RU2107752C1 - Электролизер, способ получения раствора основания и раствора, содержащего кислоту, и способ получения раствора основания и раствора чистой кислоты - Google Patents

Электролизер, способ получения раствора основания и раствора, содержащего кислоту, и способ получения раствора основания и раствора чистой кислоты Download PDF

Info

Publication number
RU2107752C1
RU2107752C1 RU93058574A RU93058574A RU2107752C1 RU 2107752 C1 RU2107752 C1 RU 2107752C1 RU 93058574 A RU93058574 A RU 93058574A RU 93058574 A RU93058574 A RU 93058574A RU 2107752 C1 RU2107752 C1 RU 2107752C1
Authority
RU
Russia
Prior art keywords
solution
salt
electrolyzer
sheet
sodium
Prior art date
Application number
RU93058574A
Other languages
English (en)
Other versions
RU93058574A (ru
Inventor
Траини Карло
Фаита Джузеппе
Original Assignee
Де Нора С.п.А.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Де Нора С.п.А. filed Critical Де Нора С.п.А.
Publication of RU93058574A publication Critical patent/RU93058574A/ru
Application granted granted Critical
Publication of RU2107752C1 publication Critical patent/RU2107752C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/14Alkali metal compounds
    • C25B1/16Hydroxides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/22Inorganic acids
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/65Means for supplying current; Electrode connections; Electric inter-cell connections

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Изобретение относится к электролизеру, содержащему по меньшей мере одну элементарную ячейку, разделенную ионообменными мембранами на электролитические отсеки, содержащие систему подачи электролитических растворов и систему отвода продуктов электролиза, ячейка снабжена катодом и узлом деполяризуемого водородом анода, образующим водородную газовую камеру, при этом узел анода снабжен катионообменной мембраной, пористым электрокаталитическим гибким листом и пористым жестким коллектором тока, примыкающим к электрокаталитическому листу, причем катионообменная мембрана, электрокаталитический лист и коллектор тока выполнены в контакте друг с другом без крепления за счет давления. Кроме того, изобретение относится к способу получения раствора основания и раствора, содержащего кислоту, а также способу получения раствора основания и раствора чистой кислоты. 3 с. п. ф-лы, 35 з.п. ф-лы, 5 ил.

