RU2036905C1 - 3-ацил-2-оксоиндол-1-карбоксамиды и способы их получения - Google Patents

3-ацил-2-оксоиндол-1-карбоксамиды и способы их получения Download PDF

Info

Publication number
RU2036905C1
RU2036905C1 SU914895525A SU4895525A RU2036905C1 RU 2036905 C1 RU2036905 C1 RU 2036905C1 SU 914895525 A SU914895525 A SU 914895525A SU 4895525 A SU4895525 A SU 4895525A RU 2036905 C1 RU2036905 C1 RU 2036905C1
Authority
RU
Russia
Prior art keywords
compound
formula
spectrum
recrystallization
doublets
Prior art date
Application number
SU914895525A
Other languages
English (en)
Inventor
Алан Ритер Лоренс
Чарльз Крофорд Томас
Original Assignee
Пфайзер Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Пфайзер Инк. filed Critical Пфайзер Инк.
Application granted granted Critical
Publication of RU2036905C1 publication Critical patent/RU2036905C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/06Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/30Indoles; Hydrogenated indoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to carbon atoms of the hetero ring
    • C07D209/32Oxygen atoms
    • C07D209/34Oxygen atoms in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6558Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing at least two different or differently substituted hetero rings neither condensed among themselves nor condensed with a common carbocyclic ring or ring system
    • C07F9/65586Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing at least two different or differently substituted hetero rings neither condensed among themselves nor condensed with a common carbocyclic ring or ring system at least one of the hetero rings does not contain nitrogen as ring hetero atom

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Rheumatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pain & Pain Management (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Indole Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

Использование в химии замещенных индолов, в частности в способе получения 3-ацил-2-оксоиндол-1-карбоксамидов, обладающих противовоспалительной активностью. Сущность изобретения продукт - 3-ацил-2-оксоиндол-1-карбоксамиды ф-лы I, где X и Y - Н, Cl, F; R′ -2-тиенил или бензил; R- C2-C10 -алканоил, C5-C7 -циклоалкилкарбонил, C7-C10 -фенилалканоил, хлор- или метокси-бензоил, теноил, омега- C1-C3 -алкоксикарбонил- C3-C5 -алканоил, C2-C10 -алкоксикарбонил, феноксикарбонил, 1- C2-C4 -ацилокси C1-C4 -алкил, C1-C3 -алкилсульфонил, метилфенилсульфонил или ди- C1-C3 -алкилфосфанат. Реагент 1: соединение ф-лы II, где X, Y, R1 имеют указанные значения R-1-C1-C5 -алкоксикарбонилокси -C1-C4-алкил. Реагент 2 соединение ф-лы III, где R имеет указанные значения. Условия реакции: процесс взаимодействия соединения ф-лы II с эквимолярным количеством соединения ф-лы III ведут в среде хлороформа в присутствии триэтиламина, а процесс взаимодействия соединения ф-лы II с 3 - 4-кратным молярным избытком соединения ф-лы III ведут в среде ацетона в присутствии карбоната щелочного металла. Структура соединений ф-лы I, II, III
Figure 00000001

Description

Предметом настоящего изобретения являются противовоспалительные средства и в частности пролекарства на основе 3-ацил-2-оксандол-1-карбоксамидов в виде сложных и простых эфиров енола, представлящие класс хорошо известных нестероидных противовоспалительных средств.
Об использовании оксиндолов в качестве противовоспалительных средств впервые сообщалось в патенте США N 3634453, в котором описывались 1-замещенные-2-оксиндол-3-карбоксамиды. В патенте США N 4556672 недавно была рассмотрена серия 3-ацил-2-оксиндол-1-карбоксамидов, представляющих ингибиторы таких ферментов, как циклооксигеназа (СО) и липооксигеназа (LO), и являющихся полезными в качестве аналгезирущих и противовоспалительных средств для млекопитающих.
Изобретением предусматриваются противовоспалительные пролекарства в виде простых и сложных эфиров формулы I
Figure 00000006
в которой Х и Y представляют водород, фтор или хлор: R1 представляет 2-тиенил или бензил; R алканоил, имеющий 2-10 атомов углерода, циклоалкилкарбонил, имеющий 5-7 атомов углерода, фенилалканоил, имеющий 7-10 атомов углерода, хлорбензоил, метоксибензоил, теноил, омега-алкоксикарбонилалканоил, в котором алкокси имеет 1-3 атома углерода, а алканоил имеет 3-5 атомов углерода; алкоксикарбонил, содержащий 2-10 атомов углерода; феноксикарбонил; 1-(ацилокси)- алкил, в котором ацил имеет 1-4 атома углерода, а алкил имеет 2-4 атома углерода; 1-(алкоксикарбонилокси)алкил, в котором алкокси имеет 2-5 атомов углерода, а алкил имеет 1-4 атома углерода; алкил, имеющий 1-3 атомов углерода; алкилсульфонил, имеющий от 1-3 атомов углерода; метиленфенилсульфонил или диалкилфосфат, в котором алкил имеет 1-3 атомов углерода.
Особенно предпочтительным является соединение формулы I, в которой R1 представляет 2-тиенил; Х хлор; Y водород; R алканоил, имеющий 2-10 атомов углерода. Особое предпочтение в этой группе отдается соединениям, в которых R представляет ацетил, пропионил и изобутирил.
Вторую предпочтительную группу соединений формулы I образуют соединения, в которых R1 представляет 2-тиенил; Х хлор; Y водород; R фенилалканоил, имеющий 7-10 атомов углерода. Особенно предпочтительным в этой группе является соединение, в котором R представляет фенилацетил.
Третью предпочтительную группу соединений образуют соединения формулы I, в которой R1 представляет 2-тиенил; Х хлор; Y водород; R омега-алкоксикарбонилалканоил, в котором алкокси имеет 1-3 атома углерода, а алканоил имеет 3-5 атомов углерода. Особое предпочтение в этой группе отдается соединению, в котором R представляет омега-этоксикарбонилпропионил.
Четвертую группу предпочтительных соединений формулы I образуют соединения, в которых R1 представляет 2-тиенил; Х хлор; Y водород; R алкоксикарбонил, имеющий 2-10 атомов углерода. Особое предпочтение в этой группе отдается соединениям, в которых R представляет метоксикарбонил, этоксикарбонил и н-гексоксикарбонил.
Пятую группу предпочтительных соединений формулы I образуют соединения, в которых R1 представляет 2-тиенил; Х хлор; Y водород; R 1(алкоксикарбонилокси)алкил, в котором алкокси имеет 2-5 атомов углерода, а алкил имеет 1-4 атома углерода. Особое предпочтение в этой группе отдается соединению, в котором R представляет 1-(этоксикарбонилокси)этил.
Шестую группу предпочтительных соединений формулы I образуют соединения, в которых R1 представляет 2-тиенил; Х хлор; Y водород; R алкилсульфонил, содержащий 1-3 атома углерода. Особое предпочтение в этой группе отдается соединению, в котором R представляет метилсульфонил.
Седьмую группу предпочтительных соединений формулы I образуют соединения, в которых R1 представляет 2-тиенил; Х фтор; Y хлор; R алканоил, содержащий 2-10 атомов углерода. Особое предпочтение в этой группе отдается соединениям, в которых R представляет ацетил, пропионил и изобутирил.
Восьмую группу предпочтительных соединений формулы I образуют соединения, в которых R1 представляет 2-тиенил; Х фтор; Y хлор; R алкоксикарбонил, имеющий 2-10 атомов углерода. Особое предпочтение в этой группе отдается соединениям, в которых R представляет метоксикарбонил, этоксикарбонил и н-гексоксикарбонил.
Девятую группу предпочтительных соединений формулы I образуют соединения, в которых R1 представляет бензил, Х водород, Y фтор, а R алканоил, имеющий от двух до десяти атомов углерода. Особое предпочтение в этой группе отдается соединению, в котором R представляет ацетил.
Десятую группу предпочтительных соединений формулы I образуют соединения, в которых R1 представляет бензил; Х водород; Y фтор; R алкоксикарбонил, имеющий 2-10 атомов углерода. Особое предпочтение в этой группе отдается соединению, в котором R представляет метоксикарбонил.
Изобретение также включает способ лечения воспалительного процесса у млекопитающих, в соответствии с которым млекопитающему вводят соответствующее количество соединения формулы I, в которое оказывает эффективное противоспалительное действие.
Простые и сложные эфиры енола по изобретению не являются еноловыми кислотами, к которым относятся родоначальные соединения, и вызывают меньшее раздражение желудка по сравнению с указанными родоначальными соединениями.
Термин "пролекарство" относится к соединениям, являющимся предшественниками лекарственного средства, которые после введения и поглощения высвобождают лекарственное средство в живом организме в результате процесса обмена веществ.
Хотя соединения по изобретению могут вводиться любыми способами, предпочтение отдается оральному способу введения. После всасывания в желудочно-кишечном тракте соединения по изобретению гидролируются в живом организме с образованием соответствующих соединений формулы I, в которой R представляет водород, или их соли. Поскольку пролекарства по изобретению не являются еноловыми кислотами, то воздействие на желудочно-кишечный тракт кислотного родоначального соединения сводится до минимума. Так как желудочно-кишечные заболевания указывались в качестве основного вредного осложнения, вызываемого кислотными нестероидными противовоспалительными лекарственными средствами (см. например, Дель-Фаверо в "Side Effects of Drugs Annual 7", Дьюкс и Элис, редакторы, Excerpta Medica, Амстердам, 1983, стр. 104-115), то соединения I по изоретению обладают очевидным преимуществом по сравнению с родоначальными енольными соединениями.
В процессе превращения 3-ацил-2-оксиндол-1-карбоксамидов в соединения формулы I заместители в положении у 3-го атома экзоциклической двойной связи могут представлять син-, анти- или оба вместе. Таким образом соединения, имеющие структуры
Figure 00000007
и
Figure 00000008
R1 и
Figure 00000009
или их смеси можно предоставить следующим образом
Figure 00000010
Figure 00000011

