolerance traits to different groups of herbicides, combinations of insect tolerance to different kind of insects, in particular tolerance to lepidopteran and coleopteran insects, combinations of herbicide tolerance with one or several types of insect resistance, combinations of herbicide tolerance with increased yield as well as combinations of herbicide tolerance and tolerance to abiotic conditions.
Plants comprising singular or stacked traits as well as the genes and events providing these traits are well known in the art. For example, detailed information as to the mutagenized or integrated genes and the respective events are available from websites of the organizations “International Service for the Acquisition of Agri-biotech Applications (ISAAA)” (http://www.isaaa.org/gmapprovaldatabase) and the “Center for Environmental Risk Assessment (CERA)” (http://cera-gmc.org/GMCropDatabase). Further information on specific events and methods to detect them can be found for canola events MS1, MS8, RF3, GT73, MON88302, KK179 in WG01/031042, WG01/041558, WG01/041558, WG02/036831, WO1 1/153186, WO13/003558; for cotton events MON 1445, MON 15985, MON531 (MON 15985), LLCotton25, MON88913, COT102, 281-24-236, 3006-210-23, COT67B, GHB614, T304-40, GHB119, MON88701 , 81910 in WO02/034946, W002/100163, W002/100163, W003/013224, WO04/072235, WO04/039986, WO05/103266, WO05/103266, WO06/128573, W007/017186, W008/122406, W008/151780, WO12/134808, WO13/112527; for corn events GA21 , MON810, DLL25, TC1507, MON863, MIR604, LY038, MON88017, 3272, 59122, NK603, MIR162, MON89034, 98140, 32138, MON87460, 5307, 4114, MON87427, DAS40278, MON87411, 33121, MON87403, MON87419 in W098/044140, US02/102582, US03/126634, WO04/099447, WO04/011601 , W005/103301 , W005/061720, W005/059103, WO06/098952, WO06/039376, US2007/292854, W007/142840, W007/140256, WO08/112019, WO09/103049, WO09/111263, WO10/077816, W011/084621 , W011/062904, WO11/022469, WO13/169923, WO14/116854, WO15/053998, WO15/142571; for potato events E12, F10, J3, J55, V11, X17, Y9 in WO14/178910, WO14/178913, WO14/178941 , WO1 4/179276, WO16/183445, WO17/062831, WO17/062825; for rice events LLRICE06, LLRICE601 , LLRICE62 in WO00/026345, WO00/026356, WO00/026345; and for soybean events H7-1, MON89788, A2704-12, A5547-127, DP305423, DP356043, MON87701, MON87769, CV127, MON87705, DAS68416-4, MON87708, MON87712, SYHT0H2, DAS81419, DAS81419 X DAS44406-6, MON87751 in WO04/074492, W006/130436, WO06/108674, WO06/108675, WO08/054747, W008/002872, WO09/064652, WO09/102873, W010/080829, W010/037016, WO11/066384, WO11/034704, WO12/051199, WO12/082548, WO13/016527, WO13/016516, WO14/201235.
The use of compositions of the present invention on cultivated plants may result in effects which are specific to a cultivated plant comprising a certain transgene or event. These effects might involve changes in growth behavior or changed resistance to biotic or abiotic stress factors. Such effects may in particular comprise enhanced yield, enhanced resistance or tolerance to insects, nematodes, fungal, bacterial, mycoplasma, viral or viroid pathogens as well as early vigour, early or delayed ripening, cold or heat tolerance as well as changed amino acid or fatty acid spectrum or content.
The compositions of the present invention are particularly suitable for controlling the following causal agents of plant diseases:
Albugo spp. (white rust) on ornamentals, vegetables (e. g. A. Candida) and sunflowers (e. g. A. tragopogonis) Alternaria spp. (Alternaria leaf spot) on vegetables (e.g. A. dauci or A. porri), oilseed rape (A. brassicicola or brassicae), sugar beets (A. tenuis), fruits (e.g. A. grandis), rice, soybeans, potatoes and tomatoes (e. g. A. solani, A. grandis or A. alternata), tomatoes (e. g. A. solani or A. alternata) and wheat (e.g. A. triticina)', Aphanomyces spp. on sugar beets and vegetables; Ascochyta spp. on cereals and vegetables, e. g. A. tritici (anthracnose) on wheat and A. hordei on barley; Aureobasidium zeae (syn. Kapatiella zeae) on corn; Bipolaris and Drechslera spp. (teleomorph: Cochliobolus spp.), e. g. Southern leaf blight (D. maydis), Northern leaf blight B. turcicum, Setosphaeria turcica) or Northern leaf spot (8. zeicola) on corn, e. g. spot blotch (B. sorokiniana) on cereals and e. g. 8. oryzae on rice and turfs; Blumeria (formerly Erysiphe) graminis (powdery mildew) on cereals (e. g. on wheat or barley); Botrytis cinerea (teleomorph: Botryotinia fuckeliana'. grey mold) on fruits and berries (e. g. strawberries), vegetables (e. g. lettuce, carrots, celery and cabbages); 8. squamosa or 8. allii on onion family), oilseed rape, ornamentals (e.g. B eliptica), vines, forestry plants and wheat; Bremia lactucae (downy mildew) on lettuce; Ceratocystis (syn. Ophiostoma) spp. (rot or wilt) on broad-leaved trees and evergreens, e. g. C. ulmi (Dutch elm disease) on elms; Cercospora spp. (Cercospora leaf spots) on corn (e. g. Gray leaf spot: C. zeae-maydis), rice, sugar beets (e. g. C. beticola), sugar cane, vegetables, coffee, soybeans (e. g. C. sojina or C. kikuchii) and rice; Cladobotryum (syn. Dactyl- ium) spp. (e.g. C. mycophilum
(formerly Dactylium dendroides, teleomorph: Nectria albertinii, Nectria rosella syn. Hypomyces rosellus) on mushrooms; Cladosporium spp. on tomatoes (e. g. C. fulvunr. leaf mold) and cereals, e. g. C. herbarum (black ear) on wheat; Claviceps purpurea (ergot) on cereals; Cochliobolus (anamorph: Helminthosporium of Bipolaris) spp. (leaf spots or leaf blights) on corn (C. carbonum, C. heterostrphus), cereals (e. g. C. sativus, anamorph: B. sorokiniana) and rice (e. g. C. miyabeanus, anamorph: H. oryzae)’, Colletotrichum (teleomorph: Glomerella) spp. (anthracnose) on cotton (e. g. C. gossypii), corn (e. g. C. graminicola: Anthracnose stalk rot), soft fruits, potatoes (e. g. C. coccodes'. black dot), beans (e. g. C. lindemuthianum), soybeans (e. g. C. truncatum or C. gloeosporioides), vegetables (e.g. C. lagenarium or C. capsici), fruits (e.g. C. acutatum), coffee (e.g. C. coffeanum or C. kahawae) and C. gloeosporioides on various crops; Corticium spp., e. g. C. sasakii (sheath blight) on rice; Corynespora cassiicola (leaf spots) on soybeans, cotton and ornamentals; Cycloconium spp., e. g. C. oleaginum on olive trees; Cylin- drocarpon spp. (e. g. fruit tree canker or young vine decline, teleomorph: Nectria or Neonectria spp.) on fruit trees, vines (e. g. C. liriodendri, teleomorph: Neonectria liriodendrr. Black Foot Disease) and ornamentals; Dematophora (teleomorph: Rosellinia) necatrix (root and stem rot) on soybeans; Diaporthe spp., e. g. D. phaseolorum (damping off) on soybeans; Drechslera (syn. Helminthosporium, teleomorph: Pyrenophora) spp. on corn, cereals, such as barley (e. g. D. teres, net blotch) and wheat (e. g. D. tritici-repentis'. tan spot), rice and turf; Esca (dieback, apoplexy) on vines, caused by Formitiporia (syn. Phellinus) punctata, F. mediterranea, Phaeo- moniella chlamydospora (formerly Phaeoacremonium chlamydosporum), Phaeoacremonium aleophilum and/or Botryosphaeria obtusa Elsinoe spp. on pome fruits (E. pyri), soft fruits (E. veneta’. anthracnose) and vines (E. ampelina: anthracnose); Entyloma oryzae (leaf smut) on rice; Epicoccum spp. (black mold) on wheat; Erysiphe spp. (powdery mildew) on sugar beets (E. betae), vegetables (e. g. E. pisi), such as cucurbits (e. g. E. cichoracearum), cabbages, oilseed rape (e. g. E. cruciferarumy Eutypa lata (Eutypa canker or dieback, anamorph: Cytosporina lata, syn. Libertella blepharis) on fruit trees, vines and ornamental woods; Exserohilum (syn. Helminthosporium) spp. on corn (e. g. E. turcicum Fusarium (teleomorph: Gibberella) spp.
(wilt, root or stem rot) on various plants, such as F. graminearum or F. culmorum (root rot, scab or head blight) on cereals (e. g. wheat or barley), F. oxysporum on tomatoes, F. solani (f. sp. glycines now syn. F. virguliforme) and F. tucumaniae and F. brasiliense each causing sudden death syndrome on soybeans, and F. verticillioides on corn; Gaeumannomyces graminis (take- all) on cereals (e. g. wheat or barley) and corn; Gibberella spp. on cereals (e. g. G. zeae) and rice (e. g. G. fujikuror. Bakanae disease); Glomerella cingulata on vines, pome fruits and other plants and G. gossypii on cotton; Grainstaining complex on rice; Guignardia bidwellii (black rot) on vines; Gymnosporangium spp. on rosaceous plants and junipers, e. g. G. sabinae (rust) on pears; Helminthosporium spp. (syn. Drechslera, teleomorph: Cochliobolus) on corn, cereals, potatoes and rice; Hemileia spp., e. g. H. vastatrix (coffee leaf rust) on coffee; Isariopsis clav- ispora (syn. Cladosporium vitis) on vines; Macrophomina phaseolina (syn. phaseoli) (root and stem rot) on soybeans and cotton; Microdochium (syn. Fusarium) nivale (pink snow mold) on cereals (e. g. wheat or barley); Microsphaera diffusa (powdery mildew) on soybeans; Monilinia spp., e. g. M. laxa, M. fructicola and M. fructigena (syn. Monilia spp.: bloom and twig blight, brown rot) on stone fruits and other rosaceous plants; Mycosphaerella spp. on cereals, bananas, soft fruits and ground nuts, such as e. g. M. graminicola (anamorph: Zymoseptoria tritici formerly Septoria triticr. Septoria blotch) on wheat or M. fijiensis (syn. Pseudocercospora fi- jiensis’. black Sigatoka disease) and M. musicola on bananas, M. arachidicola (syn. M. arachidis or Cercospora arachidis), M. berkeleyi on peanuts, M. pisi on peas and M. brassiciola on brassicas; Peronospora spp. (downy mildew) on cabbage (e. g. P. brassicae), oilseed rape (e. g. P. parasitica), onions (e. g. P. destructor), tobacco (P. tabacina) and soybeans (e. g. P. manshuri- ca); Phakopsora pachyrhizi and P. meibomiae (soybean rust) on soybeans; Phialophora spp. e. g. on vines (e. g. P. tracheiphila and P. tetraspora) and soybeans (e. g. P. gregata'. stem rot); Phoma lingam (syn. Leptosphaeria biglobosa and L. maculans'. root and stem rot) on oilseed rape and cabbage, P. betae (root rot, leaf spot and damping-off) on sugar beets and P. zeae- maydis (syn. Phyllostica zeae) on corn; Phomopsis spp. on sunflowers, vines (e. g. P. viticola'. can and leaf spot) and soybeans (e. g. stem rot: P. phaseoli, teleomorph: Diaporthe phaseolo- rumy Physoderma maydis (brown spots) on corn; Physopella zeae (tropical rust) on corn, Phy- tophthora spp. (wilt, root, leaf, fruit and stem root) on various plants, such as paprika and cucurbits (e. g. P. capsici), soybeans (e. g. P. megasperma, syn. P. sojae), potatoes and tomatoes (e. g. P. infestans'. late blight) and broad-leaved trees (e. g. P. ramorunr. sudden oak death); Plasmodiophora brassicae (club root) on cabbage, oilseed rape, radish and other plants; Plas- mopara spp., e. g. P. viticola (grapevine downy mildew) on vines and P. halstedii on sunflowers; Podosphaera spp. (powdery mildew) on rosaceous plants, hop, pome and soft fruits (e. g. P. leucotricha on apples) and curcurbits (P. xanthii Polymyxa spp., e. g. on cereals, such as barley and wheat (P. graminis) and sugar beets (P. betae) and thereby transmitted viral diseases; Pseudocercosporella herpotrichoides (syn. Oculimacula yallundae, O. acuformis'. eyespot, teleomorph: Tapesia yallundae) on cereals, e. g. wheat or barley; Pseudoperonospora (downy mildew) on various plants, e. g. P. cubensis on cucurbits or P. humili on hop; Pseudopezicula tracheiphila (red fire disease or .rotbrenner’, anamorph: Phialophora) on vines; Puccinia spp.