Description

Изобретение относится к электрохимии.
Электролитическое производство хлорной щелочи является самым широко распространенным процессом в электрохимии. Этот процесс использует хлорид натрия, который превращается в гидроокись натрия и хлор за счет пропускания электрического тока.
Известен способ, основанный на использовании в качестве исходного материала хлорида калия и предназначенный для получения в качестве конечных продуктов гидроокиси калия и хлорида.
Хлор и каустическую соду можно также получить в результате следующих способов:
электролиз или каталитическое окисление соляной кислоты, доступной в больших количествах в качестве побочного продукта хлорирования органики, кроме того, соляную кислоту можно получать за счет реакции хлорида натрия и серной кислоты с побочным образованием сульфата натрия;
каустификация раствора карбоната натрия известью, последующие фильтрация побочного твердого карбоната кальция и концентрирование разведенного раствора гидроокиси натрия, содержащего различные примеси, вносимые известью и раствором карбоната натрия.
Карбонат натрия обычно получают с помощью процесса, основанного на превращении рассола хлорида натрия в бикарбонат натрия, который является труднорастворимым, посредством химической реакции с аммиаком, который затем рециркулируется, и двуокисью углерода. Бикарбонат затем превращается в карбонат натрия с помощью обжига.
Поэтому исходные материалы содержат хлорид натрия, известь и двуокись углерода, оба полученные из карбоната кальция, и аммиак, необходимый для восполнения неизбежных потерь.
Следующий источник карбоната натрия представлен минеральными рудами, содержащими карбонат натрия, бикарбонат натрия и незначительный процент других соединений, таких как хлорид натрия.
В качестве прототипа изобретения выбран способ, предназначенный для получения каустической соды и кислоты из соли щелочного металла в электролизере, содержащем деполяризованный водородом анод, ионоселективную мембрану и катод (патент США N 4561945 кл. C 25 B 1/16, 1985).
В пространство, ограниченное стенкой электролизера и анодом, (газовую камеру) подают газообразный водород; в пространство, ограниченное анодом и ионоселективной мембраной, подают анолит (водный раствор соли щелочного металла); в пространство, ограниченное ионоселективной мембраной и другой стенкой электролизера и содержащее катод, подают католит (воду); при этом мембрана выполнена примыкающей к катоду.
В результате электролиза имеют место следующие процессы:
окисление газообразного водорода с образованием H+;
элекролитическая диссоциация соли щелочного металла с образованием Me+ и An-;
комбинация H+ и An- с образованием кислоты;
транспортировка Me+ через ионоселективную мембрану;
электролитическая диссоциация воды с образованием H+ и OH-;
комбинация Me+ и OH- с образованием каустической соды.
Далее из пространства, ограниченного анодом и ионоселективной мембраной, отводят раствор, содержащий соль щелочного металла и кислоту, из пространства, ограниченного ионоселективной мембраной и стенкой корпуса и содержащего катод, отводят раствор каустической соды и водород.
Электрокаталитический лист получается за счет спекания смеси частиц катализатора и полимера и за счет скрепления спеченного электрокаталитического листа с поверхностью мембраны с помощью тепла и давления (патент США N 4561945, кл. C 25 B 1/16, 1985). Этому конкретному типу конструкции необходимо, как и узлу деполяризуемого водородом анода, чтобы частицы катализатора электролитического листа находились в контакте только с водородным газом и мембраной, чтобы никакого электролита не было на этой стороне мембраны, а только на противоположной. Поскольку нет проводящего пути, создаваемого электролитом, ионизация водорода может иметь место только в точках прямого контакта между частицами катализатора и мембраной. Остальная часть поверхности частиц катализатора не имеет контакта с мембраной и остается полностью инертной. Следовательно, для получения плотности тока, достаточной для промышленных применений, необходимо, чтобы большое число отдельных частиц контактировало с мембраной во множестве точек. Это требование невозможно выполнить на известном уровне техники только за счет скрепления с электролитическим листом. Кроме того, этот способ является дорогим и принципиально надежным для электродов большой единичной площади, 1 - 2 м2 каждый, чтобы производить их в больших количествах, порядка нескольких сотен штук на каждую производственную партию. При этом необходимы мощные прессующие устройства, работающие с управляемой температурой, кроме того, слишком велика вероятность того, что во время прессования и нагрева мембрана окажется пробитой или сломанной в случае избыточного дегидратирования.
В основу изобретения положена задача разрешения проблем, связанных с недостатками известного уровня техники за счет создания электролизера и соответствующего способ электролиза.
Задача решается тем, что в электролизере узел анода снабжен катионообменной мембраной, пористым электрокаталитическим гибким листом и пористым жестким коллектором тока, примыкающим к электрокаталитическому листу, причем катионообменная мембрана, электрокаталитический лист и коллектор тока выполнены в контакте друг с другом без крепления за счет давления.
Желательно, чтобы катионообменная мембрана узла анода была выполнена кислотостойкой.
Желательно, чтобы электрокаталитический лист был выполнен из углерода или графита и содержит электрокатализатор для ионизации водорода.
Желательно, чтобы электрокаталитический лист был выполнен в виде пленки, содержащей связующее вещество, электропроводящие и электрокаталитические частицы для ионизации водорода.
Желательно, чтобы электрокаталитический лист был выполнен в виде тонкой проволочной сетки, снабженной покрытием, содержащим электрокатализатор для ионизации водорода.
Желательно, чтобы электрокаталитический лист был выполнен в виде спеченного металлического листа, содержащего электрокатализатор для ионизации водорода.
Желательно, чтобы коллектор тока был выполнен из металла с вентильным эффектом и снабжен электропроводящим покрытием.
Желательно, чтобы коллектор тока был выполнен в виде пористого грубого металлического экрана и пористого тонкого гибкого металлического экрана, выполненных в контакте друг с другом.
Желательно, чтобы грубый металлический экран и тонкий металлический экран были соединены друг с другом посредством точечной сварки.
Задача решается также тем, что осуществляют диффундирование газа водорода через пористый коллектор тока и пористый электрокаталитический лист и осуществляют ионизацию поверхности между электрокаталитическим листом и мембраной с образованием H+ ионов, которые проникают через мембрану в раствор соли.
Кроме того, задача решается тем, что осуществляют диффузию газа водорода через пористый коллектор тока и пористый электрокаталитический лист и ионизируют поверхность между электрокаталитическим листом и мембраной с образованием H+ ионов, которые проникают через мембрану в раствор чистой кислоты.
Желательно, чтобы в качестве соли в виде твердого вещества или раствора использовали соль, содержащую отравляющие узел анода агента.
Желательно, чтобы в качестве соли в виде твердого вещества или раствора использовали соль, содержащую восстанавливаемые вещества.
Желательно, чтобы в качестве соли в виде твердого вещества или раствора использовали нейтральную соль.
На фиг. 1 представлена схема электролизера, ограниченного для простоты иллюстрацией только одной элементарной ячейки, содержащей соответствующий изобретению узел деполяризуемого водорода. Промышленные электролизеры должны содержать множество таких элементарных ячеек, электрически соединенных как монополярные, так и в биполярные конструкции.
На фиг. 2 - схема электролизера, снабженная деполяризующими водород анодами известного уровня техники; на фиг. 3 - схема способа для производства каустической соды косвенным электролизом карбоната и бикарбоната натрия в электролизере, снабженном соответствующими изобретению узлами деполяризуемых водородом анодов; на фиг. 4 - схема процесса для производства каустической соды и кислотного раствора сульфата натрия за счет электролиза сульфата натрия в электролизере, снабженном соответствующими изобретению узлами деполяризуемых водородом анодов; на фиг. 5 - альтернативный вариант осуществления способа, представленного на фиг.4, для производства каустической соды и чистой серной кислоты.
Элементарная ячейка (фиг. 1) разделена катионообменной мембраной 2 на два каталитических отсека, катодный отсек 40, содержащий катод 3 и снабженный впускными и выпускными соплами 5 и 6, и центральный отсек 41, содержащий разделитель 29, снабженный впускным и выпускным соплами 10 и 11. Центральный отсек далее определен соответствующим изобретению узлом деполяризуемого водородом анода, образующим водородную камеру 4. Газовая камера 4 снабжена впускным соплом 27 для подачи содержащего водород потока газа и выпускным соплом 28 для выхода остаточного газа. Узел деполяризуемого водородом анода содержит катионообменную мембрану 13, электрокаталитический лист 12 и коллектор тока, сделанный из тонкого электропроводящего экрана 14a, который примыкает к электрокаталитическому листу 12, и грубый электропроводящий экран 14b, который обеспечивает общую электропроводность и жесткость коллектора тока. Разделитель 29 предназначен для сохранения заранее заданного промежутка между мембраной 2 и узлом анода. Разделитель 29 может состоять из одной или более пластмассовых ячеек или из одной или более пластмассовых прокладок, типичная результирующая упругость которых передает давление, оказываемое катодом 3 на мембрану 2, на узел деполяризуемого водородом анода, благодаря общему сопротивлению жесткого коллектора тока 14a и 14b. Уплотнение по периферии между катодным отсеком 40, мембраной 2, центральным отсеком 41, узлом анода и газовой камерой обеспечивается прокладками шайбами 26.
На фиг. 2 показан электролизер, снабженный соответствующим известному уровню техники деполяризуемым водородом анодом. Кроме того, показана только одна элементарная ячейка. Одинаковые детали на фиг. 1 обозначены одинаковыми справочными номерами за исключением узла деполяризуемого водородом анода, который в данном случае представлен только пористым электрокаталитическим экраном 30, сделанным гидрофобным для сохранения жидкости, проникающей из центрального отсека 41 и блокированной в порах. Пористый электрокаталитический лист находится в контакте с коллектором тока 14. На этом типе деполяризуемого анода отрицательно сказываются различные неудобства, которые сдерживают его промышленное применение, например просачивание раствора, отравление катализатора, уменьшение выхода вырабатываемых веществ. Эти неудобства связаны прямым контактом между катализатором, пористым листом и электролизуемым раствором.
На фиг. 3 показаны отличительные признаки процесса электролиза, основанного на соответствующем изобретению электролизере.
Электролизер 1, ограниченный для простоты иллюстрации одной элементарной ячейкой, содержит центральный отсек 41, водородную газовую камеру 4, содержащую соответствующий изобретению узел деполяризуемого водородом анода, и катодный отсек 40, содержащий катод 3. В следующем описании предполагается, что процесс предназначен для электролиза раствора сульфата натрия. Катодный отсек 40 и центральный отсек 41 разделены катионообменной мембраной 2. Раствор сульфата натрия подается через сопло 10 в центральный отсек 41.
За счет прохождения электрического тока между узлом анода и катодом 3 имеют место следующие реакции.
На катоде 3: выделение водорода с образованием OH- и миграцией Na+ через мембрану 2 из центрального отсека 41 в катодный отсек 40 с получением каустической соды.
На соответствующем изобретению узле анода: водород 8, полученный на катоде 3, очищается водой при управляемой температуре для исключения следов каустической соды (не показана). Затем очищенный водород подается в водородную газовую камеру 4, где нет электролитического раствора, и протекает в заднюю часть узла анода, содержащую электрокаталитический пористый лист 12, сжатый между подходящим пористым коллектором тока 14, описанным выше, и катионообменной мембранной 13. Образуемые при этом ионы H+ мигрируют через мембрану 13 в центральный отсек 41, где они замещают ионы Na+, мигрировавшие в катодный отсек 40.
Таким образом достигается образование чистой серной кислоты.
Серная кислота может накапливаться до максимального предела, зависящего от типа мембраны 2, за которым происходит спад эффективности производства каустической соды. Этот спад обусловлен увеличением миграции ионов H+ через мембрану 2. Раствор каустической соды, содержащий водород, выходит из катодного отсека 40 через сопло 6 и подается в газоотделитель 7. Влажный водород 8 отводится на очистку (не показана), а затем подается в водородную газовую камеру 4, а раствор каустической соды рециркулируется в ячейку через сопло 5. Необходимая вода подается в катодную схему ячейки через сопло 9 для поддержания требуемой концентрации каустической соды (обычно 10 - 35%), полученная каустическая сода выпускается по линии 23. В другой электрокаталитической схеме кислотный раствор сульфата натрия выходит из ячейки через сопло 11 и поступает целиком или частично в сосуд 15, где в него добавляется кристаллический карбонат или бикарбонат натрия или их смесь 17, вода 16, если необходимо поддержать постоянную концентрацию электролитического раствора, сульфат натрия или серная кислота 24. Далее в ячейке происходит образование сульфата натрия вследствие взаимодействия солей натрия с раствором серной кислоты с побочным образованием воды и двуокиси углерода.
Карбонат или бикарбонат натрия может также использоваться в виде раствора. Поток 25 влажной и чистой двуокиси углерода, выходящий из сосуда 15, может до нужной степени сжиматься и использоваться, а щелочной раствор, выходящий из сосуда 15, подается на фильтр 18, где можно отфильтровывать карбонаты и нерастворимые гидроокиси многовалентных металлов. После очистки раствор соли с произвольным добавлением из нейтрализованной части возвращается в ячейку через сопло 10.
Циркуляция раствора сульфата натрия осуществляется насосом, а циркуляция раствора каустической соды может осуществляться за счет газоподъемной рециркуляции.
Соответствующий изобретению процесс использует карбонат или бикарбонат натрия или их смеси для получения каустической соды за счет следующих реакций:
Na2CO3+2H2O → 2NaOH+H2CO3;
H2CO3→ H2O+CO2
Поэтому в соответствующем изобретению процессе карбонат или бикарбонат натрия разлагается на два компонента, т.е. на каустическую соду и угольную кислоту, являющуюся нестабильной и разлагающуюся на воду и двуокись углерода. В результате каустическая сода получается без какого бы то ни было побочного продукта, который мог бы мешать коммерциализации, как это имеет место в случае кислотного сульфата натрия или чистой серной кислоты.
За счет использования узла деполяризуемого водородом анода напряжение элементарной ячейки составляет всего лишь 2,3 - 2,5 B при плотности тока 3000 А/м2 и потребляемой мощности порядка 1800 кВт на тонну производимой каустической соды.
