RU2119700C1 - Способ и установка для комбинированного производства электрической и механической энергии - Google Patents

Способ и установка для комбинированного производства электрической и механической энергии Download PDF

Info

Publication number
RU2119700C1
RU2119700C1 RU93032037A RU93032037A RU2119700C1 RU 2119700 C1 RU2119700 C1 RU 2119700C1 RU 93032037 A RU93032037 A RU 93032037A RU 93032037 A RU93032037 A RU 93032037A RU 2119700 C1 RU2119700 C1 RU 2119700C1
Authority
RU
Russia
Prior art keywords
gas
turbine
fuel cell
exhaust gas
paragraphs
Prior art date
Application number
RU93032037A
Other languages
English (en)
Other versions
RU93032037A (ru
Inventor
Хендрик Анкерсмит Ян
Хендрикс Рудольф
Йозеф Мария Йоханнес Бломен Лео
Original Assignee
Маннесман АГ
К.Т.И.Гроуп Б.В.
Аса Б.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Маннесман АГ, К.Т.И.Гроуп Б.В., Аса Б.В. filed Critical Маннесман АГ
Publication of RU93032037A publication Critical patent/RU93032037A/ru
Application granted granted Critical
Publication of RU2119700C1 publication Critical patent/RU2119700C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/067Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0827Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel at least part of the fuel being a recycle stream
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0872Methods of cooling
    • C01B2203/0883Methods of cooling by indirect heat exchange
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/141At least two reforming, decomposition or partial oxidation steps in parallel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/84Energy production
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Sustainable Energy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Fuel Cell (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Brushes (AREA)
  • Vending Machines For Individual Products (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Control Of Multiple Motors (AREA)
  • Hybrid Cells (AREA)

Abstract

Изобретение относится к области комбинированного производства механической и электрической энергии с использованием топливных элементов. Техническим результатом является повышение КПД. Согласно изобретению при эндотермической реакции реформирования соединений углеводорода получают газ, содержащий H2, часть этого газа сжигают для получения выхлопного газа, сжимают кислородсодержащий газ и подают на стадию сгорания. Энергию получают путем подвода выхлопного газа по меньшей мере в одну газовую турбину. Расширившийся в газовой турбине выхлопной газ применяют для косвенного нагрева эндотермической реакции. Часть топливного газа, полученного в эндотермической реакции реформирования, подают в систему топливных элементов в качестве анодного газа для получения электроэнергии, а отработанный анодный газ используют для получения выхлопного газа путем его сжигания. 2 с. и 42 з.п. ф-лы, 5 ил., 1 табл.

