KR20180125519A - 만능성 줄기 세포의 장의 중장 내배엽 세포로의 분화 - Google Patents

만능성 줄기 세포의 장의 중장 내배엽 세포로의 분화 Download PDF

Info

Publication number
KR20180125519A
KR20180125519A KR1020187029579A KR20187029579A KR20180125519A KR 20180125519 A KR20180125519 A KR 20180125519A KR 1020187029579 A KR1020187029579 A KR 1020187029579A KR 20187029579 A KR20187029579 A KR 20187029579A KR 20180125519 A KR20180125519 A KR 20180125519A
Authority
KR
South Korea
Prior art keywords
cells
intestinal
endoderm
intestine
cell
Prior art date
Application number
KR1020187029579A
Other languages
English (en)
Other versions
KR102162505B1 (ko
Inventor
세바스찬 리크
알리레자 레자니아
Original Assignee
얀센 바이오테크 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 얀센 바이오테크 인코포레이티드 filed Critical 얀센 바이오테크 인코포레이티드
Priority to KR1020207027896A priority Critical patent/KR102403165B1/ko
Publication of KR20180125519A publication Critical patent/KR20180125519A/ko
Application granted granted Critical
Publication of KR102162505B1 publication Critical patent/KR102162505B1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/37Digestive system
    • A61K35/38Stomach; Intestine; Goblet cells; Oral mucosa; Saliva
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0603Embryonic cells ; Embryoid bodies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/48Reproductive organs
    • A61K35/54Ovaries; Ova; Ovules; Embryos; Foetal cells; Germ cells
    • A61K35/545Embryonic stem cells; Pluripotent stem cells; Induced pluripotent stem cells; Uncharacterised stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0679Cells of the gastro-intestinal tract
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • C12N2500/38Vitamins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/60Buffer, e.g. pH regulation, osmotic pressure
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/117Keratinocyte growth factors (KGF-1, i.e. FGF-7; KGF-2, i.e. FGF-12)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/119Other fibroblast growth factors, e.g. FGF-4, FGF-8, FGF-10
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/155Bone morphogenic proteins [BMP]; Osteogenins; Osteogenic factor; Bone inducing factor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/16Activin; Inhibin; Mullerian inhibiting substance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/19Growth and differentiation factors [GDF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/30Hormones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/30Hormones
    • C12N2501/38Hormones with nuclear receptors
    • C12N2501/385Hormones with nuclear receptors of the family of the retinoic acid recptor, e.g. RAR, RXR; Peroxisome proliferator-activated receptor [PPAR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/40Regulators of development
    • C12N2501/415Wnt; Frizzeled
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/602Sox-2
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • C12N2501/72Transferases (EC 2.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • C12N2501/72Transferases (EC 2.)
    • C12N2501/727Kinases (EC 2.7.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/02Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from embryonic cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/45Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from artificially induced pluripotent stem cells

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Cell Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Developmental Biology & Embryology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Virology (AREA)
  • Immunology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Diabetes (AREA)
  • Reproductive Health (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Physiology (AREA)
  • Nutrition Science (AREA)
  • Gynecology & Obstetrics (AREA)
  • Endocrinology (AREA)
  • Emergency Medicine (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

장의 중장 내배엽 세포의 세포 집단 및 장 내배엽 계통의 특징적인 마커를 발현하는 세포를 생성하는 방법이 개시된다. 당뇨병과 같은 질환을 치료하는 방법이 또한 개시된다.

Description

만능성 줄기 세포의 장의 중장 내배엽 세포로의 분화
본 발명은 당뇨병과 같은 질환에 대한 세포-기반 요법의 분야에 관한 것이다. 상세하게는, 본 발명은 인간 만능성(pluripotent) 줄기 세포의 분화를 유도하여 장의 중장 내배엽 세포의 집단을 생성하는 것을 포함하는 세포 분화에 관한 것이다. 본 발명은 장의 중장 내배엽의 특징적인 마커를 발현하는 세포 또는 세포 집단 및 그러한 세포를 생성하는 방법을 제공한다.
줄기 세포 및 내분비 세포 단계 둘 모두에서, 장 분화의 이해에 있어서의 진전과 결합되어 인크레틴 호르몬 작용 기전의 지식의 진보는 생착(engraftment)에 적절한, 인크레틴 호르몬 생성 세포의 공급원을 개발하는 데로 관심을 갖게 하였다. 한 가지 접근법은 인간 배아 줄기 세포 ("hESC") 또는 유도 만능성 줄기 세포 ("iPS")와 같은 만능성 줄기 세포로부터 기능성 장내분비 L- 또는 K-세포의 생성이다.
장 L-세포로부터의 글루카곤-유사 펩티드 1 (GLP-1)의 생성/분비 또는 장 K-세포로부터의 글루코스 의존성 인슐린분비촉진 폴리펩티드 (GIP)의 생성/분비는 진성 당뇨병의 치료에 유익한 효과를 갖는다. 인크레틴 호르몬은 진성 당뇨병 (제1형 및 제2형)의 치료에 유익한 전신 효과를 갖는다 (문헌[Unger, J., Curr Diab Rep., 2013; 13(5):663-668]). 이득은 베타 (β) 세포 기능 및 수의 많은 양상의 증대, 글루카곤 분비의 억제, 말초 대사 조직의 인슐린 감수성의 증가, 간 당신생의 감소, 및 식욕의 감소를 포함할 수 있다. 2가지 부류의 인크레틴-기반 치료제가 진성 당뇨병의 치료에 대해 확인되어 있다 (GLP-1 수용체 효능제 및 다이펩티딜 펩티다제 4 (DPP-4) 억제제). 그러나, 개선되고 효율적인 GLP1-기반 당뇨병 치료를 위한 내인성 및 세포 바로미터(endogenous and cellular barometer)를 포괄하는 인크레틴-기반 세포 요법 선택지가 현재는 존재하지 않는다. 더욱이, 현재의 인크레틴-기반 요법은 혈당 수준을 순환시킴으로써 조절되지 않으며, 따라서 비생리학적으로 조절된 GLP 생성을 제공한다.
척추동물 배아 발생에서, 만능성 세포는 낭배형성(gastrulation)으로 알려진 과정에서 삼배엽층 (외배엽, 중배엽, 및 내배엽)을 포함하는 세포군을 생성한다. 중간엽 조직은 중배엽으로부터 유래되며, 특히 유전자인 심장 및 신경 능선 유도체 발현 1 (HAND1), 및 포크헤드 박스 F1 (FOXF1)에 의해 표시된다. 갑상선, 흉선, 췌장, 장 및 간과 같은 조직은 중간 단계를 통해 내배엽으로부터 발생할 것이다. 이 과정에서 중간 단계는 완성 내배엽(definitive endoderm)의 형성이다. 낭배형성의 종료 시점까지, 내배엽은 내배엽의 전방 전장, 후방 전장, 중장, 및 후장 영역을 독특하게 표시하는 인자들의 패널의 발현에 의해 인식될 수 있는 전방-후방 도메인들로 나누어진다.