Соответствующий изобретению процесс не осуществляет прямого электролиза карбоната натрия в качестве подкисления, которое имеет место в центральном отсеке 41, а создает труднорастворимый бикарбонат натрия, создающий осаждение внутри ячейки и закупорку трубопроводов. Во избежание таких проблем, между ячейкой и сосудом 15 необходима большая скорость рециркуляции. Это может привести к ухудшению процесса электролиза за счет потребления мощности на рециркуляцию и значительным инвестиционным затратам на насосы и соответствующую схему, включающую в себя ячейку, сосуд 15 и фильтр 18. Кроме того, поскольку электропроводность растворов карбоната и бикарбоната натрия значительно ниже, чем проводимость растворов сульфата натрия и серной кислоты, то на типичной для изобретения ячейке может оказаться значительно большее напряжение.
В зависимости от степени очистки подаваемого в сосуд 15 по линии 17 карбоната и бикарбоната натрия, система нуждается в продувке, при этом часть кислотного раствора сульфата натрия подается в блок обработки 19, где производится нейтрализация.
В растворе используют добавление карбоната кальция в качестве нейтрализующего агента через линию 20, а затем обеспечивают отделение выпавшего в осадок сульфата кальция по линии 22. Жидкость 21, состоящая из сульфата натрия и примесей, внесенных вместе с карбонатом или бикарбонатом натрия, и накапливаемая в схеме, после разведения сливается. Альтернативное решение заключается в отводе части раствора, покидающего сосуд 15 или фильтр 18 на чистку, например, за счет испарения или кристаллизации. В этом случае кристаллизованный сульфат натрия рециркулирует по линии 24, в то время как материнский раствор, содержащий небольшое количество концентрированного раствора сульфата натрия, обогащенный примесями, после разведения сливается. Растворимой примесью, которая чаще всего сопровождает карбонат или бикарбонат натрия, а также их смеси (в виде конкретных минералов), и поэтому может накапливаться в растворе сульфата натрия, является хлорид натрия.
При использовании выделяющих кислород анодов присутствие хлорида в растворе сульфата натрия может оказаться серьезной проблемой. Действительно, хлориды легче окисляются, выделяя хлор, который смешивается с кислородом, чем основной газовый продукт. Содержание хлора свыше некоторых значений исключает возможность свободного выпуска кислорода в атмосферу. По этой причине концентрация хлоридов в растворе сульфата натрия должна поддерживаться как можно меньшей за счет значительной продувки или, в свою очередь, содержащий хлор кислород должен очищаться щелочными растворами. Значительное улучшение можно получить за счет использования деполяризуемого водородом анода.
Мембрана 13 представляет собой физический барьер, сохраняющий жидкость и электрокаталитический лист полностью разделенными. Кроме того, внутренняя структура катионной мембраны, богатая отрицательными ионизированными группами, оказывает на отрицательные ионы, такие как хлориды, сильное отталкивающее действие. Если бы хлоридам удалось мигрировать через мембрану, они бы не окислялись электрокаталитическим листом, напряжение которого за счет водорода остается низким.
Если бы кислотные растворы, получаемые в линии 11 (фиг. 3) можно было бы использовать прямо на заводе, процесс, представленный на фиг. 3, можно было бы модифицировать, как показано на фиг. 4.
В данном случае исходный материал, подаваемый в схеме по линии 24, предпочтительно состоит из кристаллического сульфата натрия, полуторасульфата натрия и их растворов. Если это необходимо для сохранения полного массового равновесия процесса, то по линии 16 можно добавлять воду. Выходящий из резервуара 15 раствор фильтруется от нерастворимых веществ в фильтре 18 и подается по линии 10 в электролизер 1. Электролизованная жидкость, отводимая по линии 11, частично подается в сосуд 15 и частично передается на использование по линии 33. Жидкость получается из раствора сульфата натрия, содержащего серную кислоту, максимальная концентрация которой определяется необходимостью исключения потерь эффективности при образовании гидроокиси натрия за счет переноса H+ вместо Na+ через мембрану 2. Однако максимальные концентрации таковы, чтобы использование потока 33 в различных химических процессах было удобным. Катодная сторона по сравнению с описанием фиг. 3 остается без изменений. Если кислотный раствор сульфата натрия не нужен, жидкость, отводимая по линии 33, может нейтрализоваться карбонатом кальция. В таком случае процесс использует сульфат натрия в качестве исходного материала и создает каустическую соду в качестве возможного продукта, чистую двуокись углерода, которая может быть сжижена и коммерциализирована, и сульфат кальция, который может подаваться в отвал в качестве инертного твердого отхода или перерабатываться для использования в строительной промышленности.
Если предпочесть процесс производства чистой серной кислоты, то процесс, показанный на фиг. 4, можно превратить в процесс, показанный на фиг. 5. В то время, как катодная сторона неизменена по сравнению с фиг. 3, в схеме получения сульфата натрия предусмотрено добавление сульфата натрия по линии 24 с возможным добавлением воды и карбоната натрия для поддержания общего водного баланса и кислотности в заданных пределах. В то время, как ионы натрия мигрируют через катионообменную мембрану 2, образуя каустическую соду в катодном отсеке 40, ионы сульфата мигрируют через анионообменную мембрану 34, образуя серную кислоту в отсеке 42, заключенном между мембраной 34 и узлом анода. Схема более сложна, поскольку предусматривает в схеме получения серной кислоты накопительный бак 35 и ввод воды по линии 37 для сохранения под контролем концентрации серной кислоты. Чистая серная кислота отводится по линии 36 и используется. Элементная ячейка также более сложна, поскольку содержит еще один отсек 42 для образования серной кислоты. Промежуток между мембраной 2 и мембраной 34, а также между мембраной 34 и узлом анода сохраняется с помощью двух разделителей 29 и 38, которые могут вносить свой вклад, если необходимо, в обеспечение конкретной упругости внутренней конструкции электролизера, которая нужна для оказания давления на соответствующий изобретению узла анода. Что касается остальных частей, то элементарная ячейка такая же, что и на фиг. 1.
Несмотря на то, что наиболее предпочтительным источником водорода является водород, выделяющийся на катоде, деполяризуемый анод может питаться водородом, поступающим от различных источников (преобразование гидрокарбонатов с помощью пара, рафинационный водород, выхлопные газы различных химических процессов, водород с диафрагм хлор-щелочных электролизаторов). Водород может извлекаться из инертных газов, но необходимо следить за исключением возможных отравляющих катализаторов веществ во время реакции ионизации водорода (моноокиси углерода, сульфида водорода и их производных). Рабочая температура приведенных выше вариантов осуществления изобретения составляет 70 - 90oC для того, чтобы можно было увеличить электропроводность электростатических растворов и мембран.
В приведенных выше вариантах осуществления изобретения циркулирующий электролитический раствор содержит один лишь сульфат натрия. Это сделано только для примера. В случае косвенного электролиза карбоната и бикарбоната натрия (фиг. 3) циркулирующий раствор, содержащий кислый сульфат натрия, может быть заменен раствором, содержащим другую соль, такую как ацетат натрия, или смеси солей, таких как ацетат натрия и хлорид натрия.
Аналогично процесс получения кислой соли или чистой кислоты (фиг. 4 и 5) можно использовать и для других солей, отличных от сульфата натрия. Например, если нитрат натрия в кристаллическом виде или в качестве раствора подается по линии 24 (фиг. 4 и 5), то в линии 33 (фиг. 4) можно будет получить раствор, содержащий смесь остаточного нитрата натрия и азотной кислоты, или в линии 36 (фиг. 5) - раствор чистой азотной кислоты.
Точно так же, если в линию 24 (фиг. 4 и 5) подавать хлорат натрия, можно получить раствор, содержащий смесь хлората натрия и соляной кислоты или раствор чистой соляной кислоты. Возможное присутствие сульфата натрия и других солей в растворе, содержащем хлорат натрия, не создает никаких сложностей. Электролиз будет создавать известные серьезные проблемы, связанные с деполяризующими водород анодами (фиг. 2). В порах этих анодов электрический раствор, водород и катализатор приходят в прямой контакт, поэтому неизбежен переход хлора в хлорид с соответствующей потерей эффективности процесса.
Процесс разделения соли на два компонента, основание и кислоту, если проводится в соответствии с изобретением, может использоваться без неудобств, связанных с солями даже органического происхождения, таких как щелочные соли органических кислот или галоиды или сульфаты органических оснований.
Пример 1. Ячейка (фиг. 1) конструируется за счет сборки двух полуячеек в прозрачном полиметилакрилате, рама делается из того же материала, а поперечное сечение трех деталей составляет 10x10 см2. Между катодной полуячейкой (катодный отсек 40, фиг. 1) и рамой вставляется катионообменная мембрана Nafion(R) 324 (2, фиг. 1), изготовленная фирмой "Дюпон", периферийный край герметизирован плоской прокладкой из каучука на основе сополимера этилена, пропилена и диенового мономера. Вторая катионообменная мембрана Nafion(R) 117, (13, фиг. 1), изготовленная фирмой "Дюпон", устанавливается между противоположной стороной рамы и анодной полуячейкой (водородной газовой камерой 4, фиг. 1), периферийный край также герметизирован плоской прокладкой из каучука на основе сополимера этилена, пропилена и диенового мономера. Сторона мембраны, обращенная к водородной газовой камере, удерживается в контакте с гибким электрокаталитическим и пористым листом 12 (фиг. 1). Такой лист получают спеканием под нагревом платиновых частиц и частиц политетрафторэтилена по известной методике, (патент США N 422421, кл. C 25 B 1/46, 1980). Коллектор анодного тока состоит из грубого жесткого экрана из растянутой металлической сетки 14b (фиг. 1) и тонкого гибкого экрана из растянутой металлической сетки 14a (фиг. 1). Оба экрана заранее соединяют вместе точечной сваркой. Оба экрана, грубый и тонкий, изготовляют из титана и покрывают электропроводящим покрытием, состоящим из смеси металлов платиновой группы и вентильных металлов, известным способом. Катод состоит из никелевой сетки толщиной 2 мм и прижат к мембране Nafion(R) 324, а коллектор анодного тока - к соответствующему изобретению узлу анода, а точнее к электрокаталитическому листу. Мембрана Nafion(R) 324 и соответствующий изобретению узел анода удерживаются на месте упругой реакцией разделителя 29 (фиг. 1), вставленного между ними и изготовленного из множества наложенных друг на друга слоев растянутой полипропиленовой сетки. Промежутки между мембраной Nafion(R) 324 и соответствующего изобретению узлом анода составляет около 3 мм. Ячейка вводится в схему фиг. 3, имеющую общий объем 8 л.
Сначала 15%-ная каустическая сода подается в катодный отсек 40 (фиг. 1), а 16%-ный сульфат натрия - в схему, образованную центральным отсеком 41 (фиг. 2) ячейки, сосудом 15, чистителем 18, состоящим из фильтра для нерастворимых веществ, и секции обработки стока 19. В водородную газовую камеру 4 (фиг. 1) подается чистый водород, поступающий из катодного отсека, соответствующим образом увлажненный в скруббере (не показан). В схему подается твердый карбонат натрия, содержащий 0,03% хлорида натрия. Накопление хлорида поддерживается около 1 г/л за счет нескольких миллилитров раствора в час. Полный ток составляет 30 А, температура 80oC. Гидравлические головки циркулирующих растворов каустической соды и сульфата натрия настроены так, чтобы сохранять мембрану Nafion(R) 117 прижатой к электрокаталитическому листу и коллектору тока, а мембрану Nafio(R) 324 - прижатой к полипропиленовому разделению. При таких условиях система вырабатывает около 40 г 17%-ной каустической соды в час (фарадеевский выход около 90%) при среднем потреблении карбоната натрия в виде Na2CO3 50 г/ч и водорода 15 л/ч (при комнатной температуре). Напряжение ячейки регистрируется с течением времени как функция типов грубого и тонкого экранов:
1) грубый плоский растянутый металлический лист: плоский титан толщиной 3 мм с короткой и длинной диагоналями отверстий в форме ромба соответственно 10 и 20 мм;
2) то же, что и в п. 1, и толщиной 1 мм;
3) то же, что и в п. 2, но толщиной 1,5 мм, а также короткой и длинной диагоналями соответственно 4 и 8 мм;
4) тонкий плоский растянутый металлический лист: титан толщиной 1 мм с гальваническим покрытием из пластины толщиной 0,5 мкм с короткой и длинной диагоналями отверстий в форме ромба соответственно 2 и 4 мм;
5) то же, что и в п. 4, но с короткой и длинной диагоналями соответственно 6 и 12 мм;
6) то же, что и в п. 4, но толщиной 0,5 мм и короткой и длинной диагоналями соответственно 1,5 и 3 мм;
7) перфорированный титановый лист толщиной 1 мм с отверстиями диаметром 1,5 мм, имеющий гальваническое покрытие из платины толщиной 0,5 мкм;
8) перфорированный титановый лист толщиной 0,3 мм с отверстиями диаметром 1 мм, имеющий гальваническое покрытие из платины толщиной 0,5 мкм.
Полученные таким образом результаты оказались стабильными с течением времени.
Зависимость напряжения ячейки от геометрии коллектора тока следующая:
Комбинации грубого и тонкого экранов - Напряжение ячейки, В
1 + 4 - 2,4
1 + 5 - 2,6
1 + 8 - 2,3
2 + 4 - 2,5
2 + 8 - 2,3
3 + 4 - 2,4
3 + 5 - 2,6
3 + 6 - 2,3
3 + 7 - 2,2
Таким образом, если в качестве материала для коллектора тока используется титан, напряжение ячейки увеличивается с толщиной грубого экрана. Наиболее вероятно, что эти увеличения напряжения ячейки вызваны омическими потерями, поэтому критическая толщина и размеры диагоналей отверстий являются функцией электропроводности металла. В случае тонкого титанового экрана толщина не влияет на рабочие характеристики в измеренном диапазоне. Наиболее вероятно, что толщина свыше 1 мм даст менее удовлетворительные результаты за счет меньшей гибкости и следовательно меньшего совпадения формы тонкого экрана с профилем жесткого экрана. И наоборот, размеры отверстий исключительно влияют на рабочие характеристики, причем величина 12 мм является максимально допустимым пределом. Сильное увеличение напряжения ячейки при 12 мм возможно обусловлено тем, что слишком большая часть электрокаталитического листа остается не прижатой и теряющей за счет этого контакт с мембраной. Поэтому считается, что этот предел приемлем независимо от типа материала тонкого экрана.
Поскольку ячейка не была снабжена выделяющими кислород анодами, проблем, связанных с выделением газообразного хлора, не было. Поэтому в процессе данного примера максимальный предел накопления хлоридов может быть значительно увеличен относительно соответствующего данному примеру 1 г/л с последующим значительным снижением очистки.
Пример 2. Комбинацию 3 + 7 примера 1, заменяют аналогичной комбинацией точно также изготовленной из растянутого титанового листа с гальваническим платиновым покрытием толщиной 0,5 мкм и тонкой проволочной сетки из никелевого сплава Hastelloy(R) C-276, просто прижатой к грубому растянутому титановому листу, причем проволочную сетку получают из отрезков проволоки диаметром 0,5 мм, разделенных промежутками по 1 мм. Результат такой же, что и в случае комбинации 3 + 7. Это говорит о том, что тип материала, находящегося в контакте с электрокаталитическим листом не критичен, а точечная сварка между грубым и тонким экраном не является обязательным условием.