Description

Изобретение относится к способу комбинированного производства электрической и механической энергии согласно ограничительной части пункта 1 формулы изобретения, а также к устройству для его осуществления.
На многих тепловых электростанциях для получения электрической энергии сначала производят в котельной установке путем сжигания ископаемого топлива перегретый пар, который расширяется в паровой турбине и при этом преобразуется в механическую энергию. Паровая турбина подключена к электрогенераторам таким образом, что эта механическая энергия преобразуется в электрическую. Последнее происходит при коэффициенте полезного действия свыше 90%. В противоположность этому коэффициент полезного действия преобразования химически связанной в применяемом топливе энергии в механическую значительно ниже, так как коэффициент полезного действия даже крупных турбин составляет максимально около 37%, при этом еще следует учесть потери в отопительных котлах.
Поэтому до сих пор при сжигании топлива лишь около 35% выделяющегося при этом тепла эффективно использовалось для производства энергии, в то время как около 65% терялось или использовалось только для целей обогрева.
Значительное повышение механического или электрического коэффициента полезного действия в более отдаленные времена обеспечивалось за счет того, что при преобразовании тепловой энергии в механическую применялась комбинация газовых и паровых турбин, причем горячие газы сгорания сначала расширялись в газовой турбине, при этом тепло отходящих газов после этих газовых турбин использовалось для производства пара для паровых турбин. Дополнительные возможности в отношении улучшения показателей состоят в том, что расширяющийся пар после паровой турбины возвращается в камеры сгорания газовых турбин и за счет этого для привода газовых турбин создается больший объемный поток. Такие мероприятия позволяют получить коэффициент полезного действия преобразования термической энергии в механическую на более крупных установках /свыше 50 МВТ/ порядка 48 - 50%.
Из Европейской заявки EPO 318122 A2 известны способ и установка для получения механической энергии из газообразного топлива, в которой механическая энергия, используемая для выработки тока, выдается не только частично паровой турбиной, но и газовой турбиной. Эта газовая турбина, которая, в частности, имеет производительность от 50 до 3000 КВт, имеет коэффициент полезного действия в пересчете на применяемую тепловую энергию /нижнее значение/, составляющий около 42%. При этом предусматривается, что сначала воздух для сжигания топлива сжимается в компрессоре. Затем сжатый воздух для сжигания топлива подогревается в теплообменнике для отходящих газов, частично расширяется в первой газовой турбине, которая приводит в движение только компрессор, и затем подводится в камеру сгорания, в которой с этим воздухом сжигается топливо.
Горячие газы, возникающие при сжигании, приводят вторую газовую турбину, которая вырабатывает собственно используемую механическую энергию. Отходящие от второй газовой турбины еще горячие газы используются для работы теплообменника отходящих газов для подогрева сжатого воздуха для сжигания топлива.
В неопубликованной заявке ФРГ 40 03 210.8 заявителем уже предлагается способ получения механической энергии, которая преобразуется электрическим генератором в электрическую энергию. Этот способ предусматривает, что исходное топливо на основе соединений углеводорода сначала преобразуется в преобразователе пара и высококачественный с точки зрения энергетики обогащенный H2 газ до того, как этот обогащенный H2 газ сжигают в одной или нескольких камерах сгорания. Сжигание осуществляют с помощью сжатого, содержащего O2, газа /например, сжатого воздуха/. Полученный горячий выхлопной газ расширяется в газовой турбине, которая производит отводимую механическую энергию, при этом он охлаждается и в заключение используется для косвенного нагрева риформинг-пара. Выхлопной газ, охлаждаемый в паровом преобразователе, используется затем еще и для нагрева сжатого воздуха, подаваемого на сжигание в следующем косвенном теплообменнике. За счет этого сжатый воздух для сжигания получает столько энергии, что он частично расширяется в газовой турбине до его использования на сжигание топлива и тем самым выделяет энергию, необходимую для получения сжатого воздуха. В другом варианте осуществления этого способа сжатый и подогретый косвенным теплообменом воздух для сжигания топлива сначала подается в камеру сгорания и там сгорает с частью обогащенного H2 газа, благодаря чему для расширения в газовой турбине имеется еще горячий газ.
Этот способ позволяет повысить коэффициент полезного действия при преобразовании энергии, содержащейся в обычном топливе /например, природный газ или биогаз/ /нижнее значение теплоты сгорания Hu/ в механическую энергию с обычными расходами на небольших установках /мощностью до 3 МВт/, по крайней мере до 50%, а на больших установках, по крайней мере, до 55%.
В обычном случае для такого способа предусматривается, что производимая механическая энергия в конечном счете превращается в электрическую. В этой форме выполнения проще всего передавать энергию в любое место и она сравнительно просто может затем снова преобразоваться с высоким коэффициентом полезного действия в энергию другой формы /например, механическую или тепловую/. С другой стороны, следует принять во внимание, что необходимы значительно большие расходы на то, чтобы исключить образование CO2 и других вредных веществ /в особенности NOx; SOx/ при преобразовании топлива в электрический ток или механическую энергию. Это требование в отношении составляющей CO2, в случае если не хотят нести дополнительные расходы на отделение CO2 из возникающих отходящих газов, может быть удовлетворено в том случае, если преобразование химически связанной в применяемом топливе энергии осуществляется более эффективным способом, нежели это делалось раньше. Поэтому необходимость повышения коэффициента полезного действия при преобразовании энергии вызывается не столько чисто экономическими аспектами, сколько необходимостью защиты окружающей среды.
Задачей изобретения является поэтому создание способа и установки для осуществления этого способа, который обеспечит преобразование химически связанной в топливе энергии /нижнее значение теплоты сгорания Hu/ в электрическую и механическую энергию, с коэффициентом полезного действия по меньшей мере 60%, по возможности даже больше 65%.
Эта задача решается изобретением. Способ может реализоваться предпочтительным образом отличительными признаками подпунктов 2 - 21. Установка для осуществления этого способа имеет признаки пункта 22 формулы изобретения и может реализоваться предпочтительным образом отличительными признаками подпунктов 23 - 44.
В основу изобретения положена задача сначала превратить обычное топливо путем эндотермической реакции /например, риформинг-пара/ с использованием отходящего тепла в высокоценное топливо, содержащее H2, и затем, по крайней мере, частично использовать в качестве топлива в топливном элементе для непосредственной выработки электроэнергии. При этом большая часть содержания H2 расходуется на окисление. Оставшийся H2 и остальные горючие компоненты /CO и непрореагировавшие соединения углеводорода/ первоначально обогащенного газа, содержащие H2, затем подводятся на сгорание топлива. Получающийся при сгорании выхлопной газ может состоять из смеси различных, образующихся в процессе горения, газовых потоков и дополнительно обогащаться частями первично примененного топлива. Давление возникающих при этом горячих выхлопных газов уменьшается в системе газовых турбин и для производства механической или /при подключении к электрогенератору/ дополнительной электрической энергии. При этом существенным является то, что высвобождающаяся в процессе горения тепловая энергия за счет систематического использования энергии отходящих газов на максимально возможном уровне в значительной мере преобразуется в те формы энергии, которые являются желательными. Это осуществляется, в частности, за счет того, что выхлопной газ, давление которого падает в системе газовых турбин, или часть потока этого выхлопного газа сначала используется для нагрева в процессе преобразования пара и после этого применяется еще и для нагрева сжатого кислородсодержащего газа, необходимого для получения выхлопного газа.
Перед отводом в значительной мере охлажденных выхлопных газов в окружающую атмосферу они, кроме производства электрической и механической энергии путем тепло-силового взаимодействия, могут применяться для упомянутых целей обогрева /например, обогрева зданий, теплиц и т.д./, за счет чего еще больше повышается использование энергии. В пересчете на нижнее значение теплотворной способности применяемого топлива электрический КПД способа согласно изобретению может быть повышен до значения от 60 до 80%, в зависимости от формы выполнения /обычное значение 65 - 75%/. Изобретение может выполняться с одной или несколькими газовыми турбинами, с одной или несколькими установками для преобразования пара, с одним или несколькими топливными элементами, с одной или несколькими камерами сгорания для получения необходимого газа сгорания. Дополнительно можно предусмотреть также один или несколько парогенераторов и одну или несколько паровых турбин. При этом одинаковые генераторы могут включаться последовательно или параллельно. Под термином "топливный элемент" в данном контексте понимается любая комбинация подключенных совместно топливных элементов.
Ниже изобретение поясняется более подробно с помощью форм выполнения, представленных на фиг. 1 - 5. На фигурах схематически представлена вся установка или ее отдельные части.
Установка согласно изобретению, показанная на фиг. 1, состоит из компрессорной системы K с двумя ступенями сжатия K1 и K2, где кислородсодержащий газ /например, воздух/ сжимается до более высокого давления. Этот газ поступает в трубопровод 1 и подается через трубопровод 2 до первой ступени сжатия K1 до второй ступени сжатия K2.
В трубопровод 2 включен теплообменник, который воспринимает промежуточное охлаждение частично сжатого кислородсодержащего газа и отдает наружу отобранное тепло через охлаждающий контур 3. Отобранное тепло может использоваться в случае потребности для целей обогрева вне самого процесса.
В принципе, является также возможным использовать это тепло, например, для предварительного подогрева воды в процессе производства пара. Само собой разумеется, что компрессорная система K может быть выполнена одноступенчатой или более чем с двумя ступенями.
Сжатый кислородсодержащий газ выходит из второй ступени сжатия K2 через трубопровод 4 и попадает в косвенно обогреваемый теплообменник W. После повышения температуры кислородсодержащий газ подается через трубопровод 5 в камеру сгорания B, в которой происходит экзотермическая реакция с газом, получающимся из нагретого сжатого выхлопного газа, содержащего H2 и, в случае необходимости, другие горючие составляющие, подводимого через трубопровод 15. Дополнительно с содержащим H2 газом можно также /по меньшей мере, временами/ сжигать первичное топливо /например, природный газ/. Горячий выхлопной газ выходит из камеры сгорания B через трубопровод 6 и подводится к газовой турбине T приблизительно при рабочем давлении топливного элемента C. Механическая энергия, создаваемая в газовой турбине T, частично используется /например, через механические соединительные средства/ для привода компрессорной системы K, а другая часть используется для выработки электрического переменного тока на подключенном генераторе 6.
Частично потерявший давление, но все еще горячий выхлопной газ направляется через трубопровод 2 в качестве нагревательной среды косвенно обогреваемого паропреобразователя R. Паропреобразователь R загружается через трубопровод 13 газообразным углеводородным веществом /первичное топливо/ и паром, вследствие чего получается газ, содержащий H2, который отводится через трубопровод 14. Охлаждающийся дальше в паропреобразователе R выхлопной газ все еще обладает значительным содержанием тепла. Поэтому он направляется через трубопровод 10 в теплообменник W и вызывает там уже упомянутое повышение температуры находящегося под повышенным давлением кислородсодержащего газа. После этого выхлопной газ может отводиться.
Само собой разумеется, что при этом происходит использование остаточной тепловой энергии /например, для процесса предварительного подогрева воды или отопления зданий/. В рассматриваемом примере возможно и другое использование перед окончательным отводом. Оно необходимо в том случае, когда сгорание в камере сгорания B происходит при избытке O2. Охлажденный в значительной мере выхлопной газ может подводиться через трубопровод 11 к топливному элементу C в качестве катодного газа и покрывать его потребность в O2. Только после этого осуществляется отвод по трубопроводу 12.
Необходимый в топливном элементе FC в качестве горючего газа обогащенный H2 газ подводится по трубопроводу 14 в анодную камеру топливного элемента FС. За счет электрохимического окислительного процесса в топливном элементе FC возникает электрический постоянный ток, который отводится по проводу 16 и, в случае необходимости, может преобразовываться с помощью не показанного на чертеже электропреобразователя в переменный ток. Постоянный ток может подводиться также непосредственно к генератору 6.
Так как в топливном элементе превращению подвергается только часть содержания обогащенного H2 газа и могут содержаться еще и другие горючие компоненты газа /например, CO и не вступающие в реакцию углеводородные вещества/, анодный газ подается в камеру сгорания B из топливного элемента FC через трубопровод 15 в качестве горючего газа. Дополнительно в камеру сгорания B может подводиться еще и часть первичного топлива, то есть без предварительного превращения в эндотермической реакции, для покрытия потребности в тепле. Это является целесообразным особенно в начале процесса и позволяет упростить регулирование. Для того чтобы довести давление анодного газа до необходимого давления в камере сгорания B, в трубопровод 15 может быть встроен не показанный на чертеже компрессор.
Преобразователь R мог бы также работать с соответствующим избыточным давлением в реакционной камере для того, чтобы анодный газ поступал в трубопровод 14 с достаточным давлением. Однако это требует конструктивных изменений в топливных элементах FC, которые обеспечивают соответствующий перепад давления между анодной и катодной полостями.
Работа топливных элементов осуществляется предпочтительно таким образом, чтобы остающейся теплотворной способности анодного газа было достаточно для того, чтобы обеспечить обогрев паропреобразователя R и чтобы можно было произвести энергию, необходимую для компрессорной системы K помимо механической энергии на газовой турбине T. Расположение системы топливных элементов FC в конце процесса со стороны выхода отходящих газов является предпочтительным в том случае, когда применяются топливные элементы со сравнительно низкими рабочими температурами. Особенно подходят топливные элементы с электролитами на базе фосфорной кислоты /PAFC/, щелочи /AFC/ или твердых полимеров /SP/E/FC/.
На фиг. 2 - 5 схематически показаны другие формы выполнения изобретения, которые в основном соответствуют выполнению, показанному на фиг. 1.