특정 전사 인자 ("TF")의 발현 수준은 문헌[Grapin-Botten et al., Trends Genet, 2000; 16(3):124-130]에 기재된 바와 같이, 조직의 정체(identity)를 지정하는 데 사용될 수 있다. FOXA2는 전방-후방 축을 따라 전체 내배엽을 표시한다. 완성 내배엽이 원시 장관(primitive gut tube)으로 형질전환하는 동안, 장관은 제한된 유전자 발현 패턴에 의해 분자 수준에서 관찰될 수 있는 폭넓은 도메인들로 국지화되게 된다. 전방 전장은 SOX2의 높은 발현에 의해 광범위하게 표시되며, 갑상선, 폐, 및 식도와 같은 기관 도메인을 포함한다. 중장 (십이지장, 회장, 공장을 포함함) 및 후장 (결장을 포함함)은 미측형 호메오박스(caudal type homeobox) 2 (CDX2)의 높은 발현에 의해 표시된다. SOX2-CDX2 경계는 후방 전장 내에서 일어나며, 그 안에서 추가의 TF는 특정 기관 도메인을 표시한다. 후방 전장 내의 국지화된 췌장 도메인은 PDX1의 매우 높은 발현 및 CDX2 및 SOX2의 매우 낮은 발현을 나타낸다. PTF1A는 췌장 조직에서 고도로 발현된다. 높은 CDX2 발현과 함께 낮은 PDX1 발현은 십이지장 도메인을 표시한다. 장 내배엽은 특정 호메오박스 (HOX) 유전자에 의해 패턴화된다. 예를 들어, HOXC5는 중장 내배엽 세포에서 선택적으로 발현된다. 게다가, HOXA13 및 HOXD13의 발현은 후장 내배엽 세포로 제한된다. ALB 유전자, 또는 알부민 1 단백질은 후방 전장 내배엽에서 가장 이른 간 전구체를 표시한다 (문헌[Zaret et al., Curr Top Dev Biol, 2016; 117:647-669).
인간 만능성 줄기 세포로부터 장 내배엽 세포를 생성하기 위한 프로토콜을 개선하는 데 있어서 진전이 이루어져 왔다. 예를 들어, 하기의 간행물 (문헌[Spence et al., Nature, 2011; 470(7332):105-109]; 문헌[Watson et al., Nature Medicine, 2014; 20(11):1310-1314]; 및 문헌[Kauffman et al., Front Pharmacol, 2013; 4(79):1-18])은 CDX2+/FOXA2+ 내배엽 집단뿐만 아니라 상당한 중간엽 CDX2+ 세포 집단을 함유하는, 중장/후장 구상체(spheroid)를 생성하는, 완성 내배엽 단계에서 출발하여 섬유아세포 성장 인자 (FGF)-4, 윙리스형(Wingless-type) MMTV 통합 부위 패밀리, 구성원 3A (WNT3A), Chiron 99021, 또는 레틴산 (RA) 및 FGF7 중 어느 하나를 사용하는 분화 프로토콜을 개략적으로 설명한다. 이들 hESC-유래 중장/후장 구상체로부터의 장내분비 세포의 분화 과정은 매우 비효율적이어서, 장시간을 필요로 하며, 융모간 및 융모 영역의 모든 장 세포 유형의 생성을 향해 비구별적으로 유도된다. 세포 요법을 위한 장 장내분비 세포를 고효율로 생성할 수 있도록 하기 위하여, 중간엽을 실질적으로 오염시키지 않고서, 장의 중장 내배엽 세포를 생성하는 기술에 대한 필요성이 여전히 존재한다.
구체화되고 완전히 기재된 바와 같이, 본 발명은 인간 만능성 줄기 세포를 분화시킴으로써 생성되는 세포, 세포 집단 및 인간 만능성 줄기 세포를 분화시킴으로써 상기 세포를 생성하는 방법을 제공한다. 상세하게는, 본 발명은 장의 중장 내배엽 세포, 더 특히 장의 중장 내배엽 세포의 내배엽 단층을 생성하기 위한, 인간 만능성 줄기 세포의 유도 분화 방법을 특징으로 한다.
본 발명의 일 태양은 장의 중장 내배엽 세포의 집단을 생성하는 방법으로서, 상기 방법은 인간 만능성 줄기 세포를 배양 배지 중에서 배양하는 단계를 포함한다. 실시 형태에서, 본 방법은 인간 만능성 줄기 세포의 장의 중장 내배엽 세포로의 분화를 유도하는 단계를 포함한다. 일부 실시 형태에서, 장의 중장 내배엽 세포의 집단이 생성된다. 일부 실시 형태에서, 실질적인 장의 중장 내배엽 세포의 집단이 생성된다. 본 발명의 실시 형태에서, 장의 중장 내배엽 세포는 배양 중에 단층으로서 형성되고 안정하다. 실시 형태에서, 분화된 세포의 50% 초과가 장의 중장 내배엽의 특징적인 마커를 발현하며, 바람직하게는 분화된 세포의 60% 초과가 장의 중장 내배엽의 특징적인 마커를 발현하며, 더 바람직하게는 70% 초과, 80% 초과, 및 90% 초과가 장의 중장 내배엽의 특징적인 마커를 발현한다. 실시 형태에서, 분화된 세포는 장의 중장 내배엽 세포의 특징적인 마커를 발현한다. 실시 형태에서, 장의 중장 내배엽 세포는 CDX2 및 FOXA2를 발현한다. 모든 실시 형태에서, 장의 중장 내배엽 세포는 SOX9, PDX1, KLF5 및 HOXC5로부터 선택되는 전사 인자를 발현한다. 실시 형태에서, 장의 중장 내배엽 세포는 SOX2, ALB, PTF1A, HOXA13 및 LGR5로부터 선택되는 전사 인자를 발현하지 않는다.
본 발명의 실시 형태에서, 인간 만능성 줄기 세포는 하기를 포함하는 단계들에 의해 장의 중장 내배엽 세포로 분화된다: a) 인간 만능성 줄기 세포를 GDF-8 및 GSK3β 억제제, 예컨대 MCX 화합물을 함유하는 제1 배양 배지 중에서 배양하여 완성 내배엽 세포로의 분화를 유도하는 단계; b) 완성 내배엽 세포를 아스코르브산 및 FGF7을 함유하는 제2 배양 배지 중에서 배양하여 원시 장관 세포로의 분화를 유도하는 단계; 및 c) 원시 장관 세포를 산성 조건에서 레틴산 및 BMP2 또는 BMP4를 함유하는 제3 배양 배지 중에서 배양하여 장의 중장 내배엽 세포로의 분화를 유도하는 단계. 특정 실시 형태에서, 산성 조건은 BLAR 배지를 사용한 배양이다. 산성 배양의 pH는 6.8 내지 7.2의 범위일 수 있다. 본 발명의 실시 형태에서, 장의 중장 내배엽 세포는 배양 중에 단층을 형성한다. 실시 형태에서, 장의 중장 내배엽 세포의 단층은 배양 중에 유지된다.
본 발명의 다른 실시 형태는 당뇨병을 앓고 있거나 이것이 발병될 위험이 있는 환자를 치료하는 방법으로서, 상기 방법은 인간 만능성 줄기 세포를 장의 중장 내배엽 세포로 분화시키는 단계 및 분화된 장의 중장 내배엽 세포를 당뇨병을 갖는 환자 내에 투여하는 단계를 포함한다. 실시 형태에서, 당뇨병은 제1형 또는 제2형이다. 실시 형태에서, 세포를 투여하는 단계는 치료 부위에 직접적으로 또는 간접적으로 이식, 주입 또는 다른 방식으로 투여하는 것을 통해 행해질 수 있다. 일부 실시 형태에서, 장의 중장 내배엽 세포는 피하 공간, 장막, 간, 신장 등과 같은 신체 내에 이식된다. 추가의 실시 형태는 매크로- 또는 마이크로-캡슐화 디바이스의 캡슐화를 포함한 세포의 캡슐화된 전달을 포함한다.
본 발명의 추가의 실시 형태는 장의 중장 내배엽 세포를 생성하는 방법으로서, 상기 방법은 배양 중인 완성 내배엽 세포의 원시 장관 세포로의 분화를 유도하는 단계를 포함한다. 실시 형태에서, 완성 내배엽 세포는 아스코르브산 및 FGF7을 함유하는 배양 배지 중에서 배양된다. 추가의 실시 형태에서, 원시 장관 세포는 레틴산과 BMP2 또는 BMP4를 함유하는 배양 배지 중에서 배양된다. 원시 장관 세포는 장의 중장 내배엽 세포로 분화된다. 일부 실시 형태에서, 원시 장관 세포는 산성 조건 (산성 배양 배지)에서 장의 중장 내배엽 세포로 분화된다. 특정 실시 형태에서, 산성 조건은 BLAR 배지를 사용한 배양이다. 산성 배양의 pH는 6.8 내지 7.2의 범위일 수 있다. 실시 형태에서, 장의 중장 내배엽 세포는 배양 중에 단층을 형성하고 유지한다.