Тонкую проволочную сетку из Hastelloy(R) C-276 затем заменяют гибким листом оплавленного титана толщиной 0,5 мм и снабженного покрытием из рутения и окиси титана, полученным тепловым разложением раствора, содержащего исходные соединения, впитанным листом. В данном случае лист тоже просто прижимают к грубой растянутой титановой сетке, имеющей гальваническое платиновое покрытие толщиной 0,5 мкм. Результаты аналогичны результатам для комбинации 3 - 7, при этом необходимыми требованиями для тонкого экрана являются гибкость и множество точек контакта с электрокаталитическим листом, в то время как его структура, т.е. способ получения гибкости и множества точек контакта, не является определяющей.
Пример 3. Ячейку из примера 1 разбирают и коллектор тока (грубый и тонкий металлический экран) заменяют листом из пористого графита толщиной 10 мм со средним размером пор около 0,5 мм. Остальные компоненты не изменяются, ячейку снова собирают и устанавливают в ту же самую схему электролиза примера 1. Ячейка работает с напряжением 2,3 - 2,4 В, по существу стабильным во времени. Аналогичный результат получают при использовании вместо графитового листа губки из нержавеющей стали толщиной 10 мм (известной также как сетчатый металл) со средним диаметром пор 1 мм. Эти два эксперимента показывают, что коллектор тока может состоять также из одного элемента при условии, что этот элемент объединяет в себе характеристики, гарантирующие равномерное распределение тока, жесткость и множество точек контакта с электрокаталитическим листом. Однако коллектор тока из одного элемента отличается большими затратами (оплавленный металл, металлическая губка) и хрупкостью (пористый графитовый лист). По этим причинам коллектор тока, содержащий грубый экран и тонкий экран примеров 1 и 2 представляет собой наиболее предпочтительный вариант осуществления изобретения.
Пример 4. Ячейку, используемую в примере 3, разбирают, и лист металлической губки заменяют одним грубым растянутым экраном из титана с такими же характеристиками, что в п. 1 примера 1. Экран снабжают гальваническим платиновым покрытием толщиной 0,5 мкм. Остальные компоненты остаются без изменений, а собранную ячейку вводят в схему электролиза. При работе в таких же условиях, что и ранее, напряжение ячейки 3,4 В. Это говорит о том, что число точек контакта между коллектором тока и электрокаталитическим листом незначительно.
В следующем испытании отдельный грубый растянутый титановый экран используют вместо тонкого растянутого титанового экрана, имеющего те же самые характеристики, что и у экрана в примере 1, и снабжен гальваническим платиновым покрытием толщиной 0,5 мкм. Ячейка работает при таких же условиях, а результирующее напряжение ячейки составляет 2,8 - 2,9 В. В данном случае более высокое напряжение ячейки можно отнести на счет омических потерь благодаря излишне тонкому коллектору тока. Поэтому следующее испытание проводят с коллектором тока, сделанным из отдельного растянутого титанового экрана толщиной 3 мм и с короткой и длинной диагоналями отверстий в форме ромба, равными 2 и 4 мм соответственно. Напряжение ячейки составляет 2,8 - 3,0 В. Причиной такого высокого напряжения ячейки является ширина частей экрана из твердого металла, равная примерно 2 мм, которую нельзя уменьшить по технологическим соображениям. Эта избыточная ширина определяет частичное закупоривание электрокаталитического листа, делающее часть катализатора недоступной водородному пазу. Ширину можно уменьшить до 1 мм и менее только тогда, когда растянутый металлический экран имеет достаточно малую толщину, порядка 1 мм и менее.
Следует заметить, что все необходимое для создания равномерного распределения, жесткости и множественности точек контакта нельзя одновременно получить с помощью отдельного растянутого металлического экрана.
Пример 5. Комбинация 3 - 7 примера 1 проходит дальнейшие испытания с заменой гибкого электрокаталитического листа, полученного за счет спекания частиц электрокатализатора и связующего вещества, на гибкий электрокаталитический лист, сделанный из войлока из активированного угля, изготовленного фирмой Е-ТЕК, США, под торговой маркой ELAT(R).
Все остальные характеристики в данном случае такие же как в примере 1.
Далее комбинация 3 + 7 примера 1 проходит дальнейшие испытания с заменой гибкого войлока из активированного угля, на лист из активированного угля, полученный нанесением платинового катализатора, полученного тепловым разложением подходящего исходного раствора, на пористый угольный лист, изготовленный фирмой "Тоурей Ко.", Япония, под торговой маркой TGP H 510.
Этот угольный лист почти не гибкий и контакт с коллектором тока довольно слабый даже при давлении на мембрану со стороны электролита и внутренней упругой конструкции ячейки вследствие неспособности угольного листа повторять профиль коллектора тока, который не может быть идеально плоским. Напряжение ячейки составляет 3,2 В и имеет тенденцию к увеличению с течением времени. Это испытание показывает, что несмотря на характеристики толщины, жесткости и множественности точек контакта, типичных для коллектора тока, необходимо, чтобы электрокаталитический лист был гибким.
Пример 6. Комбинация 3 + 7 примера 1 испытывается при рабочих условиях примера 1 за единственным исключением того, что в раствор сульфата натрия специально добавляется несколько миллиграмм на литр ионов свинца и ртути, являющиеся отравляющими веществами для реакции ионизации водорода. Напряжение ячейки остается без изменения, при этом имеет место удивительная стойкость к деактивации, что является результатом присутствия мембраны 13 (фиг. 1), которая действует как эффективный защитный барьер между содержащим отравляющее вещество раствором и электрокаталитическим листом 12 (фиг. 1).
Такой же электролиз проводят с ячейкой, снабженной деполяризующим водород анодом (EP N 0357077, кл. C 25 B 11/03, 1990). Этот электролиз прерывают через довольно короткое с начала работы время из-за неприемлемого увеличения напряжения ячейки, имеющего место главным образом за счет отравления катализатора, смоченного раствором внутри пор листа.
Пример 7. Испытание примера 1 с комбинацией 3 + 7 повторяют с изменением циркулирующего раствора и рабочей температуры, составившей в данном случае 65oC.
Сульфат натрия заменяется на хлорид натрия, 200 г/л, ацетат натрия, 250 г/л, смесь из 10% сульфата натрия и 10% ацетата натрия, смесь из 10% хлорида натрия и 10% ацетата натрия.
Результаты такие же, как в примере 1, и показывают, что функция носителя кислотности может быть выполнена различными типами солей, отличными от сульфата натрия. Единственные отличия связаны с концентрацией полученной соли, которая велика для хлористоводородной кислоты, умеренна для серной кислоты и мала для уксусной кислоты. Максимальное накопление кислоты перед спадом Фарадеевской эффективности для производства каустической соды уменьшается с увеличением концентрации кислоты. Поэтому скорости потока кислого раствора в сосуд 15 (фиг. 1) должны пропорционально изменяться. Наилучшие результаты получены со смесями из солей, в которых соль сильной кислоты, хлорид натрия, предназначается для гарантии высокой электропроводности, в то время как соль слабой кислоты, ацетат натрия, предназначается для работы в качестве накопителя кислотности. В частности, для раствора, содержащего 10% хлорида натрия и 10% ацетата натрия, получают напряжение 2,5 В с полным током 30 А (300 А/м2) и потребление мощности 1,9 кВт•ч/кг производимой каустической соды.
Пример 8. Ячейка, снабженная соответствующим изобретению деполяризующим водород анодным узлом, приведенным в примере 1 для комбинации 3 + 7, используется в схеме, как показано на фиг. 4. Общие условия следующие:
концентрация циркулирующего раствора: 120 г/л серной кислоты и 250 г/л сульфата натрия, часть раствора постоянно сливается (33, фиг. 4);
подача (15, фиг. 4): твердый сульфат натрия технического класса чистоты;
полный ток 30 А (3000 А/м2);
температура 80oC;
каустическая сода 17%;
гидравлические головки подачи каустической соды и кислого раствора сульфата натрия настроены так, чтобы сохранять мембрану Nation(R) 117 и электрокаталитический лист прижатыми к коллектору тока, а мембраны Nation(R) 324 прижатой к полипропиленовому разделителю.
Напряжение ячейки, составляет 2,3 В при потреблении мощности 1,8 кВт•ч/кг производимой каустической соды.
При подаче щелочного сульфата натрия или полуторасульфата натрия существенного изменения результатов не наблюдается.
Пример 9. Рабочие условия такие же, как в примере 8, за исключением того, что кислый раствор не отводится, а полностью нейтрализуется химически чистым гранулированным карбонатом кальция 15 (фиг. 4). Кроме того, в схему подаются сульфат натрия и вода. Полная реакция является превращением сульфата натрия, карбоната кальция и воды в каустическую соду, сульфат кальция, фильтруемый в фильтре 18 (фиг. 4) и двуокись углерода. Не возникает никаких конкретных трудностей, связанных с достижением стабильной работы при полном токе 30 А и напряжении ячейки 2,4 В по выработке 40 г/ч 18%-ной каустической соды (с Фарадеевской эффективностью 90% и потреблением мощности 1,9 кВт•ч на тонну) и около 70 г/ч твердого сульфата кальция при потреблении 70 г/ч сульфата натрия в виде Na2SO4 и 50 г/ч карбоната кальция. В соответствии с этим альтернативным вариантом осуществления изобретения, кислый раствор примера 8 заменяют твердым сульфатом кальция, который можно погасить до состояния инертного твердого отхода или использовать при соответствующей обработке в строительстве.
Пример 10. Процесс электролиза раствора сульфата натрия примера 8 повторяют в наиболее сложном варианте осуществления фиг. 5. Ячейка получается из сборки двух полуячеек в прозрачном метилакрилате и двух рам, сделанных из того же материала, поперечное сечение составляет 10x10 см2. Катионообменную мембрану Nafion(R) 324 фирмы "Дюпон Ко." (2, фиг. 5) устанавливают между катодной полуячейкой и первой рамой с уплотнением периферийного края плоской прокладкой из каучука на основе этилена, пропилена и диенового мономера. Вторую анионообменную мембрану Selemion(R) AAV фирмы "Асахи гласс" (34, фиг. 5) устанавливают между первой и второй рамой, а периферийный край уплотняют такой же плоской прокладкой из каучука на основе этилена, пропилена и диенового мономера. Соответствующий изобретению деполяризуемый водородом узел анода, содержащий мембрану Nafion(R)117 (13, фиг. 5), электрокаталитический графитизированный угольный войлок, выпускаемый фирмой Е-ТЕК США, под торговой маркой ELAT(R) (12, фиг. 5) и комбинацию 3 + 7 примера 1 в качестве коллектора тока 14 (фиг. 5), устанавливают между второй рамой и водородной газовой камерой 4 (фиг. 5). Расстояние между мембранами, соответствующее толщине каждой рамы и соответствующих прокладок, равно 3 мм, а соответствующий промежуток заполняют упругими разделителями 29 и 38 (фиг. 5), сделанными из множества слоев крупносетчатого полотна, изготовленного из полипропилена. Катод 3 (фиг. 5) и коллектор тока 14 (фиг. 5) прижаты к мембранам и прочно удерживаются на месте упругой реакцией разделителей. Подаваемыми в ячейку исходными растворами являются: 15%-ная каустическая сода, 16%-ный сульфат натрия и 5%-ная серная кислота. Химически чистый сульфат натрия, вода для сохранения неизменных концентраций и объема и каустическая сода для сохранения раствора сульфата натрия близким к нейтральному, подаются в схему 15 (фиг. 5). При полном токе 30 А система, постоянно работающая при 3,7 В и 60oC вырабатывает 40 г/ч 17%-ной каустической соды (с Фарадеевской эффективностью 90%) и 41 г/ч 12%-ной серной кислоты (с Фарадеевской эффективностью 75%) при среднем потреблении твердого сульфата натрия 60 г/ч и каустической соды 6,5 г/ч. Потребление мощности составляет 2,9 кВт•ч на килограмм производимой каустической соды, и достигает 3,3 кВт•ч на килограмм производимой каустической соды, и достигает 3,3 кВт•ч на килограмм реально производимой каустической соды, если принимать во внимание потребление каустической соды, необходимое для поддержания нейтральности раствора сульфата натрия.
Пример 11. Ячейка с деполяризуемым водородом узлом анода примера 10 работает при тех же самых условиях, но кристаллический сульфат натрия и 16%-ный раствор сульфата натрия заменяют соответственно на химически чистый твердый хлорид натрия и 20%-ный раствор хлорида натрия. При таких же рабочих условиях получают 18%-ный раствор каустической соды и 2%-ный раствор хлористоводородной кислоты с такой же Фарадеевской эффективностью и пониженным потреблением мощности. Наличие узла анода исключает образование хлора, который способен необратимо повреждать анионообменную мембрану. Аналогичные результаты получают при использовании 15%-ного раствора нитрата натрия и кристаллического нитрата натрия, в случае которых получают 15%-ный раствор каустической соды и 3%-ный раствор азотной кислоты при стабильных рабочих условиях, высокой Фарадеевской эффективности и малом потреблении мощности. Ячейка данного примера используется также для электролитического разложения солей органических кислот или оснований. В первом случае ячейка работает с исходным 12%-ным раствором лактата натрия и твердым лактатом натрия. При работе в условиях примера 10 получают 13%-ный раствор каустической соды и 10%-ный раствор молочной кислоты с высокими Фарадеевскими эффективностями, низкими потреблениями мощности и отсутствием побочных продуктов. Традиционный способ с выделяющими кислород анодами в данном случае может оказаться совершенно непригодным, поскольку молочная кислота, как и большинство органических кислот, не устойчива при анодном окислении.
Кроме того, соответствующая изобретению ячейка с водородным анодным узлом используется для электрокаталитического разложения раствора бромида тетраэтиленаммония при условиях, описанных выше для лактата натрия. Вместо каустической соды получают раствор гидроокиси тетраэтиламмония и 2%-ный раствор бромной кислоты без конкурентного образования брома, который мог бы быстро испортить нежную анодную мембрану. Фарадеевская эффективность по прежнему высока, а потребление мощности - особенно мало.
Пример 12. В испытании примера 8 повторяют замену циркулирующего раствора, состоящего из сульфата натрия и серной кислоты, сначала раствором, начально содержавшим около 600 г/л хлората натрия, а затем раствором, начально содержавшим 200 г/л сульфата натрия и 200 г/л хлората натрия. В обоих случаях используются следующие рабочие условия:
температура 60oC;
полный ток 30 А (300 А/м2) при напряжении ячейки около 2,3 В;
твердый хлорат натрия в первом случае, хлорат натрия и сульфат натрия во втором случае подаются по линии 15 (фиг. 4);
гидравлические головки подачи растворов каустической соды и хлората натрия настроены так, чтобы сохранять мембрану Nafion(R) 117 (13, фиг. 4) и электрокаталитический лист 12 (фиг. 4) прижатыми к коллектору тока 14 (фиг. 4), а мембрану Nafion(R) 324 (2, фиг. 4) прижатой к полипропиленовому разделителю.
Потребление мощности составляет около 2 кВт•ч на килограмм каустической соды. Максимальная кислотность, которую можно получить в циркулирующем растворе кислой соли, показывает явный спад эффективности тока (от 0,5 до 1 от нормального значения в первом случае и от 2 до 2,5 от нормального значения во втором случае).
Попытка повторить испытание с заменой соответствующего изобретению деполяризованного водородного анода на известный деполяризованный анод (EP 0357077, кл. C 25 B 11/03, 1990) завершилась неудачей после нескольких часов работы за счет значительного превращения хлора в хлорид в порах электродов, где электролитический раствор, водород и частицы катализатора находились в непосредственном контакте.