Все формы этих изомеров входят в объем изобретения.
Для синтеза соединений по изобретению используются два способа: первый способ включает обработку раствора соответствующего 3-ацил-2-оксиндол-1-карбоксамида и эквимолярного количества триэтиламина в реакционно-инертном растворителе, таком как хлороформ, при температуре 0оС эквимолярным количеством с небольшим избытком необходимого хлорангидрида кислоты, хлорформиата, соли оксония или алкилирующего агента. Реакционную смесь нагревают до комнатной температуры и оставляют примерно на 2-3 ч. Если исходный оксиндол полностью не прореагировал, эту смесь охлаждают до 0оС, добавляют дополнительный ацилигирующий или алкилирующий агент и повторяют этот процесс до тех пор, пока не будеть израсходован весь исходный оксиндол.
Продукт отделяют от растворителя, используемого в реакции, после промывки 1н. раствором хлористоводородной кислоты с последующей экстракцией насыщенным раствором бикарбоната натрия. Остаточный продукт, остающийся после удаления растворителя в вакууме, очищают посредством перекристаллизации или хроматографии.
Второй способ, который можно использовать для получения продуктов по изобретению, включает контактирование в безводном реакционно- инертном растворителе, таком как ацетон, соответствующего 3-ацил-3-оксиндол-1-карбоксамида, трехкратного молярного избытка необходимого альфа-хлоралкилкарбоната, пятикратного молярного избытка йодистого натрия и двухкратного молярного избытка безводного карбоната калия, а также нагревание указанной реакционной смеси с обратным холодильником в течение 16 ч.
Реакционную смесь разбавляют водой и экстрагируют образовавшийся продукт не смешивающимся с водой растворителем, таким как диэтиловый эфир или хлороформ. Концентрирование растворителя, содержащего целевой продукт, позволяет получить неочищенный материал, который можно очистить посредством перекристаллизации и/или хроматографии.
3-Ацил-2-оксиндол-1-кабоксамиды, используемые в качестве исходных материалов, получают в соответствии со способами, хорошо известными в этой области, см. например, ссылку на эти соединения, приведенную выше. Другие исходные реагенты, указанные выше, выпускаются промышленностью или могут быть получены известными способами.
Пролекарства формулы I оцениваются в отношении их противовоспалительного и аналгезирующего действия в соответствии с известными методами, такими как испытание на активность при отеке лап у крыс, испытание на активность при артрите, вызванном адъювантом у крыс, или испытание на активность при судорогах, вызванных фенилбензохиноном у мышей, которые ранее применялись для оценки родоначальных соединений и описывались в приведенных противопоставленных материалах, а также в других литературных источниках; см. например, К. А. Уинтер в "Progress in Drug Research под редакцией Е.Джюкера, издательство "Birkhauser Verlag" Базель, т. 10, 1966, стр. 139-192.
По сравнению с родоначальными 3-ацил-2-оксиндол-1-карбксамидами новые пролекарства формулы I обладают меньшей способностью ингибировать синтез простангландина из арахидоговой кислоты при проведении испытаний в соответствии с медифицированным методом Т.Дж.Карти и др. Prostaglandins, 19, 51-59 (1980). В случае модифицированной методики вместо культуры фибробласта мышей (МС5-5) и культуры синоваиальных клеток кроликов используют культуры базофильных дейкозных клеток крыс (RBL-1), полученные по методу Джексчика и др. там же, 16, 733 (1978). Таким образом соединения по изобретению сами по себе являются относительно неактивными в качестве противовоспалительных средств, но они служат для образования активного противовоспалительного соединения в результате гидролиза, происходящего в живом организме. Поскольку соединения I не является еноловыми кислотами и известно, что гидролиз происходит после того, как пролекарство покидает желудок, то они значительно уменьшают раздражение желудка, которое имеет место при оральном введении родоначальных енольных соединений.
В пересчете на молекулярную массу настоящие пролекарства обычно дозируются так же, как и известные 3-ацил-2-оксиндол-1- карбоксамиды, из которых их получают. Однако неенольная форма настоящих соединений делает возможными более высокие дозы, предназначенные для орального введения, если такие дозы необходимы для устранения боли и воспалительного процесса.
Пролекарства по изобретению имеют такой же состав и вводятся такими же способами, что и известные родоначальные соединения, описанные в приведенном материале. Предпочтительным способом введения является оральный способ, так как он позволяет воспользоваться преимуществами, неенольного характера соединений.
П р и м е р 1. Общие методики.
Способ А.
К суспензии 3-ацил-2-оксиндол-1-карбоксамида в хлороформе добавляют эквимолярное количество триэтиламина. Полученный раствор охлаждают до 0оС и добавляют небольшой избыток соответствующего хлорангидрида кислоты, хлороформа, соли оксония или алкилирующего агента. Реакционную смесь перемешивают в течение 2 ч при 0оС, а затем при комнатной температуре еще в течение 2 ч. Если 3-ацил-1-оксиндол-1-карбоксамид не был полностью израсходован, то эту смесь снова охлаждают до 0оС и добавляют дополнительное количество хлорангидрида кислоты, хлорформиат или соль оксония, после чего смесь перемешивают при 0оС в течение 2 ч, а затем при комнатной температуре еще в течение 2 ч. Этот процесс может повторяться до полного расходования 3-ацил-2-оксиндол-1-карбоксамида. После окончания реакции эту смесь фильтруют, а фильтрат промывают 1н. раствором хлористоводородной кислоты (2 раза) и насыщенным раствором бикарбоната натрия (2 раза). Органический слой сушат с помощью MgSO4, фильтруют и концентрируют в вакууме. Полученный продукт очищают посредством перекристаллизации или хроматографии.
Способ В.
Смесь 3-ацил-2-оксиндол-1-карбоксамида трехкратного молярного избытка соответствующего альфа-хлоралкил- или альфа-хлор(аралкил) карбоната, пятикратного молярного избытка йодистого натрия и двухкратного молярного избытка безводного карбоната калия (высушенного в высоком вакууме при 165оС в течение 1 ч) в ацетоне (высушенном над молекулярными ситами) нагревают с обратным холодильником в течение 16 ч. Охлажденную смесь затем разбавляют водой и экстрагируют простым эфиром. Соединенные эфирные экстракты сушат с помощью MgSO4, фильтруют, а фильтрат концентрируют в вакууме. Образующийся неочищенный продукт очищают посредством хроматографии и/или перекристаллизации.
В соответствии с описанным способом при использовании необходимых исходных реагентов были получены указанные пролекарства.
Figure 00000012
Figure 00000013