Функциональные узлы установки обозначены теми же самыми позициями. Ниже подробно остановимся только лишь на отличиях этих выполнений от предыдущего.
На фиг. 2 показаны две газовые турбины, первая - КТ - из которых предназначена для привода компрессорной системы K, в то время как вторая газовая турбина - T - производит механическую энергию. В принципе, и при таком разделении функций между газовыми турбинами КТ и T, в отличие от показанного на чертеже выполнения, является возможным, чтобы обе турбины располагались на общем валу. Существенным отличием от фиг.1 является то, что камера сгорания B расположена за турбиной КТ для привода компрессора. Поэтому турбина КТ для привода компрессора приводится лишь за счет частичного падения давления еще достаточно нагретого в теплообменнике W сжатого воздуха сгорания. Следующим отличием является то, что топливные элементы FC расположены не со стороны вывода из процесса отходящих газов. Отходящий газ направляется, в частности, через трубопровод 10d непосредственно после выхода из нагревательной камеры паропреобразователя R в катодную камеру системы топливных элементов FC. Только после этого он попадает через трубопровод 12a в теплообменник W для косвенного нагрева сжатого воздуха для сжигания топлива. Такое расположение является предпочтительным для топливных элементов с более высокой рабочей температурой /например, для топливных элементов плавкой углекислой солью (MCFC)/ или топливных элементов на базе твердых окислителей /SOFC/.
Вариант осуществления способа согласно фиг. 3 имеет так же, как и способ согласно фиг. 2, две раздельные газовые турбины КТ и Т. Однако сжигание горючих компонентов анодного газа системы топливных элементов FC осуществляется в двух камерах сгорания B1 и B2, расположенных непосредственно перед обеими газовыми турбинами КТ и Т.
Так как проходящий через камеру сгорания B1 сжатый газ, который теряет давление в турбине КТ, предназначенной для привода компрессора, покрывает общую потребность O2 на ведение процесса, можно рассчитывать на более высокий уровень энергии, чем это практически возможно в случае, когда повышение температуры осуществляется только лишь за счет косвенного теплообмена в теплообменнике, что позволяет использовать эту газовую турбину КТ для получения механической или электрической энергии. Поэтому на чертеже показан подсоединенный к турбине КТ для привода компрессора дополнительный электрический генератор GK /заштрихован/.
Другая возможная модификация способа согласно изобретению заключается в использовании не только нескольких газовых турбин и камер сгорания, но и нескольких преобразователей пара. Последние могут быть включены, например, параллельно. Но особенно предпочтительным является их последовательное включение, как это показано штриховой линией на фиг. 3. Первый преобразователь пара R1 включен непосредственно за турбиной КТ для привода компрессора. Охлажденный газ для сжигания топлива, вытекающий из нагревательной камеры преобразователя пара P1, имеющий еще значительное содержание O2, подводится по трубопроводу 8 во вторую камеру сгорания B2. В этой камере сгорания B2 сгорает частичный поток 15b анодного газа, отводимого по трубопроводу 15, в то время как другой частичный поток 15a сжимается в первой камере сгорания B1. В процессе сгорания во второй камере сгорания B2 возникает поток горячих выхлопных газов, который является значительно большим по количеству потоком, чем поток выхлопных газов, образующийся в первой камере сгорания B1.
Он направляется по трубопроводу 9 к газовой турбине T и там расширяется до давления, более высокого, чем рабочее давление топливного элемента FC, и отводится дальше по трубопроводу 10. Затем выхлопной газ направляется не через патрубок 10a трубопровода 10, а поступает через показанный штриховой линией трубопровода 10c в нагревательную камеру второго преобразователя пара 2 и после отдачи тепла возвращается через трубопровод 10 в патрубок 10b трубопровода 10. Этот трубопровод 10 ведет непосредственно к теплообменнику W так же, как и на фиг. 1. Снабжение преобразователя пара R2 газообразным углеводородом и паром осуществляется по показанному штриховой линией трубопроводу 13a. Обогащенный H2 газ, получающийся в преобразователе пара R2, подается через трубопровод 14a к трубопроводу 14 и поступает через патрубок 14b вместе с полученным в преобразователе пара R1 обогащенным H2 газом в анодную камеру системы, топливных элементов FC, которая, само собой разумеется, может состоять из нескольких отдельных топливных элементов.
Схема, изображенная на фиг. 3, содержит еще две другие формы выполнения способа, которые могли бы быть предпочтительными в некоторых случаях. Так, например, газ, богатый H2, перед подводом к топливному элементу FC может быть подвергнут обменной реакции CO/H2 в одном или нескольких реакторах 5. Она представляет собой экзотермическое восстановление, причем за счет превращения CO с применением водяного пара в CO2 и H2 происходит повышение содержания H2. Кроме того, целесообразно предусмотреть в топливных элементах, чувствительных к определенным компонентам газа /например, CO/, соответствующую очистку газа P /например, с помощью мембран или адсорбцией под переменным давлением PSA/. Такая очистка газа является предпочтительной для повышения КПД топливных элементов. Отделенный газ в том случае, если он содержит горючие компоненты, подается предпочтительно непосредственно в камеры сгорания B1 и B2, что на чертеже не показано.
На фиг. 4 схематически показана еще одна форма выполнения изобретения, включающая дополнительный процесс в паровой турбине для производства энергии, благодаря чему значительно повышается общий КПД преобразования связанной в первичном топливе энергии /нижнее значение теплотворной способности/, в механическую и электрическую энергию до значений порядка 70 - 80%. В отличие от фиг. 3 сжатие воздуха для сжигания топлива осуществляется в компрессорной системе K без промежуточного охлаждения, то есть одноступенчато. Для того чтобы тем не менее достичь высокой степени сжатия, предпочтительно всасывать через трубопровод 1 уже предварительно охлажденный воздух. Кроме того, в трубопровод 14b, в которой подводятся полученные в преобразователе пара R1 и R2 обогащенные H2 газовые потоки /трубопроводы 14 и 14a/, включен теплообменник 1, который осуществляет косвенный теплообмен обогащенного H2 газа для предварительного нагрева горючего, содержащего H2, газа, подведенного через трубопроводы 15 /от топливных элементов FC/ и 17 /от очистки газа P/, который подводится через трубопровод 15a и 15b в камеру сгорания преобразователей пара 1 и 2.
Кроме того, фиг. 4 отличается от фиг. 3 двумя парогенераторами D1 и D2, в которых путем косвенного теплообмена, посредством горячего газа сгорания, производится свежий пар, который можно применять с преимуществом для получения смеси углеводород /пар/ материала, применяемого для преобразования/ /на чертеже не показано/. В качестве других возможностей применения получаемого пара следует рассмотреть охлаждение лопаток турбины и ввод пара 1 в камеры сгорания B1 и B2 для увеличения массовых потоков.
Если в трубопровод 11 и 11a включен парогенератор D1, а выхлопной газ охлаждают примерно до рабочей температуры топливных элементов FC, парогенератор D2 встраивается в трубопровод 12c, через который направляется только часть катодного отходящего газа /трубопровод 12a/. Другая часть катодного отходящего газа поступает в виде дополнительного потока через трубопровод 12b в качестве среды нагрева в косвенно нагреваемый воздухоподогреватель LW2, подаваемый после этого опять в трубопровод 12c. В этой форме выполнения изобретения содержания кислорода в выхлопном газе, как правило, недостаточно для обеспечения снабжения системы топливных элементов FC только лишь катодным газом. Поэтому в катодную камеру системы топливных элементов FC дополнительно подводится через трубопровод 18 поток свежего воздуха. Для того чтобы нагреть этот дополнительный поток воздуха, который доводится в компрессоре V до рабочего давления, кроме воздухоподогревателя LW2 предусмотрен еще один воздухоподогреватель LW1, который встроен со стороны нагрева в трубопровод 12, через который отводят в значительной мере охлажденный газ сгорания.
Эти варианты изобретения могут осуществляться в рамках форм выполнения согласно фиг. 1 - 3. Существенного прогресса в отношении достижения максимально возможного коэффициента полезного действия преобразования энергии достигают однако за счет дополнительного встраивания процесса, происходящего в паровых турбинах согласно изобретению. Для этого на фиг. 4 имеется дополнение в виде штрихпунктирной линии, относящееся преимущественно к установке.
Прежде чем газ сгорания, давление которого после расширения упало, после прохождения через парогенератор D2 или воздухоподогреватель LW2 поступит в воздухоподогреватель LW1, он разделяется в разделительной установки МД /например, в мембранном сите/ на два разных частичных потока, а именно: на истинно поток отходящих газов, отводимый через трубопровод 12, и поток пара, который отводится из разделительной установки МД через отдельный трубопровод 23. Существенным является то, что этот разделительный агрегат МД отделяет долю воды, содержащейся в выхлопном газе не в жидкой форме /как, например, с помощью конденсатора/, а в парообразной форме. Этот пар подается из-за его низкого давления через соответствующий вход для пара с низким давлением на паровую турбину ТД и там расширяется до разрежения. Это становится возможным потому, что конденсатор C, подключенный к паровой турбине ТД через трубопровод 19, работает под вакуумом. Без отделения газообразной составляющей потока выхлопного газа в разделительном агрегате МД было бы невозможно поддержать необходимый вакуум в конденсаторе технически и экономически целесообразным образом.
В паровую турбину ТД, кроме того, через трубопровод 22 подводится пар более высокого давления. Этот пар вырабатывается в рамках охлаждения системы топливных элементов FC, которые на других фигурах специально не показаны и не поясняются. В качестве охлаждающей жидкости для этого применяется часть конденсата, полученного в конденсаторе C, который подводится через трубопровод 20 и трубопровод 22a в систему охлаждения системы топливных элементов FC. Избыточный конденсат может отводиться через трубопровод 21 и применяться, например, для производства пара в парогенераторах D1 и D2 или в виде ценной деминерализированной соды в других процессах. Так как способ согласно изобретению основан на непрерывном окислении H2 с получением H2O, является неизбежным образование избытка воды и тем самым получение ценного побочного продукта.
Механическая энергия, получающаяся при расширении пара низкого давления и пара высокого давления, преобразуется в данном случае с помощью подключенного к паровой турбине ТД электрического генератора GD в переменный ток. Само собой разумеется, оба генератора GD и G могут быть встроены в один агрегат или быть механически связанными друг с другом.
Пар, производимый в парогенераторах D1 и D2, целесообразно применять, в частности, для уже упомянутого охлаждения лопаток турбины и ввода в камеры сгорания B1 и B2 /а также для регулирования температуры выхлопного газа/. Само собой разумеется, что полученный пар может применяться вне способа согласно изобретению. Во всяком случае, при этом неизбежно уменьшается доля химически связанной в первичном топливе энергии, преобразуемой в механическую или электрическую энергию.
В формах выполнения, показанных на фиг. 1 - 4, всегда исходят из того, что катодный отходящий газ /например, типа PAFC/, содержит долю H2O, возникающей в системе топливных элементов FC. Но это происходит не всегда. Поэтому на фиг. 5 показана часть общей схемы установки, работающей согласно варианту, при котором система топливных элементов работает на основе щелочных электролитов /AFC/. В этом случае, через трубопровод 14 в анодную камеру снова подводится газ, обогащенный H2.
Водяной пар, образующийся в топливном элементе FC, выделяется из него вместе с анодным газом по трубопроводу 15. Поэтому для извлечения пара к трубопроводу 15 подключен разделительный агрегат MD2. Отделенный пар может подаваться трубопроводом 23b, например, снова в паровую турбину, не показанную на чертеже, в то время как газообразная часть поступает по трубопроводу 15c в камеры сгорания /не показанные на чертеже/ для использования его горючих составляющих. Так как газ, выходящий из камер сгорания, содержит составные элементы, которые отрицательно сказываются на сроке службы щелочных топливных элементов, этот выхлопной газ целесообразно применять не как катодный газ для снабжения кислородом O2 топливного элемента FC. Для этого целесообразно использовать свежий воздух, который сжимается в компрессоре V до рабочего давления и предварительно косвенно подогревается в воздухоподогревателе LW с помощью тепла, содержащегося в газе сгорания. Компрессор V и воздухоподогреватель LW встроены в трубопровод 18 для подвода воздуха. Для того чтобы можно было использовать водяные пары, содержащиеся в газе сгорания, между нитями 11 и 12 трубопровода можно расположить соответствующий разделительный агрегат МД /например, мембранное сито/. Отделенный пар отводится по трубопроводу 23a и подается, например, в паровую турбину.
Эффективность способа согласно изобретению подтверждается особенно хорошо следующим примером выполнения, который представлен конструктивной формой выполнения установки, показанной на фиг. 4, где также не упоминаются отдельные подробности, уже описанные выше. Следует отметить, что смесь углеводорода с водяным паром, используемая в теплообменнике W подогревается до определенной температуры для паропреобразователя R1 и R2. Эта целесообразная форма выполнения изобретения не отражена особо на фиг. 4. Через трубопровод 1 к компрессору K подводится уже предварительно охлажденный воздух. Пар, полученный в парогенераторе D1, используется частично для охлаждения лопаток турбины КТ, служащей приводом компрессора, и частично в камере сгорания B1. И, соответственно, пар, полученный в парогенераторе D2, частично используется для охлаждения лопаток газовой турбины Т или подается во вторую камеру сгорания B2. Другая часть полученного пара служит в качестве запасного для обоих парогенераторов R1 и R2. Характер процесса отражается в нижеприведенной таблице основных параметров.
По сравнению с известными способами получения электрической или механической энергии с применением обычного топлива способ согласно изобретению имеет не только более высокий КПД и производит, соответственно, значительно меньшее количество CO2 в пересчете на электрическую мощность, но и, кроме того, выделяющиеся газы имеют минимальное содержание окиси азота. Кроме того, в качестве побочного продукта получается высокоценная вода, которая может применяться по разнообразному назначению.
При этом особенное преимущество заключается в том, что комбинация агрегатов камера сгорания - турбина - преобразователь, предусмотренная согласно исполнению по фиг. 3 и 4 в двойном количестве /включенная последовательно/, может быть встроена в установку без дополнительных расходов, благодаря чему несмотря на сравнительно более сложную компоновку в результате получается более простое и дешевое выполнение установки согласно изобретению.