Claims (38)

1. Электролизер, содержащий по меньшей мере одну элементарную ячейку, разделенную ионообменными мембранами на электролитические отсеки, содержащие систему подачи электролитических растворов и систему отвода продуктов электролиза, ячейка снабжена катодом и узлом деполяризуемого водородом анода, образующим водородную газовую камеру, отличающийся тем, что узел анода снабжен катионообменной мембраной, пористым электрокаталитическим гибким листом и пористым жестким коллектором тока, примыкающим к электрокаталитическому листу, причем катионообменная мембрана, электрокаталитический лист и коллектор тока выполнены в контакте друг с другом без крепления за счет давления.
2. Электролизер по п.1, отличающийся тем, что катионообменная мембрана узла анода выполнена кислотостойкой.
3. Электролизер по п.1, отличающийся тем, что электрокаталитический лист выполнен из углерода или графита и содержит электрокатализатор для ионизации водорода.
4. Электролизер по п.1, отличающийся тем, что электрокаталитический лист выполнен в виде пленки, содержащей связующее вещество, электропроводящие и электрокаталитические частицы для ионизации водорода.
5. Электролизер по п.1, отличающийся тем, что электрокаталитический лист выполнен в виде тонкой проволочной сетки, снабженной покрытием, содержащим электрокатализатор для ионизации водорода.
6. Электролизер по п.1, отличающийся тем, что электрокаталитический лист выполнен в виде спеченного металлического листа, содержащего электрокатализатор для ионизации водорода.
7. Электролизер по п.1, отличающийся тем, что коллектор тока выполнен из металла с вентильным эффектом и снабжен электропроводящим покрытием.
8. Электролизер по п.1, отличающийся тем, что коллектор тока выполнен в виде пористого грубого металлического экрана и пористого тонкого гибкого металлического экрана, выполненных в контакте друг с другом.
9. Электролизер по п.8, отличающийся тем, что грубый металлический экран и тонкий металлический экран соединены друг с другом посредством точечной сварки.
10. Электролизер по п. 8, отличающийся тем, что грубый металлический экран выполнен в виде грубого растянутого металлического листа с отверстиями в виде ромба, а тонкий металлический экран выполнен в виде тонкого растянутого металлического листа с отверстиями в виде ромба.
11. Электролизер по п.10, отличающийся тем, что минимальная толщина и максимальная длина диагоналей отверстий грубого растянутого металлического листа составляют соответственно 1 и 20 нм.
12. Электролизер по п.10, отличающийся тем, что минимальная толщина и максимальная длина диагоналей отверстий тонкого растянутого металлического листа составляют соответственно 1 и 12 нм.
13. Электролизер по п.1, отличающийся тем, что коллектор тока выполнен в виде листа из пористого графита.
14. Электролизер по п.1, отличающийся тем, что коллектор тока выполнен в виде листа из металлической губки.
15. Электролизер по п.1, отличающийся тем, что давление оказывает электролитический раствор, находящийся в контакте со стороной катионообменной мембраны, противоположной другой ее стороне, находящейся в контакте с электрокаталитическим листом.
16. Электролизер по п. 1, отличающийся тем, что электролизер снабжен упругим средством.
17. Электролизер по пп.1 и 16, отличающийся тем, что давление оказывает упругое средство.
18. Электролизер по одному из пп.1 - 17, отличающийся тем, что элементарная ячейка содержит два электролитических отсека, разделенных между собой катионообменной мембраной.
19. Электролизер по одному из пп.1 - 17, отличающийся тем, что элементарная ячейка содержит три электролитических отсека, разделенных между собой катионообменной мембраной и анионообменной мембраной.
20. Способ получения раствора основания и раствора, содержащего кислоту, путем электролиза раствора соли в электролизере, включающий подачу соли в виде твердого вещества или раствора к электролизеру и содержащего водород газового потока в водородную газовую камеру, отличающийся тем, что в качестве электролизера используют электролизер по п.1, осуществляют диффундирование газа водорода через пористый коллектор тока и пористый электрокаталитический лист и ионизацию поверхности между электрокаталитическим листом и мембраной с образованием Н+ ионов, которые проникают через мембрану в раствор соли.
21. Способ получения раствора основания и раствора чистой кислоты путем электролиза раствора соли в электролизере, включающий подачу соли в виде твердого вещества или раствора и воды к электролизеру и содержащего водород газового потока в водородную газовую камеру, отличающийся тем, что в качестве электролизера используют электролизер по п.19, осуществляют диффундирование газа водорода через пористый коллектор тока и пористый электрокаталитический лист и ионизацию поверхности между электрокаталитическим листом и мембраной с образованием Н+ ионов, которые проникают через мембрану в раствор чистой кислоты.
22. Способ по п.20 или 21, отличающийся тем, что в качестве соли в виде твердого вещества или раствора используют соль, содержащую отравляющие узел анода агенты.
23. Способ по п.20 или 21, отличающийся тем, что в качестве соли в виде твердого вещества или раствора используют соль, содержащую восстанавливаемые вещества.
24. Способ по п.20 или 21, отличающийся тем, что в качестве соли в виде твердого вещества или раствора используют нейтральную соль.
25. Способ по п.20 или 21, отличающийся тем, что в качестве соли в виде твердого вещества или раствора используют соль, образованную сильным основанием и слабой кислотой.
26. Способ по п.20 или 21, отличающийся тем, что в качестве соли в виде твердого вещества или раствора используют соль, образованную сильной кислотой и слабым основанием.
27. Способ по п.20 или 21, отличающийся тем, что в качестве соли в виде твердого вещества или раствора используют сульфат или полуторосульфат натрия, в качестве раствора основания получают раствор каустической соды, а в качестве раствора, содержащего остаток соли и кислоту, получают раствор сульфата натрия и серной кислоты.
28. Способ по п.27, отличающийся тем, что раствор, содержащий сульфат натрия и серную кислоту, по меньшей мере частично нейтрализуют карбонатом натрия или бикарбонатом натрия, фильтруют для удаления сульфата кальция, очищают и подают на электролиз.
29. Способ по п.28, отличающийся тем, что раствор, содержащий сульфат натрия и серную кислоту, по меньшей мере частично нейтрализуют карбонатом натрия или бикарбонатом натрия, фильтруют для удаления нерастворимых веществ, очищают и подают на электролиз.
30. Способ по п.20 или 21, отличающийся тем, что в качестве соли в виде твердого вещества или раствора используют хлорид натрия.
31. Способ по п.20 или 21, отличающийся тем, что в качестве соли в виде твердого вещества или раствора используют хлорат натрия.
32. Способ по п.20 или 21, отличающийся тем, что в качестве соли в виде твердого вещества или раствора используют соль, образованную сильным основанием и органической кислотой.
33. Способ по п.20 или 21, отличающийся тем, что в качестве соли в виде твердого вещества или раствора используют соль органического основания.
34. Способ по п.20, отличающийся тем, что в качестве соли в виде твердого вещества или раствора используют смесь солей.
35. Способ по пп.20 и 34, отличающийся тем, что в качестве смеси солей используют хлорид натрия и ацетат натрия, в качестве раствора основания получают раствор каустической соды, а в качестве раствора, содержащего остатки соли и кислоту, получают раствор хлорида натрия, ацетата натрия и уксусной кислоты, который по меньшей мере частично нейтрализуют карбонатом натрия или бикарбонатом натрия, фильтруют для удаления нерастворимых веществ, очищают и подают на электролиз.
36. Способ по п.34, отличающийся тем, что в качестве смеси солей используют хлорат натрия и сульфат или полуторосульфат натрия.
37. Способ по п.21, отличающийся тем, что в качестве соли в виде твердого вещества или раствора используют сульфат или полуторосульфат натрия, в качестве раствора основания получают раствор каустической соды, а в качестве раствора чистой кислоты получают раствор серной кислоты.
38. Способ по п.20 или 21, отличающийся тем, что в качестве содержащего водород газового потока используют газовый поток, содержащий водород, полученный на катодах электролизера.
RU93058574A 1991-06-27 1992-06-26 Электролизер, способ получения раствора основания и раствора, содержащего кислоту, и способ получения раствора основания и раствора чистой кислоты RU2107752C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ITMI911765A IT1248564B (it) 1991-06-27 1991-06-27 Processo di decomposizione elettrochimica di sali neutri senza co-produzione di alogeni o di acido e cella di elettrolisi adatta per la sua realizzazione.
ITM191A001765 1991-06-27
PCT/EP1992/001442 WO1993000460A1 (en) 1991-06-27 1992-06-26 Apparatus and process for electrochemically decomposing salt solutions to form the relevant base and acid