(rusts) on various plants, e. g. P. triticina (brown or leaf rust), P. striiformis (stripe or yellow rust), P. hordei (dwarf rust), P. graminis (stem or black rust) or P. recondita (brown or leaf rust) on cereals, such as e. g. wheat, barley or rye, P. sorghi (common rust) and P. polysora (Southern rust) on corn, P. kuehnii (orange rust) on sugar cane and P. asparagi on asparagus; Pyr- enopeziza spp., e.g. P. brassicae on oilseed rape; Pyrenophora (anamorph: Drechslera) tritici- repentis (tan spot) on wheat or P. teres (net blotch) on barley; Pyricularia spp., e. g. P. oryzae (teleomorph: Magnaporthe grisea'. rice blast) on rice and P. grisea on turf and cereals; Pythium spp. (damping-off) on turf, rice, corn, wheat, cotton, oilseed rape, sunflowers, soybeans, sugar beets, vegetables and various other plants (e. g. P. ultimum or P. aphanidermatum) and P. oli- gandrum on mushrooms; Ramularia spp., e. g. R. collo-cygni (Ramularia leaf spots, Physiological leaf spots) on barley, R. areola (teleomorph: Mycosphaerella areola) on cotton and R. beticola on sugar beets; Rhizoctonia spp. on cotton, rice, potatoes, turf, corn, oilseed rape, potatoes, sugar beets, vegetables and various other plants, e. g. R. solani (root and stem rot) on soybeans, R. solani (sheath blight) on rice or R. cerealis (Rhizoctonia spring blight) on wheat or barley; Rhizopus stolonifer (black mold, soft rot) on strawberries, carrots, cabbage, vines and tomatoes; Rhynchosporium secalis and R. commune (scald) on barley, rye and triticale; Saro- cladium oryzae and S. attenuatum (sheath rot) on rice; Sclerotinia spp. (stem rot or white mold) on vegetables (S. minor and S. sclerotiorum) and field crops, such as oilseed rape, sunflowers (e. g. S. sclerotiorum) and soybeans, S. rolfsii (syn. Athelia rolfsii) on soybeans, peanut, vegetables, corn, cereals and ornamentals; Septoria spp. on various plants, e. g. S. glycines (brown spot) on soybeans, S. tritici (syn. Zymoseptoria tritici, Septoria blotch) on wheat and S. (syn. Stagonospora) nodorum (Stagonospora blotch) on cereals; Uncinula (syn. Erysiphe) necator (powdery mildew, anamorph: Oidium tuckeri) on vines; Setosphaeria spp. (leaf blight) on corn (e. g. S. turcicum, syn. Helminthosporium turcicum) and turf; Sphacelotheca spp. (smut) on corn, (e. g. S. reiliana, syn. Ustilago reiliana’. head smut), sorghum und sugar cane; Sphaero- theca fuliginea (syn. Podosphaera xanthir. powdery mildew) on cucurbits; Spongospora subter- ranea (powdery scab) on potatoes and thereby transmitted viral diseases; Stagonospora spp. on cereals, e. g. S. nodorum (Stagonospora blotch, teleomorph: Leptosphaeria [syn. Phaeo- sphaeria] nodorum, syn. Septoria nodorum) on wheat; Synchytrium endobioticum on potatoes (potato wart disease); Taphrina spp., e. g. T. deformans (leaf curl disease) on peaches and T. pruni (plum pocket) on plums; Thielaviopsis spp. (black root rot) on tobacco, pome fruits, vegetables, soybeans and cotton, e. g. T. basicola (syn. Chalara elegans)’, Tilletia spp. (common bunt or stinking smut) on cereals, such as e. g. T. tritici (syn. T. caries, wheat bunt) and T. con- troversa (dwarf bunt) on wheat; Trichoderma harzianum on mushrooms’, Typhula incarnata (grey snow mold) on barley or wheat; Urocystis spp., e. g. U. occulta (stem smut) on rye; Uro- myces spp. (rust) on vegetables, such as beans (e. g. U. appendiculatus, syn. U. phaseoli), sugar beets (e. g. U. betae or U. beticola) and on pulses (e.g. U. vignae, U. pisi, U. viciae-fabae and U. fabae)’, Ustilago spp. (loose smut) on cereals (e. g. U. nuda and U. avaenae), corn (e. g. U. maydis’. corn smut) and sugar cane; Venturia spp. (scab) on apples (e. g. . inaequalis) and pears; and Verticillium spp. (wilt) on various plants, such as fruits and ornamentals, vines, soft fruits, vegetables and field crops, e. g. . longisporum on oilseed rape, . dahliae on strawberries, oilseed rape, potatoes and tomatoes, and . fungicola on mushrooms; Zymoseptoria tritici on cereals.
Preferably, the compositions of the present invention are suitable for controlling Phakopsora pachyrhizi and P. meibomiae.
The compositions of the present invention are also suitable for controlling harmful microorganisms in the protection of stored products or harvest, and in the protection of materials. The term "stored products or harvest" is understood to denote natural substances of plant or animal origin and their processed forms for which long-term protection is desired. Stored products of plant origin, for example stalks, leafs, tubers, seeds, fruits or grains, can be protected in the freshly harvested state or in processed form, such as pre-dried, moistened, comminuted, ground, pressed or roasted, which process is also known as post-harvest treatment. Also falling under the definition of stored products is timber, whether in the form of crude timber, such as construction timber, electricity pylons and barriers, or in the form of finished articles, such as furniture or objects made from wood. Stored products of animal origin are hides, leather, furs, hairs and alike. Preferably, "stored products" is understood to denote natural substances of plant origin and their processed forms, more preferably fruits and their processed forms, such as pomes, stone fruits, soft fruits and citrus fruits and their processed forms, where application of compounds I and compositions thereof can also prevent disadvantageous effects such as decay, discoloration or mold.
The term "protection of materials" is to be understood to denote the protection of technical and non-living materials, such as adhesives, glues, wood, paper, paperboard, textiles, leather, paint dispersions, plastics, cooling lubricants, fiber, or fabrics against the infestation and destruction by harmful microorganisms, such as fungi and bacteria.
When used in the protection of materials or stored products, the amount of active substance applied depends on the kind of application area and on the desired effect. Amounts customarily applied in the protection of materials are 0.001 g to 2 kg, preferably 0.005 g to 1 kg, of active substance per cubic meter of treated material.
The compositions of the present invention may be used for improving the health of a plant. The invention also relates to a method for improving plant health by treating a plant, its propagation material, and/or the locus where the plant is growing or is to grow with an effective amount of compounds I and compositions thereof, respectively.
The term "plant health" is to be understood to denote a condition of the plant and/or its products which is determined by several indicators alone or in combination with each other, such as yield (e. g. increased biomass and/or increased content of valuable ingredients), plant vigor (e. g. improved plant growth and/or greener leaves (“greening effect”)), quality (e. g. improved content or composition of certain ingredients), and tolerance to abiotic and/or biotic stress. The above identified indicators for the health condition of a plant may be interdependent or may result from each other.
The compositions of the present invention are employed as such or in form of compositions by treating the fungi, the plants, plant propagation materials, such as seeds; soil, surfaces, materials, or rooms to be protected from fungal attack with a fungicidally effective amount of the active substances. The application can be carried out both before and after the infection of the plants, plant propagation materials, such as seeds; soil, surfaces, materials or rooms by the fungi.
Plant propagation materials may be treated with compositions of the present invention prophylactically either at or before planting or transplanting.
When employed in plant protection, the amounts of active substances applied are, depending on the kind of effect desired, from 0.001 to 2 kg per ha, preferably from 0.005 to 2 kg per ha, more preferably from 0.05 to 0.9 kg per ha, and in particular from 0.1 to 0.75 kg per ha.
In treatment of plant propagation materials, such as seeds, e. g. by dusting, coating, or drenching, amounts of active substance of generally from 0.1 to 1000 g, preferably from 1 to 1000 g, more preferably from 1 to 100 g and most preferably from 5 to 100 g, per 100 kg of plant propagation material (preferably seeds) are required.
When used in the protection of materials or stored products, the amount of active substances applied depends on the kind of application area and on the desired effect. Amounts customarily applied in the protection of materials are 0.001 g to 2 kg, preferably 0.005 g to 1 kg, of active substances per cubic meter of treated material.
The user applies the agrochemical composition usually from a predosage device, a knapsack sprayer, a spray tank, a spray plane, or an irrigation system. Usually, the agrochemical composition is made up with water, buffer, and/or further auxiliaries to the desired application concentration and the ready-to-use spray liquor or the agrochemical composition according to the invention is thus obtained. Usually, 20 to 2000 liters, preferably 50 to 400 liters, of the ready- to-use spray liquor are applied per hectare of agricultural useful area.
The compositions according to the present invention can be converted into customary types of agrochemical compositions, e. g. solutions, emulsions, suspensions, dusts, powders, pastes, granules, pressings, capsules, and mixtures thereof. Examples for composition types are suspensions (e.g. SC, OD, FS), emulsifiable concentrates (e.g. EC), emulsions (e.g. EW, EO, ES, ME), capsules (e.g. CS, ZC), pastes, pastilles, wettable powders or dusts (e.g. WP, SP, WS, DP, DS), pressings (e.g. BR, TB, DT), granules (e.g. WG, SG, GR, FG, GG, MG), as well as gel formulations for the treatment of plant propagation materials such as seeds (e.g. GF). These and further compositions types are defined in the “Catalogue of pesticide formulation types and international coding system”, Technical Monograph No. 2, 6th Ed. May 2008, CropLife International.
The compositions are prepared in a known manner, such as described by Mollet and Grube- mann, Formulation technology, Wiley VCH, Weinheim, 2001; or Knowles, New developments in crop protection product formulation, Agrow Reports DS243, T&F Informa, London, 2005.
Suitable auxiliaries are solvents, liquid carriers, solid carriers or fillers, surfactants, dispersants, emulsifiers, wetters, adjuvants, solubilizers, penetration enhancers, protective colloids, adhesion agents, thickeners, humectants, repellents, attractants, feeding stimulants, compatibilizers, bactericides, anti-freezing agents, anti-foaming agents, colorants, tackifiers and binders.
Suitable solvents and liquid carriers are water and organic solvents, such as mineral oil fractions of medium to high boiling point, e.g. kerosene, diesel oil; oils of vegetable or animal origin; aliphatic, cyclic and aromatic hydrocarbons, e. g. toluene, paraffin, tetrahydronaphthalene, alkylated naphthalenes; alcohols, e.g. ethanol, propanol, butanol, benzylalcohol, cyclohexanol; glycols; DMSO; ketones, e.g. cyclohexanone; esters, e.g. lactates, carbonates, fatty acid esters, gamma-butyrolactone; fatty acids; phosphonates; amines; amides, e.g. N-methylpyrrolidone, fatty acid dimethylamides; and mixtures thereof.
Suitable solid carriers or fillers are mineral earths, e.g. silicates, silica gels, talc, kaolins, limestone, lime, chalk, clays, dolomite, diatomaceous earth, bentonite, calcium sulfate, magnesium sulfate, magnesium oxide; polysaccharides, e.g. cellulose, starch; fertilizers, e.g. ammonium sulfate, ammonium phosphate, ammonium nitrate, ureas; products of vegetable origin, e.g. cereal meal, tree bark meal, wood meal, nutshell meal, and mixtures thereof.
Suitable surfactants are surface-active compounds, such as anionic, cationic, nonionic and amphoteric surfactants, block polymers, polyelectrolytes, and mixtures thereof. Such surfactants can be used as emulsifier, dispersant, solubilizer, wetter, penetration enhancer, protective col- loid, or adjuvant. Examples of surfactants are listed in McCutcheon’s, Vol.1: Emulsifiers & Detergents, McCutcheon’s Directories, Glen Rock, USA, 2008 (International Ed. or North American Ed.).
Suitable anionic surfactants are alkali, alkaline earth or ammonium salts of sulfonates, sulfates, phosphates, carboxylates, and mixtures thereof. Examples of sulfonates are alkylarylsulfonates, diphenylsulfonates, alpha-olefin sulfonates, lignine sulfonates, sulfonates of fatty acids and oils, sulfonates of ethoxylated alkylphenols, sulfonates of alkoxylated arylphenols, sulfonates of condensed naphthalenes, sulfonates of dodecyl- and tridecylbenzenes, sulfonates of naphthalenes and alkylnaphthalenes, sulfosuccinates or sulfosuccinamates. Examples of sulfates are sulfates of fatty acids and oils, of ethoxylated alkylphenols, of alcohols, of ethoxylated alcohols, or of fatty acid esters. Examples of phosphates are phosphate esters. Examples of carboxylates are alkyl carboxylates, and carboxylated alcohol or alkylphenol ethoxylates.
Suitable nonionic surfactants are alkoxylates, N-subsituted fatty acid amides, amine oxides, esters, sugar-based surfactants, polymeric surfactants, and mixtures thereof. Examples of alkoxylates are compounds such as alcohols, alkylphenols, amines, amides, arylphenols, fatty acids or fatty acid esters which have been alkoxylated with 1 to 50 equivalents. Ethylene oxide and/or propylene oxide may be employed for the alkoxylation, preferably ethylene oxide. Examples of N-subsititued fatty acid amides are fatty acid glucamides or fatty acid alkanolamides. Examples of esters are fatty acid esters, glycerol esters or monoglycerides. Examples of sugar- based surfactants are sorbitans, ethoxylated sorbitans, sucrose and glucose esters or alkylpolyglucosides. Examples of polymeric surfactants are home- or copolymers of vinylpyrrolidone, vinylalcohols, or vinylacetate.
Suitable cationic surfactants are quaternary surfactants, for example quaternary ammonium compounds with one or two hydrophobic groups, or salts of long-chain primary amines. Suitable amphoteric surfactants are alkylbetains and imidazolines. Suitable block polymers are block polymers of the A-B or A-B-A type comprising blocks of polyethylene oxide and polypropylene oxide, or of the A-B-C type comprising alkanol, polyethylene oxide and polypropylene oxide. Suitable polyelectrolytes are polyacids or polybases. Examples of polyacids are alkali salts of polyacrylic acid or polyacid comb polymers. Examples of polybases are polyvinylamines or polyethyleneamines.