Claims (44)

1. Способ комбинированного производства электрической и механической энергии путем окисления топлива, при котором производят водородосодержащий газ путем эндотермической реакции преобразования соединений углеводорода по меньшей мере в одной ступени при косвенном подводе тепла для поддержания реакции, вводят по меньшей мере часть водородосодержащего газа, полученного в эндотермической реакции преобразования, в анодные полости топливных элементов для получения электроэнергии подводят отработанный анодный газ из системы топливных элементов по меньшей мере в одну ступень сгорания, сжимают кислородосодержащий газ, подают сжатый кислородосодержащий газ по меньшей мере в одну ступень сгорания; вводят по меньшей мере часть кислородосодержащего выхлопного газа по меньшей мере из одной ступени сгорания в катодные полости топливных элементов для получения электроэнергии, производят механическую энергию путем подачи по меньшей мере части выхлопного газа из ступени сгорания по меньшей мере в одну газовую турбину, используют по меньшей мере часть потока выхлопного газа для косвенного подогрева по меньшей мере одной ступени преобразования углеводородного топлива, отличающийся тем, что используют выхлопные газы после ступени преобразования соединений углеводорода для косвенного подогрева сжатого кислородсодержащего газа перед подачей в ступень сгорания, используют в качестве кислородсодержащего газа, подаваемого в катодные полости топливных элементов, причем выхлопные газы сразу после ступени преобразования соединений углеводорода или после теплообмена со сжатым кислородсодержащим газом используют по меньшей мере в качестве части кислородсодержащего газа, подводимого в катодное пространство топливного элемента.
2. Способ по п.1, отличающийся тем, что в системе топливных элементов используют низкотемпературные топливные элементы с электролитами на основе фосфорной кислоты (PAFC), щелочи (AFC) или твердых полимеров (SP(E)FC).
3. Способ по п. 2, отличающийся тем, что выхлопной газ, имеющий повышенное давление, получают в две по меньшей мере ступени.
4. Способ по п.3, отличающийся тем, что после каждой стадии сжигания топлива выхлопной газ подают в одну из газовых турбин, где он расширяется.
5. Способ по любому из пп.3 и 4, отличающийся тем, что по меньшей мере частично расширившийся выхлопной газ после газовой турбины используют для косвенного нагрева во время эндотермической реакции на одной из нескольких раздельных ступеней.
6. Способ по п.5, отличающийся тем, что собирают часть водородосодержащего газа, произведенного на различных ступенях эндотермической реакции, и подают в анодные полости системы топливных элементов.
7. Способ по любому из пп.1-6, отличающийся тем, что полученный водородосодержащий газ перед подводом в систему топливных элементов подвергают реакции обмена CO/H2.
8. Способ по любому из пп.1-7, отличающийся тем, что полученный водородосодержащий газ перед подводом в систему топливных элементов подвергают очистке, в процессе которой отделяют газовые компоненты, и отделенные горючие составляющие, содержащие газовые компоненты, используют при получении выхлопного газа.
9. Способ по любому из пп.1-8, отличающийся тем, что при получении выхлопного газа дополнительно применяют первичное топливо, например природный газ.
10. Способ по любому из пп.1-8, отличающийся тем, что остаточное тепло катодного газа системы топливных элементов используют для обогрева независимо от производства механической или электрической энергии.
11. Способ по любому из пп.1-10, отличающийся тем, что отделяют по меньшей мере частично воду, образующуюся в системе топливных элементов и/или при производстве выхлопного газа из отходящих газов топливных элементов (катодного или анодного газа) или из выхлопных газов.
12. Способ по п.11, отличающийся тем, что отделяют воду в форме водяного пара.
13. Способ по любому из пп.1-12, отличающийся тем, что систему топливных элементов охлаждают при получении водяного пара.
14. Способ по п.12 или 13, отличающийся тем, что для повышения мощности в паровой турбине применяют водяной пар.
15. Способ по п.14, отличающийся тем, что водяной пар после применения в паровой турбине конденсируют при давлении, лежащем ниже атмосферного, для получения технологической воды.
16. Способ по любому из пп.1-15, отличающийся тем, что часть тепла, содержащегося в выхлопном газе, используют для получения водяного пара путем косвенного теплообмена.
17. Способ по любому из пп.12-16, отличающийся тем, что по меньшей мере часть водяного пара используют для охлаждения лопаток турбин.
18. Способ по любому из пп.12-17, отличающийся тем, что по меньшей мере часть водяного пара подводят в камеру сгорания, в которой получают выхлопной газ.
19. Способ по любому из пп.12-18, отличающийся тем, что часть водяного пара используют в качестве среды для проведения эндотермической реакции углеводорода при преобразовании пара.
20. Способ по любому из пп.1-19, отличающийся тем, что произведенную механическую энергию преобразуют посредством генераторной системы в электрический переменный ток.
21. Установка для осуществления способа, снабженная компрессорной системой (К) для сжатия кислородосодержащего газа, одной по меньшей мере камерой сгорания (B, B1, B2) для по крайней мере частичного сжигания водородосодержащего газа, газотурбинной системой, состоящей из одной по меньшей мере газовой турбины (КТ,Т), производящей механическую энергию для использования вне установки, энергию привода компрессорной системы (К), системой трубопроводов (5, 6), с помощью которой сжатый кислородосодержащий газ непосредственно и/или косвенно после прохождения через одну по меньшей мере из камер сгорания (B, B1, B2) подводится в виде горячего выхлопного газа к турбине или турбинам (КТ, Т), одним по меньшей мере реактором для проведения эндотермической реакции (R, R1, R2) для получения обогащенного водородосодержащего газа, который косвенно обогревается горячими отходящими газами газовой турбины (КТ, Т), далее, одной системой трубопроводов (14, 14a, 14b), через которую обогащенный водородосодержащий газ подводится в анодную полость системы топливных элементов (FC), системой трубопроводов (15, 15a, 15b, 15c), через которую газ, содержащий остаток водорода, подается от выхода анодной полости в камеру или камеры сгорания (B, B1, B2) отличающаяся тем, что содержит теплообменник (W) для косвенного нагрева сжатого кислородосодержащего газа, систему трубопроводов (10, 10а, 10b, 10c, 10d), через которую отходящий газ турбины непосредственно или после отбора тепла в одном по меньшей мере реакторе (R, R1, R2) подводится к теплообменнику (W) для нагрева сжатого кислородосодержащего газа и систему трубопроводов (10d или 11 + 11a), через которую отходящий газ турбин подводится в катодную полость системы топливных элементов (FC).
22. Установка по п.21, отличающаяся тем, что система трубопроводов (10d) подводит газ, отходящий от турбины, от турбины от одного по меньшей мере реактора (К) в катодную полость системы топливных элементов (FC).
23. Установка по п.21, отличающаяся тем, что система трубопроводов (11, 11a) отводит газ, отходящий от турбины, от теплообменника (W) в катодной полости системы топливных элементов (FC).
24. Установка по любому из пп.21-23, отличающаяся тем, что компрессорная система состоит из двух по меньшей мере компрессорных ступеней (К1, К2), а между компрессорными ступенями (К1, К2) включен промежуточный холодильник.
25. Установка по любому из пп.21-24, отличающаяся тем, что она снабжена как отдельной газовой турбиной (КТ) для привода компрессорной системы (К), так и одной по меньшей мере отделенной от нее газовой турбиной (Т) для производства отводимой от нее механической энергии.
26. Установка по любому из пп.21-24, отличающаяся тем, что она снабжена одной единственной газовой турбиной (Т) для привода компрессорной системы (К) и для производства отводимой от нее механической энергии.
27. Установка по п.25, отличающаяся тем, что сжатый кислородосодержащий газ отводится по трубопроводу непосредственно от теплообменника (W) к турбине (КТ) для привода компрессора.
28. Установка по любому из пп.21-26, отличающаяся тем, что непосредственно перед каждой газовой турбиной (КТ, Т) расположено по одной камере сгорания.
29. Установка по любому из пп. 21-28, отличающаяся тем, что газовые турбины (КТ, Т) включены последовательно для прохождения выхлопного газа.
30. Установка по любому из пп.21-29, отличающаяся тем, что в систему трубопроводов (14a, 14b) для подвода обогащенного водородосодержащего газа для анодной полости системы топливных элементов (FC) включен один по меньшей мере реактор (5) для обменных реакций CO/H2.
31. Установка по любому из пп.21-30, отличающаяся тем, что в систему трубопроводов (14a, 14b) для подвода обогащенного водородосодержащего газа для анодной полости системы топливных элементов (FC) встроена по меньшей мере одна установка (Р) для очистки газа.
32. Установка по любому из пп. 21-31, отличающаяся тем, что газовая турбина (Т) для создания отводимой механической энергии связана с электрическим генератором (G).
33. Установка по любому из пп. 21-32, отличающаяся тем, что система топливных элементов (FC) связана с преобразователем для получения электрической энергии.
34. Установка по п.32, отличающаяся тем, что система топливных элементов (FC) связана с генератором.
35. Установка по любому из пп.21-34, отличающаяся тем, что в трубопровод (12, 12a, 15), через который отводится отходящий катодный или анодный газ с водой, полученной в системе топливных элементов (FC), включено разделительное устройство (MD1, MD2), через которое полученная вода в виде пара может отделяться от отходящего газа.
36. Установка по любому из пп.21-35, отличающаяся тем, что в трубопровод (11, 12), отводящий выхлопной газ, встроено разделительное устройство (MD1) для отвода воды в виде пара, содержащегося в выхлопном газе.
37. Установка по любому из пп.21-35, отличающаяся тем, что в систему трубопроводов (11, 11a, 12, 12a), отводящую выхлопной газ, встроен один по меньшей мере парогенератор (D1, D2).
38. Установка по п.35 или 37, отличающаяся тем, что в ней предусмотрена одна по меньшей мере система паровых турбин (TD), в которую вводится по меньшей мере одна часть водяного пара для получения механической энергии.
39. Установка по п.38, отличающаяся тем, что система паровых турбин (TD) механически связана с электрическим генератором (GD, G).
40. Установка по любому из пп.21-39, отличающаяся тем, что катодная полость системы топливных элементов (FC) соединена с трубопроводом (18) для подогрева свежего воздуха, в который включен один по меньшей мере воздухоподогреватель (LW, LW1, LW2), обогреваемый газом сгорания.
41. Установка по п.38 или 40, отличающаяся тем, что к системе паровых турбин (TD) подключен конденсатор (С), работающий с разрежением.
42. Установка по любому из пп.21-41, отличающаяся тем, что реактор или реакторы (R, R1, R2) для эндотермических реакций выполнены в виде паровых реформингов.
43. Установка по любому из пп.21-42, отличающаяся тем, что она снабжена одним по меньшей мере теплообменником (I), с помощью которого тепло от получаемого в одном по меньшей мере паровом риформинге реакторе (R, R1, R2) обогащенного водородом газа, косвенно передается водородосодержащему газу, подводимому в одну по меньшей мере камеру сгорания (B, B1, B2).
44. Установка по любому из пп. 21-43, отличающаяся тем, что система топливных элементов (FC) выполнена в виде системы низкотемпературных топливных элементов, в частности в виде системы топливных элементов с электролитами на основе фосфорной кислоты (PAFC), щелочи (AFC) или твердых полимеров (SP(E)FC).
RU93032037A 1990-10-15 1991-09-30 Способ и установка для комбинированного производства электрической и механической энергии RU2119700C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4032993.3 1990-10-15
DE4032993A DE4032993C1 (ru) 1990-10-15 1990-10-15