Сложные эфиры:
(R-COCH3) Способ А: выход 53% после перекристаллизации из 2-пропанола; т. пл. 173-176оС; масс-спектр м/э (относительная интенсивность) М+, 362 (< 1,0), 322 (4,2), 320 (11,0), 296 (1,8), 279 (18,2), 277 (44,4), 248 (10,6), 195 (77,7), 193 (100), 185 (12,3), 165 (13,4), 137 (42,8), 111 (88,2) 102 (20,0), 83 (23,9).
Спектр 1Н-ЯМР (CDCl3) дельта 2,39, 2,53 (3Н, 2с), 5,31 (1Н, широкий синглет), 7,2-7,35 (2Н, м), 7,48, 7,55 (1Н, 2д. J 2,1 Гц), 7,6-8,3 (3Н, м), 8,54 (1Н, широкий синглет).
Вычислено, C 52,97; H 3,06; N 7,72
C16H11ClN2O4S (362,79)
Найдено, C 62,91; H 2,95; N 7,97
(R -COCH2CH3) Способ А: выход 18% после перекристаллизации из 2-пропанола; т. пл. 183-185оС; масс-спектр м/з (относительная интенсивность) М+, 378, 376 (< 1, 1,2), 333 (0,7), 322 (6,4), 320 (18,4), 279 (17,8), 277 (44,3), 250 (2,3), 248 (9,0), 195 (27,0), 193 (100), 137 (7,8), 111 (24,1), 57 (30,0).
Спектр 1Н-ЯМР (d6-Me2SO) дельта 1,0-1,3 (3Н, м), 2,7-3,0 (2Н, кв. J 7,5 Гц), 6,9-7,6 (3Н, м), 7,9-8,4 (5Н, м).
Вычислено, C 54,18; H 3,48; N 7,43
C17H13ClN2O4S (376,68)
Найдено,С 53,86; H 3,33; N 7,28
(R= -CO(CH2)5CH3) Способ А" выход 29% после перекристаллизации из 2-пропанола; т. пл. 189-190оС; масс-спектр м/э (относительная интенсивность) М+, 432 (0,8), 322 (13,8), 320 (37,5), 279 (34,8), 277 (87,0), 250 (5,0), 248 (17,3), 195 (26,6), 193 (100).
Спектр 1Н-ЯМР (CDCl3) дельта 0,95 (3Н, м), 1,32-1,55 (6Н, м), 1,85 (2Н, пентет, J 8 Гц), 2,83 (2Н, т, I 8 Гц), 5,35 (1Н, широкий синглет), 7,25 (1Н, м), 7,32 (1Н, м), 7,60 (1Н, д), 7,72 (1Н, м), 8,27 (1Н, м), 8,31 (1Н, д, I 10 Гц), 8,62 (1Н, широкий синглет).
Вычислено, C 58,26; H 4,89; N 6,47
C22H21ClN2O4S (432,91)
Найдено, C 58,18; H 4,87; N 6,42
(R= -CO(CH2)8CH3) Способ А: выход 8% после перекристаллизации из 2-пропанола; т. пл. 120-122оС; масс-спектр м/э (относительная интенсивность) М+, 431 (< 1), 322 (2,9), 320 (8,6), 279 (16,8), 277 (42,6), 262 (0,9), 260 (2,1), 250 (2,4), 248 (9,0), 195 (26,4), 193 (100), 155 (7,4), 137 (6,3), 111 (18,2).
Спектр 1Н-ЯМР (d6-Me2SO) дельта 0,87 (3Н, с) 1,30 (13Н, широкий синглет), 1,50 (1Н, м), 1,65 (1Н, м), 2,20 (1Н, т, J 7,2 Гц), 2,70 (1Н, т, J 7,3 Гц), 7,1-8,5 (7Н, м).
Вычислено, C 60,68; H 5,73; N 5,90
C24H27ClN2O4S (474,75)
Найдено, C 60,64; H 5,76; N 5,88
(R= -COCH(CH3)2) Способ А: выход 37% после перекристаллизации из 2-пропанола, температура плавления 189-191оС, масс-спектр м/э (относительная интенсивность) М+, 392, 390 (1,2, 3,5), 322, 320 (11,7, 30,2), 279, 277 (19,2, 48,7), 250, 248 (4,6, 15,5), 195, 193 (28,7, 100).
Спектр 1Н-ЯМР (CDCl3) дельта 1,35 (3Н, м, I 8 Гц), изомер А), 1,45 (3Н, д, I 8 Гц, изомер В), 2,93 (1Н, септет, I 8 Гц, изомер А), 3,05 (1Н, септет, I 8 Гц, изомер В), 5,38 (1Н, широкий синглет, изомер А), 5,45 (1Н, широкий синглет, изомер В), 7,2-7,4 (2Н, м), 7,54 (1Н, д), 7,7-7,8 (2Н, м), 8,2-8,3 (1Н, м), 8,38 (1Н, широкий синглет, изомер В), 8,55 (1Н, широкий синглет, изомер А) (примечание: соотношение изомеров А и В составляет примерно 80: 20). Точная масса, высчитанная для С18Н15ClN2O4S 390,0449. Обнаружено 390,0462.
(R= -COC(CH3)3) Способ А: выход 51% после перекристаллизации из 2-пропанола; т.пл. 198-200оС; масс-спектр м/э (относительная интенсивность) М+, 404 (0,3), 320 (2,4), 277 (22,0), 259 (1,1), 248 (8,3), 193 (66,6), 137 (6,6), 111 (19,1), 102 (2,4), 85 (21,1), 57 (100).
Спектр 1Н-ЯМР (CDCl3) дельта 1,39 (9Н, с), 5,47 (1Н, широкий синглет), 7,23 (2Н, м), 7,50 (1Н, д, I 2,2 Гц), 7,71 (1Н, двойной дублет, I 1,1, 5,0 Гц), 7,77 (1Н, двойной дублет, I 1,1, 3,8 (Гц), 8,25 (1Н, д, I 8,8 Гц), 8,57 (1Н, широкий синглет).
Вычислено, C 56,36, H 4,23, N 6,92
C19H17ClN2O4S (404,85)
Найдено, C 56,05, H 4,23, N 6,86
(R= -CO (циклогексил) Способ А: выход 10% после перекристаллизации из 2-пропанола, температура плавления 189-190оС, масс-спектр м/э (относительная интенсивность) М+, 430 (0,7), 381 (< 1), 322 (2,3), 320 (6,5), 279 (8,0), 277 (19,8) 195 (16,3), 193 (60,0), 111 (67,1), 84 (100), 55 (25,8).
Спектр 1Н-ЯМР (d6-Me2SO) дельта 1,05-1,70 (11Н, совокупность мультиплетов), 6,95-7,10 (1Н, м), 7,18 (1Н, т, I 4,4 Гц), 7,31 (1Н, двойной дублет), I 2,2, 8,8 Гц), 7,4 (1Н, м), 7,70-8,15 (4Н, совокупность мультиплетов).
Вычислено, C 58,53; H 4,44; N 6,50
C21H19ClN2O4S (429,72)
Найдено, C 58,34; H 4,32; N 6,43
(R= -COPh) Способ А: выход 44% после перекристаллизации из уксусной кислоты; т.пл. 228-230оС, масс-спектр м/э (относительная интенсивность) М+, 424 (3,0), 381 (1,9), 277 (3,9), 260 (6,9), 248 (10,2), 232 (0,9), 212 (2,3), 185 (4,7), 168 (24,1), 140 (6,5), 105 (100), 77 (27,1).
Спектр 1Н-ЯМР (CDCl3) дельта 5,55 (1Н, широкий синглет), 7,30 (3Н, м), 7,55 (3Н, м), 7,65 (1Н, м), 7,74 (1Н, двойной дублет, I 1,0-5,0 Гц), 7,84 (1Н, двойной дублет, I 1,0-3,8 Гц): 8,2-8,3 (3Н, м), 8,45 (1Н, широкий синглет).
Вычислено, C 56,95; H 3,41; N 6,32
C21H13ClN2O4S ˙2H2O (442,87)
Найдено, C 57,24; H 3,08; N 6,09
(R= -COCH2Ph) Способ А: выход 3% после фильтрации через силикагель (соотношение метанола и хлороформа 10:90) и двух перекристаллизаций из 2-пропанола; т. пл. 207-208оС, масс-спектр м/э (относительная интенсивность) М+, 438 (< 1), 395 (< 1), 322 (9,6), 320 (26,4), 279 (17,1), 277 (43,1), 185 (14,6), 193 (54,3), 91 (100).
Спектр 1Н-ЯМР (CDCl3) d6-Me2SO) дельта 3,96 (2Н, с), 6,20 (1Н, широкий синглет), 7,02 (1Н, двойной дублет, I 4,0, 5,1 Гц), 7,15 (1Н, двойной дублет, I 2,2, 8,8 Гц), 7,3-7,4 (6Н, м), 7,57 (1Н, двойной дублет, I 1,1, 5,1 Гц), 7,90 (1Н, двойной дублет, I 1,2, 4,0 Гц), 8,15 (1Н, д, I 8,8 Гц), 8,30 (1Н, широкий синглет). Элементный анализ:
Вычислено, C 60,20; H 3,45; N 6,38
C22H15ClN2O4S (438,87)
Найдено, C 60,53; H 3,38; N 6,18
(R= -CO(CH2)3Ph) Способ А: выход 13% после перекристаллизации из 2-пропанола; т. пл. 168-171оС, масс-спектр м/э (относительная интенсивность) М+, не наблюдался, 423 (< 1), 322 (1,0), 320 (2,9), 279 (10,2), 277 (25,7), 250 (1,5), 248 (5,6), 195 (26,7), 193 (100), 158 (0,7), 147 (62,1), 91 (99,5).
Спектр 1Н-ЯМР (d6-Me2SO) дельта 1,75-2,05 (2Н, м), 2,22 (1Н, т, I 7,4 Гц), 2,55-3,00 (3Н, м), 6,90-7,65 (9Н, м), 7,85-8,50 (4Н, м).
Вычислено, C 61,73, H 4,10, N 5,99
C24H19ClN2O4S (466,75)
Найдено, C 61,74; H 4,02; N 5,89
(R= -CO(3-Cl-Ph) Способ А: выход 26% после перекристаллизации из 2-пропанола и диметилформамида; т.пл. 210-218оС, масс-спектр м/э (относительная интенсивность) М+, 460, 458 (0,5, 0,6), 279 (1,5), 277 (3,9), 250 (0,9), 248 (2,8), 195 (1,3), 193 (4,6), 141 (43,0), 139 (100), 113 (8,8), 111 (32,8).
Спектр 1Н-ЯМР (CDCl3) дельта 5,28 (1Н, широкий синглет), 7,25 (2Н, м), 7,51 (2Н, м), 7,62 (1Н, м), 7,74 (1Н, двойной дублет, J 1,1, 5,0 Гц), 7,84 (1Н, двойной дублет, J 1,1, 3,8 Гц), 8,07 (1Н, м), 8,16 (1Н, м), 8,27 (1Н, д, J8,8 Гц), 8,41 (1Н, широкий синглет).
Вычислено, C 54,91; H 2,63; N 6,10
C21H12Cl2N2O4S (459,29)
Найдено, C 54,85; H 2,59; N 6,04
(R= -CO(4-MeO-Ph) Способ А: выход 11% после фильтрации через силикагель (соотношение метанола и хлороформа 5:95) и перекристаллизации из 2-пропанола; т.пл. 198-199оС, масс-спектр м/э (относительная интенсивность) М+, 454 (0,3), 411 (0,3), 279 (0,3), 277 (0,6), 250 (1,3), 248 (4,2), 195 (1,1), 193 (4,0), 136 (100), спектр 1Н-ЯМР (CDCl3) дельта 4,05, 4,10 (3Н, 2с), 5,35, 5,46 (1Н, 2 широких синглета), 7,15 (2Н, м), 7,40 (3Н, м), 7,68 (1Н, д, I 2,1 Гц), 7,86 (1Н, двойной дублет, I 1,1, 5,0 Гц), 7,97 (1Н, двойной дублет, I 1,1, 5,0 Гц), 7,97 (1Н, двойной дублет, I 1,1), 3,8 Гц), 8,29 (1Н, м), 8,41 (1Н, м), 8,60, 8,77 (1Н, 2 широких синглета).
Вычислено, C 58,09; H 3,32; N 6,16
C22H15ClN2O5 (454,87)
Найдено, C 57,99; H 3,22; N 6,07
(R= -CO/2 тиенил) способ А: выход 16% после двухкратного выполнения испарительной хроматографии (первая очистка: хлороформ, вторая очистка смесь метанола и хлороформа с соотношением 0,5:99,5), т.пл. 220-222оС, масс-спектр м/э (относительная интенсивность) М+, 432, 430 (0,4, 1,1), 389 (0,4), 387 (0,7), 279 (0,6), 277 (1,7), 113 (5,1), 111 (100), спектр 1Н-ЯМР (d6-Me2SO) дельта 7,3-7,5 (4Н, м), 7,8-8,4 (7Н, м). Точная масса, высчитанная для C19H11ClN2O4S2 429,9849. Обнаружено: 429,9825.
(R= -COCH2CH2CO2Et) Способ А: выход 72% после перекристаллизации из 2-пропанола; т. пл. 132-140оС, масс-спектр м/э (относительная интенсивность) М+, 448 (< 1), 405 (< 1), 360 (< 1), 305 (1,3), 303 (3,7), 279 (2,4), 277 (6,4), 195 (8,9), 193 (32,9), 129 (100), 111 (12,6), 101 (74,3).
Спектр 1Н-ЯМР (d6-Me2SO) дельта 1,15 (3Н, м), 2,5 (2Н, м), 2,55-3,2 (2Н, сложная совокупность мультиплетов), 4,05 (2Н, м), 6,90-7,45 (3Н, сложная совокупность мультиплетов), 7,70 (1Н, м), 7,85-8,45 (5Н, сложная совокупность мультиплетов).
Вычислено, С 53,1; Н 3,82; N 6,24
C20H17ClC2O6 (448,87)
Найдено, C 53,49, H 3,70, N 6,23
Карбонаты:
(R= -COOCH) Способ А: выход 29% после перекристаллизации из 2-пропанола и хлороформа; температура размягчения 180оС; т.пл. 200оС, масс-спектр м/э (относительная интенсивность) М+, 380, 378 (8,5, 23,8), 337 (7,2), 335 (21,2), 293 (17,3), 291 (39,8), 250 (28,3), 248 (100), 195 (24,9), 193 (86,2), 111 (88,6).
Спектр 1Н-ЯМР (d6-Me2SO) дельта 3,90, 3,95 (3Н, 2с), 7,3-7,5 (3Н, м), 7,95-8,05 (2Н, м), 8,15-8,25 (3Н, м).
Найдено, C 50,73, H 2,98, N 7,39
C16H11ClN2O5S (378,22)
Вычислено, C 50,84, H 2,93, N 7,34
(R= -COOCH2CH3) способ А: выход 24% после перекристаллизации из 2-пропанола; т.пл. 170-175оС, масс-спектр м/э (относительная интенсивность) М+ 392 (< 1,0), 320 (1,2), 305 (3,9), 277 (22,5), 259 (2,6), 248 (17,0), 193 (100), 185 (7,2), 165 (4,0), 111 (18,8).