Suitable adjuvants are compounds, which have a neglectable or even no pesticidal activity themselves, and which improve the biological performance of the inventive mixtures on the target. Examples are surfactants, mineral or vegeable oils, and other auxilaries. Further examples are listed by Knowles, Adjuvants and additives, Agrow Reports DS256, T&F Informa UK, 2006, chapter 5.
Suitable thickeners are polysaccharides (e.g. xanthan gum, carboxymethylcellulose), anorganic clays (organically modified or unmodified), polycarboxylates, and silicates.
Suitable bactericides are bronopol and isothiazolinone derivatives such as alkyliso- thiazolinones and benzisothiazolinones.
Suitable anti-freezing agents are ethylene glycol, propylene glycol, urea and glycerin. Suitable anti-foaming agents are silicones, long chain alcohols, and salts of fatty acids. Suitable colorants (e.g. in red, blue, or green) are pigments of low water solubility and water- soluble dyes. Examples are inorganic colorants (e.g. iron oxide, titan oxide, iron hexacyanoferrate) and organic colorants (e.g. alizarin-, azo- and phthalocyanine colorants). Suitable tackifiers or binders are polyvinylpyrrolidons, polyvinylacetates, polyvinyl alcohols, polyacrylates, biological or synthetic waxes, and cellulose ethers.
Examples for agrochemical composition types and their preparation are: i) Water-soluble concentrates (SL, LS)
10-60 wt% of active ingredients and 5-15 wt% wetting agent (e.g. alcohol alkoxylates) are dissolved in water and/or in a water-soluble solvent (e.g. alcohols) ad 100 wt%. The active substance dissolves upon dilution with water. ii) Dispersible concentrates (DC)
5-25 wt% of an inventive composition and 1-10 wt% dispersant (e. g. polyvinylpyrrolidone) are dissolved in organic solvent (e.g. cyclohexanone) ad 100 wt%. Dilution with water gives a dispersion. iii) Emulsifiable concentrates (EC)
15-70 wt% of active ingredients and 5-10 wt% emulsifiers (e.g. calcium dodecylbenzenesulfonate and castor oil ethoxylate) are dissolved in water-insoluble organic solvent (e.g. aromatic hydrocarbon) ad 100 wt%. Dilution with water gives an emulsion. iv) Emulsions (EW, EO, ES)
5-40 wt% of active ingredients and 1-10 wt% emulsifiers (e.g. calcium dodecylbenzenesulfonate and castor oil ethoxylate) are dissolved in 20-40 wt% water-insoluble organic solvent (e.g. aromatic hydrocarbon). This mixture is introduced into water ad 100 wt% by means of an emulsifying machine and made into a homogeneous emulsion. Dilution with water gives an emulsion. v) Suspensions (SC, OD, FS)
In an agitated ball mill, 20-60 wt% of active ingredients are comminuted with addition of 2-10 wt% dispersants and wetting agents (e.g. sodium lignosulfonate and alcohol ethoxylate), 0.1- 2 wt% thickener (e.g. xanthan gum) and water ad 100 wt% to give a fine active substance suspension. Dilution with water gives a stable suspension of the active substance. For FS type compositions up to 40 wt% binder (e.g. polyvinylalcohol) is added. vi) Water-dispersible granules and water-soluble granules (WG, SG)
50-80 wt% of active ingredients are ground finely with addition of dispersants and wetting agents (e.g. sodium lignosulfonate and alcohol ethoxylate) ad 100 wt% and prepared as water- dispersible or water-soluble granules by means of technical appliances (e. g. extrusion, spray tower, fluidized bed). Dilution with water gives a stable dispersion or solution of the active substance. vii) Water-dispersible powders and water-soluble powders (WP, SP, WS)
50-80 wt% of active ingredients are ground in a rotor-stator mill with addition of 1-5 wt% dispersants (e.g. sodium lignosulfonate), 1-3 wt% wetting agents (e.g. alcohol ethoxylate) and solid carrier (e.g. silica gel) ad 100 wt%. Dilution with water gives a stable dispersion or solution of the active substance. viii) Gel (GW, GF)
In an agitated ball mill, 5-25 wt% of active ingredients are comminuted with addition of 3-10 wt% dispersants (e.g. sodium lignosulfonate), 1-5 wt% thickener (e.g. carboxymethylcellulose) and water ad 100 wt% to give a fine suspension of the active substance. Dilution with water gives a stable suspension of the active substance. ix) Microemulsion (ME)
5-20 wt% of active ingredients are added to 5-30 wt% organic solvent blend (e.g. fatty acid dimethylamide and cyclohexanone), 10-25 wt% surfactant blend (e.g. alcohol ethoxylate and arylphenol ethoxylate), and water ad 100 %. This mixture is stirred for 1 h to produce spontaneously a thermodynamically stable microemulsion. x) Microcapsules (CS)
An oil phase comprising 5-50 wt% of active ingredients, 0-40 wt% water insoluble organic solvent (e.g. aromatic hydrocarbon), 2-15 wt% acrylic monomers (e.g. methylmethacrylate, methacrylic acid and a di- or triacrylate) are dispersed into an aqueous solution of a protective colloid (e.g. polyvinyl alcohol). Radical polymerization initiated by a radical initiator results in the formation of poly(meth)acrylate microcapsules. Alternatively, an oil phase comprising 5-50 wt% of an inventive mixture according to the invention, 0-40 wt% water insoluble organic solvent (e.g. aromatic hydrocarbon), and an isocyanate monomer (e.g. diphenylmethene-4,4’-diisocyanatae) are dispersed into an aqueous solution of a protective colloid (e.g. polyvinyl alcohol). The addition of a polyamine (e.g. hexamethylenediamine) results in the formation of polyurea microcapsules. The monomers amount to 1-10 wt%. The wt% relate to the total CS composition. xi) Dustable powders (DP, DS)
1-10 wt% of active ingredients are ground finely and mixed intimately with solid carrier (e.g. finely divided kaolin) ad 100 wt%. xii) Granules (GR, FG)
0.5-30 wt% of active ingredients is ground finely and associated with solid carrier (e.g. silicate) ad 100 wt%. Granulation is achieved by extrusion, spray-drying or fluidized bed. xiii) Ultra-low volume liquids (UL)
1-50 wt% of active ingredients are dissolved in organic solvent (e.g. aromatic hydrocarbon) ad 100 wt%.
The compositions types i) to xi) may optionally comprise further auxiliaries, such as 0.1-1 wt% bactericides, 5-15 wt% anti-freezing agents, 0.1-1 wt% anti-foaming agents, and 0.1-1 wt% colorants.
The resulting agrochemical compositions generally comprise between 0.01 and 95%, preferably between 0.1 and 90%, in particular between 0.5 and 75%, by weight of active substances. The active substances are employed in a purity of from 90% to 100%, preferably from 95% to 100% (according to NMR spectrum).
Solutions for seed treatment (LS), Suspoemulsions (SE), flowable concentrates (FS), powders for dry treatment (DS), water-dispersible powders for slurry treatment (WS), water-soluble powders (SS), emulsions (ES), emulsifiable concentrates (EC) and gels (GF) are usually employed for the purposes of treatment of plant propagation materials, particularly seeds. The compositions in question give, after two-to-tenfold dilution, active substance concentrations of from 0.01 to 60% by weight, preferably from 0.1 to 40%, in the ready-to-use preparations. Application can be carried out before or during sowing. Methods for applying the inventive mixtures and compositions thereof, respectively, on to plant propagation material, especially seeds include dressing, coating, pelleting, dusting, soaking and in-furrow application methods of the propagation material. Preferably, the inventive compositions are applied on to the plant propagation material by a method such that germination is not induced, e. g. by seed dressing, pelleting, coating and dusting.
Various types of oils, wetters, adjuvants, fertilizer, or micronutrients, and further pesticides (e.g. herbicides, insecticides, fungicides, growth regulators, safeners) may be added to the active substances or the compositions comprising them as premix or, if appropriate not until immediately prior to use (tank mix). These agents can be admixed with the compositions according to the invention in a weight ratio of 1 : 100 to 100: 1 , preferably 1 : 10 to 10: 1.
The user applies the composition according to the invention usually from a predosage device, a knapsack sprayer, a spray tank, a spray plane, or an irrigation system. Usually, the agrochemical composition is made up with water, buffer, and/or further auxiliaries to the desired application concentration and the ready-to-use spray liquor or the agrochemical composition according to the invention is thus obtained. Usually, 20 to 2000 liters, preferably 50 to 400 liters, of the ready-to-use spray liquor are applied per hectare of agricultural useful area.
According to one embodiment, individual components of the composition according to the invention such as parts of a kit or parts of a binary mixture may be mixed by the user himself in a spray tank or any other kind of vessel used for applications (e. g. seed treater drums, seed pelleting machinery, knapsack sprayer) and further auxiliaries may be added, if appropriate. Consequently, one embodiment of the invention is a kit for preparing a usable fungicidal composition, the kit comprising a) a composition comprising mefentrifluconazole and at least one auxiliary; and b) a composition comprising at least one component II) and at least one auxiliary; and optionally c) a composition comprising at least one auxiliary and optionally a further active component as defined herein.
When preparing the compositions, it is preferred to employ the pure active compounds, to which further active compounds against pests, such as insecticides, herbicides, fungicides or else herbicidal or growth-regulating active compounds or fertilizers can be added as further active components according to need.
In the context of the present invention, the term plant refers to an entire plant, a part of the plant or the propagation material of the plant.
The separate or joint application of the compounds of the inventive compositions is carried out by spraying or dusting the seeds, the seedlings, the plants or the soils before or after sowing of the plants or before or after emergence of the plants.
Customary application rates in the protection of materials are, for example, from 0.01 g to 1000 g of active compounds per m2 treated material, desirably from 0.1 g to 50 g per m2.
For use in spray compositions, the content of the mixture of the active ingredients is from 0.001 to 80 weight %, preferably from 0.01 to 50 weight % and most preferably from 0.01 to 15 weight %. Experimental Part:
The fungicidal action of the mixtures according to the invention can be shown by the tests described below.
The visually determined percentages of infected leaf areas are converted into efficacies in % of the untreated control.
The efficacy (E) is calculated as follows using Abbot's formula:
E = (1 - a/p) ■ 100 a corresponds to the fungicidal infection of the treated plants in % and
P corresponds to the fungicidal infection of the untreated (control) plants in %
An efficacy of 0 means that the infection level of the treated plants corresponds to that of the untreated control plants; an efficacy of 100 means that the treated plants were not infected. The expected efficacies of active compound combinations may be determined using Colby's formula (Colby, S.R. "Calculating synergistic and antagonistic responses of herbicide combinations", Weeds, 15, pp. 20-22, 1967) and compared with the observed efficacies.
Colby's formula:
E = x + y - x y/100
E expected efficacy, expressed in % of the untreated control, when using the mixture of the active compounds A and B at the concentrations a and b x efficacy, expressed in % of the untreated control, when using the active compound A at the concentration a y efficacy, expressed in % of the untreated control, when using the active compound B at the concentration b.
Microtest:
The active compounds were formulated separately as a stock solution having a concentration of 10000 ppm in dimethyl sulfoxide. The stock solutions were mixed according to the ratio, pipetted onto a micro titer plate (MTP) and diluted with water to the stated concentrations.
1. Activity against the grey mold Botrytis cinerea in the microtiterplate test (BOTRCI)
A spore suspension of Botrci cinerea in an aqueous biomalt or yeast-bactopeptone- sodiumacetate solution was then added.
2. Activity against anthracnose caused by Colletotrichum orbiculare in the microtiterplate test (COLLLA)
A spore suspension of Colletotrichum orbiculare in an aqueous bio malt solution was then added. 3. Activity against early blight caused by Alternaria solani (ALTESO)
A spore suspension of Alternaria solani in an aqueous biomalt or yeast-bactopeptone-glycerine or DOB solution was then added. The plates were placed in a water vapor-saturated chamber at a temperature of 18°C. Using an absorption photometer, the MTPs were measured at 405 nm 7 days after the inoculation.
The measured parameters were compared to the growth of the active compound-free control variant (100%) and the fungus-free blank value to determine the relative growth in % of the pathogens in the respective active compounds. These percentages were converted into efficacies.
BOTRCI
Figure imgf000033_0001
COLLLA
Figure imgf000033_0002
ALTESO
Figure imgf000034_0001