Publications (2)

Publication Number Publication Date
RU93032037A RU93032037A (ru) 1995-05-27
RU2119700C1 true RU2119700C1 (ru) 1998-09-27

Family

ID=6416493

Family Applications (1)

Application Number Title Priority Date Filing Date
RU93032037A RU2119700C1 (ru) 1990-10-15 1991-09-30 Способ и установка для комбинированного производства электрической и механической энергии

Country Status (17)

Country Link
US (1) US5417051A (ru)
EP (1) EP0553125B1 (ru)
JP (1) JPH06504873A (ru)
KR (1) KR920704368A (ru)
CN (1) CN1043390C (ru)
AT (1) ATE110888T1 (ru)
CA (1) CA2094129A1 (ru)
CZ (1) CZ283380B6 (ru)
DE (2) DE4032993C1 (ru)
DK (1) DK0553125T3 (ru)
ES (1) ES2059152T3 (ru)
HU (1) HUT63712A (ru)
NO (1) NO931354D0 (ru)
PL (1) PL168321B1 (ru)
RU (1) RU2119700C1 (ru)
SK (1) SK279757B6 (ru)
WO (1) WO1992007392A1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2444637C2 (ru) * 2010-05-13 2012-03-10 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" Способ генерации энергии
RU2516527C2 (ru) * 2008-08-21 2014-05-20 ДжиТиЭлПЕТРОЛ ЭлЭлСи Системы и способы производства сверхчистого водорода при высоком давлении
RU2710326C1 (ru) * 2018-07-19 2019-12-25 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Тепловая паротурбинная электростанция с парогенерирующей водородно-кислородной установкой