상기 논의된 실시 형태들 각각에서, 인간 만능성 줄기 세포는 인간 배아 줄기 세포 또는 유도 만능성 줄기 세포이다. 상기 실시 형태들 각각에서, 장의 중장 내배엽 세포는 CDX2 및 FOXA2를 발현한다. 모든 실시 형태에서, 장의 중장 내배엽 세포는 SOX9, PDX1, KLF5 및 HOXC5로부터 선택되는 전사 인자를 발현한다. 실시 형태에서, 장의 중장 내배엽 세포는 SOX2, ALB, PTF1A, HOXA13 및 LGR5로부터 선택되는 전사 인자를 발현하지 않는다. 상기 실시 형태에서, 장의 중장 내배엽 세포는 CDX2, FOXA2, SOX9, PDX1, KLF5 및 HOXC5를 발현한다. 상기 실시 형태에서, 장의 중장 내배엽 세포는 SOX2, ALB, PTF1A, HOXA13 및 LGR5를 발현하지 않는다. 실시 형태에서, 분화된 세포의 50% 초과가 장의 중장 내배엽의 특징적인 마커를 발현하며, 바람직하게는 분화된 세포의 60% 초과가 장의 중장 내배엽의 특징적인 마커를 발현하며, 더 바람직하게는 70% 초과, 80% 초과, 및 90% 초과가 장의 중장 내배엽의 특징적인 마커를 발현한다. 실시 형태에서, 분화된 세포는 장의 중장 내배엽 세포의 특징적인 마커를 발현한다. 실시 형태에서, 장의 중장 내배엽 세포는 CDX2 및 FOXA2를 발현한다. 실시 형태에서, 장의 중장 내배엽 세포는 SOX9, PDX1, KLF5 및 HOXC5로부터 선택되는 전사 인자를 발현한다. 실시 형태에서, 장의 중장 내배엽 세포는 SOX2, ALB, PTF1A, HOXA13 및 LGR5로부터 선택되는 전사 인자를 발현하지 않는다. 실시 형태에서, 장의 중장 내배엽 세포는 HAND1을 발현하지 않는다.
상기 논의된 실시 형태에서, 장의 중장 내배엽 세포의 집단은 실질적인 장의 중장 내배엽 세포이다. 일부 실시 형태에서, 장의 중장 내배엽 세포의 집단은 70% 초과의 장의 중장 내배엽 세포, 바람직하게는 80% 초과, 90% 초과, 그리고 95% 초과의 장의 중장 내배엽 세포를 포함한다. 일부 실시 형태에서, 장의 중장 내배엽 세포의 집단은 20% 미만의 중간엽 세포, 바람직하게는 15% 미만, 더 바람직하게는 10% 미만, 5% 미만, 2% 미만, 1% 미만, 0.5% 미만을 포함한다. 실시 형태에서, 장의 중장 내배엽 세포는 HAND1의 발현이 결여되어 있다.
상기 기재된 본 발명의 일부 실시 형태에서, 분화는 시험관내(in vitro)에서 유도된다. 다른 실시 형태에서, 장의 중장 내배엽 세포는 생체내(in vivo)에서 추가로 분화된다. 다른 실시 형태는 생체내에서 장내분비 세포로 추가로 분화되는 장의 중장 내배엽 세포에 관한 것이다. 장내분비 세포는 인크레틴 호르몬을 발현하거나 분비한다. 실시 형태에서, 인크레틴 호르몬은 GLP1 및 GIP이다.
추가의 실시 형태에서, 장의 중장 내배엽 세포는 장의 중장 내배엽 세포를 먼저 장내분비 선구체로, 그리고 최종적으로 인크레틴 발현 또는 분비 장내분비 세포로 고효율로 시험관내 분화를 촉진하는 소분자의 확인을 위한 출발 물질로서의 역할을 한다.
도 1a 내지 도 1d는 장의 중장 내배엽 세포의 분화 방법을 도시한다. 도 1a는 각각의 단계에 첨가된 배지 성분, 성장 인자 및 소분자, 그리고 분화 중인 장의 중장 내배엽 세포의 단계-특이적 핵심 마커 (FOXA2, 포크헤드 박스 A2; CDX2, 미측형 호메오박스 2; KLF5, 크루펠-유사 인자 5; SOX9, SRY (성별 결정 영역 Y)-박스 9; PDX1, 췌장 및 십이지장 호메오박스 1; LO, 낮은 발현 및 단백질 존재)를 포함하여 분화 방법에 대한 요약이다. S2D2에서 언급된 중성 pH (7.35±0.04)와 대비할 때, 세포를 3기 동안 BLAR 배지 ("BLAR 산성 배지"와 상호교환가능하게 사용됨) 중에서 약산성인 조건에 노출시켰으며 (pH; S3D1, 6.98±0.05; S3D2, 7.02±0.04; S3D5, 7.18±0.03) (도 1b), 이는 BLAR 배지 중 더 낮은 중탄산나트륨 수준의 결과로서 그러하다. 도 1c는 S3D5 단층 (좌측), 및 인간 상피 결장 선암종 세포주 ("Caco-2") (우측) - 이는 분화 특성화를 위한 벤치마크로서 사용됨 - 의 대표적인 위상차 이미지를 보여준다. S3D5에서 균일한 형태가 일관되게 관찰되었다. Nucleocounter® NC-100 (덴마크 알레뢰드 소재의 Chemometec, 카탈로그 번호 900-004)를 사용한 세포수의 특성화는 1개의 hESC가 4.56±2.60개의 S3D5 장의 중장 내배엽 세포로 분화되었음을 보여준다 (도 1d).
도 2a 내지 도 2d는 골 형성 단백질-4 (BMP4)를 이용하는 분화 방법이 전사체 및 단백질 수준에서 CDX2 및 FOXA2 둘 모두를 포함하는 장의 중장 내배엽 세포들을 단층으로 생성함을 보여준다. 도 2a (하단)는 CDX2 및 FOXA2 단백질 둘 모두에 대해 90.0±5.85%의 S3D5 세포가 공존하였음을 보여주는데, 이는 Caco-2 세포에서 관찰된 백분율 (86.0±6.67)과 유사하다. 대조적으로, 완성 내배엽 (DE ― S1D3) 세포에는 CDX2 및 FOXA2 공존이 없었다 (2.3±1.2). 유전자 발현 분석은 3기 동안 CDX2가 유도되었고 (도 2b), FOXA2가 유지되었음 (도 2c)을 보여준다. 도 2d는 FOXA2-양성 원시 장 내배엽 단계, S2D2 (도 2d-i)의 확립 후에 CDX2 단백질 수준 및 CDX2/FOXA2 단백질 공존이 유도되었고, S3D2 (도 2d-ii)까지 점진적으로 증가하였으며, S3D5 (도 2d-iii)에서 Caco-2 세포 (도 2d-iv)에서 보여지는 바와 유사한 수준에 도달하였음을 보여준다. CDX2 단백질은 하단 행에 도시되어 있고, FOXA2 단백질은 상단 행에 도시되어 있다. 정량적 분석을 가능하게 하도록 동일한 파라미터를 사용하여 각각의 이미지를 촬영하였다. 단백질 발현은 FACS에 의해 평가하였으며; 유전자 발현은 qPCR에 의해 평가하였다.