Publications (2)

Publication Number Publication Date
RU93058574A RU93058574A (ru) 1996-06-20
RU2107752C1 true RU2107752C1 (ru) 1998-03-27

Family

ID=11360215

Family Applications (1)

Application Number Title Priority Date Filing Date
RU93058574A RU2107752C1 (ru) 1991-06-27 1992-06-26 Электролизер, способ получения раствора основания и раствора, содержащего кислоту, и способ получения раствора основания и раствора чистой кислоты

Country Status (24)

Country Link
US (2) US5595641A (ru)
EP (2) EP0591350B1 (ru)
JP (1) JP3182216B2 (ru)
KR (1) KR940701466A (ru)
CN (1) CN1067931A (ru)
AR (1) AR246560A1 (ru)
AT (1) ATE145018T1 (ru)
AU (1) AU663717B2 (ru)
BR (1) BR9206192A (ru)
CA (1) CA2112100A1 (ru)
CZ (1) CZ289193A3 (ru)
DE (1) DE69215093T2 (ru)
FI (1) FI935818A0 (ru)
HU (1) HU212211B (ru)
IL (1) IL102247A (ru)
IT (1) IT1248564B (ru)
MX (1) MX9203527A (ru)
NZ (1) NZ243305A (ru)
RU (1) RU2107752C1 (ru)
SK (1) SK145893A3 (ru)
TR (1) TR26992A (ru)
TW (1) TW230226B (ru)
WO (1) WO1993000460A1 (ru)
ZA (1) ZA924771B (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2443803C2 (ru) * 2007-01-24 2012-02-27 Байер Матириальсайенс Аг Способ повышения производительности никелевых электродов
RU2455395C2 (ru) * 2007-07-10 2012-07-10 Уденора С.П.А. Упругий коллектор тока для электрохимических ячеек
US11339483B1 (en) 2021-04-05 2022-05-24 Alchemr, Inc. Water electrolyzers employing anion exchange membranes