Claims

Claims
1. Compositions comprising
I) mefentrifluconazole (I) and
II) a compound selected from:
(11-1) [(1S,2S)-1-methyl-2-(o-tolyl)propyl] (2S)-2-[(4-methoxy-3-propanoyloxy- pyridine-2-carbonyl)amino]propanoate and
(I I-2) N-methoxy-N-[[4-[5-(trifluoromethyl)-1,2,4-oxadiazol-3-yl]phenyl]methyl]- cyclopropanecarboxamide including agriculturally acceptable salts thereof.
2. The composition as claimed in claim 1 , wherein component II) is the compound (11-1).
3. The composition as claimed in claim 1 , wherein component II) is the compound (II-2).
4. The composition as claimed in any one of claims 1 to 3, wherein the ratio by weight of component I) to component II) is from 100:1 to 1 :100.
5. The composition as claimed in any one of claims 1 to 4, wherein the ratio by weight of component I) to component II) is from 20:1 to 1:20.
6. The composition as claimed in any one of claims 1 to 5, wherein the ratio by weight of component I) to component II) is from 6:1 to 1 :6.
7. The composition as claimed in any one of claims 1 to 7 additionally comprising an agro- chemically acceptable auxiliary.
8. A method for controlling phytopathogenic fungi, wherein the fungi, their habitat, their locus or the plants to be protected against fungal attack, the soil or plant propagation material are treated with a fungicidally effective amount of a composition as defined in any of claims 1 to 7.
9. The method as claimed in claim 8, wherein the phytopathogenic fungi are from the genera Phakopsora.
10. The method as claimed in claims 8 or 9, wherein the phytopathogenic fungi are selected from Phakopsora pachyrhizi and P. meibomiae.
11. The method as claimed in any one of claims 8 to 10, wherein the plants are soybeans.
12. The method as claimed in any one of claims 8 to 10, wherein the plant propagation material is seed. A use of a composition as defined in any of the claims 1 to 7 for combating phytopathogen- ic fungi. The use as claimed in claim 13, wherein the phytopathogenic fungi are selected from Phakopsora pachyrhizi and P. meibomiae. The use as claimed in claims 13 or 14, wherein the phytopathogenic fungi are controlled in soybeans.
PCT/EP2021/081461 2020-11-23 2021-11-12 Compositions comprising mefentrifluconazole WO2022106304A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP20209247 2020-11-23
EP20209247.4 2020-11-23

Publications (1)

Publication Number Publication Date
WO2022106304A1 true WO2022106304A1 (en) 2022-05-27

Family

ID=73544064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/081461 WO2022106304A1 (en) 2020-11-23 2021-11-12 Compositions comprising mefentrifluconazole

Country Status (2)

Country Link
AR (1) AR124113A1 (en)
WO (1) WO2022106304A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024018016A1 (en) 2022-07-21 2024-01-25 Syngenta Crop Protection Ag Crystalline forms of 1,2,4-oxadiazole fungicides