Families Citing this family (109)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4318818C2 (de) * 1993-06-07 1995-05-04 Daimler Benz Ag Verfahren und Vorrichtung zur Bereitstellung von konditionierter Prozessluft für luftatmende Brennstoffzellensysteme
US5449568A (en) * 1993-10-28 1995-09-12 The United States Of America As Represented By The United States Department Of Energy Indirect-fired gas turbine bottomed with fuel cell
US5693201A (en) * 1994-08-08 1997-12-02 Ztek Corporation Ultra-high efficiency turbine and fuel cell combination
JP2680782B2 (ja) * 1994-05-24 1997-11-19 三菱重工業株式会社 燃料改質器を組み合せた石炭焚きコンバインド発電プラント
AU704873B2 (en) * 1994-08-08 1999-05-06 Ztek Corporation Electrochemical converter
US5871625A (en) * 1994-08-25 1999-02-16 University Of Iowa Research Foundation Magnetic composites for improved electrolysis
US5900329A (en) * 1994-10-19 1999-05-04 Siemens Aktiengesellschaft Fuel-cell system and method for operating a fuel-cell system
AU751125B2 (en) * 1995-06-07 2002-08-08 University Of Iowa Research Foundation, The Gradient interface composites and methods therefor
DE19605404C1 (de) * 1996-02-14 1997-04-17 Daimler Benz Ag Verfahren zum Betreiben eines Brennstoffzellensystems
DE19608738C1 (de) * 1996-03-06 1997-06-26 Siemens Ag Verfahren zur Nutzung der in den Abgasen einer Niedertemperatur-Brennstoffzelle enthaltenen Enthalpie und Anlage zur Durchführung des Verfahrens
US6124050A (en) * 1996-05-07 2000-09-26 Siemens Aktiengesellschaft Process for operating a high temperature fuel cell installation, and high temperature fuel cell installation
US6783741B2 (en) * 1996-10-30 2004-08-31 Idatech, Llc Fuel processing system
US6537352B2 (en) 1996-10-30 2003-03-25 Idatech, Llc Hydrogen purification membranes, components and fuel processing systems containing the same
US6221117B1 (en) 1996-10-30 2001-04-24 Idatech, Llc Hydrogen producing fuel processing system
US7195663B2 (en) * 1996-10-30 2007-03-27 Idatech, Llc Hydrogen purification membranes, components and fuel processing systems containing the same
US6376113B1 (en) * 1998-11-12 2002-04-23 Idatech, Llc Integrated fuel cell system
AT406808B (de) * 1997-11-18 2000-09-25 Vaillant Gmbh Kraft-wärme-kopplungsanlage mit brennstoffzellen
DE19755116C1 (de) * 1997-12-11 1999-03-04 Dbb Fuel Cell Engines Gmbh PEM-Brennstoffzellensystem sowie Verfahren zum Betreiben eines PEM-Brennstoffzellensystems
AU5816898A (en) * 1998-01-08 1999-07-26 Southern California Edison Company Power generation system utilizing turbine gas generator and fuel cell
JPH11307111A (ja) * 1998-04-15 1999-11-05 Ishikawajima Harima Heavy Ind Co Ltd 燃料電池用空気供給装置
DE19822689A1 (de) * 1998-05-20 1999-11-25 Volkswagen Ag Brennstoffzellensystem und Verfahren zum Erzeugen elektrischer Energie mittels eines Brennstoffzellensystems
DE19822691A1 (de) * 1998-05-20 1999-11-25 Volkswagen Ag Brennstoffzellensystem und Verfahren zum Erzeugen elektrischer Energie mittels eines Brennstoffzellensystems
US6348278B1 (en) * 1998-06-09 2002-02-19 Mobil Oil Corporation Method and system for supplying hydrogen for use in fuel cells
US6630109B2 (en) * 1998-07-16 2003-10-07 Toyota Jidosha Kabushiki Kaisha Control apparatus for reformer and method of controlling reformer using control apparatus
DE19983564T1 (de) * 1998-09-30 2001-07-26 Hitachi Ltd Brennstoffzellen-System und Fahrzeug, das dieses verwendet
JP3544309B2 (ja) * 1998-11-09 2004-07-21 株式会社豊田自動織機 燃料電池装置
DE19856499C1 (de) * 1998-12-08 2000-10-26 Daimler Chrysler Ag Verfahren und Vorrichtung zur zweistufigen Aufladung von Prozeßluft für eine Brennstoffzelle
JP2000182647A (ja) * 1998-12-18 2000-06-30 Aisin Seiki Co Ltd 燃料電池システム
DE19911018C1 (de) * 1999-03-12 2000-08-31 Daimler Chrysler Ag Hilfstriebwerk für ein Luftfahrzeug
DE19930875B4 (de) * 1999-07-05 2004-03-25 Siemens Ag Hochtemperatur-Polymer-Elektrolyt-Membran (HTM)-Brennstoffzellenanlage
US6979507B2 (en) * 2000-07-26 2005-12-27 Idatech, Llc Fuel cell system controller
AU6378400A (en) 1999-07-27 2001-02-13 Idatech, Llc Fuel cell system controller
US7135048B1 (en) 1999-08-12 2006-11-14 Idatech, Llc Volatile feedstock delivery system and fuel processing system incorporating the same
US6375906B1 (en) 1999-08-12 2002-04-23 Idatech, Llc Steam reforming method and apparatus incorporating a hydrocarbon feedstock
DE19943059B4 (de) * 1999-09-09 2006-11-23 Daimlerchrysler Ag System zur Auskondensation einer Flüssigkeit aus einem Gasstrom
US6383670B1 (en) * 1999-10-06 2002-05-07 Idatech, Llc System and method for controlling the operation of a fuel processing system
US6242120B1 (en) 1999-10-06 2001-06-05 Idatech, Llc System and method for optimizing fuel cell purge cycles
US6451464B1 (en) * 2000-01-03 2002-09-17 Idatech, Llc System and method for early detection of contaminants in a fuel processing system
US6465118B1 (en) * 2000-01-03 2002-10-15 Idatech, Llc System and method for recovering thermal energy from a fuel processing system
DE10008823B4 (de) * 2000-02-25 2006-08-17 Nucellsys Gmbh Brennstoffzellensystem und Verfahren zum Betrieb eines Brennstoffzellensystems
DE10024570A1 (de) * 2000-05-19 2002-04-18 Xcellsis Gmbh Brennstoffzellensystem sowie Verfahren zum Betreiben des Brennstoffzellensystems
US7118606B2 (en) * 2001-03-21 2006-10-10 Ut-Battelle, Llc Fossil fuel combined cycle power system
DE10119721A1 (de) * 2001-04-21 2002-10-31 Bayer Cropscience Gmbh Herbizide Mittel enthaltend Benzoylcyclohexandione und Safener
DE10120947A1 (de) * 2001-04-22 2002-10-24 Daimler Chrysler Ag Brennstoffzellen-Luftversorgung
US6628006B2 (en) * 2001-05-03 2003-09-30 Ford Motor Company System and method for recovering potential energy of a hydrogen gas fuel supply for use in a vehicle
DE10154637B4 (de) * 2001-11-07 2009-08-20 Robert Bosch Gmbh Brennstoffbereitstellungseinheit und deren Verwendung zur Bereitstellung eines wasserstoffhaltigen Brennstoffs
JP2005508482A (ja) 2001-11-08 2005-03-31 ボーグワーナー・インコーポレーテッド 2段電動コンプレッサ
US6981994B2 (en) * 2001-12-17 2006-01-03 Praxair Technology, Inc. Production enhancement for a reactor
DE10203030A1 (de) * 2002-01-26 2003-07-31 Ballard Power Systems Brennstoffzellensystem mit einer Druckwechseladsorptionseinheit
GB2388160A (en) * 2002-05-03 2003-11-05 Rolls Royce Plc A gas turbine engine and fuel cell stack combination
US7037610B2 (en) * 2002-09-18 2006-05-02 Modine Manufacturing Company Humidification of reactant streams in fuel cells
KR100481599B1 (ko) * 2002-11-06 2005-04-08 (주)앤틀 연료전지 시스템
US6896988B2 (en) * 2003-09-11 2005-05-24 Fuelcell Energy, Inc. Enhanced high efficiency fuel cell/turbine power plant
FR2864351A1 (fr) * 2003-12-23 2005-06-24 Renault Sas Dispositif de traitement de gaz d'echappement pour un ensemble de generation d'electricite du type pile a combustible et procede de traitement associe
US7306871B2 (en) * 2004-03-04 2007-12-11 Delphi Technologies, Inc. Hybrid power generating system combining a fuel cell and a gas turbine
US7752848B2 (en) * 2004-03-29 2010-07-13 General Electric Company System and method for co-production of hydrogen and electrical energy
US8277997B2 (en) * 2004-07-29 2012-10-02 Idatech, Llc Shared variable-based fuel cell system control
US7842428B2 (en) 2004-05-28 2010-11-30 Idatech, Llc Consumption-based fuel cell monitoring and control
KR100907690B1 (ko) * 2004-10-19 2009-07-14 자이단호징 덴료쿠추오켄큐쇼 복합 발전설비
US7470293B2 (en) * 2004-10-29 2008-12-30 Idatech, Llc Feedstock delivery systems, fuel processing systems, and hydrogen generation assemblies including the same
US8691462B2 (en) * 2005-05-09 2014-04-08 Modine Manufacturing Company High temperature fuel cell system with integrated heat exchanger network
CN1305161C (zh) * 2005-07-08 2007-03-14 清华大学 车用燃料电池燃气轮机混合动力系统
US7659019B2 (en) 2005-09-16 2010-02-09 Idatech, Llc Thermally primed hydrogen-producing fuel cell system