Спектр 1Н-ЯМР (CDCl3) дельта 1,42 (3Н, т, I 7,1 Гц), 4,39 (2Н, кв. I 7,1 Гц), 5,41 (1Н, широкий синглет), 7,25 (2Н, м), 7,48, 7,66 (1Н, 2д, I 2,1 и 2,2 Гц), 7,75 (1Н, м), 8,25 (2Н, м), 8,57 (1Н, широкий синглет).
Вычислено, C 51,98; H 3,34; N 7,13
C17H13ClN2O5S (329,79)
Найдено, C 51,90; H 3,26; N 6,93
(R= -COOCH(CH3)2) способ А: выход 37% после перекристаллизации из 2-пропанола, т. пл. 185-186оС, масс-спектр м/э (относительная интенсивность) М+, 322, 320 (1,8, 6,5), 303 (1,6), 279 (15,2), 277 (41,3), 250 (2,2), 248 (8,5), 193 (100), 167 (1,7), 165 (2,6), 139 (1,3), 137 (4,3), 111 (12,4), 102 (8,0).
Спектр 1Н-ЯМР (d6-Me2SO) дельта (1,34, 1,37 (6Н, 2с), 5,00 (1Н, гептет, I 6,2 Гц), 7,35 (1Н, т, I 4,3 Гц), 7,50 (1Н, двойной дублет, I 8,7 Гц), 7,55 (1Н, м), 7,96, 8,05 (2Н, 2 широких синглета), 8,17 (2Н, м), 8,25 (1Н, м).
Вычислено, C 53,14, H 3,72, N 6,89
C18H15ClN2O5S (406,69)
Найдено, C 52,93; H 3,65; N 6,82
(R= -COO(CH2)5CH3) способ А: выход 39% после перекристаллизации из 2-пропанола, т. пл. 110-144оС, масс-спектр м/э (относительная интенсивность) М+, 448 (0,3), 405 (< 1), 322 (1,7), 320 (4,5), 279 (15,9), 277 (39,9), 195 (29,8), 193 (100), 111 (14,8), спектр 1Н-ЯМР (d6Me2SO) дельта 0,85 (3Н, широкий триплет, I 6,6 Гц), 1,3 (6Н, м), 1,6 (2Н, м), 4,35 (2Н, т, I 6,2 Гц), 7,35 (1Н, т, I 4,3), 7,4-7,55 (2Н, м), 7,95-8,05 (2Н, м), 8,15-8,25 (3Н, м).
Вычислено, C 56,18; H 4,72; N 6,24
C21H21ClN2O5S (448,91)
Найдено, C 56,11; H 4,60; N 6,16
(R= -COO(CH2)8CH3) способ А, выход 21% после перекристаллизации из 2-пропанола; т. пл. 118-120оС, масс-спектр м/э (относительная интенсивность) М+, 490 (0,6), 368 (0,5), 322 (4,9), 320 (2,2), 279 (32,6), 277 (79,3), 250 (4,9), 248 (16,1), 195 (28,5), 193 (100).
Спектр 1Н-ЯМР (CDCl3) дельта 0,89 (3Н, м), 1,2-1,5 (12Н, м), 1,76 (2Н, м), 4,34 (2Н, т, I 6,6 Гц), 5,33 (1Н, широкий синглет), 7,24 (1Н, м), 7,32 (1Н, двойной дублет, I 2,2, 8,8 Гц), 7,68 (1Н, д, I 2,1 Гц), 7,74 (1Н, двойной дублет, I 1,2, 4,0 Гц), 8,29 (1Н, д, I 8,8 Гц), 8,58 (1Н, широкий синглет).
Вычислено, C 58,71; H 5,54; N 5,71
C24H22ClN2O5S (490,99)
Найдено, C 58,87; H 5,48; N 5,64
(R= -COOPh) способ А: выход 8% после перекристаллизации из 2-пропанола, т. пл. 212-214оС, масс-спектр м/э (относительная интенсивность) М+, 442,440 (1,7, 5,7), 399 (4,4), 397 (9,7), 355 (< 1), 353 (2,9), 352 (1,7), 338 (< 1), 336 (2,5), 250 (13,4), 248 (44,3), 234 (9,7), 232 (24,0), 195 (8,1), 193 (27,7), 111 (100).
Спектр 1Н-ЯМР (CDCl3) дельта 5,90 (1Н, широкий синглет), 7,1-7,4 (7Н, м) 7,74 (2Н, м), 8,22 (2Н, м), 8,39 (1Н, широкий синглет).
Вычислено, C 57,21; H 2,97; N 6,36
C21H13ClN2O5S (440,84)
Найдено, C 56,99, H 2,98, N 6,38
Сложные ацетальэфиры:
(R= -CH(CH3)OCOCH3) способ А за исключением того, что в реакционную смесь также вводили нитрат серебра (1 молярный эквивалент) и нагревали ее с обратным холодильником в течение 24 ч: выход 9% после двухкратного выполнения испарительной хроматографии (первая очистка: смесь метанола и хлороформа с соотношением 1:99, вторая очистка: смесь метанола и хлороформа с соотношением 0,5:99,5) и перекристаллизации из смеси циклогексана и этилацетата; т. пл. 175-180оС, масс-спектр м/э (относительная интенсивность) М+, 408, 406 (< 1, < 1), 364 (2,9), 362 (1,2), 322 (12,1), 320 (40,2), 279 (25,8), 277 (62,6), 195 (43,3), 193 (100). Спектр 1Н-ЯМР (CDCl3) дельта 1,70 (3Н, д, J 5,4 Гц), 1,94 (3Н, с), 5,16 (1Н, широкий синглет), 6,31 (1Н, кв. J 5,4 Гц), 7,23 (1Н, двойной дублет, I 3,9, 5,2 Гц), 7,27 (1Н, д, I 2,2 Гц), 7,52 (1Н, двойной дублет, I 1,2, 3,7 Гц), 7,69 (1Н, двойной дублет, J 1,1, 5,1 Гц), 7,98 (1Н, д, J 2,2 Гц), 8,21 (1Н, д, J 8,8 Гц), 8,47 (1Н, широкий синглет).
Вычислено, C 53,14; H 3,72; N 6,89
C18H15ClN2O5S (406,83)
Найдено, C 53,40; H 3,61; N 6,85
Ацеталькарбонаты:
(R= -CH(CH3)OCOOCH2CH3) способ В, выход 32% после испарительной хроматографии (смесь этилацетата и гексана с соотношением 27:75) и перекристаллизации из 2-пропанола, т.пл. 159-162оС. Масс-спектр м/э (относительная интенсивность) М+, 438, 436 (< 1,0, 1,0) 393 (< 1,0) 322 (1,9) 320 (5,3) 307 (2,0), 305 (6,3), 279 (9,9), 277 (26,9), 195 (42,5), 193 (100).
Спектр 1Н-ЯМР (CDCl3) дельта 1,21 (3Н, т, J 7,1 Гц) 1,73 (3Н, д, J 5,3 Гц), 4,10 (2Н, кВ, J 5,3 Гц), 5,19 (1Н, широкий синглет), 7,26 (2Н, м), 7,52 (1Н, двойной дублет, J 1,1, 3,7 Гц), 7,71 (1Н, двойной дублет, J 1,1, 5,0 Гц), 7,97 (1Н, д, J 2,2 Гц), 8,22 (1Н, д, J 8,7 Гц), 8,47 (1Н, широкий синглет).
Вычислено, C 52,23, H 3,92, N 6,41
C19H17ClN2O6S (436,86)
Найдено, C 52,57, H 4,44; N 6,03
(R= -CH(CH3)OCOOC(CH3)3) способ В, выход 25% после испарительной хроматографии (смесь этилацетата и гексана с соотношением 25:75) и перекристаллизации из 2-пропанола, т.пл. 184-187оС, масс-спектр м/э (относительная интенсивность) М+, 347 (0,8), 322 (4,1), 320 (2,0), 279 (16,2), 277 (53,8), 196 (11,3), 195 (34,5), 194 (13,3), 193 (100).
Спектр 1Н-ЯМР (CDCl3) дельта 1,33 (9Н, с), 1,71 (2Н, д, I 5,4 Гц), 5,21 (1Н, широкий синглет), 6,14 (1Н, кВ, I 5,2 Гц), 7,26 (2Н, м), 7,54 (1Н, двойной дублет, I 1,2, 3,7 Гц),7,70 (1Н, двойной дублет, I 1,2, 5,0 Гц), 8,00 (1Н, д, I 2,2 Гц), 8,21 (1Н, д, I 7,7 Гц), 8,49 (1Н, широкий синглет).
Вычислено, C 54,25; H 4,55; N 6,03
C21H21ClN2O6S (464,91)
Найдено, C 54,38, H 4,58, N 6,09
(R= -CH(CH3)OCOOCH2Ph) способ В, выход 11% после испарительной хроматографии (смесь этилацетата и гексана с соотношением 25:75) и перекристаллизации из этилацетата и гексана, т.пл. 140-145оС, температура размягчения 130оС, масс-спектр м/э (относительная интенсивность) М+, 498 (< 1,0), 455 (< 1,0), 410 (< 1,0), 195 (10,3), 193 (32,2), 111 (62,9), 91 (100).
Спектр 1Н-ЯМР (CDCl3), дельта 1,72 (3Н, д, J 5 Гц), 5,00 (1Н, д, J 11 Гц), 5,04 (1Н, д, J 11 Гц), 5,28 (1Н, широкий синглет), 6,20 (1Н, кв. J 5 Гц), 7,1-7,3 (7Н, м), 7,44 (1Н, м), 7,61 (1Н, м), 7,93 (1Н, д, J 2 Гц), 8,20 (1Н, д, J 9 Гц), 8,40 (1Н, широкий синглет).
Вычислено, C 57,77; H 3,84; N 5,62
C24H19ClN2O6S (498,92)
Найдено, C 57,78, H 3,80, N 5,59
Простые эфиры:
(R= -CH3) способ А при использовании тетрафторбората триметилоксония, выход 27% после перекристаллизации из 2-пропанола, температура плавления 186-188оС, масс-спектр м/э (относительная интенсивность) М+, 335 (2,0), 334 (4,7), 291 (29,7), 277 (18,0), 260 (21,7), 248 (12,6), 193 (100), 185 (14,5), 157 (8,7), 111 (52,5).
Спектр 1Н-ЯМР (CDCl3) дельта 3,8 (3Н, с), 5,25 (1Н, широкий синглет), 7,27 (3Н, м), 7,69 (1Н, д, I 5,7 Гц), 7,88 (1Н, д, I 2,2 Гц), 8,21 (1Н, д, I 8,7 Гц), 8,49 (1Н, широкий синглет).
Вычислено, C 53,81; H 3,31; N 8,37
C15H11ClN2O3S (334,76)
Найдено, C 54,15; H 3,48; N 8,10
(R= -CH2CH3) способ А при использовании тетрафторбората триэтилоксония, выход 22% после перекристаллизации из 2-пропанола, т.пл. 202-205оС, масс-спектр м/э (относительная интенсивность) М+, 350, 348 (1,5, 4,6), 320 (< 1), 307 (7,3), 305 (19,6), 250 (2,2), 248 (7,4), 195 (27,0), 193 (100), 187 (1,2), 185 (4,7), 167 (1,3), 165 (3,2), 139 (2,8), 137 (8,1), 111 (24,0).
Спектр 1Н-ЯМР (d6-Me2SO) дельта 1,40 (3Н, т, J 7,0 Гц), 4,15 (2Н, кв. J 7,0 Гц), 7,30 (1Н, м), 7,35 (1Н, двойной дублет, J 2,3, 8,7 Гц), 7,50 (1Н, м), 7,65 (1Н, с), 7,90 (1Н, д, J 2,3 Гц), 8,00 (1Н, двойной дублет, J 1,0, 5,0 Гц), 8,05 (1Н, с), 8,15 (1Н, д, J 8,7 Гц).
Вычислено, C 55,09, H 3,76, N 8,03
C16H13ClN2O3S (348,67)
Найдено, C 54,87, H 3,62, N 7,79
Сульфонаты:
(R= -SO2CH2) способ А, выход 4% после двухкратного фильтрования через силикагель (смесь метанола и хлороформа с соотношением 5:95) и перекристаллизации из 2-пропанола, т.пл. 180-182оС, масс-спектр м/э (относительная интенсивность) М+, 400, 398 (2,8, 5,6), 357 (6,8), 355 (2,6), 261 (15,3), 259 (45,3), 250 (31,0), 248 (100), 141 (15,4), 149 (42,9), 113 (6,1), 111 (37,7).
Спектр 1Н-ЯМР (CDСl3) дельта 3,02 (3Н, с), 5,23 (1Н, широкий синглет), 7,23 (1Н, м), 7,37 (1Н, двойной дублет, J 2,2, 8,8 Гц), 7,76 (2Н, м), 8,16 (1Н, д, J 2,1 Гц), 8,26 (1Н, д, J 8,8 Гц), 8,33 (1Н, широкий синглет).
Вычислено, C 45,17, H 2,78; N 7,03
C15H11ClN2O5S2 (398,83)
Найдено, 45,30; H 2,60; N 6,78
(R= -SO2/4-Me-Ph) Способ А, выход 6% после перекристаллизации из 2-пропанола, т. пл. 200-202оС, масс-спектр м/э (относительная интенсивность) М+, 474 (< 1), 433 (1,6), 431 (3,0), 404 (1,6), 402 (3,3), 250 (32,0), 248 (100), 195 (4,4), 193 (15,8), 155 (17,7), 111 (47,8), 91 (42,2).
Спектр 1Н-ЯМР (d6-Me2SO) дельта 2,40 (3Н, с), 7,05 (1Н, т, I 4,5 Гц), 7,35-7,50 (4Н, м), 7,65 (3Н, м), 7,90 (3Н, м), 8,12 (1Н, д, I8,7 Гц).
Вычислено, C 53,10, H 3,18, N 5,89
C21H15ClN2O5S2 (474,78)
Найдено, C 53,09; H 3,22; N 5,66.
Фосфонаты
(R= -PO(OCH2CH3)2) Способ А, выход 14% после фильтрования через силикагель (смесь метанола и хлороформа с соотношением 5:95) и перекристаллизации из циклогексана и этилацетата, температура плавления 180-183оС, масс-спектр м/э (относительная интенсивность) М+, 458, 456 (1,2, 3,8), 415 (7,4), 413 (17,4), 261 (31,7), 259 (100), 250 (3,1), 248 (9,2), 196 (17,1), 195 (12,5), 193 (44,6).
Спектр 1Н-ЯМР (CDCl3) дельта 1,33 (6Н, двойной триплет, I 1,2, 7,1 Гц), 4,14 (4Н, м), 5,23 (1Н, широкий синглет), 7,32 (1Н, двойной дублет, J 2,2, 8,8 Гц), 7,70 (1Н, двойной дублет, J 1,2, 5,0 Гц), 7,83 (1Н, двойной дублет, J 1,2, 3,8 Гц), 8,06 (1Н, д, J 2,2 Гц), 8,25 (1Н, д, J 8,8 Гц), 8,46 (1Н, широкий синглет).
Вычислено, C 47,32, H 3,97, N 6,13
C18H18ClN2O6PS (456,83)
Найдено, C 47,25; H 3,83; N 6,08
П р и м е р 3. При использовании соответствующих исходных реагентов и указанной методики были получены следующие соединения:
Figure 00000014