Citations (148)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US202582A (en) 1878-04-16 Improvement in wrenches
US3126634A (en) 1964-03-31 Foot measuring device
EP0141317A2 (en) 1983-10-21 1985-05-15 BASF Aktiengesellschaft 7-Amino-azolo[1,5-a]pyrimidines and fungicides containing them
EP0152031A2 (en) 1984-02-03 1985-08-21 Shionogi & Co., Ltd. Azolyl cycloalkanol derivatives and agricultural fungicides
EP0226917A1 (en) 1985-12-20 1987-07-01 BASF Aktiengesellschaft Acrylic acid esters and fungicides containing these compounds
EP0243970A1 (en) 1986-05-02 1987-11-04 Stauffer Chemical Company Fungicidal pyridyl imidates
EP0256503A2 (en) 1986-08-12 1988-02-24 Mitsubishi Kasei Corporation Pyridinecarboxamide derivatives and their use as fungicide
EP0307510B1 (en) 1987-09-17 1991-02-06 BASF Aktiengesellschaft Process for combating fungicides
WO1991002051A1 (en) 1989-08-03 1991-02-21 The Australian Technological Innovation Corporation Myconematicide
EP0428941A1 (en) 1989-11-10 1991-05-29 Agro-Kanesho Co., Ltd. Hexahydrotriazine compounds and insecticides
US5026417A (en) 1987-03-17 1991-06-25 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Agriculture Methods and compositions for increasing the amounts of phosphorus and/or micronutrients available for plant uptake from soils
EP0532022A1 (en) 1991-09-13 1993-03-17 Ube Industries, Ltd. Acrylate compound, preparation process thereof and fungicide using the same
WO1994001546A1 (en) 1992-07-01 1994-01-20 Cornell Research Foundation, Inc. Elicitor of the hypersensitive response in plants
WO1995017806A1 (en) 1993-12-29 1995-07-06 Philom Bios Inc. Methods and compositions for increasing the benefits of rhizobium inoculation to legume crop productivity
WO1996021358A1 (en) 1995-01-14 1996-07-18 Prophyta Biologischer Pflanzenschutz Gmbh Fungus isolate, preparation for combatting plant-pathogenic fungi, process for producing it and its use
WO1998044140A1 (en) 1997-04-03 1998-10-08 Dekalb Genetics Corporation Glyphosate resistant maize lines
EP0585215B1 (en) 1989-11-17 1999-09-15 Abbott Laboratories Mutants or variants of bacillus thuringiensis producing high yields of delta endotoxin
WO2000026345A1 (en) 1998-11-03 2000-05-11 Aventis Cropscience N.V. Glufosinate tolerant rice
EP1028125A1 (en) 1998-11-30 2000-08-16 Isagro Ricerca S.r.l. Dipeptide compounds having fungicidal activity and their agronomic use
EP1035122A1 (en) 1999-03-11 2000-09-13 Rohm And Haas Company Heterocyclic subsituted isoxazolidines and their use as fungicides
WO2001031042A2 (en) 1999-10-29 2001-05-03 Aventis Cropscience N.V. Male-sterile brassica plants and methods for producing same
WO2001041558A1 (en) 1999-12-08 2001-06-14 Aventis Cropscience N.V. Hybrid winter oilseed rape and methods for producing same
EP1122244A1 (en) 2000-02-04 2001-08-08 Sumitomo Chemical Company, Limited Uracil compounds and their use
CN1309897A (en) 2000-02-24 2001-08-29 沈阳化工研究院 Unsaturated oximino ether bactericide
EP1201648A1 (en) 1999-08-05 2002-05-02 Kumiai Chemical Industry Co., Ltd. Carbamate derivatives and agricultural/horticultural bactericides
WO2002034946A2 (en) 2000-10-25 2002-05-02 Monsanto Technology Llc Cotton event pv-ghgt07(1445) and compositions and methods for detection thereof
WO2002036831A2 (en) 2000-10-30 2002-05-10 Monsanto Technology Llc Canola event pv-bngt04(rt73) and compositions and methods for detection thereof
US6406690B1 (en) 1995-04-17 2002-06-18 Minrav Industries Ltd. Bacillus firmus CNCM I-1582 or Bacillus cereus CNCM I-1562 for controlling nematodes
WO2002100163A2 (en) 2001-06-11 2002-12-19 Monsanto Technology Llc Cotton event moni5985 and compositions and methods for detection
WO2003013224A2 (en) 2001-08-06 2003-02-20 Bayer Bioscience N.V. Herbicide tolerant cotton plants and methods for producing and identifying same
WO2003016303A1 (en) 2001-08-20 2003-02-27 Dainippon Ink And Chemicals, Inc. Tetrazoyl oxime derivative and agricultural chemical containing the same as active ingredient
WO2003066609A1 (en) 2002-02-04 2003-08-14 Bayer Cropscience Aktiengesellschaft Disubstituted thiazolyl carboxanilides and their use as microbicides
WO2003074491A1 (en) 2002-03-05 2003-09-12 Syngenta Participations Ag O-cyclopropyl-carboxanilides and their use as fungicides
CN1456054A (en) 2003-03-25 2003-11-19 浙江省化工研究院 Methoxy methyl acrylate compounds as bactericidal agent
WO2004011601A2 (en) 2002-07-29 2004-02-05 Monsanto Technology, Llc Corn event pv-zmir13 (mon863) plants and compositions and methods for detection thereof
WO2004039986A1 (en) 2002-10-29 2004-05-13 Syngenta Participations Ag Cot102 insecticidal cotton
WO2004049804A2 (en) 2002-11-29 2004-06-17 Syngenta Participations Ag Fungicidal combinations for crop potection
WO2004072235A2 (en) 2003-02-12 2004-08-26 Monsanto Technology Llc Cotton event mon 88913 and compositions and methods for detection thereof
WO2004074492A1 (en) 2003-02-20 2004-09-02 Kws Saat Ag Glyphosate tolerant sugar beet
WO2004083193A1 (en) 2003-03-17 2004-09-30 Sumitomo Chemical Company, Limited Amide compound and bactericide composition containing the same
WO2004099447A2 (en) 2003-05-02 2004-11-18 Dow Agrosciences Llc Corn event tc1507 and methods for detection thereof
WO2005059103A2 (en) 2003-12-15 2005-06-30 Monsanto Technology Llc Corn plant mon88017 and compositions and methods for detection thereof
WO2005061720A2 (en) 2003-12-11 2005-07-07 Monsanto Technology Llc High lysine maize compositions and methods for detection thereof
WO2005063721A1 (en) 2003-12-19 2005-07-14 E.I. Dupont De Nemours And Company Herbicidal pyrimidines
WO2005087772A1 (en) 2004-03-10 2005-09-22 Basf Aktiengesellschaft 5,6-dialkyl-7-amino-triazolopyrimidines, method for their production, their use for controlling pathogenic fungi and agents containing said compounds
WO2005087773A1 (en) 2004-03-10 2005-09-22 Basf Aktiengesellschaft 5,6-dialkyl-7-amino-triazolopyrimidines, method for their production, their use for controlling pathogenic fungi and agents containing said compounds
WO2005103266A1 (en) 2004-03-26 2005-11-03 Dow Agrosciences Llc Cry1f and cry1ac transgenic cotton lines and event-specific identification thereof
WO2005103301A2 (en) 2004-03-25 2005-11-03 Syngenta Participations Ag Corn event mir604
CA2471555A1 (en) 2004-06-18 2005-12-18 Thomas D. Johnson Controlling plant pathogens with fungal/bacterial antagonist combinations comprising trichoderma virens and bacillus amyloliquefaciens
WO2005120234A2 (en) 2004-06-03 2005-12-22 E.I. Dupont De Nemours And Company Fungicidal mixtures of amidinylphenyl compounds
WO2005123690A1 (en) 2004-06-18 2005-12-29 Basf Aktiengesellschaft 1-methyl-3-difluoromethyl-pyrazol-4-carbonic acid-(ortho-phenyl)-anilides, and use thereof as a fungicide
WO2005123689A1 (en) 2004-06-18 2005-12-29 Basf Aktiengesellschaft 1-methyl-3-trifluoromethyl-pyrazole-4-carboxylic acid (ortho-phenyl)-anilides and to use thereof as fungicide
US6994849B2 (en) 2001-03-14 2006-02-07 State Of Israel, Ministry Of Agriculture, Agricultural Research Organization Yeast Metschnikowia fructicola NRRL Y-30752 for inhibiting deleterious microorganisms on plants
WO2006015866A1 (en) 2004-08-12 2006-02-16 Syngenta Participations Ag Method for protecting useful plants or plant propagation material
WO2006039376A2 (en) 2004-09-29 2006-04-13 Pioneer Hi-Bred International, Inc. Corn event das-59122-7 and methods for detection thereof
WO2006087325A1 (en) 2005-02-16 2006-08-24 Basf Aktiengesellschaft 5-alkoxyalkyl-6-alkyl-7-amino-azolopyrimidines, method for their production, their use for controlling pathogenic fungi and agents containing said substances
WO2006087343A1 (en) 2005-02-16 2006-08-24 Basf Aktiengesellschaft Pyrazole carboxylic acid anilides, method for the production thereof and agents containing them for controlling pathogenic fungi
WO2006098952A2 (en) 2005-03-16 2006-09-21 Syngenta Participations Ag Corn event 3272 and methods of detection thereof
WO2006108674A2 (en) 2005-04-08 2006-10-19 Bayer Bioscience N.V. Elite event a2704-12 and methods and kits for identifying such event in biological samples
WO2006108675A2 (en) 2005-04-11 2006-10-19 Bayer Bioscience N.V. Elite event a5547-127 and methods and kits for identifying such event in biological samples
WO2006130436A2 (en) 2005-05-27 2006-12-07 Monsanto Technology Llc Soybean event mon89788 and methods for detection thereof
WO2006128573A2 (en) 2005-06-02 2006-12-07 Syngenta Participations Ag Ce43- 67b, insecticidal transgenic cotton expressing cry1ab
WO2007006670A1 (en) 2005-07-07 2007-01-18 Basf Aktiengesellschaft N-thio-anthranilamid compounds and their use as pesticides
CN1907024A (en) 2005-08-03 2007-02-07 浙江化工科技集团有限公司 Methoxyl group displacement methyl acrylate compound bactericidal agent
WO2007017186A1 (en) 2005-08-08 2007-02-15 Bayer Bioscience N.V. Herbicide tolerant cotton plants and methods for identifying same
WO2007082098A2 (en) 2006-01-13 2007-07-19 Dow Agrosciences Llc 6-(poly-substituted aryl)-4-aminopicolinates and their use as herbicides
WO2007090624A2 (en) 2006-02-09 2007-08-16 Syngenta Participations Ag A method of protecting a plant propagation material, a plant, and/or plant organs
WO2007129454A1 (en) 2006-05-08 2007-11-15 Kumiai Chemical Industry Co., Ltd. 1,2-benzisothiazole derivative, and agricultural or horticultural plant disease-controlling agent
WO2007140256A1 (en) 2006-05-26 2007-12-06 Monsanto Technology, Llc Corn plant and seed corresponding to transgenic event mon89034 and methods for detection and use thereof
WO2007142840A2 (en) 2006-06-03 2007-12-13 Syngenta Participations Ag Corn event mir162
US20070292854A1 (en) 2000-06-22 2007-12-20 Behr Carl F Corn event PV-ZMGT32(nk603) and compositions and methods for detection thereof
WO2008002872A2 (en) 2006-06-28 2008-01-03 Pioneer Hi-Bred International, Inc. Soybean event 3560.4.3.5 and compositions and methods for the identification and/or detection thereof
WO2008013622A2 (en) 2006-07-27 2008-01-31 E. I. Du Pont De Nemours And Company Fungicidal azocyclic amides
WO2008054747A2 (en) 2006-10-31 2008-05-08 E. I. Du Pont De Nemours And Company Soybean event dp-305423-1 and compositions and methods for the identification and/or detection thereof
WO2008112019A2 (en) 2006-10-30 2008-09-18 Pioneer Hi-Bred International, Inc. Maize event dp-098140-6 and compositions and methods for the identification and/or detection thereof
WO2008122406A1 (en) 2007-04-05 2008-10-16 Bayer Bioscience N.V. Insect resistant cotton plants and methods for identifying same
WO2008151780A1 (en) 2007-06-11 2008-12-18 Bayer Bioscience N.V. Insect resistant cotton plants comprising elite event ee-gh6 and methods for identifying same
WO2009064652A1 (en) 2007-11-15 2009-05-22 Monsanto Technology Llc Soybean plant and seed corresponding to transgenic event mon87701 and methods for detection thereof
WO2009090181A2 (en) 2008-01-15 2009-07-23 Bayer Cropscience Sa Pesticide composition comprising a tetrazolyloxime derivative and a fungicide or an insecticide active substance
WO2009094442A2 (en) 2008-01-22 2009-07-30 Dow Agrosciences Llc 5-fluoro pyrimidine derivatives
WO2009102873A1 (en) 2008-02-15 2009-08-20 Monsanto Technology Llc Soybean plant and seed corresponding to transgenic event mon87769 and methods for detection thereof
WO2009103049A2 (en) 2008-02-14 2009-08-20 Pioneer Hi-Bred International, Inc. Plant genomic dna flanking spt event and methods for identifying spt event
WO2009111263A1 (en) 2008-02-29 2009-09-11 Monsanto Technology Llc Corn plant event mon87460 and compositions and methods for detection thereof
WO2009126473A1 (en) 2008-04-07 2009-10-15 Bayer Cropscience Lp Stable aqueous spore-containing formulation
WO2010037016A1 (en) 2008-09-29 2010-04-01 Monsanto Technology Llc Soybean transgenic event mon87705 and methods for detection thereof
WO2010069882A1 (en) 2008-12-17 2010-06-24 Syngenta Participations Ag Isoxazole derivatives for use as fungicides
WO2010077816A1 (en) 2008-12-16 2010-07-08 Syngenta Participations Ag Corn event 5307
WO2010080829A1 (en) 2009-01-07 2010-07-15 Basf Agrochemical Products B.V. Soybean event 127 and methods related thereto
US20100260735A1 (en) 2009-04-13 2010-10-14 University of Delawre Methods for promoting plant health
WO2010139271A1 (en) 2009-06-05 2010-12-09 中国中化股份有限公司 E-type phenyl acrylic ester compounds containing substituted anilino pyrimidine group and uses thereof
WO2011022469A2 (en) 2009-08-19 2011-02-24 Dow Agrosciences Llc Aad-1 event das-40278-9, related transgenic corn lines, and event-specific identification thereof
WO2011028657A1 (en) 2009-09-01 2011-03-10 Dow Agrosciences Llc Synergistic fungicidal compositions containing a 5-fluoropyrimidine derivative for fungal control in cereals
WO2011034704A1 (en) 2009-09-17 2011-03-24 Monsanto Technology Llc Soybean transgenic event mon 87708 and methods of use thereof
WO2011062904A1 (en) 2009-11-23 2011-05-26 Monsanto Technology Llc Transgenic maize event mon 87427 and the relative development scale
WO2011066384A1 (en) 2009-11-24 2011-06-03 Dow Agrosciences Llc Aad-12 event 416, related transgenic soybean lines, and event-specific identification thereof
WO2011077514A1 (en) 2009-12-22 2011-06-30 三井化学アグロ株式会社 Plant disease control composition and method for controlling plant diseases by applying the composition
WO2011081174A1 (en) 2010-01-04 2011-07-07 日本曹達株式会社 Nitrogen-containing heterocyclic compound and agricultural/horticultural germicide
WO2011084621A1 (en) 2009-12-17 2011-07-14 Pioneer Hi-Bred International, Inc. Maize event dp-004114-3 and methods for detection thereof
WO2011109395A2 (en) 2010-03-01 2011-09-09 University Of Delaware Compositions and methods for increasing biomass, iron concentration, and tolerance to pathogens in plants
WO2011135833A1 (en) 2010-04-28 2011-11-03 Sumitomo Chemical Company, Limited Plant disease control composition and its use
WO2011153186A1 (en) 2010-06-04 2011-12-08 Monsanto Technology Llc Transgenic brassica event mon 88302 and methods of use thereof
WO2012051199A2 (en) 2010-10-12 2012-04-19 Monsanto Technology Llc Soybean plant and seed corresponding to transgenic event mon87712 and methods for detection thereof
US20120149571A1 (en) 2010-12-10 2012-06-14 Auburn University Inoculants Including Bacillus Bacteria for Inducing Production of Volatile Organic Compounds in Plants
WO2012082548A2 (en) 2010-12-15 2012-06-21 Syngenta Participations Ag Soybean event syht0h2 and compositions and methods for detection thereof
WO2012084812A1 (en) 2010-12-20 2012-06-28 Isagro Ricerca S.R.L. Aminoindanes amides having a high fungicidal activity and their phytosanitary compositions
WO2012134808A1 (en) 2011-03-30 2012-10-04 Monsanto Technology Llc Cotton transgenic event mon 88701 and methods of use thereof
WO2012165511A1 (en) 2011-05-31 2012-12-06 クミアイ化学工業株式会社 Method for controlling diseases in rice plant
WO2012168188A1 (en) 2011-06-07 2012-12-13 Bayer Intellectual Property Gmbh Active compound combinations
WO2013003558A1 (en) 2011-06-30 2013-01-03 Monsanto Technology Llc Alfalfa plant and seed corresponding to transgenic event kk 179-2 and methods for detection thereof
WO2013007767A1 (en) 2011-07-13 2013-01-17 Basf Se Fungicidal substituted 2-[2-halogenalkyl-4-(phenoxy)-phenyl]-1-[1,2,4]triazol-1-yl-ethanol compounds
WO2013010862A1 (en) 2011-07-15 2013-01-24 Basf Se Fungicidal alkyl-substituted 2-[2-chloro-4-(4-chloro-phenoxy)-phenyl]-1-[1,2,4]triazol-1-yl-ethanol compounds
WO2013016527A1 (en) 2011-07-26 2013-01-31 Dow Agrosciences Llc Insect resistant and herbicide tolerant soybean event 9582.814.19.1
WO2013024010A1 (en) 2011-08-12 2013-02-21 Basf Se N-thio-anthranilamide compounds and their use as pesticides
WO2013024009A1 (en) 2011-08-12 2013-02-21 Basf Se N-thio-anthranilamide compounds and their use as pesticides
WO2013032693A2 (en) 2011-08-27 2013-03-07 Marrone Bio Innovations, Inc. Isolated bacterial strain of the genus burkholderia and pesticidal metabolites therefrom-formulations and uses
WO2013047749A1 (en) 2011-09-29 2013-04-04 三井化学アグロ株式会社 Production method for 4, 4-difluoro-3,4-dihydroisoquinoline derivative
WO2013047441A1 (en) 2011-09-26 2013-04-04 日本曹達株式会社 Agricultural and horticultural bactericide composition
WO2013092224A1 (en) 2011-12-21 2013-06-27 Basf Se Use of strobilurin type compounds for combating phytopathogenic fungi resistant to qo inhibitors
WO2013112527A1 (en) 2012-01-23 2013-08-01 Dow Agrosciences Llc Herbicide tolerant cotton event pdab4468.19.10.3
WO2013116251A2 (en) 2012-02-01 2013-08-08 E. I. Du Pont De Nemours And Company Fungicidal pyrazole mixtures
WO2013127704A1 (en) 2012-02-27 2013-09-06 Bayer Intellectual Property Gmbh Active compound combinations containing a thiazoylisoxazoline and a fungicide
US20130236522A1 (en) 2010-11-10 2013-09-12 Kumiai Chemical Industry Co., Ltd. Microbial pesticidal composition
WO2013162072A1 (en) 2012-04-27 2013-10-31 Sumitomo Chemical Company, Limited Tetrazolinone compounds and its use as pesticides
CN103387541A (en) 2012-05-10 2013-11-13 中国中化股份有限公司 Preparation method of substituted pyrazolylether compound
WO2013169923A2 (en) 2012-05-08 2013-11-14 Monsanto Technology Llc Corn event mon 87411
WO2014029697A1 (en) 2012-08-22 2014-02-27 Basf Se Fungicidal ternary mixtures comprising fluazinam
WO2014060177A1 (en) 2012-10-16 2014-04-24 Syngenta Participations Ag Fungicidal compositions
WO2014116854A1 (en) 2013-01-25 2014-07-31 Pioneer Hi-Bred International, Inc. Maize event dp-033121-3 and methods for detection thereof
WO2014124369A1 (en) 2013-02-11 2014-08-14 Bayer Cropscience Lp Compositions comprising a streptomyces-based biological control agent and a fungicide
WO2014178910A1 (en) 2013-05-02 2014-11-06 J.R. Simplot Company Potato cultivar e12
WO2014201235A2 (en) 2013-06-14 2014-12-18 Monsanto Technology Llc Soybean transgenic event mon87751 and methods for detection and use thereof
WO2015053998A1 (en) 2013-10-09 2015-04-16 Monsanto Technology Llc Transgenic corn event mon87403 and methods for detection thereof
EP2865265A1 (en) 2014-02-13 2015-04-29 Bayer CropScience AG Active compound combinations comprising phenylamidine compounds and biological control agents
WO2015065922A1 (en) 2013-10-28 2015-05-07 Dexcom, Inc. Devices used in connection with continuous analyte monitoring that provide the user with one or more notifications, and related methods
WO2015142571A1 (en) 2014-03-20 2015-09-24 Monsanto Technology Llc Transgenic maize event mon 87419 and methods of use thereof
WO2016020371A1 (en) 2014-08-04 2016-02-11 Basf Se Antifungal paenibacillus strains, fusaricidin-type compounds, and their use
WO2016156241A1 (en) 2015-04-02 2016-10-06 Syngenta Participations Ag Herbicidal mixtures
WO2016162265A1 (en) 2015-04-07 2016-10-13 Syngenta Participations Ag Herbicidal mixtures
WO2016183445A1 (en) 2015-05-14 2016-11-17 J.R. Simplot Company Potato cultivar v11
WO2017062825A1 (en) 2015-10-08 2017-04-13 J.R. Simplot Company Potato cultivar y9
WO2017062831A1 (en) 2015-10-08 2017-04-13 J.R. Simplot Company Potato cultivar x17
WO2018177894A1 (en) 2017-03-31 2018-10-04 Syngenta Participations Ag Fungicidal compositions
WO2019166257A1 (en) * 2018-03-01 2019-09-06 BASF Agro B.V. Fungicidal compositions of mefentrifluconazole
WO2019173665A1 (en) 2018-03-08 2019-09-12 Dow Agrosciences Llc Picolinamides as fungicides
US20200128828A1 (en) * 2017-07-05 2020-04-30 BASF Agro B.V. Fungicidal mixtures of mefentrifluconazole
WO2020120206A2 (en) * 2018-12-11 2020-06-18 BASF Agro B.V. Method to control a phythopatogenic fungi selected from phakopsora spp. in soybeans by compositions comprising mefentrifluconazole
WO2020212513A1 (en) 2019-04-18 2020-10-22 Syngenta Crop Protection Ag Process for the preparation of microbiocidal oxadiazole derivatives
WO2021231011A1 (en) * 2020-05-15 2021-11-18 Dow Agrosciences Llc Synergistic fungicidal interactions of a picolinamide fungicide with other fungicides against asian soybean rust