도 3a 내지 도 3q는 확실한 장의 중장 내배엽 유도를 구성하는 추가의 전사 인자 (TF)의 전사체 및 단백질 수준의 S3D5에 의한 유도를 보여주며; 적절한 장의 중장 내배엽이 달성되었다. CDX2 및 FOXA2 동시발현에 더하여, S3D5 세포는 또한 SOX9, PDX1, KLF5, HOXC5 (호메오박스 C5)의 동시발현을 나타내었지만, SOX2 (SRY-박스 2), ALB (알부민), PTF1A (췌장 특이적 전사 인자, 1a), 및 LGR5 (류신 풍부 반복 함유 G 단백질 결합된 수용체 5)의 동시발현은 나타내지 않았다. 모든 TF의 단백질 존재는 별개의 단일 채널 이미지로 도시되어 있다. 도 3a (하단)는 S3D5에서 CDX2 및 SOX9 둘 모두에 대해 98.7±0.25%의 세포가 공존하였음을 보여준다. SOX9 유전자 발현의 강한 유도는 Caco-2 세포에서 관찰된 수준과 비견되었으며 (도 3b), 면역형광 (IF)-분석에 의해 평가된 바와 같이 단백질 존재가 관찰되었다 (도 3c). 69.4±14.2%의 세포는 CDX2 및 PDX1 둘 모두에 대해 동시-양성이었다 (도 3d - 하단). 췌장-편향된 S4D3 세포와 대비할 때 (예를 들어, 미국 특허 출원 공개 제2014/0242693호 참조), PDX1 유전자 발현은 낮은 수준으로 유도되었으며 (도 3e), IF-분석에서 낮은 내지 부재하는 단백질 수준이 반영되었다 (도 3f). 전방 내배엽 TF SOX2는 1.45±0.15의 S3D5 세포가 SOX2 및 CDX2 공존을 나타낸 바와 같이 S3D5 세포에서 관찰되지 않았으며 (도 3g ― 하단; 도 3i), 유전자 발현은 hESC 및 Caco-2 세포에서 관찰된 수준 미만이었다 (도 3h). 장 중장/후장 내배엽의 적절한 발생에 필수적인, KLF5의 유전자 발현이 S3D5에서 상향조절되었다 (도 3j). S3D5에서 CDX2-양성 세포 내의 KLF5의 단백질 공존이 관찰되었다 (도 3k). ALB 유전자 발현 (도 3l), 및 단백질 존재 (도 3m)는 S3D5 세포에서 관찰되지 않았다. 췌장 계통 할당 TF인 PTF1A의 유전자 발현은 췌장-편향된 S4D3 세포와 달리 S3D5 세포에서 유도되지 않았다 (도 3n). 배아 중장 내배엽에 존재하는 호메오박스 유전자, HOXC5는 S3D5 세포에서 유도되었다 (도 3o). 도 3p는 마우스에서 임신 중기에 시작하는 배아 장 내배엽의 마커인 LGR5가 S3D5 세포에서 유도되지 않았음을 보여준다. 도 3q는 장 후장 내배엽의 마커인 HOXA13이 S3D5 세포에서 유도되지 않았음을 보여준다 (도 3p). 유전자 발현은 qPCR로 평가하였다.
도 4a 및 도 4b는 분화 중인 S3D5 세포의 증식 프로파일을 특성화한다. 도 4a는 Caco-2 세포의 경우 대부분의 CDX2-단백질 양성 세포가 (KI67 단백질과의 동시발현에 의해 나타난 바와 같이) 활성 세포 주기에 있으며 (좌측), 3기 동안의 H1-hESC-유래 세포의 증식 지수는 시간 경과에 따라 감소되었음 (S3D2 ― 중간; S3D5 ― 우측)을 보여준다. CDX2 (상단 행) 및 KI67 (하단 행) 단백질 수준이 단일 채널 이미지로서 도시되어 있다. FACS에 의해 평가된, 총 S3D5 세포 (총 세포는 90% 초과의 CDX2-양성 세포임)의 KI67-단백질 양성 세포의 백분율은 16.8±3.12였는데, 이는 S1D3에서 관찰된 백분율 (97.3±1.3), 및 Caco-2 세포에서 관찰된 백분율 (99.2±0.2)과는 대조적이었다 (도 4b).
도 5a 내지 도 5c는 BMP2를 3기 동안 BMP4에 대한 대안으로서 사용하여, CDX2 및 FOXA2 단백질 공존을 갖는 장의 중장 내배엽 세포의 단층을 달성함을 보여준다. 도 5a는 각각의 단계에 첨가된 배지 성분, 성장 인자 및 소분자, 그리고 분화 중인 장의 중장 내배엽 세포의 단계-특이적 마커 (FOXA2, CDX2, KLF5, SOX9, 및 PDX1LO)를 포함하여 분화 방법을 요약한다. S2D2에서 언급된 중성 pH (7.35±0.04)와 대비할 때, 세포를 3기의 전체 동안 BLAR 배지 중에서 약산성인 조건에 노출시켰으며 (pH; S3D1, 6.92; S3D2, 7.01; S3D5, 7.22) (도 5b), 이는 BLAR 배지 중 더 낮은 중탄산나트륨 수준의 결과로서 그러하다. 도 5c는 S3D5 단층 (좌측), 및 Caco-2 세포 (우측)의 대표적인 위상차 이미지를 도시하고; S3D5에서 균일한 형태가 관찰되었다.
도 6a 내지 도 6u는 단층으로의 적절한 장의 중장 내배엽 세포들의 생성을 보여주며, 각각은 전사체 및 단백질 수준에서 CDX2, FOXA2, KLF5, SOX9, PDX1LO 및 HOXC5를 포함한다. IF 이미지의 경우, 모든 TF 단백질 수준은 단일 채널 이미지로서 도시되어 있다. 도 6a (하단)는 CDX2 및 FOXA2 단백질 둘 모두에 대해 94%의 S3D5 세포가 공존하였음을 보여주는데, 이는 Caco-2 세포에서 관찰된 백분율 (86.0±6.67)과 유사하거나 더 크다. 유전자 발현 분석은 3기 동안 CDX2가 유도되었고 (도 6b), FOXA2가 유지되었음 (도 6c)을 보여준다. 도 6d는 CDX2 단백질 수준 및 완전한 CDX2/FOXA2 단백질 공존이 S3D5에서 유도되었음을 보여주는데, 이는 Caco-2 세포에서 관찰된 수준 (도 2d-iv)과 유사한 수준에 도달한다. 도 6e (하단)는 S3D5에서 CDX2 및 SOX9 둘 모두에 대해 99.8%의 세포가 공존하였음을 보여준다. SOX9 유전자 발현의 강한 유도는 Caco-2 세포에서 관찰된 수준과 비견되었으며 (도 6f), IF-분석에 의해 평가된 바와 같이 단백질 존재가 관찰되었다 (도 6g). 45.5%의 세포는 CDX2 및 PDX1 둘 모두에 대해 동시-양성이었다 (도 6h - 하단). 췌장-편향된 S4D3 세포와 대비할 때, PDX1 유전자 발현은 낮은 수준으로 유도되었으며 (도 6i); IF-분석에서 낮은 내지 부재하는 단백질 수준이 반영되었다 (도 6j). 전방 내배엽 TF SOX2는 0.8%의 S3D5 세포가 SOX2 및 CDX2 공존을 나타낸 바와 같이 S3D5 세포에서 관찰되지 않았으며 (도 6k ― 하단; 도 6m), 유전자 발현은 hESC 및 Caco-2 세포에서 관찰된 수준 미만이었다 (도 6l). 장 중장/후장 내배엽의 적절한 발생에 필수적인, KLF5의 유전자 발현이 S3D5에서 상향조절되었다 (도 6n). CDX2-양성 세포 내의 KLF5의 단백질 공존이 S3D5에서 관찰되었다 (도 6o). ALB 유전자 발현 (도 6p), 및 단백질 존재 (도 6q)는 S3D5 세포에서 관찰되지 않았다. 췌장 계통 할당 TF인 PTF1A의 유전자 발현은 췌장-편향된 S4D3 세포와 달리 S3D5 세포에서 유도되지 않았다 (도 6r). 배아 장의 중장 내배엽에 존재하는 호메오박스 유전자, HOXC5는 S3D5 세포에서 유도되었다 (도 6s). 도 6t는 임신 중기에 시작하는 배아 장 내배엽의 마커인 LGR5가 S3D5 세포에서 유도되지 않았음을 보여준다. 도 6u는 장 후장 내배엽의 마커인 HOXA13이 S3D5 세포에서 유도되지 않았음을 보여준다 (도 6u).