Сложные эфиры:
(R= -COCH3) Способ А, выход 16% после перекристаллизации из 2-пропанола, т. пл. 190-203оС, масс-спектр м/э (относительная интенсивность) М+, 382, 380 (1,6, 7,7) 340 (36,8), 338 (98,1), 297 (16,5), 295 (43,4), 279 (< 1), 277 (2,1), 268 (3,4), 266 (8,3), 256 (1,4), 254 (5,2), 213 (38,6), 211 (100), 111 (26,7).
Спектр 1Н-ЯМР (d6-Me2SO) дельта 1,9, 2,4 (3Н, 2с), 7,09-7,40 (2Н, совокупность мультиплетов), 7,55-7,80 (1Н, совокупность мультиплетов), 7,95-8,50 (4Н, совокупность мультиплетов).
Вычислено, C 50,47; H 2,65; N 7,36
C16H10ClFN2O4S (380,66)
Найдено, C 50,13; H 2,52; N 7,19
(R= -COCH2CH3) Способ А, выход 10% после фильтрования через силикагель (смесь метанола и хлороформа с соотношением 5:95) и перекристаллизации из 2-попанола; т. пл. 182-188оС, масс-спектр м/э (относительная интенсивность) М+, 396, 394 (< 1, 1,3), 340 (7,2), 338 (16,2), 297 (12,1), 295 (32,5), 268 (2,7), 266 (7,1), 213 (26,1), 211 (100), 111 (40,8), 57 (94,2).
Спектр 1Н-ЯМР (d6-Me2SO) дельта 1,18 (3На, b, м), 2,22 (2На, кв. I 7,5 Гц), 2,71 (2Нb, I 7,5 Гц), 7,09-7,70 (2На, b, м), 7,95-8,48 (5На, b, м).
Вычислено, C 51,71; H 3,06; N 7,10
C17H12ClFN2O4S (394,80)
Найдено, C 51,67; H 3,01; N 6,97
(R= -COCH(CH3)2) Способ А, выход 11% после фильтрования через силикагель и перекристаллизации из 2-пропанола, т. пл. 204-206оС, масс-спектр м/э (относительная интенсивность) М+, 410, 408 (1,1, 4,1), 340 (11,5), 338 (27,2), 297 (13,2), 295 (33,6), 268 (5,6), 266 (15,0), 213 (25,8), 211 (100), 111 (36,4). Спектр 1Н-ЯМР (d6-Me2SO) дельта 1,34 (6Н, д, J 7,0 Гц), 3,25 (1Н, гептет, J 7,0 Гц), 7,33 (1Н, двойной дублет, J 4,0, 5,1 Гц), 7,48 (1Н, д, J 9,6 Гц), 8,00 (1Н, широкий синглет), 8,03 (1Н, широкий синглет), 8,13 (1Н, двойной дублет, J 1,2, 5,0 Гц).
Вычислено, C 52,88; H 3,45; N 6,85
C18H14ClFN2O4S (408,83)
Найдено, C 52,48, H 3,32, N 6,86
(R= -COCH2Ph) способ А, выход 22% после перекристаллизации из 2-пропанола, т.пл. 189-199оС, масс-спектр м/э (относительная интенсивность) М+, не наблюдался, 340 (18,9), 338 (42,1), 297 (20,7), 295 (54,4), 268 (5,8), 266 (19,6), 213 (17,9), 211 (53,7), 91 (100).
Спектр 1Н-ЯМР (d6-Me2SO), дельта 3,98 (2На,с), 4,02 (2Но,с), 5,35 (1Н, широкий синглет), 6,99-7,45 (7Н, м), 7,68, 8,00 (2Н, 2м), 8,42 (1Н, двойной дублет, I 5,1, 6,9 Гц), 8,50 (1Н, широкий синглет).
Вычислено, C 57,83; H 3,09; N 6,13
C22H14ClFN2O4S (456,86).
Найдено, C 57,53; H 2,98; N 6,15
(R= -COCH2CH2COOEt) Способ А, выход 26% после перекристаллизации из 2-пропанола; т. пл. 153-155оС, масс-спектр м/э (относительная интенсивность) М+, не наблюдался, 321 (3,1), 295 (3,1), 266 (4,5), 213 (8,8), 211 (23,4), 155 (5,2), 129 (100), 111 (12,4), 101 (75,0), 91 (2,7), спектр 1Н-ЯМР (d6-Me2SO) дельта 1,12 (3Н, 2т, J 7,1 Гц), 2,5-3,5 (4Н, сложная совокупность мультиплетов), 4,05 (2Н, 2 кв, I 7,3 Гц), 7,15-7,40 (2Н, сложная совокупность мультиплетов), 7,70 (1Н, м), 7,95-8,43 (4Н, сложная совокупность мультиплетов).
Вычислено, C 51,45; H 3,45; N 6,00
C20H16ClFN2OS (466,70).
Найдено, C 51,28; H 3,26; N 5,99
Карбонаты:
(R= -COOCH3) Способ А, выход 25% после перекристаллизации из 2-пропанола, т. пл. 203-205оС, масс-спектр м/э (относительная интенсивность) М+, 398, 396 (7,5, 24,5), 355 (4,5), 353 (10,6), 311 (23,8), 309 (49,1), 280 (26,3), 278 (27,9), 268 (30,5), 266 (100), 252 (3,5), 250 (6,9), 240 (3,4), 238 (7,2), 213 (25,2), 211 (56,9), 203 (29,4), 197 (5,6), 182 (6,8), 169 (6,1), 157 (4,5), 155 (12,4), 142 (2,1), 111 (45,4), 97 (5,3), 83 (5,5).
Спектр 1Н-ЯМР (d6-Me2SO) дельта 3,89, 3,95 (3Н, 2с), 7,38 (2Н, м), 8,00 (3Н, м), 8,19 (1Н, т, J 6,7 Гц).
Вычислено, C 48,43, H 2,54, N 7,06
C16H10ClFN2O5S (396,71)
Найдено, C 48,41; H 2,47; N 6,95
(R= -COOCH2CH3) Способ А: выход 57% после перекристаллизации из 2-пропанола, т.пл. 164-166оС, масс-спектр м/э (относительная интенсивность) М+, 410 (1,4), 325 (1,8), 323 (5,8), 297 (8,0), 295 (20,5), 268 (6,1), 266 (13,7), 213 (37,6), 211 (100), 203 (7,9), 155 (7,5), 111 (21,0).
Спектр 1Н-ЯМР (d6-Me2SO) дельта 1,30 (3Н, т, I 7,1 Гц), 4,32 (2Н, кв, I 7,1 Гц), 7,35 (2Н, м), 8,0 (3Н, м), 8,20-8,35 (2Н, м). Элементный анализ: высчитано для C17H12ClFN2O5S (410,67): C 49,70, H 2,94, N 6,82. Обнаружено C 49,76, H 2,85, N 6,77.
(R= -COO(CH2)5CH3) Способ А, выход 85% после перекристаллизации из 2-пропанола, температура плавления 128-135оС, масс-спектр м/э (относительная интенсивность) М+, 468, 466 (0,3, 0,7), 425 (0,3), 424 (0,3), 423 (1,1), 340 (7,0), 338 (14,1), 297 (28,5), 295 (74,5), 213 (34,3), 211 (100).
Спектр 1Н-ЯМР (CDCl3) дельта 0,85-0,92 (3Н, м), 1,22-1,48 (6Н, м), 1,72 (2Н, пентет, J 9 Гц), 4,31 (2На, b, т), 5,40 (1На, b, широкий синглет), 7,21 (1На, b, м), 7,30 (1На, д, J 9 Гц), 7,47 (1Нb, d, J 9 Гц), 7,77 (2На, 1Нb, м), 8,19 (1Нb, м), 8,42 (1Н, д, J 8 Гц), 8,46 (1Нb, д, J 8 Гц), 8,49 (1На, широкий синглет), 8,52 (1Hb, широкий синглет).
Вычислено, C 54,02; H 4,32; N 6,00
C21H20ClFN2O5S (466,91)
Найдено, C 53,93; H 4,26; N 6,02
Сульфонаты
(R= -SO2CH3) Способ А, выход 9% после фильтрования через силикагель и перекристаллизации из цилогексана и этилацетата, т.пл. 180-185оС, масс-спектр м/э (относительная интенсивность) М+, 418, 416 (3,4, 7,2), 375 (8,4), 373 (21,8), 296 (6,8), 294 (6,8), 294 (16,0), 279 (7,0), 277 (18,5), 268 (42,7), 266 (100), 111 (65,4).
Вычислено, C 43,22; H 2,42; N 6,72
C15H10ClFN2O5S2 (416,85)
Найдено, C 43,37; H 2,30; N 6,72
П р и м е р 4. При использовании описанной методики и необходимых исходных реагентов были получены следующие соединения:
X
Figure 00000015