Patent Citations (153)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US202582A (en) 1878-04-16 Improvement in wrenches
US3126634A (en) 1964-03-31 Foot measuring device
EP0141317A2 (en) 1983-10-21 1985-05-15 BASF Aktiengesellschaft 7-Amino-azolo[1,5-a]pyrimidines and fungicides containing them
EP0152031A2 (en) 1984-02-03 1985-08-21 Shionogi & Co., Ltd. Azolyl cycloalkanol derivatives and agricultural fungicides
EP0226917A1 (en) 1985-12-20 1987-07-01 BASF Aktiengesellschaft Acrylic acid esters and fungicides containing these compounds
EP0243970A1 (en) 1986-05-02 1987-11-04 Stauffer Chemical Company Fungicidal pyridyl imidates
EP0256503A2 (en) 1986-08-12 1988-02-24 Mitsubishi Kasei Corporation Pyridinecarboxamide derivatives and their use as fungicide
US5026417A (en) 1987-03-17 1991-06-25 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Agriculture Methods and compositions for increasing the amounts of phosphorus and/or micronutrients available for plant uptake from soils
EP0307510B1 (en) 1987-09-17 1991-02-06 BASF Aktiengesellschaft Process for combating fungicides
WO1991002051A1 (en) 1989-08-03 1991-02-21 The Australian Technological Innovation Corporation Myconematicide
EP0428941A1 (en) 1989-11-10 1991-05-29 Agro-Kanesho Co., Ltd. Hexahydrotriazine compounds and insecticides
EP0585215B1 (en) 1989-11-17 1999-09-15 Abbott Laboratories Mutants or variants of bacillus thuringiensis producing high yields of delta endotoxin
EP0532022A1 (en) 1991-09-13 1993-03-17 Ube Industries, Ltd. Acrylate compound, preparation process thereof and fungicide using the same
WO1994001546A1 (en) 1992-07-01 1994-01-20 Cornell Research Foundation, Inc. Elicitor of the hypersensitive response in plants
WO1995017806A1 (en) 1993-12-29 1995-07-06 Philom Bios Inc. Methods and compositions for increasing the benefits of rhizobium inoculation to legume crop productivity
WO1996021358A1 (en) 1995-01-14 1996-07-18 Prophyta Biologischer Pflanzenschutz Gmbh Fungus isolate, preparation for combatting plant-pathogenic fungi, process for producing it and its use
US6406690B1 (en) 1995-04-17 2002-06-18 Minrav Industries Ltd. Bacillus firmus CNCM I-1582 or Bacillus cereus CNCM I-1562 for controlling nematodes
WO1998044140A1 (en) 1997-04-03 1998-10-08 Dekalb Genetics Corporation Glyphosate resistant maize lines
WO2000026345A1 (en) 1998-11-03 2000-05-11 Aventis Cropscience N.V. Glufosinate tolerant rice
EP1028125A1 (en) 1998-11-30 2000-08-16 Isagro Ricerca S.r.l. Dipeptide compounds having fungicidal activity and their agronomic use
EP1035122A1 (en) 1999-03-11 2000-09-13 Rohm And Haas Company Heterocyclic subsituted isoxazolidines and their use as fungicides
EP1201648A1 (en) 1999-08-05 2002-05-02 Kumiai Chemical Industry Co., Ltd. Carbamate derivatives and agricultural/horticultural bactericides
WO2001031042A2 (en) 1999-10-29 2001-05-03 Aventis Cropscience N.V. Male-sterile brassica plants and methods for producing same
WO2001041558A1 (en) 1999-12-08 2001-06-14 Aventis Cropscience N.V. Hybrid winter oilseed rape and methods for producing same
EP1122244A1 (en) 2000-02-04 2001-08-08 Sumitomo Chemical Company, Limited Uracil compounds and their use
CN1309897A (en) 2000-02-24 2001-08-29 沈阳化工研究院 Unsaturated oximino ether bactericide
US20070292854A1 (en) 2000-06-22 2007-12-20 Behr Carl F Corn event PV-ZMGT32(nk603) and compositions and methods for detection thereof
WO2002034946A2 (en) 2000-10-25 2002-05-02 Monsanto Technology Llc Cotton event pv-ghgt07(1445) and compositions and methods for detection thereof
WO2002036831A2 (en) 2000-10-30 2002-05-10 Monsanto Technology Llc Canola event pv-bngt04(rt73) and compositions and methods for detection thereof
US6994849B2 (en) 2001-03-14 2006-02-07 State Of Israel, Ministry Of Agriculture, Agricultural Research Organization Yeast Metschnikowia fructicola NRRL Y-30752 for inhibiting deleterious microorganisms on plants
WO2002100163A2 (en) 2001-06-11 2002-12-19 Monsanto Technology Llc Cotton event moni5985 and compositions and methods for detection
WO2003013224A2 (en) 2001-08-06 2003-02-20 Bayer Bioscience N.V. Herbicide tolerant cotton plants and methods for producing and identifying same
WO2003016303A1 (en) 2001-08-20 2003-02-27 Dainippon Ink And Chemicals, Inc. Tetrazoyl oxime derivative and agricultural chemical containing the same as active ingredient
WO2003066609A1 (en) 2002-02-04 2003-08-14 Bayer Cropscience Aktiengesellschaft Disubstituted thiazolyl carboxanilides and their use as microbicides
WO2003074491A1 (en) 2002-03-05 2003-09-12 Syngenta Participations Ag O-cyclopropyl-carboxanilides and their use as fungicides
WO2004011601A2 (en) 2002-07-29 2004-02-05 Monsanto Technology, Llc Corn event pv-zmir13 (mon863) plants and compositions and methods for detection thereof
WO2004039986A1 (en) 2002-10-29 2004-05-13 Syngenta Participations Ag Cot102 insecticidal cotton
WO2004049804A2 (en) 2002-11-29 2004-06-17 Syngenta Participations Ag Fungicidal combinations for crop potection
WO2004072235A2 (en) 2003-02-12 2004-08-26 Monsanto Technology Llc Cotton event mon 88913 and compositions and methods for detection thereof
WO2004074492A1 (en) 2003-02-20 2004-09-02 Kws Saat Ag Glyphosate tolerant sugar beet
WO2004083193A1 (en) 2003-03-17 2004-09-30 Sumitomo Chemical Company, Limited Amide compound and bactericide composition containing the same
CN1456054A (en) 2003-03-25 2003-11-19 浙江省化工研究院 Methoxy methyl acrylate compounds as bactericidal agent
WO2004099447A2 (en) 2003-05-02 2004-11-18 Dow Agrosciences Llc Corn event tc1507 and methods for detection thereof
WO2005061720A2 (en) 2003-12-11 2005-07-07 Monsanto Technology Llc High lysine maize compositions and methods for detection thereof
WO2005059103A2 (en) 2003-12-15 2005-06-30 Monsanto Technology Llc Corn plant mon88017 and compositions and methods for detection thereof
WO2005063721A1 (en) 2003-12-19 2005-07-14 E.I. Dupont De Nemours And Company Herbicidal pyrimidines
WO2005087772A1 (en) 2004-03-10 2005-09-22 Basf Aktiengesellschaft 5,6-dialkyl-7-amino-triazolopyrimidines, method for their production, their use for controlling pathogenic fungi and agents containing said compounds
WO2005087773A1 (en) 2004-03-10 2005-09-22 Basf Aktiengesellschaft 5,6-dialkyl-7-amino-triazolopyrimidines, method for their production, their use for controlling pathogenic fungi and agents containing said compounds
WO2005103301A2 (en) 2004-03-25 2005-11-03 Syngenta Participations Ag Corn event mir604
WO2005103266A1 (en) 2004-03-26 2005-11-03 Dow Agrosciences Llc Cry1f and cry1ac transgenic cotton lines and event-specific identification thereof
WO2005120234A2 (en) 2004-06-03 2005-12-22 E.I. Dupont De Nemours And Company Fungicidal mixtures of amidinylphenyl compounds
CA2471555A1 (en) 2004-06-18 2005-12-18 Thomas D. Johnson Controlling plant pathogens with fungal/bacterial antagonist combinations comprising trichoderma virens and bacillus amyloliquefaciens
WO2005123690A1 (en) 2004-06-18 2005-12-29 Basf Aktiengesellschaft 1-methyl-3-difluoromethyl-pyrazol-4-carbonic acid-(ortho-phenyl)-anilides, and use thereof as a fungicide
WO2005123689A1 (en) 2004-06-18 2005-12-29 Basf Aktiengesellschaft 1-methyl-3-trifluoromethyl-pyrazole-4-carboxylic acid (ortho-phenyl)-anilides and to use thereof as fungicide
WO2006015866A1 (en) 2004-08-12 2006-02-16 Syngenta Participations Ag Method for protecting useful plants or plant propagation material
WO2006039376A2 (en) 2004-09-29 2006-04-13 Pioneer Hi-Bred International, Inc. Corn event das-59122-7 and methods for detection thereof
WO2006087343A1 (en) 2005-02-16 2006-08-24 Basf Aktiengesellschaft Pyrazole carboxylic acid anilides, method for the production thereof and agents containing them for controlling pathogenic fungi
WO2006087325A1 (en) 2005-02-16 2006-08-24 Basf Aktiengesellschaft 5-alkoxyalkyl-6-alkyl-7-amino-azolopyrimidines, method for their production, their use for controlling pathogenic fungi and agents containing said substances
WO2006098952A2 (en) 2005-03-16 2006-09-21 Syngenta Participations Ag Corn event 3272 and methods of detection thereof
WO2006108674A2 (en) 2005-04-08 2006-10-19 Bayer Bioscience N.V. Elite event a2704-12 and methods and kits for identifying such event in biological samples
WO2006108675A2 (en) 2005-04-11 2006-10-19 Bayer Bioscience N.V. Elite event a5547-127 and methods and kits for identifying such event in biological samples
WO2006130436A2 (en) 2005-05-27 2006-12-07 Monsanto Technology Llc Soybean event mon89788 and methods for detection thereof
WO2006128573A2 (en) 2005-06-02 2006-12-07 Syngenta Participations Ag Ce43- 67b, insecticidal transgenic cotton expressing cry1ab
WO2007006670A1 (en) 2005-07-07 2007-01-18 Basf Aktiengesellschaft N-thio-anthranilamid compounds and their use as pesticides
CN1907024A (en) 2005-08-03 2007-02-07 浙江化工科技集团有限公司 Methoxyl group displacement methyl acrylate compound bactericidal agent
WO2007017186A1 (en) 2005-08-08 2007-02-15 Bayer Bioscience N.V. Herbicide tolerant cotton plants and methods for identifying same
WO2007082098A2 (en) 2006-01-13 2007-07-19 Dow Agrosciences Llc 6-(poly-substituted aryl)-4-aminopicolinates and their use as herbicides
WO2007090624A2 (en) 2006-02-09 2007-08-16 Syngenta Participations Ag A method of protecting a plant propagation material, a plant, and/or plant organs
WO2007129454A1 (en) 2006-05-08 2007-11-15 Kumiai Chemical Industry Co., Ltd. 1,2-benzisothiazole derivative, and agricultural or horticultural plant disease-controlling agent
WO2007140256A1 (en) 2006-05-26 2007-12-06 Monsanto Technology, Llc Corn plant and seed corresponding to transgenic event mon89034 and methods for detection and use thereof
WO2007142840A2 (en) 2006-06-03 2007-12-13 Syngenta Participations Ag Corn event mir162
WO2008002872A2 (en) 2006-06-28 2008-01-03 Pioneer Hi-Bred International, Inc. Soybean event 3560.4.3.5 and compositions and methods for the identification and/or detection thereof
WO2008013622A2 (en) 2006-07-27 2008-01-31 E. I. Du Pont De Nemours And Company Fungicidal azocyclic amides
WO2008112019A2 (en) 2006-10-30 2008-09-18 Pioneer Hi-Bred International, Inc. Maize event dp-098140-6 and compositions and methods for the identification and/or detection thereof