US7601302B2 (en) 2005-09-16 2009-10-13 Idatech, Llc Self-regulating feedstock delivery systems and hydrogen-generating fuel processing assemblies and fuel cell systems incorporating the same
WO2007035467A2 (en) 2005-09-16 2007-03-29 Idatech, Llc Self-regulating feedstock delivery systems and hydrogen-generating fuel processing assemblies and fuel cell systems incorporating the same
US7887958B2 (en) * 2006-05-15 2011-02-15 Idatech, Llc Hydrogen-producing fuel cell systems with load-responsive feedstock delivery systems
US7972420B2 (en) 2006-05-22 2011-07-05 Idatech, Llc Hydrogen-processing assemblies and hydrogen-producing systems and fuel cell systems including the same
US20070275275A1 (en) * 2006-05-23 2007-11-29 Mesa Scharf Fuel cell anode purge systems and methods
US7939051B2 (en) 2006-05-23 2011-05-10 Idatech, Llc Hydrogen-producing fuel processing assemblies, heating assemblies, and methods of operating the same
US20100242453A1 (en) * 2006-05-31 2010-09-30 Johnston Darrin A Fuel cell/engine hybrid power system
US20080210088A1 (en) * 2006-10-23 2008-09-04 Idatech, Llc Hydrogen purification membranes, components and fuel processing systems containing the same
US7802434B2 (en) * 2006-12-18 2010-09-28 General Electric Company Systems and processes for reducing NOx emissions
CN1987067B (zh) * 2006-12-28 2010-05-19 上海交通大学 熔融碳酸盐燃料电池燃气轮机底层循环热电冷联供系统
WO2008104195A1 (de) * 2007-02-28 2008-09-04 Daimler Ag Gasversorgungssystem für eine brennstoff zeilenanordnung und verfahren zum betrieb eines brennstoff zellensystems mit dem gas versorgungssystem
US8262752B2 (en) 2007-12-17 2012-09-11 Idatech, Llc Systems and methods for reliable feedstock delivery at variable delivery rates
CN102159415A (zh) * 2008-08-21 2011-08-17 艾米尔·迪米特罗夫 机动车用混合动力驱动装置
CH701210A1 (de) * 2009-06-02 2010-12-15 Alstom Technology Ltd Verfahren zum Betrieb eines Gasturbinenkraftwerkes mit Brennstoffzelle.
US7818969B1 (en) 2009-12-18 2010-10-26 Energyield, Llc Enhanced efficiency turbine
DE102010010272A1 (de) * 2010-03-05 2011-09-08 Daimler Ag Vorrichtung zur Bereitstellung von heißen Abgasen
US8252251B2 (en) * 2010-03-30 2012-08-28 General Electric Company Fluid cooled reformer and method for cooling a reformer
EP2444314A4 (en) * 2010-05-07 2017-04-19 Daewoo Shipbuilding&Marine Engineering Co., Ltd. Electricity generating device of lng carrier and method thereof
CH704367A1 (de) * 2011-01-18 2012-07-31 Alstom Technology Ltd Verfahren zum Betrieb einer Kraftwerksanlage sowie Gasturbinenanlage zur Durchführung des Verfahrens.
JP5896885B2 (ja) * 2012-11-13 2016-03-30 三菱日立パワーシステムズ株式会社 発電システム及び発電システムの運転方法
JP5968234B2 (ja) * 2013-01-18 2016-08-10 三菱日立パワーシステムズ株式会社 発電システム
CN105209377B (zh) * 2013-03-15 2017-04-26 埃克森美孚研究工程公司 在费‑托合成中集成熔融碳酸盐燃料电池
US9077007B2 (en) 2013-03-15 2015-07-07 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using fuel cells
US20140272615A1 (en) 2013-03-15 2014-09-18 Exxonmobil Research And Engineering Company Integrated power generation and carbon capture using fuel cells
WO2015043992A1 (de) * 2013-09-27 2015-04-02 Siemens Aktiengesellschaft Kraftwerk mit gasturbine und wasserstoffgekühltem generator
US9755258B2 (en) 2013-09-30 2017-09-05 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using solid oxide fuel cells
US9556753B2 (en) 2013-09-30 2017-01-31 Exxonmobil Research And Engineering Company Power generation and CO2 capture with turbines in series
CN104481617B (zh) * 2014-11-03 2015-12-02 东南大学 基于氧化还原反应的储能装置及其储能方法和发电方法
CN104819054A (zh) * 2015-05-17 2015-08-05 中国能源建设集团广东省电力设计研究院有限公司 一种分布式能源的余热利用系统
US10774741B2 (en) 2016-01-26 2020-09-15 General Electric Company Hybrid propulsion system for a gas turbine engine including a fuel cell
US10476093B2 (en) 2016-04-15 2019-11-12 Chung-Hsin Electric & Machinery Mfg. Corp. Membrane modules for hydrogen separation and fuel processors and fuel cell systems including the same
CN108386344B (zh) * 2018-03-09 2019-10-08 重庆大学 燃料电池和压缩空气储能耦合的发电储能系统及控制方法
CN109167087B (zh) * 2018-09-17 2022-05-13 新乡市特美特热控技术股份有限公司 一种燃料电池空气管理系统
KR20210107700A (ko) 2018-11-30 2021-09-01 퓨얼 셀 에너지, 인크 심층 co2 포획을 위한 용융 탄산염 연료전지들의 재생성
JP7258144B2 (ja) 2018-11-30 2023-04-14 フュエルセル エナジー, インコーポレイテッド Co2利用率を向上させて動作させる燃料電池のための改質触媒パターン
WO2020112812A1 (en) 2018-11-30 2020-06-04 Exxonmobil Research And Engineering Company Operation of molten carbonate fuel cells with enhanced co 2 utilization
WO2020112806A1 (en) 2018-11-30 2020-06-04 Exxonmobil Research And Engineering Company Layered cathode for molten carbonate fuel cell
US11424469B2 (en) 2018-11-30 2022-08-23 ExxonMobil Technology and Engineering Company Elevated pressure operation of molten carbonate fuel cells with enhanced CO2 utilization
KR102610184B1 (ko) 2018-11-30 2023-12-04 퓨얼셀 에너지, 인크 용융 탄산염 연료 전지를 위한 연료 전지 스테이징
JP6591112B1 (ja) * 2019-05-31 2019-10-16 三菱日立パワーシステムズ株式会社 加圧空気供給システム及びこの加圧空気供給システムを備える燃料電池システム並びにこの加圧空気供給システムの起動方法
AU2019476660B2 (en) 2019-11-26 2023-09-14 ExxonMobil Technology and Engineering Company Operation of molten carbonate fuel cells with high electrolyte fill level
JP2023503995A (ja) 2019-11-26 2023-02-01 エクソンモービル・テクノロジー・アンド・エンジニアリング・カンパニー 燃料電池モジュールのアセンブリおよびそれを使用するシステム
US11316180B2 (en) 2020-05-21 2022-04-26 H2 Powertech, Llc Hydrogen-producing fuel cell systems and methods of operating hydrogen-producing fuel cell systems for backup power operations
US11712655B2 (en) 2020-11-30 2023-08-01 H2 Powertech, Llc Membrane-based hydrogen purifiers
CN112796886B (zh) * 2021-01-29 2023-03-31 哈尔滨工业大学 燃料电池化学回热燃气轮机再热式联合循环系统
CN116771505A (zh) * 2021-12-23 2023-09-19 中印恒盛(北京)贸易有限公司 一种木质生物质微型燃气轮机及其运行的控制方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1219732B (de) * 1958-07-12 1966-06-23 Maschf Augsburg Nuernberg Ag Verfahren zum Betrieb einer Brennkraftmaschine mit kontinuierlicher Verbrennung, beispielsweise einer Gasturbine
GB971776A (en) * 1961-08-02 1964-10-07 Exxon Research Engineering Co Improvements in prime movers
NL302138A (ru) * 1963-02-19
DE2604981C2 (de) * 1975-02-12 1985-01-03 United Technologies Corp., Hartford, Conn. Unter Druck betriebene Brennstoffzellenstromversorgungsanlagen und Verfahren zu ihrem Betrieb
US3976507A (en) * 1975-02-12 1976-08-24 United Technologies Corporation Pressurized fuel cell power plant with single reactant gas stream
US3982962A (en) * 1975-02-12 1976-09-28 United Technologies Corporation Pressurized fuel cell power plant with steam powered compressor
US4522894A (en) * 1982-09-30 1985-06-11 Engelhard Corporation Fuel cell electric power production
JPH0622148B2 (ja) * 1984-07-31 1994-03-23 株式会社日立製作所 溶融炭酸塩型燃料電池発電プラント
JPH0665061B2 (ja) * 1985-06-18 1994-08-22 株式会社日立製作所 燃料電池複合発電装置
JPS6264067A (ja) * 1985-09-13 1987-03-20 Babcock Hitachi Kk 燃料電池システム
JPH0789494B2 (ja) * 1986-05-23 1995-09-27 株式会社日立製作所 複合発電プラント
US4678723A (en) * 1986-11-03 1987-07-07 International Fuel Cells Corporation High pressure low heat rate phosphoric acid fuel cell stack
NL8702834A (nl) * 1987-11-26 1989-06-16 Turbo Consult Bv Installatie voor het opwekken van mechanische energie alsmede werkwijze voor het bedrijven van een dergelijke installatie.
US4865926A (en) * 1988-08-24 1989-09-12 International Fuel Cells Corporation Hydrogen fuel reforming in a fog cooled fuel cell power plant assembly
DE4003210A1 (de) * 1990-02-01 1991-08-14 Mannesmann Ag Verfahren und anlage zur erzeugung mechanischer energie
US4973528A (en) * 1990-05-10 1990-11-27 International Fuel Cells Corporation Fuel cell generating plant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2516527C2 (ru) * 2008-08-21 2014-05-20 ДжиТиЭлПЕТРОЛ ЭлЭлСи Системы и способы производства сверхчистого водорода при высоком давлении
RU2444637C2 (ru) * 2010-05-13 2012-03-10 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" Способ генерации энергии
RU2710326C1 (ru) * 2018-07-19 2019-12-25 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Тепловая паротурбинная электростанция с парогенерирующей водородно-кислородной установкой