Сложные эфиры
(R= -COCH3) Способ А, выход 56% после перекристаллизации из 2-пропанола, т. пл. 195-197оС, масс-спектр м/э (относительная интенсивность) М+, 354 ( < 1), 312 (32,5), 269 (38,6), 251 (4,8), 221 (12,2), 194 (1,6), 178 (100), 121 (11,1), 91 (23,9), 65 (5,9).
Спектр 1Н-ЯМР (d6-Me2SO) дельта 2,31 (3Н, с), 4,51 (2Н, с), 7,02 (1Н, двойной триплет, I 2,6, 8,9 Гц), 7,33 (6Н, с), 7,63 (1Н, двойной дублет, I 5,8, 8,6 Гц), 7,95 (2Н, м).
Вычислено, C 64,40; H 4,27; N 7,91
C19H15FN2O (354,19)
Найдено, C 64,30; H 4,21; N 7,89
(R= -COCH2CH3) Способ А, выход 23% после перекристаллизации из 2-пропанола, т. пл. 196-198оС, масс-спектр м/э (относительная интенсивность) М+, 368 (2), 325 (5), 312 (25), 269 (70), 251 (7), 240 (4), 221 (5), 178 (100), 150 (8), 121 (10), 91 (37), 65 (12), 57 (83).
Спектр 1Н-ЯМР (d6-Me2SO) дельта 1,02 (3Н, т, J 7,4 Гц), 2,61 (2Н, кв. J 7,4 Гц), 4,53 (2Н, с), 7,02 (1Н, двойной триплет, J2,6, 9,2 Гц), 7,32 (6Н, м), 7,61 (1Н, двойной дублет, J 5,8, 8,6 Гц), 7,95 (2Н, м).
Вычислено, C 65,21; H 4,65; N 7,61
C20H17FN2O4 (368,20)
Найдено, C 64,98; H 4,44; N 7,54
(R= -COCH(CH3)2) Способ А, выход 28% после перекристаллизации из 2-пропанола, т. пл. 182-184оС, масс-спектр м/э (относительная интенсивность) М+, 382 (3,5), 339 (< 1), 312 (18,6), 269 (18,1), 178 (46,2), 177 (17,4), 91 (31,8), 71 (100).
Спектр 1Н-ЯМР (d6-2MeSO) дельта 1,09 (3Н, д, J 7,0 Гц), 2,64 (1Н, двойной квартет, J 7,0 Гц), 4,65 (2Н, с), 5,36 (1Н, широкий синглет), 6,83 (1Н, двойной триплет), J 2,5, 8,7 Гц), 7,18-7,33 (5Н, м), 7,50 (1Н, двойной дублет, J 5,6, 8,6 Гц), 8,10 (1Н, двойной дублет, J 2,5, 10,3 Гц), 8,59 (1Н, широкий синглет).
Вычислено, C 65,96; H 5,01; N 7,33
C21H19FN2O4 (382,38)
Найдено, C 65,76; H 4,94; N 7,33
(R= -COPh) Способ А, выход 68% после перекристаллизации из 2-пропанола, температура плавления 188-190оС, масс-спектр м/э (относительная интенсивность) М+, 416 (2,7), 373 (3,0), 242 (6,1), 177 (6,4), 121 (5,2), 105 (100), 77 (17,8).
Спектр 1Н-ЯМР (CDCl3) дельта 4,71 (2Н, д), 5,41 (1Н, широкий синглет), 6,71 (1Н, двойной триплет, J 2,5, 8,7 Гц), 7,26 (5Н, м), 7,42 (1Н, двойной дублет, J 5,6, 8,6 Гц), 7,52 (2Н, м), 7,66 (1Н, м), 8,03 (2Н, д), 8,10 (1Н, двойной дублет, J 2,5, 10,3 Гц), 8,63 (1Н, широкий синглет).
Вычислено, C 66,35; H 4,40; N 6,44
C24H17FN2О4 ˙Н2О (434,41)
Найдено, C 66,14; H 3,92; N 6,41
(R= -COCH2Ph) Способ А, выход 27% после перекристаллизации из 2-пропанола, т. пл. 201-202оС, масс-спектр м/э (относительная интенсивность) М+, 430 (0,9), 387 (0,6), 312 (87,5), 269 (100), 178 (64,7), 91 (65,6).
Спектр 1Н-ЯМР (d6-Me2SO) дельта 3,99 (2Н, с), 4,48 (2Н, с), 6,85 (2Н, двойной триплет, J 2,6, 8,9 Гц), 7,28 (10Н, м), 7,91 (1Н, двойной дублет, J 2,5, 10,7 Гц), 7,97 (1Н, широкий синглет), 8,07 (1Н, широкий синглет).
Вычислено, C 69,76; H 4,45; N 6,51
C25H19FN2O4 (430,25)
Найдено, C 69,35; H 4,38; N 6,62
(R= -COCH2CH2COOEt) Способ А, выход 46% после перекристаллизации из 2-пропанола, т.пл. 159-161, масс-спектр м/э (относительная интенсивность) М+, не наблюдался, 395 (0,4), 352 (0,8), 331 (0,3), 289 (0,6), 269 (6,4), 252 (9,4), 234 (1,9), 222 (6,8), 212 (1,5), 196 (1,1), 178 (24,8), 177 (10,6), 168 (1,5), 130 (7,7), 129 (100), 121 (5,3), 101 (65,8), 91 (10,0).
Спектр 1Н-ЯМР (d6-Me2SO) дельта 1,15 (3Н, т, J 7,1 Гц), 2,61 (2Н, т, J 6,0 Гц), 2,88 (2Н, т, J 6,0 Гц), 4,06 (2Н, кв. J 7,1 Гц), 4,46 (2Н, с), 6,98 (1Н, двойной триплет, J 2,6, 8,9 Гц), 7,32 (5Н, м), 7,67 (1Н, двойной дублет, J 5,8, 8,8 Гц), 7,93 (1Н, двойной дублет, J 2,5, 10,7 Гц), 7,98 (1Н, широкий синглет) (8,08) (1Н, широкий синглет).
Вычислено, C 62,72; H 4,81; N 6,36
C23H21FN2O6 (440,23)
Найдено, C 62,75; H 4,79; N 6,29
Карбонаты
(R= -COOCH3) Способ А, выход 45% после перекристаллизации из 2-пропанола, т.пл. 178-180оС, масс-спектр м/э (относительная интенсивность) М+, 370 (16,7), 327 (3,7), 294 (24,0), 251 (100), 235 (11,7), 222 (32,9), 205 (0,4), 204 (3,8), 192 (29,8), 178 (42,5), 164 (2,2), 149 (5,8).
Спектр 1Н-ЯМР (d6-Me2SO) дельта 3,86 (3Н, с), 4,58 (2Н, с), 7,08 (1Н, двойной триплет, J 2,6, 9,1 Гц), 7,32 (5Н, с), 7,55 (1Н, двойной дублет, J 5,9, 8,7 Гц), 7,95 (1Н, двойной дублет, J 2,5, 10,6 Гц), 7,99 (1Н, широкий синглет), 8,07 (1Н, широкий синглет).
Вычислено, C 61,63; H 4,08; N 7,56
C19H15FN2O5 (370,19)
Найдено, 61,64; H 4,07; N 7,55
(R= -COOCH2CH3) Способ А, выход 52% после перекристаллизации из 2-пропанола, т.пл. 189-190оС, масс-спектр м/э (относительная интенсивность) М+, 384 (8,8), 340 (3,4), 312 (33,2), 297 (57,0), 269 (71,1), 251 (47,1), 240 (14,9), 221 (33,6), 212 (7,1), 206 (10,1), 178 (100), 150 (10,6), 121 (14,3), 91 (51,5).
Спектр 1Н-ЯМР (d6-Me2SO) дельта 1,23 (3Н, т, J 7,1 Гц), 4,26 (2Н, кв, J 7,1 Гц), 4,58 (2Н, с), 7,08 (1Н, двойной триплет, J 2,5, 8,9 Гц), 7,32 (5Н, м), 7,53 (1Н, двойной дублет, J 5,8, 8,6 Гц), 7,94 (1Н, двойной дублет, J 2,6, 10,7 Гц), 7,99 (1Н, широкий синглет), 8,07 (1Н, широкий синглет).
Вычислено, C 62,52; H 4,42; N 7,29
C20H17FN2O5 (384,19)
Найдено, C 62,59; H 4,41; N 6,98
(R= -COO(CH2)5CH3) Способ А, выход 31% после перекристаллизации из 2-пропанола, т. пл. 144-145оС, масс-спектр м/э (относительная интенсивность) М+, 440 (< 1), 3,97 (0,6), 378 (< 1), 353 (< 1), 312 (18,1), 294 (1,9), 269 (69,7), 251 (16,7),240 (4,3), 221 (16,4), 212 (2,1), 194 (2,0), 178 (100), 164 (0,9), 149 (5,7), 121 (9,2) 103 (1,1), 91 (29,2).
Спектр 1Н-ЯМР (d6-Me2SO) дельта 0,85 (3Н, широкий триплет, J 6,6 Гц), 1,24 (6Н, м), 1,58 (2Н, м), 4,21 (2Н, т, J 6,4 Гц), 4,59 (2Н, с), 7,06 (1Н, двойной триплет, J 2,6, 9,0 Гц), 7,31 (5Н, м), 7,54 (1Н, двойной дублет, J 5,8, 8,6 Гц), 7,96 (1Н, двойной дублет, J 2,5, 10,6 Гц), 8,00 (1Н, широкий синглет), 8,07 (1Н, широкий синглет).
Вычислено, C 65,44, H 5,72, N 6,36
C24H25FN2O5 (440,24)
Найдено, C 65,31; H 5,62; N 6,38
Приведенные далее данные определяют антивоспалительную активность. Эта активность демонстрировалась на крысах по способу, основанному на стандартной методике возбуждения отека ноги крысы под действием каррагинина (см. Винтер и др. в "Просидингз оф Сосайети оф экспериментал Байолоджи энд Медисин". Ш, 544(1963)).
Брали взрослых самцов крыс-альбиносов массой 150-190 г без применения анестезии, ставили на них номера, взвешивали и делали метку чернилами на правом боковом маллеолусе. Каждую лапку погружали в ртуть точно до чернильной метки. Ртуть находилась в стеклянном цилиндре, соединенном с преобразователем давления типа Statham. Выход преобразователя подавался через блок управления к микровольтаметру. Считывался объем вытесненной ртути при погружении лапки. Лекарство принудительным кормлением вводили крысе. Через час после ввода лекарства возбуждали отек инъекцией 0,05 мл 1%-ного раствора каррагинина в планатарную ткань маркированных лапок. Немедленно после этого измеряли объем лапки, в которую произвели инъекцию. Увеличение объема лапки через 3 ч после инъекции каррагинина представляет собой индивидуальный ответ организма на действие воспаления.
Во-вторых, в данных приводятся данные гидролиза указанных соединений в человеческой плазме крови за 1 ч. Данные приведены в таблице.