도 7은 분화 중인 S3D5 세포의 증식 프로파일을 특성화한다. Caco-2 세포의 경우 대부분의 CDX2-단백질 양성 세포가 (KI67 단백질과의 동시발현에 의해 나타난 바와 같이) 활성 세포 주기에 있는 것과 대비하여 (좌측), 3기 동안의 H1-hESC-유래 세포의 증식 지수는 더 낮았다 (S3D5 ― 우측). CDX2 (상단 행) 및 KI67 (하단 행) 단백질 수준이 단일 채널 이미지로서 도시되어 있다. FACS에 의해 평가된, 총 S3D5 세포 (총 세포는 90% 초과의 CDX2-양성 세포임)의 KI67-단백질 양성 세포의 백분율은 14.1%였는데, 이는 S1D3에서 관찰된 백분율 (97.3±1.3), 및 Caco-2 세포에서 관찰된 백분율 (99.2±0.2)과는 대조적이었다.
도 8a 내지 도 8f는 CDX2+ 세포의 불균질한 집단의 유도를 보여준다. 도 8a는 각각의 단계에 첨가된 배지 성분, 성장 인자 및 소분자, 그리고 분화 중인 장의 중장/후장 내배엽 세포의 단계-특이적 핵심 마커 (HAND1)를 포함하여 분화 방법에 대한 요약이다. 도 8b는 H1-hESC 세포 (상단 행, 좌측), 500 ng/ml의 FGF4 및 3 μM Chiron99021로 2일간 컨디셔닝된 1기 후 세포 (상단 행, 중간), 500 ng/ml의 FGF4 및 500 ng/ml의 WNT3A로 2일간 컨디셔닝된 1기 후 세포 (상단 행, 우측), RA/BMP4에 의해 컨디셔닝된 S3D5 단층 (하단 행, 좌측), 및 RA/BMP2에 의해 컨디셔닝된 S3D5 단층 (하단 행, 우측)의 위상차 이미지를 보여준다. 2일의 컨디셔닝 후 유전자 발현의 유도가 낮은 수준으로 CDX2에 대해 나타나 있으며 (도 8c), 내배엽 마커 FOXA2에 대해 유지되고 있으며 (도 8d), 중배엽/중간엽 마커 HAND1에 대해 유도되어 있다 (도 8f). KLF5는 유도되지 않았다 (도 8e).
본 발명은 특정 방법, 시약, 화합물, 조성물 또는 생물학적 시스템에 한정되지 않으며, 이는 물론 다양할 수 있음을 이해해야 한다. 또한, 본 명세서에서 사용되는 용어는 단지 특정 실시 형태들을 설명하기 위한 것이며, 한정하는 것으로 의도되지 않음을 이해해야 한다.
본 발명은 장의 중장 내배엽 세포의 생성에 관한 것이다. 특정 배양 서열을 사용하여 세포를 생성하였다. 따라서, 본 발명은 만능성 줄기 세포로부터 유래된 세포를 CDX2 및 FOXA2의 발현과 같은 장의 중장 내배엽 세포 계통의 특징적인 마커를 발현하는 세포로 분화시키기 위한 시험관내 세포 배양을 제공한다. 본 발명은 시험관내 세포 배양을 통해 단층으로 그러한 세포를 획득하고 유지하는 방법을 추가로 제공한다. 소정 실시 형태에서, 본 발명은 레틴산과 BMP4 또는 BMP2 또는 이들의 유사체의 포함이 분화 중인 세포에서 CDX2를 유도하고 FOXA2 단백질 발현을 유지하여 장의 중장 내배엽 세포로의 분화를 촉진시킨다는 발견에 기초한다. CDX2는 완성 내배엽 (1기) 또는 원시 장관 (2기)에서의 단백질 수준에서는 발현되지 않는다. 따라서, 본 발명은 만능성 줄기 세포를 분화시켜 CDX2 및 FOXA2를 발현하는 장의 중장 내배엽 세포를 생성하는 방법을 제공한다.
정의
달리 정의되지 않는 한, 본 명세서에서 사용되는 모든 기술 용어 및 과학 용어는 당업자가 일반적으로 이해하는 것과 동일한 의미를 갖는다. 본 명세서에 기재된 것과 유사하거나 또는 동등한 임의의 방법 및 재료가 본 발명의 시험 실시에 사용될 수 있지만, 바람직한 방법 및 재료가 본 명세서에 기재되어 있다. 본 발명을 설명하고 청구함에 있어서, 하기 용어가 사용될 것이다.
줄기 세포는 자가 재생할 뿐만 아니라, 분화되어, 자가 재생 전구체, 비재생 전구체, 및 최종 분화된 세포를 비롯한 자손 세포(progeny cell)를 생성하는 단일 세포의 능력에 의해 정의되는 미분화 세포이다. 줄기 세포는 또한 다수의 배엽층 (내배엽, 중배엽 및 외배엽)으로부터 다양한 세포 계통의 기능성 세포로 시험관내에서 분화되는 이의 능력뿐만 아니라 이식 후 다수의 배엽층의 조직을 생성시키며 배반포 내로의 주입 후 전부는 아니라 하더라도 대부분의 조직에 실질적으로 기여하는 이의 능력을 특징으로 한다.
줄기 세포는 그의 발생능(developmental potential)에 따라 하기와 같이 분류된다: (1) 전능성(totipotent); (2) 만능성; (3) 다능성; (4) 소기능성(oligopotent); 및 (5) 단일기능성(unipotent). 전능성 세포는 모든 배아 및 배외 세포 유형을 생성시킬 수 있다. 만능성 세포는 모든 배아 세포 유형을 생성시킬 수 있다. 다능성 세포는, 세포 계통의 하위세트(subset)이지만 모두 특정 조직, 기관 또는 생리학적 시스템 내에 있는 하위세트를 생성시킬 수 있는 세포 (예를 들어, 조혈 줄기 세포(hematopoietic stem cell, HSC)는 HSC (자가 재생), 혈구 세포 제한 소기능성 전구체 및 혈액의 정상 성분인 모든 세포 유형 및 요소 (예를 들어, 혈소판)를 포함하는 자손을 생성할 수 있음)를 포함한다. 소기능성인 세포는 다능성 줄기 세포보다 더 제한된 세포 계통의 하위세트를 생성시킬 수 있고; 단일기능성인 세포는 단일 세포 계통 (예를 들어, 정자형성 줄기 세포)을 생성시킬 수 있다.
줄기 세포는 또한 이것이 얻어질 수 있는 공급원에 기초하여 분류된다. 성체 줄기 세포는 대체로 다수의 분화된 세포 유형을 포함하는 조직에서 발견되는 다능성 미분화 세포이다. 성체 줄기 세포는 스스로 재생할 수 있다. 정상 환경 하에서, 이는 또한 분화되어, 그의 기원이 되는 조직의 특수화된 세포 유형, 및 가능하게는 다른 조직 유형을 제공할 수 있다. 유도 만능성 줄기 세포 (iPS 세포)는 만능성 줄기 세포로 변환되는 성체 세포이다. (문헌[Takahashi et al., Cell, 2006; 126(4):663-676]; 문헌[Takahashi et al., Cell, 2007; 131:1-12]). 배아 줄기 세포는 배반포기 배아의 내세포집단 유래의 만능성 세포이다. 태아 줄기 세포는 태아 조직 또는 막으로부터 기원된 것이다.