Families Citing this family (109)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3236693B2 (ja) * 1993-02-18 2001-12-10 ペルメレック電極株式会社 ガス電極を使用する電解槽及び電解方法
US5770033A (en) * 1993-07-13 1998-06-23 Lynntech, Inc. Methods and apparatus for using gas and liquid phase cathodic depolarizers
US5961795A (en) * 1993-11-22 1999-10-05 E. I. Du Pont De Nemours And Company Electrochemical cell having a resilient flow field
KR19990076862A (ko) * 1995-12-28 1999-10-25 미리암 디. 메코너헤이 할로겐화카르보닐의 제조
US5904829A (en) * 1997-08-18 1999-05-18 Ppg Industries, Inc. Method of converting amine hydrohalide into free amine
US5882501A (en) * 1997-08-18 1999-03-16 Ppg Industries, Inc. Method of converting amine hydrohalide into free amine
US5900133A (en) * 1997-08-18 1999-05-04 Ppg Industries, Inc. Method of converting amine hydrohalide into free amine
US5906722A (en) * 1997-08-18 1999-05-25 Ppg Industries, Inc. Method of converting amine hydrohalide into free amine
US5928488A (en) * 1997-08-26 1999-07-27 David S. Newman Electrolytic sodium sulfate salt splitter comprising a polymeric ion conductor
DE19844059A1 (de) 1998-09-25 2000-03-30 Degussa Elektrolysezelle und deren Verwendung
DE10004878A1 (de) * 2000-02-04 2001-08-09 Sgl Technik Gmbh Verfahren und Vorrichtung zum gleichzeitigen Herstellen von Säure und Base hoher Reinheit
JP2001236968A (ja) * 2000-02-23 2001-08-31 Asahi Kasei Corp 燃料電池型反応装置およびその使用方法
EP2305604A3 (en) * 2000-09-13 2011-06-29 Asahi Glass Company Limited Purification method for an alkali metal chloride and method for producing an alkali metal hydroxide
US7141147B2 (en) 2001-06-15 2006-11-28 Akzo Nobel N.V. Electrolytic cell
EP1397531A1 (en) * 2001-06-15 2004-03-17 Akzo Nobel N.V. Electrolytic cell
DE10257186A1 (de) * 2002-12-06 2004-07-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung von beschichteten Streckmetallen und Verwendung solcher Metalle als Stromableiter in elektrotechnischen Bauelementen
EP2284147A3 (en) 2003-11-20 2011-03-02 SOLVAY (Société Anonyme) Process for producing dichloropropanol
KR20080036553A (ko) 2005-05-20 2008-04-28 솔베이(소시에떼아노님) 폴리히드록실화 지방족 탄화수소 및 염소화제로부터 출발한에폭시드의 제조 방법
EP2284163A3 (en) 2005-05-20 2011-03-09 SOLVAY (Société Anonyme) Process for producing dichloropropanol
JP4761194B2 (ja) * 2005-08-10 2011-08-31 株式会社村田製作所 化成方法及び化成装置
EA200801285A1 (ru) 2005-11-08 2009-02-27 Солвей (Сосьете Аноним) Способ производства дихлорпропанола хлорированием глицерина
KR100979372B1 (ko) 2006-06-14 2010-08-31 솔베이(소시에떼아노님) 조 글리세롤계 생성물, 그 정제방법 및 디클로로프로판올의제조에의 그 용도
FR2904330B1 (fr) * 2006-07-25 2009-01-02 Commissariat Energie Atomique Dispositif d'electrolyse de l'eau et son utilisation pour produire de l'hydrogene
FR2913421B1 (fr) 2007-03-07 2009-05-15 Solvay Procede de fabrication de dichloropropanol.
FR2913684B1 (fr) 2007-03-14 2012-09-14 Solvay Procede de fabrication de dichloropropanol
TW200911740A (en) 2007-06-01 2009-03-16 Solvay Process for manufacturing a chlorohydrin
TW200911693A (en) 2007-06-12 2009-03-16 Solvay Aqueous composition containing a salt, manufacturing process and use
TWI500609B (zh) 2007-06-12 2015-09-21 Solvay 含有環氧氯丙烷的產品,其製備及其不同應用中的用途
US7753618B2 (en) * 2007-06-28 2010-07-13 Calera Corporation Rocks and aggregate, and methods of making and using the same
JP2010531732A (ja) 2007-06-28 2010-09-30 カレラ コーポレイション 炭酸塩化合物の沈殿を含む脱塩方法
US8177946B2 (en) * 2007-08-09 2012-05-15 Lawrence Livermore National Security, Llc Electrochemical formation of hydroxide for enhancing carbon dioxide and acid gas uptake by a solution
KR20100089835A (ko) 2007-10-02 2010-08-12 솔베이(소시에떼아노님) 용기의 내부식성 향상을 위한 실리콘-함유 조성물의 용도
US8453022B2 (en) * 2007-12-05 2013-05-28 Densbits Technologies Ltd. Apparatus and methods for generating row-specific reading thresholds in flash memory
FR2925045B1 (fr) 2007-12-17 2012-02-24 Solvay Produit a base de glycerol, procede pour son obtention et son utilisation dans la fabrication de dichloropropanol
US7754169B2 (en) * 2007-12-28 2010-07-13 Calera Corporation Methods and systems for utilizing waste sources of metal oxides
US20100239467A1 (en) 2008-06-17 2010-09-23 Brent Constantz Methods and systems for utilizing waste sources of metal oxides
KR20100105860A (ko) * 2007-12-28 2010-09-30 칼레라 코포레이션 Co2 분리 방법
US7749476B2 (en) * 2007-12-28 2010-07-06 Calera Corporation Production of carbonate-containing compositions from material comprising metal silicates
TWI478875B (zh) 2008-01-31 2015-04-01 Solvay 使水性組成物中之有機物質降解之方法
MY152093A (en) 2008-04-03 2014-08-15 Solvay Société Anonyme Composition comprising glycerol, process for obtaining same and use thereof in the manufacture of dichloropropanol
US20100144521A1 (en) * 2008-05-29 2010-06-10 Brent Constantz Rocks and Aggregate, and Methods of Making and Using the Same
AU2009271304B2 (en) 2008-07-16 2013-08-15 Eleryc, Inc. Low-energy 4-cell electrochemical system with carbon dioxide gas
WO2010009273A1 (en) 2008-07-16 2010-01-21 Calera Corporation Co2 utilization in electrochemical systems
US7993500B2 (en) * 2008-07-16 2011-08-09 Calera Corporation Gas diffusion anode and CO2 cathode electrolyte system
AU2009287461A1 (en) * 2008-09-11 2010-04-08 Calera Corporation CO2 commodity trading system and method
FR2935968B1 (fr) 2008-09-12 2010-09-10 Solvay Procede pour la purification de chlorure d'hydrogene
US7815880B2 (en) 2008-09-30 2010-10-19 Calera Corporation Reduced-carbon footprint concrete compositions
CN101990523B (zh) 2008-09-30 2015-04-29 卡勒拉公司 Co2-截存的成形建筑材料
US7939336B2 (en) 2008-09-30 2011-05-10 Calera Corporation Compositions and methods using substances containing carbon
US8869477B2 (en) 2008-09-30 2014-10-28 Calera Corporation Formed building materials
US9133581B2 (en) 2008-10-31 2015-09-15 Calera Corporation Non-cementitious compositions comprising vaterite and methods thereof
US7829053B2 (en) 2008-10-31 2010-11-09 Calera Corporation Non-cementitious compositions comprising CO2 sequestering additives
US20100150802A1 (en) * 2008-12-11 2010-06-17 Gilliam Ryan J Processing co2 utilizing a recirculating solution
CA2696088A1 (en) * 2008-12-23 2010-06-23 Calera Corporation Low-energy electrochemical proton transfer system and method
GB2467019B (en) * 2008-12-23 2011-04-27 Calera Corp Low-energy electrochemical hydroxide system and method
US20100258035A1 (en) * 2008-12-24 2010-10-14 Brent Constantz Compositions and methods using substances containing carbon
US20110091366A1 (en) * 2008-12-24 2011-04-21 Treavor Kendall Neutralization of acid and production of carbonate-containing compositions
CA2696075A1 (en) * 2009-01-28 2010-07-28 Calera Corporation Low-energy electrochemical bicarbonate ion solution
JP5437651B2 (ja) * 2009-01-30 2014-03-12 東ソー株式会社 イオン交換膜法電解槽及びその製造方法
EP2245215A4 (en) 2009-02-10 2011-04-27 Calera Corp LOW VOLTAGE ALKALINE PRODUCTION USED BY HYDROGEN AND ELECTROCATALYTIC ELECTRODES
CA2694959A1 (en) 2009-03-02 2010-09-02 Calera Corporation Gas stream multi-pollutants control systems and methods
TW201105406A (en) * 2009-03-10 2011-02-16 Calera Corp Systems and methods for processing CO2
US7993511B2 (en) 2009-07-15 2011-08-09 Calera Corporation Electrochemical production of an alkaline solution using CO2
US20110147227A1 (en) * 2009-07-15 2011-06-23 Gilliam Ryan J Acid separation by acid retardation on an ion exchange resin in an electrochemical system
US20110079515A1 (en) * 2009-07-15 2011-04-07 Gilliam Ryan J Alkaline production using a gas diffusion anode with a hydrostatic pressure
PL2561121T3 (pl) * 2010-04-22 2017-09-29 Spraying Systems Co. Układ do elektrolizy
US8486236B1 (en) * 2010-06-17 2013-07-16 Walter B. Warning Electrolysis chamber
US20130034489A1 (en) * 2011-02-14 2013-02-07 Gilliam Ryan J Electrochemical hydroxide system and method using fine mesh cathode
ITMI20110500A1 (it) 2011-03-29 2012-09-30 Industrie De Nora Spa Cella per l elettrodialisi depolarizzata di soluzioni saline
EP2699101A4 (en) * 2011-04-20 2015-03-04 Eau Technologies Inc INDEPENDENT MANUFACTURE OF ELECTROLYZED ACID WATER AND ELECTROLYTE BASED WATER
US9200375B2 (en) 2011-05-19 2015-12-01 Calera Corporation Systems and methods for preparation and separation of products
SA112330516B1 (ar) 2011-05-19 2016-02-22 كاليرا كوربوريشن انظمة وطرق هيدروكسيد كهروكيميائية مستخدمة لأكسدة المعدن
FR2976590B1 (fr) 2011-06-16 2014-06-13 Mp Technic Dispositif de fabrication ou de production d'hypochlorite de sodium ou d'acide hypochloreux et systeme de traiment des eaux en general
US8882972B2 (en) * 2011-07-19 2014-11-11 Ecolab Usa Inc Support of ion exchange membranes
CN102517600B (zh) * 2011-12-07 2014-08-13 四川大学 一种带毛动物皮或毛的电降解方法
EP3219829A1 (en) * 2012-03-29 2017-09-20 Calera Corporation Systems and methods using anodes
EP2841623B1 (en) 2012-04-23 2020-10-28 Nemaska Lithium Inc. Processes for preparing lithium hydroxide
US9382126B2 (en) 2012-05-30 2016-07-05 Nemaska Lithium Inc. Processes for preparing lithium carbonate
WO2014134410A1 (en) * 2013-02-28 2014-09-04 The Government Of The United States Of America As Represented By The Secretary Of The Navy Electrochemical module configuration for the continuous acidification of alkaline water sources and recovery of co2 with continuous hydrogen gas production
CA3014124A1 (en) 2013-03-15 2014-09-18 Nemaska Lithium Inc. Use of electrochemical cell for preparing lithium hydoxide
TWI633206B (zh) 2013-07-31 2018-08-21 卡利拉股份有限公司 使用金屬氧化物之電化學氫氧化物系統及方法
ITMI20131521A1 (it) * 2013-09-16 2015-03-17 Industrie De Nora Spa Cella elettrolitica per produzione di soluzioni ossidanti
WO2015058287A1 (en) 2013-10-23 2015-04-30 Nemaska Lithium Inc. Processes for preparing lithium carbonate
EP3060699B1 (en) 2013-10-23 2018-05-02 Nemaska Lithium Inc. Processes and systems for preparing lithium hydroxide
CN105917027A (zh) * 2014-01-15 2016-08-31 蒂森克虏伯伍德氯工程公司 离子交换膜电解槽用阳极以及使用了该离子交换膜电解槽用阳极的离子交换膜电解槽
PL3110988T3 (pl) 2014-02-24 2020-01-31 Nemaska Lithium Inc. Sposoby obróbki materiałów zawierających lit
US9957621B2 (en) 2014-09-15 2018-05-01 Calera Corporation Electrochemical systems and methods using metal halide to form products
CN104591100A (zh) * 2015-01-15 2015-05-06 贵州大学 膜分离法利用磷石膏制备硫酸的方法
CN104726891B (zh) * 2015-03-16 2017-01-11 中国科学院广州能源研究所 一种具有内部消氢功能的质子交换膜水电解器及其制作方法
WO2017031595A1 (en) * 2015-08-27 2017-03-02 Nemaska Lithium Inc. Methods for treating lithium-containing materials
EP3767011A1 (en) 2015-10-28 2021-01-20 Calera Corporation Electrochemical, halogenation, and oxyhalogenation systems and methods
JP2019525995A (ja) * 2016-07-25 2019-09-12 ダイオキサイド マテリアルズ,インコーポレイティド 酸素脱分極カソードを用いた塩素及び苛性アルカリを製造するための方法並びにシステム
CA2940509A1 (en) 2016-08-26 2018-02-26 Nemaska Lithium Inc. Processes for treating aqueous compositions comprising lithium sulfate and sulfuric acid
US10619254B2 (en) 2016-10-28 2020-04-14 Calera Corporation Electrochemical, chlorination, and oxychlorination systems and methods to form propylene oxide or ethylene oxide
CN106757132A (zh) * 2017-01-12 2017-05-31 精迪敏健康医疗科技有限公司 电解设备
CN107012477A (zh) * 2017-02-28 2017-08-04 郭富强 盐溶液分离出碱和酸的方法
WO2018195275A1 (en) * 2017-04-19 2018-10-25 Ph Matter, Llc Electrochemical cell and method of using same
WO2019060345A1 (en) 2017-09-19 2019-03-28 Calera Corporation SYSTEMS AND METHODS USING LANTHANIDE HALIDE
CA3083136C (en) 2017-11-22 2022-04-12 Nemaska Lithium Inc. Processes for preparing hydroxides and oxides of various metals and derivatives thereof
US10590054B2 (en) 2018-05-30 2020-03-17 Calera Corporation Methods and systems to form propylene chlorohydrin from dichloropropane using Lewis acid
WO2020039218A1 (en) * 2018-08-20 2020-02-27 Thalesnano Energy Zrt. Modular electrolyzer cell to generate gaseous hydrogen at high pressure and with high purity
CN109487296B (zh) * 2018-11-16 2021-03-16 核工业第八研究所 一种用于连接导电柱的柔性桥接板
JP7232158B2 (ja) * 2019-09-05 2023-03-02 デノラ・ペルメレック株式会社 酸性水溶液の製造装置及び酸性水溶液の製造方法
DE102019218297A1 (de) * 2019-11-26 2021-05-27 Siemens Aktiengesellschaft Elektrolyse-Anlage und Betriebsverfahren für eine Elektrolyse-Anlage zur elektrochemischen Reduktion von Kohlendioxid
CN111364055B (zh) * 2020-01-17 2021-04-20 华中科技大学 一种基于硫酸钠电解的磷石膏处理装置及方法
CN111320317A (zh) * 2020-03-13 2020-06-23 北京洁绿环境科技股份有限公司 一种老龄填埋场渗滤液的处理方法
AT523650B1 (de) * 2020-09-10 2021-10-15 Univ Linz Arbeitselektrode zur Direktreduktion von Carbonaten zu Kohlenwasserstoffen in einem wässrigen Carbonat-Elektrolyten
WO2023250495A2 (en) * 2022-06-24 2023-12-28 Sublime Systems, Inc. Low voltage electrolyzer and methods of using thereof
WO2024026394A2 (en) * 2022-07-28 2024-02-01 The Johns Hopkins University Electrolyzers