Claims (5)

1. 3-Ацил-2-оксоиндол-1-карбоксамиды общей формулы
Figure 00000016

где X и Y фтор, хлор или водород;
R1 2-тиенил или бензил;
R C2-C1 0-алканоил, С57-циклоалкилкарбонил, С71 0-фенилалканоил, хлорбензоил, метоксибензоил, теноил, омега-С13-алкоксикарбонил-С35-алканоил, С21 0-алкокскарбонил, феноксикарбонил, 1-С24-ацилокси-С14-алкил, 1-С25-(алкоксикарбонилокси)-С14-алкил, С13-алкилсульфонил, метилфенилсульфонил или ди-С13-алкилфосфонат.
2. Способ получения 3-ацил-2-оксоиндол-1-карбоксамидов общей формулы
Figure 00000017

где Х и У фтор, хлор или водород;
R1 2-тиенил и бензил;
R С21 0-алканоил, С57-циклоалкилкарбонил, С71 0-фенилалканоил, хлорбензоил, метоксибензоил, теноил, омега-С13-алкоксикарбонил-С35-алканоил, С21 0-алкоксикарбонил, феноксикарбонил, 1-С24-(ацилокси) С14-алкил, С13-алкилсульфонил, метилфенилсульфонил или ди-С13-алкилфосфонат,
отличающийся тем, что соединение общей формулы
Figure 00000018

где Х, У и R1 имеют указанные значения,
подвергают взаимодействию с эквимолярным количеством соединения общей формулы
R Cl,
где R имеет указанные значения,
в реакционно-инертном растворителе, содержащем эквимолярное количество третичного амина, при 25oС до полного завершения реакции.
3. Способ по п.2, отличающийся тем, что растворителем является хлороформ, а третичным амином триэтиламин.
4. Способ получения 3-ацил-2-оксоиндол-1 карбоксамидов общей формулы
Figure 00000019

где Х и У фтор, хлор или водород;
R1 2-тиенил, бензил;
R 1-С25-(алкоксикарбонилокси)-С14-алкил,
отличающийся тем, что соединение общей формулы
Figure 00000020