Also Published As

Publication number Publication date
CS310091A3 (en) 1992-08-12
SK279757B6 (sk) 1999-03-12
HUT63712A (en) 1993-09-28
PL168321B1 (pl) 1996-02-29
WO1992007392A1 (de) 1992-04-30
DE4032993C1 (ru) 1992-05-07
KR920704368A (ko) 1992-12-19
ES2059152T3 (es) 1994-11-01
ATE110888T1 (de) 1994-09-15
CN1043390C (zh) 1999-05-12
CA2094129A1 (en) 1992-04-16
CZ283380B6 (cs) 1998-04-15
JPH06504873A (ja) 1994-06-02
PL292029A1 (en) 1992-06-15
NO931354L (no) 1993-04-13
NO931354D0 (no) 1993-04-13
DK0553125T3 (da) 1994-10-03
US5417051A (en) 1995-05-23
HU9300443D0 (en) 1993-05-28
EP0553125A1 (de) 1993-08-04
DE59102772D1 (de) 1994-10-06
EP0553125B1 (de) 1994-08-31
CN1060741A (zh) 1992-04-29

Similar Documents

Publication Publication Date Title
RU2119700C1 (ru) Способ и установка для комбинированного производства электрической и механической энергии
US5449568A (en) Indirect-fired gas turbine bottomed with fuel cell
US7862938B2 (en) Integrated fuel cell and heat engine hybrid system for high efficiency power generation
US4333992A (en) Method for producing steam from the liquid in a moist gas stream
US4041210A (en) Pressurized high temperature fuel cell power plant with bottoming cycle
US7703271B2 (en) Cogeneration method and device using a gas turbine comprising a post-combustion chamber
RU2534077C2 (ru) Способ совместного производства синтез-газа и электроэнергии
RU2085754C1 (ru) Способ непрерывного преобразования энергии в газотурбинной установке и газотурбинная установка для его осуществления
JP4059546B2 (ja) 合成ガスおよび電気エネルギーを組み合わせて製造する方法
WO2001095409A3 (en) Joint-cycle high-efficiency fuel cell system with power generating turbine
JPH11297336A (ja) 複合発電システム
JPH1126004A (ja) 発電システム
JP6526194B2 (ja) 高圧蒸気の生成のために廃熱回収を用いる燃料電池システム
JP2000200617A (ja) 燃料電池複合発電プラントシステム
JP2018500726A5 (ru)
JPS6257073B2 (ru)
JPH0491324A (ja) 二酸化炭素回収型火力発電システム
JPH08255622A (ja) 燃料電池発電システム
JPS63141269A (ja) 燃料電池発電システム
JP2003036876A (ja) 溶融炭酸塩型燃料電池発電装置
JPH05326004A (ja) 溶融炭酸塩型燃料電池発電装置
JPS6271172A (ja) リン酸型燃料電池発電プラント
JPS60208063A (ja) 燃料電池発電システム
JPH0628168B2 (ja) 燃料電池発電システム
JP2002075425A (ja) 燃料電池発電装置の起動方法