WO2008054747A2 (en) 2006-10-31 2008-05-08 E. I. Du Pont De Nemours And Company Soybean event dp-305423-1 and compositions and methods for the identification and/or detection thereof
WO2008122406A1 (en) 2007-04-05 2008-10-16 Bayer Bioscience N.V. Insect resistant cotton plants and methods for identifying same
WO2008151780A1 (en) 2007-06-11 2008-12-18 Bayer Bioscience N.V. Insect resistant cotton plants comprising elite event ee-gh6 and methods for identifying same
WO2009064652A1 (en) 2007-11-15 2009-05-22 Monsanto Technology Llc Soybean plant and seed corresponding to transgenic event mon87701 and methods for detection thereof
WO2009090181A2 (en) 2008-01-15 2009-07-23 Bayer Cropscience Sa Pesticide composition comprising a tetrazolyloxime derivative and a fungicide or an insecticide active substance
WO2009094442A2 (en) 2008-01-22 2009-07-30 Dow Agrosciences Llc 5-fluoro pyrimidine derivatives
WO2009103049A2 (en) 2008-02-14 2009-08-20 Pioneer Hi-Bred International, Inc. Plant genomic dna flanking spt event and methods for identifying spt event
WO2009102873A1 (en) 2008-02-15 2009-08-20 Monsanto Technology Llc Soybean plant and seed corresponding to transgenic event mon87769 and methods for detection thereof
WO2009111263A1 (en) 2008-02-29 2009-09-11 Monsanto Technology Llc Corn plant event mon87460 and compositions and methods for detection thereof
WO2009126473A1 (en) 2008-04-07 2009-10-15 Bayer Cropscience Lp Stable aqueous spore-containing formulation
WO2010037016A1 (en) 2008-09-29 2010-04-01 Monsanto Technology Llc Soybean transgenic event mon87705 and methods for detection thereof
WO2010077816A1 (en) 2008-12-16 2010-07-08 Syngenta Participations Ag Corn event 5307
WO2010069882A1 (en) 2008-12-17 2010-06-24 Syngenta Participations Ag Isoxazole derivatives for use as fungicides
WO2010080829A1 (en) 2009-01-07 2010-07-15 Basf Agrochemical Products B.V. Soybean event 127 and methods related thereto
US20100260735A1 (en) 2009-04-13 2010-10-14 University of Delawre Methods for promoting plant health
WO2010139271A1 (en) 2009-06-05 2010-12-09 中国中化股份有限公司 E-type phenyl acrylic ester compounds containing substituted anilino pyrimidine group and uses thereof
WO2011022469A2 (en) 2009-08-19 2011-02-24 Dow Agrosciences Llc Aad-1 event das-40278-9, related transgenic corn lines, and event-specific identification thereof
WO2011028657A1 (en) 2009-09-01 2011-03-10 Dow Agrosciences Llc Synergistic fungicidal compositions containing a 5-fluoropyrimidine derivative for fungal control in cereals
WO2011034704A1 (en) 2009-09-17 2011-03-24 Monsanto Technology Llc Soybean transgenic event mon 87708 and methods of use thereof
WO2011062904A1 (en) 2009-11-23 2011-05-26 Monsanto Technology Llc Transgenic maize event mon 87427 and the relative development scale
WO2011066384A1 (en) 2009-11-24 2011-06-03 Dow Agrosciences Llc Aad-12 event 416, related transgenic soybean lines, and event-specific identification thereof
WO2011084621A1 (en) 2009-12-17 2011-07-14 Pioneer Hi-Bred International, Inc. Maize event dp-004114-3 and methods for detection thereof
WO2011077514A1 (en) 2009-12-22 2011-06-30 三井化学アグロ株式会社 Plant disease control composition and method for controlling plant diseases by applying the composition
WO2011081174A1 (en) 2010-01-04 2011-07-07 日本曹達株式会社 Nitrogen-containing heterocyclic compound and agricultural/horticultural germicide
WO2011109395A2 (en) 2010-03-01 2011-09-09 University Of Delaware Compositions and methods for increasing biomass, iron concentration, and tolerance to pathogens in plants
WO2011135833A1 (en) 2010-04-28 2011-11-03 Sumitomo Chemical Company, Limited Plant disease control composition and its use
WO2011153186A1 (en) 2010-06-04 2011-12-08 Monsanto Technology Llc Transgenic brassica event mon 88302 and methods of use thereof
WO2012051199A2 (en) 2010-10-12 2012-04-19 Monsanto Technology Llc Soybean plant and seed corresponding to transgenic event mon87712 and methods for detection thereof
US20130236522A1 (en) 2010-11-10 2013-09-12 Kumiai Chemical Industry Co., Ltd. Microbial pesticidal composition
US8445255B2 (en) 2010-12-10 2013-05-21 Auburn University Inoculants including Bacillus bacteria for inducing production of volatile organic compounds in plants
US20120149571A1 (en) 2010-12-10 2012-06-14 Auburn University Inoculants Including Bacillus Bacteria for Inducing Production of Volatile Organic Compounds in Plants
WO2012082548A2 (en) 2010-12-15 2012-06-21 Syngenta Participations Ag Soybean event syht0h2 and compositions and methods for detection thereof
WO2012084812A1 (en) 2010-12-20 2012-06-28 Isagro Ricerca S.R.L. Aminoindanes amides having a high fungicidal activity and their phytosanitary compositions
WO2012134808A1 (en) 2011-03-30 2012-10-04 Monsanto Technology Llc Cotton transgenic event mon 88701 and methods of use thereof
WO2012165511A1 (en) 2011-05-31 2012-12-06 クミアイ化学工業株式会社 Method for controlling diseases in rice plant
WO2012168188A1 (en) 2011-06-07 2012-12-13 Bayer Intellectual Property Gmbh Active compound combinations
WO2013003558A1 (en) 2011-06-30 2013-01-03 Monsanto Technology Llc Alfalfa plant and seed corresponding to transgenic event kk 179-2 and methods for detection thereof
WO2013007767A1 (en) 2011-07-13 2013-01-17 Basf Se Fungicidal substituted 2-[2-halogenalkyl-4-(phenoxy)-phenyl]-1-[1,2,4]triazol-1-yl-ethanol compounds
WO2013010862A1 (en) 2011-07-15 2013-01-24 Basf Se Fungicidal alkyl-substituted 2-[2-chloro-4-(4-chloro-phenoxy)-phenyl]-1-[1,2,4]triazol-1-yl-ethanol compounds
WO2013016527A1 (en) 2011-07-26 2013-01-31 Dow Agrosciences Llc Insect resistant and herbicide tolerant soybean event 9582.814.19.1
WO2013016516A1 (en) 2011-07-26 2013-01-31 Dow Agrosciences Llc Insect resistant and herbicide tolerant breeding stack of soybean event pdab9582.814.19.1 and pdab4468.04.16.1
WO2013024010A1 (en) 2011-08-12 2013-02-21 Basf Se N-thio-anthranilamide compounds and their use as pesticides
WO2013024009A1 (en) 2011-08-12 2013-02-21 Basf Se N-thio-anthranilamide compounds and their use as pesticides
WO2013032693A2 (en) 2011-08-27 2013-03-07 Marrone Bio Innovations, Inc. Isolated bacterial strain of the genus burkholderia and pesticidal metabolites therefrom-formulations and uses
WO2013047441A1 (en) 2011-09-26 2013-04-04 日本曹達株式会社 Agricultural and horticultural bactericide composition
WO2013047749A1 (en) 2011-09-29 2013-04-04 三井化学アグロ株式会社 Production method for 4, 4-difluoro-3,4-dihydroisoquinoline derivative
WO2013092224A1 (en) 2011-12-21 2013-06-27 Basf Se Use of strobilurin type compounds for combating phytopathogenic fungi resistant to qo inhibitors
WO2013112527A1 (en) 2012-01-23 2013-08-01 Dow Agrosciences Llc Herbicide tolerant cotton event pdab4468.19.10.3
WO2013116251A2 (en) 2012-02-01 2013-08-08 E. I. Du Pont De Nemours And Company Fungicidal pyrazole mixtures
WO2013127704A1 (en) 2012-02-27 2013-09-06 Bayer Intellectual Property Gmbh Active compound combinations containing a thiazoylisoxazoline and a fungicide
WO2013162072A1 (en) 2012-04-27 2013-10-31 Sumitomo Chemical Company, Limited Tetrazolinone compounds and its use as pesticides
WO2013169923A2 (en) 2012-05-08 2013-11-14 Monsanto Technology Llc Corn event mon 87411
CN103387541A (en) 2012-05-10 2013-11-13 中国中化股份有限公司 Preparation method of substituted pyrazolylether compound
WO2014029697A1 (en) 2012-08-22 2014-02-27 Basf Se Fungicidal ternary mixtures comprising fluazinam
WO2014060177A1 (en) 2012-10-16 2014-04-24 Syngenta Participations Ag Fungicidal compositions
WO2014116854A1 (en) 2013-01-25 2014-07-31 Pioneer Hi-Bred International, Inc. Maize event dp-033121-3 and methods for detection thereof
WO2014124369A1 (en) 2013-02-11 2014-08-14 Bayer Cropscience Lp Compositions comprising a streptomyces-based biological control agent and a fungicide
WO2014179276A1 (en) 2013-05-02 2014-11-06 J.R. Simplot Company Potato cultivar j55
WO2014178913A1 (en) 2013-05-02 2014-11-06 J.R. Simplot Company Potato cultivar f10
WO2014178941A1 (en) 2013-05-02 2014-11-06 J.R. Simplot Company Potato cultivar j3
WO2014178910A1 (en) 2013-05-02 2014-11-06 J.R. Simplot Company Potato cultivar e12
WO2014201235A2 (en) 2013-06-14 2014-12-18 Monsanto Technology Llc Soybean transgenic event mon87751 and methods for detection and use thereof
WO2015053998A1 (en) 2013-10-09 2015-04-16 Monsanto Technology Llc Transgenic corn event mon87403 and methods for detection thereof
WO2015065922A1 (en) 2013-10-28 2015-05-07 Dexcom, Inc. Devices used in connection with continuous analyte monitoring that provide the user with one or more notifications, and related methods
EP2865265A1 (en) 2014-02-13 2015-04-29 Bayer CropScience AG Active compound combinations comprising phenylamidine compounds and biological control agents
WO2015142571A1 (en) 2014-03-20 2015-09-24 Monsanto Technology Llc Transgenic maize event mon 87419 and methods of use thereof
WO2016020371A1 (en) 2014-08-04 2016-02-11 Basf Se Antifungal paenibacillus strains, fusaricidin-type compounds, and their use
WO2016156241A1 (en) 2015-04-02 2016-10-06 Syngenta Participations Ag Herbicidal mixtures
WO2016162265A1 (en) 2015-04-07 2016-10-13 Syngenta Participations Ag Herbicidal mixtures
WO2016183445A1 (en) 2015-05-14 2016-11-17 J.R. Simplot Company Potato cultivar v11
WO2017062825A1 (en) 2015-10-08 2017-04-13 J.R. Simplot Company Potato cultivar y9
WO2017062831A1 (en) 2015-10-08 2017-04-13 J.R. Simplot Company Potato cultivar x17
WO2018177894A1 (en) 2017-03-31 2018-10-04 Syngenta Participations Ag Fungicidal compositions
US20200128828A1 (en) * 2017-07-05 2020-04-30 BASF Agro B.V. Fungicidal mixtures of mefentrifluconazole
WO2019166257A1 (en) * 2018-03-01 2019-09-06 BASF Agro B.V. Fungicidal compositions of mefentrifluconazole
WO2019173665A1 (en) 2018-03-08 2019-09-12 Dow Agrosciences Llc Picolinamides as fungicides
WO2020120206A2 (en) * 2018-12-11 2020-06-18 BASF Agro B.V. Method to control a phythopatogenic fungi selected from phakopsora spp. in soybeans by compositions comprising mefentrifluconazole
WO2020212513A1 (en) 2019-04-18 2020-10-22 Syngenta Crop Protection Ag Process for the preparation of microbiocidal oxadiazole derivatives
WO2021231011A1 (en) * 2020-05-15 2021-11-18 Dow Agrosciences Llc Synergistic fungicidal interactions of a picolinamide fungicide with other fungicides against asian soybean rust