где Х, Y и R1 имеют указанные значения,
подвергают взаимодействию с 3 4-кратным молярным избытком соединения общей формулы
R Cl
где R имеет указанные значения,
в смешивающемся с водой реакционно-инертном растворителе, содержащем 5-кратный молярный избыток йодистого натрия и примерно 2-кратный молярный избыток карбоната щелочного металла, при 25 75oС до полного окончания реакции.
5. Способ по п.4, отличающийся тем, что реакционно-инертным растворителем является ацетон, а карбонатом щелочного металла карбонат калия.
SU914895525A 1988-10-18 1991-04-17 3-ацил-2-оксоиндол-1-карбоксамиды и способы их получения RU2036905C1 (ru)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US1988/003658 WO1990004393A1 (en) 1988-10-18 1988-10-18 Prodrugs of antiinflammatory 3-acyl-2-oxindole-1-carboxamides

Publications (1)

Publication Number Publication Date
RU2036905C1 true RU2036905C1 (ru) 1995-06-09

Family

ID=22208957

Family Applications (1)

Application Number Title Priority Date Filing Date
SU914895525A RU2036905C1 (ru) 1988-10-18 1991-04-17 3-ацил-2-оксоиндол-1-карбоксамиды и способы их получения

Country Status (33)

Country Link
US (1) US5118703A (ru)
JP (1) JPH07597B2 (ru)
KR (1) KR910007237B1 (ru)
CN (1) CN1022241C (ru)
AP (1) AP118A (ru)
AR (1) AR246519A1 (ru)
AT (1) ATE125794T1 (ru)
AU (1) AU606819B2 (ru)
BG (1) BG50834A3 (ru)
CA (1) CA1339558C (ru)
CZ (1) CZ278983B6 (ru)
DD (1) DD285604A5 (ru)
DK (1) DK514989A (ru)
EG (1) EG19887A (ru)
FI (1) FI95253C (ru)
HU (1) HU208421B (ru)
IE (1) IE66586B1 (ru)
IL (1) IL91960A (ru)
IS (1) IS1598B (ru)
MA (1) MA21657A1 (ru)
MX (1) MX18021A (ru)
MY (1) MY104238A (ru)
NO (1) NO178027C (ru)
NZ (1) NZ231044A (ru)
OA (1) OA09140A (ru)
PH (1) PH27554A (ru)
PL (2) PL163112B1 (ru)
PT (1) PT92000B (ru)
RO (1) RO109195B1 (ru)
RU (1) RU2036905C1 (ru)
SK (1) SK278175B6 (ru)
WO (1) WO1990004393A1 (ru)
YU (1) YU48070B (ru)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5059693A (en) * 1989-10-06 1991-10-22 Pfizer Inc. Process for making 3-aroyl-2-oxindole-1-carboxamides
KR950704727A (ko) * 1992-11-23 1995-11-20 알렌 제이, 스피겔 4-클로로-2-티오펜카복실산의 위치선택적 제조 방법(regioselective synthesis of 4-chloro-2-thiophenecarboxylic acid)
US5270331A (en) * 1993-01-26 1993-12-14 Pfizer, Inc. Prodrugs of antiinflammatory 3-acyl-2-oxindole-1-carboxamides
ES2097025T3 (es) * 1993-02-09 1997-03-16 Pfizer Oxindol 1-(n-(alcoxicarbonil))carboxamidas y 1-(n-carboxamido)carboxamidas como agentes antiinflamatorios.
US5449788A (en) * 1994-01-28 1995-09-12 Catalytica, Inc. Process for preparing 2-oxindole-1-carboxamides
CN1094819C (zh) * 1997-04-30 2002-11-27 大兴株式会社 环状坯料之制造装置
EP0984012A3 (en) * 1998-08-31 2001-01-10 Pfizer Products Inc. Nitric oxide releasing oxindole prodrugs with analgesic and anti-inflammatory properties
MXPA02004010A (es) * 1999-10-26 2002-10-23 Univ Texas Southwestern Med Ct Metodos para tratamiento de perdida capilar que consisten en administrar compuesto de indolina.

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL96047C (ru) * 1956-06-08
US3564009A (en) * 1966-01-13 1971-02-16 Sumitomo Chemical Co Process for producing 1-acylindole derivatives
BE756447A (fr) * 1969-10-15 1971-03-22 Pfizer Oxindolecarboxamides
US3923996A (en) * 1972-07-31 1975-12-02 Sandoz Ag 3-Substituted-oxindoles in compositions and methods of treating obesity
IE53102B1 (en) * 1981-05-12 1988-06-22 Ici Plc Pharmaceutical spiro-succinimide derivatives
DE3268971D1 (en) * 1981-10-06 1986-03-20 Ici Plc Biochemical process
US4556672A (en) * 1984-03-19 1985-12-03 Pfizer Inc. 3-Substituted 2-oxindole-1-carboxamides as analgesic and anti-inflammatory agents
US4752609A (en) * 1985-06-20 1988-06-21 Pfizer Inc. Analgesic and antiinflammatory 1,3-diacyl-2-oxindole compounds
US5036099A (en) * 1987-02-02 1991-07-30 Pfizer Inc. Anhydrous, crystalline sodium salt of 5-chloro-3-(2-thenoyl)-2-oxindole-1-carboxamide
DE68923673T2 (de) * 1988-10-18 1996-01-18 Pfizer Prodrogen von antiinflammatorischen 3-Acyl-2-oxindol-1-carboxamiden.
US5047554A (en) * 1989-04-18 1991-09-10 Pfizer Inc. 3-substituted-2-oxindole derivatives
US5059693A (en) * 1989-10-06 1991-10-22 Pfizer Inc. Process for making 3-aroyl-2-oxindole-1-carboxamides

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Патент США 3634453, кл. 260-288, 1972. *
Патент США 4556672, кл. 514-414, 1985. *

Also Published As

Publication number Publication date
IL91960A0 (en) 1990-07-12
NO178027C (no) 1996-01-10
CZ278983B6 (en) 1994-11-16
DK514989D0 (da) 1989-10-17
OA09140A (fr) 1991-10-31
NO178027B (no) 1995-10-02
NO911512L (no) 1991-06-12
IS3509A7 (is) 1990-04-19
AP8900141A0 (en) 1989-10-31
PL162316B1 (pl) 1993-09-30
HUT58052A (en) 1992-01-28
IE893332L (en) 1990-04-18
SK590689A3 (en) 1996-03-06
IL91960A (en) 1994-04-12
RO109195B1 (ro) 1994-12-30
HU886740D0 (en) 1991-07-29
NO911512D0 (no) 1991-04-17
FI95253C (fi) 1996-01-10
IS1598B (is) 1996-05-20
CN1041938A (zh) 1990-05-09
US5118703A (en) 1992-06-02
FI911855A0 (fi) 1991-04-17
NZ231044A (en) 1990-12-21
PL163112B1 (pl) 1994-02-28
JPH07597B2 (ja) 1995-01-11
KR910007237B1 (ko) 1991-09-24
SK278175B6 (en) 1996-03-06
WO1990004393A1 (en) 1990-05-03
AU4295689A (en) 1990-04-26
MX18021A (es) 1993-11-01
MA21657A1 (fr) 1990-07-01
FI95253B (fi) 1995-09-29
PT92000B (pt) 1995-06-30
HU208421B (en) 1993-10-28
PH27554A (en) 1993-08-18
ATE125794T1 (de) 1995-08-15
MY104238A (en) 1994-02-28
YU48070B (sh) 1997-01-08
AU606819B2 (en) 1991-02-14
EG19887A (en) 1996-03-31
CZ590689A3 (en) 1994-04-13
YU200589A (en) 1991-02-28
CA1339558C (en) 1997-11-25
PT92000A (pt) 1990-04-30
DK514989A (da) 1990-04-19
BG50834A3 (en) 1992-11-16
JPH02149559A (ja) 1990-06-08
IE66586B1 (en) 1996-01-24
CN1022241C (zh) 1993-09-29
KR900006285A (ko) 1990-05-07
AP118A (en) 1991-02-22
DD285604A5 (de) 1990-12-19
AR246519A1 (es) 1994-08-31

Similar Documents

Publication Publication Date Title
US20030207919A1 (en) Nitrosated and nitrosylated nonsteroidal antiinflammatory compounds, compositions and methods of use
RU2036905C1 (ru) 3-ацил-2-оксоиндол-1-карбоксамиды и способы их получения
HU192868B (en) Process for producing particularly antiasthmatic medicine preparations
MX2012005189A (es) Inhibidores de ire-1-alfa.
CA2107150C (fr) Nouveaux derives chromeniques a chaine laterale trienique, leur procede de preparation et les compositions pharmaceutiques les renfermant
EP0104959A1 (en) 4-Quinolone derivatives
EP0365194B1 (en) Prodrugs of antiinflammatory 3-acyl-2-oxindole-1-carboxamides
RU2279433C2 (ru) Новое соединение для лечения импотенции
PL184060B1 (pl) Podstawione związki fenylowe do zastosowania jako środki antagonistyczne endoteliny
Siegel et al. The preparation of isochromans
JP2787407B2 (ja) ホスホン酸ジエステル誘導体
GB2264115A (en) 1h-2-methylimidazo(4,5-c)pyridinyl derivatives as paf antagonists
US5258396A (en) Thiazole derivatives
JPS5944365A (ja) 2−フエニルアルキルチオ−4(3h)−キナゾリノン誘導体
NL193192C (nl) Oxicamderivaat, farmaceutisch preparaat dat het derivaat bevat en werkwijze voor het bereiden van oxicamderivaten.
JPS6165869A (ja) キノリン−n−オキシド誘導体
US3564008A (en) Process for preparing 1-acyl-2-phenyl-3-indolylaliphatic acid derivatives
Skinner et al. The Utilization of Alkyl 2-Cyclohexylethyl Ketones in the Pfitzinger Reaction1
JPH10158234A (ja) 2−フェニルアズレン誘導体及びその製造方法
JPS5936679A (ja) 5−オキソ−5H−〔1〕ベンゾピラノ〔2,3−b〕ピリジン誘導体,その製造法および医薬組成物
JPH02275871A (ja) フエニルシクロヘキサン誘導体
JPS62181251A (ja) 複素環式化合物
CS196334B2 (cs) Způsob výroby derivátů («-aminoacntylj benzenu