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE594986A (ru) * 1959-09-28
US4076604A (en) * 1975-10-13 1978-02-28 Kureha Kagaku Kogyo Kabushiki Kaisha Process for the electrolytic treatment of alkali halide
US4212712A (en) * 1975-11-19 1980-07-15 Kureha Kagaku Kogyo Kabushiki Kaisha Process for the electrolytic treatment of alkali metal halide solution using ion exchange membranes
US4224121A (en) 1978-07-06 1980-09-23 General Electric Company Production of halogens by electrolysis of alkali metal halides in an electrolysis cell having catalytic electrodes bonded to the surface of a solid polymer electrolyte membrane
US4214958A (en) * 1979-05-14 1980-07-29 General Electric Company Electrolysis of alkali metal halides in a three-compartment cell with a pressurized buffer compartment
IT1122699B (it) * 1979-08-03 1986-04-23 Oronzio De Nora Impianti Collettore elettrico resiliente e cella elettrochimica ad elettrolita solido comprendente lo stesso
US4340452A (en) * 1979-08-03 1982-07-20 Oronzio deNora Elettrochimici S.p.A. Novel electrolysis cell
JPS5693883A (en) * 1979-12-27 1981-07-29 Permelec Electrode Ltd Electrolytic apparatus using solid polymer electrolyte diaphragm and preparation thereof
US4299673A (en) * 1979-12-27 1981-11-10 Broniewski Bogdan M Method of concentrating alkali metal hydroxide in hybrid cells having cation selective diffusion barriers
US4299674A (en) * 1980-06-02 1981-11-10 Ppg Industries, Inc. Process for electrolyzing an alkali metal halide using a solid polymer electrolyte cell
US4331521A (en) * 1981-01-19 1982-05-25 Oronzio Denora Impianti Elettrochimici S.P.A. Novel electrolytic cell and method
JPS5842778A (ja) * 1981-09-09 1983-03-12 Toyo Soda Mfg Co Ltd 電解方法
JPS59159991A (ja) * 1983-03-03 1984-09-10 Japan Storage Battery Co Ltd イオン交換膜と電極とを一体に接合する方法
US4636289A (en) 1983-05-02 1987-01-13 Allied Corporation Solution mining of sodium minerals with acids generated by electrodialytic water splitting
US4561945A (en) * 1984-07-30 1985-12-31 United Technologies Corporation Electrolysis of alkali metal salts with hydrogen depolarized anodes
US4565612A (en) * 1984-12-10 1986-01-21 The Dow Chemical Company Process for reducing sulphate ion concentration in aqueous sodium hydroxide solutions
US4732660A (en) * 1985-09-09 1988-03-22 The Dow Chemical Company Membrane electrolyzer
JP2648313B2 (ja) * 1987-11-30 1997-08-27 田中貴金属工業株式会社 電解方法
US4927514A (en) 1988-09-01 1990-05-22 Eltech Systems Corporation Platinum black air cathode, method of operating same, and layered gas diffusion electrode of improved inter-layer bonding
DE4009410A1 (de) * 1990-03-23 1991-09-26 Basf Ag Verfahren zur elektrochemischen spaltung von alkali sulfaten
US5256261A (en) * 1992-08-21 1993-10-26 Sterling Canada, Inc. Membrane cell operation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2443803C2 (ru) * 2007-01-24 2012-02-27 Байер Матириальсайенс Аг Способ повышения производительности никелевых электродов
RU2455395C2 (ru) * 2007-07-10 2012-07-10 Уденора С.П.А. Упругий коллектор тока для электрохимических ячеек
US11339483B1 (en) 2021-04-05 2022-05-24 Alchemr, Inc. Water electrolyzers employing anion exchange membranes

Also Published As

Publication number Publication date
ZA924771B (en) 1993-03-31
CN1067931A (zh) 1993-01-13
HUT66157A (en) 1994-09-28
KR940701466A (ko) 1994-05-28
TR26992A (tr) 1994-09-13
DE69215093T2 (de) 1997-06-12
US5595641A (en) 1997-01-21
MX9203527A (es) 1992-12-01
ITMI911765A0 (it) 1991-06-27
SK145893A3 (en) 1994-07-06
EP0591350A1 (en) 1994-04-13
JPH05214573A (ja) 1993-08-24
FI935818A (fi) 1993-12-23
HU212211B (en) 1996-04-29
JP3182216B2 (ja) 2001-07-03
EP0522382A1 (en) 1993-01-13
WO1993000460A1 (en) 1993-01-07
AR246560A1 (es) 1994-08-31
NZ243305A (en) 1994-06-27
IL102247A (en) 1996-06-18
US5776328A (en) 1998-07-07
FI935818A0 (fi) 1993-12-23
DE69215093D1 (de) 1996-12-12
AU663717B2 (en) 1995-10-19
ITMI911765A1 (it) 1992-12-27
HU9303700D0 (en) 1994-04-28
CA2112100A1 (en) 1993-01-07
EP0591350B1 (en) 1996-11-06
CZ289193A3 (en) 1994-04-13
IT1248564B (it) 1995-01-19
BR9206192A (pt) 1994-11-08
ATE145018T1 (de) 1996-11-15
TW230226B (ru) 1994-09-11
AU2165592A (en) 1993-01-25

Similar Documents

Publication Publication Date Title
RU2107752C1 (ru) Электролизер, способ получения раствора основания и раствора, содержащего кислоту, и способ получения раствора основания и раствора чистой кислоты
US5106465A (en) Electrochemical process for producing chlorine dioxide solutions from chlorites
US5246551A (en) Electrochemical methods for production of alkali metal hydroxides without the co-production of chlorine
US4013525A (en) Electrolytic cells
WO1991009158A1 (en) Electrochemical process for producing chlorine dioxide solutions from chlorites
JP2003041388A (ja) イオン交換膜電解槽および電解方法
US4613416A (en) Process for the concentration of sulfuric acid
US5089095A (en) Electrochemical process for producing chlorine dioxide from chloric acid
US4578159A (en) Electrolysis of alkali metal chloride brine in catholyteless membrane cells employing an oxygen consuming cathode
US4444631A (en) Electrochemical purification of chlor-alkali cell liquor
US5242554A (en) Electrolytic production of chloric acid and sodium chlorate mixtures for the generation of chlorine dioxide
JP6543277B2 (ja) 狭い間隙の非分割電解槽
US4236989A (en) Electrolytic cell
US4147600A (en) Electrolytic method of producing concentrated hydroxide solutions
US4919791A (en) Controlled operation of high current density oxygen consuming cathode cells to prevent hydrogen formation
US4488947A (en) Process of operation of catholyteless membrane electrolytic cell
JP3420790B2 (ja) 塩化アルカリ電解用電解槽及び電解方法
US4548694A (en) Catholyteless membrane electrolytic cell
JP3236693B2 (ja) ガス電極を使用する電解槽及び電解方法