Non-Patent Citations (18)

* Cited by examiner, † Cited by third party
Title
APPL. ENVIRON. MICROBIOL., vol. 73, no. 8, 2007, pages 2635
BIOCONTROL SCIENCE TECHNOL, vol. 22, no. 7, 2012, pages 747 - 761
BIOCONTROL, vol. 57, 2012, pages 687 - 696
BIOL. FERTIL. SOILS, vol. 47, 2011, pages 81 - 89
CAN. J. PLANT SCI., vol. 48, no. 6, 1968, pages 587 - 94
CAN. J. PLANT SCI., vol. 78, no. 1, 1998, pages 91 - 102
CAN. J. PLANT. SCI., vol. 70, 1990, pages 661 - 666
COLBY, S.R.: "Calculating synergistic and antagonistic responses of herbicide combinations", WEEDS, vol. 15, 1967, pages 20 - 22, XP001112961
CROP PROTECTION, vol. 27, 2008, pages 352 - 361
EUR. J. SOIL BIOL., vol. 45, 2009, pages 28 - 35
FEDERAL REGISTER, vol. 76, no. 22, 2 February 2011 (2011-02-02), pages 5808
FERTILIZER RES, vol. 39, 1994, pages 97 - 103
INT. J. SYST. EVOL. MICROBIOL., vol. 66, 2016, pages 1212 - 1217
J. INVERTEBRATE PATHOL., vol. 107, 2011, pages 112 - 126
J. PLANT DIS. PROT., vol. 105, 1998, pages 181 - 197
MCCUTCHEON: "Emulsifiers & Detergents", vol. 1, 2008, MCCUTCHEON'S DIRECTORIES
SCIENCE, vol. 257, 1992, pages 85 - 88
SYSTEM. APPL. MICROBIOL., vol. 27, 2004, pages 372 - 379

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024018016A1 (en) 2022-07-21 2024-01-25 Syngenta Crop Protection Ag Crystalline forms of 1,2,4-oxadiazole fungicides

Also Published As

Publication number Publication date
AR124113A1 (en) 2023-02-15

Similar Documents

Publication Publication Date Title
CA2927784C (en) Use of pesticidal active carboxamide derivative in soil and seed application and treatment methods
JP6437538B2 (en) Bactericidal mixture I containing strobilurin fungicides
CN105072915A (en) Synergistic compositions comprising a bacillus subtilis strain and a biopesticide
WO2020064480A1 (en) Pesticidal mixture comprising a mesoionic compound and a biopesticide
WO2019057660A1 (en) Indole and azaindole compounds with substituted 6-membered aryl and heteroaryl rings as agrochemical fungicides
US11917995B2 (en) Fungicidal compositions of mefentrifluconazole
EP3903583A1 (en) Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors iii
WO2018202737A1 (en) Fungicidal mixtures comprising triazole compounds
EP3903582A1 (en) Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors ii
EP3903581A1 (en) Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors i
WO2018050421A1 (en) Fungicidal mixtures i comprising quinoline fungicides
EP3903584A1 (en) Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors iv
WO2022106304A1 (en) Compositions comprising mefentrifluconazole
US11839214B2 (en) Fungicidal mixture comprising substituted pyridines
WO2022017836A1 (en) Fungicidal compositions comprising (r)-2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1- (1,2,4-triazol-1-yl)propan-2-ol
EP4242198A1 (en) Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors xiv
WO2022090069A1 (en) Compositions comprising mefenpyr-diethyl
WO2021249800A1 (en) Substituted [1,2,4]triazole compounds as fungicides
WO2023072672A1 (en) Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors xi
WO2023072670A1 (en) Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors x
WO2023072671A1 (en) Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors ix
EP4236691A1 (en) Compositions comprising mefentrifluconazole
EP3939961A1 (en) Strobilurin type compounds and their use for combating phytopathogenic fungi
EP3960727A1 (en) Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors vi
EP3970494A1 (en) Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors viii

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21801962

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21801962

Country of ref document: EP

Kind code of ref document: A1