배아 조직은 전형적으로 배아 (인간의 경우 수정에서 발생 약 6주까지의 기간을 지칭함)로부터 기원되는 조직으로 정의된다. 태아 조직은, 인간의 경우 발생 약 6주에서 분만까지의 기간을 지칭하는, 태아로부터 기원되는 조직을 지칭한다. 배외 조직은 배아 또는 태아와 관련되지만 이로부터 기원되지 않는 조직이다. 배외 조직은 배외 막 (융모막, 양막, 난황낭 및 요막), 제대 및 태반 (그 자체가 융모막 및 모체 기저탈락막으로부터 형성됨)을 포함한다.
분화는 특수화되지 않은 ("미수임된(uncommitted)") 또는 덜 특수화된 세포가, 예를 들어 장 세포 또는 췌장 세포와 같은 특수화된 세포의 특징을 획득하는 과정이다. 분화된 세포는 세포의 계통 내에서 보다 특수화된 ("수임된(committed)") 위치를 차지한 것이다. 분화 과정에 적용될 때, '수임된'이란 용어는 분화 경로에서, 정상적인 환경 하에서 특정 세포 유형 또는 세포 유형의 하위세트로 계속 분화될 것이며, 정상적인 환경 하에서 다른 세포 유형으로 분화될 수 없거나 덜 분화된 세포 유형으로 되돌아갈 수 없는 시점까지 진행한 세포를 지칭한다. 탈분화(de-differentiation)는 세포가 세포의 계통 내의 덜 특수화된 (또는 수임된) 위치로 되돌아가는 과정을 지칭한다. 본 명세서에 사용된 바와 같이, 세포의 계통은 세포의 유전, 즉, 어느 세포로부터 왔는지 그리고 어떤 세포를 생성시킬 수 있는지를 규정한다. 세포의 계통은 세포를 발생과 분화의 유전적 체계 내에 둔다.
넓은 의미에서, 전구 세포는 그 자신보다 더 분화되지만 전구체의 풀(pool)을 보충하는 능력을 유지하는 자손을 생성하는 능력을 갖는 세포이다. 이 정의에 의하면, 줄기 세포 그 자체는 또한, 최종 분화된 세포에 대한 더 가까운 선구체(precursor)가 그러하듯이, 전구 세포이다. 좁은 의미에서, 전구 세포는 종종 분화 경로에서의 중간체인 세포로 정의되며, 다시 말하면, 이는 줄기 세포로부터 발생하고, 성숙 세포 유형 또는 세포 유형의 하위세트의 생성에서의 중간체이다. 이러한 유형의 전구 세포는 대체로 자가 재생할 수 없다. 따라서, 이러한 유형의 세포가 본 명세서에 지칭되는 경우, 이는 비재생 전구 세포 또는 중간 전구 세포 또는 중간 선구 세포로 지칭될 것이다.
본 명세서에서 사용되는 바와 같이, "마커"는 관심 세포에서 차별적으로 발현되는 핵산 또는 폴리펩티드 분자이다. 이와 관련하여, 차별적 발현(differential expression)은 미분화된 세포에 비하여 양성 마커에 대한 증가된 수준 및 음성 마커에 대한 감소된 수준을 의미한다. 마커 핵산 또는 폴리펩티드의 검출가능한 수준은 다른 세포에 비하여 관심 세포에서 충분히 더 높거나 더 낮아서, 관심 세포가 당업계에 알려진 다양한 방법 중 임의의 것을 이용하여 다른 세포로부터 확인되어 구별될 수 있다.
본 명세서에 사용되는 바와 같이, 특정 마커가 세포에서 충분히 검출될 때, 그 세포는 그 특정 마커에 "대하여 양성"이거나 그 세포는 "양성"이다. 유사하게, 특정 마커가 세포에서 충분히 검출되지 않을 때, 그 세포는 그 특정 마커에 "대하여 음성"이거나 그 세포는 "음성"이다. 특히, 형광 활성화 유세포측정 (FACS)에 의한 양성은 보통 2% 초과인 반면, FACS에 의한 음성 역치는 보통 1% 미만이다.
본 명세서에 사용되는 바와 같이, 실시간 PCR (RT-PCR)에 의한 양성은 28회 사이클 (Ct) 미만을 가졌고, Taqman® 저밀도 어레이(Low Density Array) (TLDA)를 사용하는 경우에는 33 Ct 미만을 가졌으며; 한편 Open Array®에 의한 음성은 28.5회 사이클 초과이고 TLDA에 의한 음성은 33.5 Ct 초과이다.
정치(static) 시험관내 세포 배양에서 만능성 줄기 세포를 기능성 장의 중장 내분비 세포로 분화시키는 데 있어서, 분화 과정은 종종 연속적인 단계들을 통해 진행되는 것으로 여겨진다. 여기서, 장의 중장 내배엽으로의 분화 과정은 3개의 단계를 통해 일어난다. 이러한 단계적 진행에서, "1기"는 분화 과정에서의 제1 단계, 즉, 만능성 줄기 세포의 완성 내배엽 세포 (이하, 대안적으로 "1기 세포"로 지칭됨)의 특징적인 마커를 발현하는 세포로의 분화를 지칭한다. "2기"는 제2 단계, 즉, 완성 내배엽 세포의 특징적인 마커를 발현하는 세포의 원시 장관 세포 (이하, 대안적으로 "2기 세포"로 지칭됨)의 특징적인 마커를 발현하는 세포로의 분화를 지칭한다. "3기"는 제3 단계, 즉, 장관 세포의 특징적인 마커를 발현하는 세포의 장의 중장 내배엽 세포 (이하, 대안적으로 "3기 세포"로 지칭됨)의 특징적인 마커를 발현하는 세포로의 분화를 지칭한다.
그러나, 특정 집단에서의 모든 세포가 동일한 속도로 이러한 단계들을 통해 진행되는 것은 아니라는 것에 주목해야 한다. 결과적으로, 시험관내 세포 배양에서, 특히 후기 분화 단계에서 집단에 존재하는 다수의 세포들보다 더 적거나 더 많은 분화 경로를 진행한 세포의 존재를 검출하는 것은 드문 일이 아니다. 본 발명을 설명하기 위하여, 상기 확인된 단계들과 관련된 다양한 세포 유형들의 특징들이 본 명세서에 기재된다.
본 명세서에 사용되는 바와 같이, "완성 내배엽 세포"는, 낭배형성 동안 상배엽(epiblast)으로부터 생기는 세포의 특징을 보유하고 위장관 및 그의 파생물을 형성하는 세포를 지칭한다. 완성 내배엽 세포는 하기 마커들 중 적어도 하나를 발현한다: FOXA2 (간세포 핵 인자 3-β (HNF3β)로도 알려짐), GATA4, SOX17, CXCR4, 단미증(Brachyury), 세르베루스(Cerberus), OTX2, 구스코이드(goosecoid), C-Kit, CD99, 및 MIXL1. 완성 내배엽 세포의 특징적인 마커는 CXCR4, FOXA2 및 SOX17을 포함한다. 따라서, 완성 내배엽 세포는 그의 CXCR4, FOXA2, 및 SOX17 발현을 특징으로 할 수 있다. 게다가, 세포가 1기에 남아 있도록 허용되는 시간의 길이에 따라, HNF4α의 증가가 관찰될 수 있다.
본 명세서에서 사용되는 바와 같이, "원시 장관 세포"는, 모든 내배엽성 기관, 예컨대 폐, 간, 췌장, 위, 및 장이 생기게 할 수 있는 완성 내배엽으로부터 유래된 내배엽 세포를 지칭한다. 원시 장관 세포는 완성 내배엽 세포에 의해 발현되는 것에 비해 실질적으로 증가된 그의 HNF4α 발현을 특징으로 할 수 있다.
본 명세서에 사용되는 바와 같이, "전장 내배엽 세포"는 식도, 폐, 위, 간, 췌장, 담낭, 및 십이지장의 최전방 부분이 생기게 하는 내배엽 세포를 지칭한다. 전장 내배엽 세포는 특히, 그의 SOX2, PDX1, ALB, SOX17 및 FOXA2 발현을 특징으로 할 수 있다.
본 명세서에 사용되는 바와 같이, "장의 중장 내배엽 세포"는 소장이 생기게 하는 내배엽 세포를 지칭한다. 장의 중장 내배엽 세포는 그의 CDX2, FOXA2의 발현, 및 PDX1의 낮은 발현 (PDX1LO)을 특징으로 할 수 있다. 소정의 HOX 유전자의 발현은 중장 내배엽과 후장 내배엽을 구별할 수 있다. 예를 들어, HOXC5는 중장 내배엽 세포에서 선택적으로 발현된다.
본 명세서에 사용되는 바와 같이, "후장 내배엽 세포"는 대장이 생기게 하는 내배엽 세포를 지칭한다. 후장 내배엽 세포는 그의 CDX2, FOXA2, HOXA13 및 HOXD13 발현을 특징으로 할 수 있다.
본 명세서에 사용되는 바와 같이, "중간엽 세포"는 결합 조직, 예컨대 뼈, 연골, 림프계, 및 순환계를 생기게 하는 중배엽 세포를 지칭한다. HAND1 및 FOXF1의 발현은 중간엽 세포를 한정한다.
"환자" 또는 "대상체" 또는 "숙주"라는 용어는 조성물 또는 약제학적 조성물로 치료되거나 본 명세서에 기술된 방법에 따라 치료되는 포유류를 포함하는 동물, 바람직하게는 인간을 지칭한다.
용어 "유효량" 또는 이와 동등한 표현은 인간 만능성 줄기 세포를 분화된 세포 집단으로, 예를 들어 완성 내배엽, 전장 내배엽, 장의 중장 내배엽, 후장 내배엽, 췌장 내배엽 등으로 진행 및 분화시키기에 충분한 성장 인자를 포함하지만 이로 한정되지 않는 소정량의 작용제 또는 화합물을 지칭한다.
용어 "투여하는" 및 "투여"는 본 명세서에서 상호교환가능하게 사용되며, 세포가 치료 부위에 직접적으로 또는 간접적으로 삽입, 주입, 이식 또는 달리 투여될 수 있음을 의미한다. 세포가 반고체 또는 고체 디바이스로 투여될 때, 이식은 적합한 전달 수단이며, 특히 신체 내의 정확한 위치 내로의, 예컨대 피하 공간, 장막, 간, 신장 (신장 피막) 내로의 외과적 이식이 그러하다. 액체 또는 유체 약제학적 조성물은 더 일반적인 위치에 투여될 수 있다.
본 명세서 및 첨부된 청구범위에서 사용되는 바와 같이, 단수형 ("a", "an" 및 "the")은 그 내용이 명확하게 달리 지시하지 않으면 복수형 지시 대상을 포함한다. 따라서, 예를 들어, "세포"에 대한 언급은 2개 이상의 세포의 조합 등을 포함한다.
본 명세서에 사용된 바와 같이, 측정가능한 값, 예를 들어 양, 시간적 길이 등을 지칭할 때 용어 "약"은 명시된 값의 ±20% 내지 ±0.1%, 바람직하게는 ±20% 또는 ±10%, 더 바람직하게는 ±5%, 더욱 더 바람직하게는 ±1%, 그리고 훨씬 더 바람직하게는 ±0.5%, ±0.1%, 0.05% 또는 0.01%의 변동을 포함하는 것으로 의미되는데, 그러한 변동은 개시된 방법을 수행하기에 적절하기 때문이다.
하기 약어는 본 명세서 및 청구범위 전체에 걸쳐 나타날 수 있다:
ABCG2 - ATP-결합 카세트, 서브-패밀리 G, 구성원 2;
ALB ― 알부민;
BMP - 골 형성 단백질;
CDX2 - 미측형 호메오박스 2;
CXCR4 - C-X-C 케모카인 4형 수용체;
FAF-BSA - 지방산 무함유 소혈청 알부민;
FGF - 섬유아세포 성장 인자;
FOXA2 - 포크헤드 박스 A2;
GATA4 - GATA 결합 단백질 4;
GDF - 성장 분화 인자;
GIP - 글루코스-의존성 인슐린분비촉진 폴리펩티드;
GLP-1 - 글루카곤-유사 펩티드 1;
GSK3B - 글리코겐 신타제 키나제 3 베타;
HAND1 - 심장 및 신경 능선 유도체 발현 1;
HOX ― 호메오박스;
hTERT ― 인간 텔로머라제 역전사효소;
KLF ― 크루펠-유사 인자;
LGR5 - 류신 풍부 반복 함유 G 단백질 결합된 수용체 5;
MIXL1 - 믹스 쌍형-유사 호메오박스-1(Mix Paired-Like Homeobox-1);
OCT4 - 옥타머-결합 전사 인자 4;
OTX2 - 오르토덴티클 호메오박스 2;
PDX1 - 췌장 및 십이지장 호메오박스 1;
PTF1A - 췌장 특이적 전사 인자, 1a;
SOX - 성별 결정 영역 Y (SRY)-박스;
TRA1-60 - T 세포 수용체 알파-1-60;
UTF1 - 미분화된 배아 세포 전사 인자 1;
WNT3A - 윙리스형 MMTV 통합 부위 패밀리, 구성원 3A; 및
ZFP42 - 징크 핑거 단백질 42.
상세한 설명
만능성 줄기 세포는 3개의 모든 배엽층, 즉 내배엽, 중배엽, 및 외배엽의 조직의 세포로 분화될 잠재력을 갖는다. 사용될 수 있는 만능성 줄기 세포의 예시적인 유형은 확립된 만능성 세포주를 포함하고, 이에는 전-배아 조직 (예컨대, 배반포), 배아 조직, 또는 임신 동안 임의의 시점에, 전형적으로는 그러나 반드시는 아니고, 대략 10 내지 12주의 임신 전에 취해진 태아 조직이 포함된다. 비제한적인 예는, 예를 들어 인간 배아 줄기 세포주 H1, H7, 및 H9 (미국 위스콘신주 매디슨 소재의 WiCell Research Institute)와 같은, 확립된 인간 배아 줄기 세포주 또는 인간 배아생식 세포주이다. 지지 세포(feeder cell)의 부재 하에서 이미 배양된 만능성 줄기 세포 집단으로부터 취해진 세포가 또한 적합하다. 다수의 만능성 관련 전사 인자들, 예컨대 OCT4, NANOG, SOX2, KLF4, 및 ZFP42의 강제 발현을 사용하여 성체 체세포로부터 유래되는, iPS, 또는 재프로그래밍된 만능성 세포 (문헌[Annu Rev Genomics Hum Genet 2011, 12:165-185]; 또한 iPS는 문헌[Cell, 126(4): 663-676]을 참조함)가 또한 사용될 수 있다. 본 발명의 방법에 사용되는 인간 배아 줄기 세포는 또한 문헌[Thomson et al.]에 의해 기재된 바와 같이 제조될 수 있다(미국 특허 제5,843,780호; 문헌[Science, 1998, 282:1145-1147]; 문헌[Curr Top Dev Biol 1998, 38:133-165]; 문헌[Proc Natl Acad Sci U.S.A. 1995, 92:7844-7848]). BG01v (미국 조지아주 애선스 소재의 BresaGen), 또는 성체 인간 체세포로부터 유래된 세포, 예를 들어 문헌[Takahashi et al., Cell 131:1-12 (2007)]에 개시된 세포와 같은 돌연변이 인간 배아 줄기 세포주가 또한 사용될 수 있다. 소정 실시 형태에서, 본 발명에 사용하기에 적합한 만능성 줄기 세포는 문헌[Li et al. (Cell Stem Cell 4: 16-19, 2009)]; 문헌[Maherali et al. (Cell Stem Cell 1: 55-70, 2007)]; 문헌[Stadtfeld et al. (Cell Stem Cell 2: 230-240)]; 문헌[Nakagawa et al. (Nature Biotechnol 26: 101-106, 2008)]; 문헌[Takahashi et al. (Cell 131: 861-872, 2007)]; 및 미국 특허 출원 공개 제2011/0104805호에 기재된 방법에 따라 유래될 수 있다. 소정 실시 형태에서, 만능성 줄기 세포는 비-배아 기원의 것일 수 있다. 이들 참고문헌, 특허, 및 특허 출원 모두는, 특히, 만능성 세포의 단리, 배양, 확장 및 분화에 관련되므로, 전체적으로 본 명세서에 참고로 포함된다.
만능성 줄기 세포는 다양한 단계들을 거쳐 분화되며, 각각의 단계는 특정 마커의 존재 또는 부재를 특징으로 할 수 있다. 이들 단계로의 세포의 분화는 배양 배지에 첨가되는 소정의 인자들의 존재 또는 결여를 포함하는 구체적인 배양 조건들로 달성된다. 일반적으로, 이러한 분화는 만능성 줄기 세포의 완성 내배엽 세포 - 본 명세서에서 1기로 지칭됨 - 로의 분화를 포함할 수 있다. 이어서, 이들 완성 내배엽 세포는 본 명세서에서 2기로 지칭되는 원시 장관 세포로 추가로 분화될 수 있다. 이어서, 원시 장관 세포는 다시 본 명세서에서 3기로 지칭되는 장의 중장 내배엽 세포로 분화될 수 있다.
장의 중장 내배엽 세포의 특징적인 마커를 발현하는 세포로의 만능성 줄기 세포의 분화
만능성 줄기 세포의 특징은 당업자에게 잘 알려져 있으며, 만능성 줄기 세포의 추가의 특징은 계속 확인되고 있다. 만능성 줄기 세포 마커는, 예를 들어, 하기 중 하나 이상의 발현을 포함한다: ABCG2; 크립토(Cripto); FOXD3; CONNEXIN43; CONNEXIN45; OCT4; SOX2; NANOG; hTERT; UTF1; ZFP42; SSEA-3; SSEA-4; TRA-1-60; 및 TRA-1-81.
예시적인 만능성 줄기 세포는 인간 배아 줄기 세포주 H1 (NIH 코드: WA01), 인간 배아 줄기 세포주 H9 (NIH 코드: WA09), 인간 배아 줄기 세포주 H7 (NIH 코드: WA07) 및 인간 배아 줄기 세포주 SA002 (스웨덴 소재의 Cellartis)를 포함한다. 만능성 세포의 특징적인 하기의 마커들 중 적어도 하나를 발현하는 세포가 또한 적합하다: ABCG2, 크립토, CD9, FOXD3, CONNEXIN43, CONNEXIN45, OCT4, SOX2, NANOG, hTERT, UTF1, ZFP42, SSEA-3, SSEA-4, TRA-1-60, 및 TRA-1-81.
완성 내배엽 계통의 특징적인 마커들 중 적어도 하나를 발현하는 세포가 또한 본 발명에 사용하기에 적합하다. 본 발명의 일 실시 형태에서, 완성 내배엽 계통의 특징적인 마커를 발현하는 세포는 원시선 선구 세포이다. 대안적인 실시 형태에서, 완성 내배엽 계통의 특징적인 마커를 발현하는 세포는 중내배엽 세포이다. 대안적인 실시 형태에서, 완성 내배엽 계통의 특징적인 마커를 발현하는 세포는 완성 내배엽 세포이다.
장의 중장 내배엽 계통의 특징적인 마커들 중 적어도 하나를 발현하는 세포가 또한 본 발명에 사용하기에 적합하다. 본 발명의 일 실시 형태에서, 장 내배엽 계통의 특징적인 마커를 발현하는 세포는 장의 중장 내배엽 세포이며, 여기서 상기 세포는 FOXA2 및 CDX2를 발현한다. 일부 실시 형태에서, 세포는 SOX2, ALB, PTF1A, HOXA13 또는 LGR5를 발현하지 않는다. 실시 형태에서, 장 내배엽 계통의 특징적인 마커를 발현하는 세포는 장의 중장 내배엽 세포이며, 여기서 상기 세포는 FOXA2, CDX2, SOX9, PDX1, KLF5 및 HOXC5 각각을 발현한다. 실시 형태에서, 장 내배엽 계통의 특징적인 마커를 발현하는 세포는 장의 중장 내배엽 세포이며, 여기서 상기 세포는 SOX2, ALB, PTF1A, HOXA13 및 LGR5 중 어느 것도 발현하지 않는다.
본 발명은 세포 배양 조건 및 배지를 사용하여 만능성 줄기 세포의 장의 중장 내배엽 세포로의 단계적 유도 분화를 제공한다. 본 발명의 실시 형태에서, 장의 중장 내배엽 세포의 특징적인 마커를 발현하는 세포에 도달하기 위하여, 만능성 줄기 세포, 예컨대 배아 줄기 세포 및 유도 만능성 세포에서 출발하는 프로토콜이 사용된다. 이러한 프로토콜은 하기 단계들을 포함한다.
1기: 세포 배양 라인에서 얻어진 만능성 줄기 세포, 예컨대 배아 줄기 세포를 적절한 인자로 처리하여 완성 내배엽 세포의 특징적인 마커를 발현하는 세포로의 발현을 유도한다.
2기: 1기에서 생성된 세포를 적절한 인자로 처리하여 원시 장관 세포의 특징적인 마커를 발현하는 세포로의 추가 분화를 유도한다.
3기: 2기에서 생성된 세포를 적절한 인자로 처리하여 장의 중장 내배엽 세포의 특징적인 마커를 발현하는 세포로의 추가 분화를 유도한다.
배양되거나 단리된 세포에서 단백질 및 핵산 마커의 발현을 평가하는 방법은 당업계에서의 표준이다. 이러한 방법은 RT-PCR, 노던 블롯(Northern blot), 동소(in situ) 혼성화 (예를 들어, 문헌[Current Protocols in Molecular Biology (Ausubel et al., eds. 2001 supplement)] 참조), 및 면역검정법 (예컨대, 절편화된 재료의 면역조직화학적 분석), 웨스턴 블롯팅(Western blotting), 및 온전한 세포에서 접근가능한 마커의 경우, FACS (예를 들어 문헌[Harlow and Lane, Using Antibodies: A Laboratory Manual, New York: Cold Spring Harbor Laboratory Press (1998)] 참조)를 포함한다. 분화의 효율은 관심 세포 유형의 특징적인 마커를 발현하는 세포에 의해 발현되는 단백질 마커를 특이적으로 인식하는 작용제 (예컨대, 항체)에 처리된 세포 집단을 노출시킴으로써 결정될 수 있다.
1. 완성 내배엽 세포의 특징적인 마커를 발현하는 세포로의 만능성 줄기 세포의 분화
만능성 줄기 세포는 당업계에 공지된 임의의 적합한 방법에 의해, 또는 본 발명에서 제안된 임의의 방법에 의해 완성 내배엽 세포의 특징적인 마커를 발현하는 세포로 분화될 수 있다. 본 발명의 일 실시 형태에서, 만능성 줄기 세포는 GDF8 및 GSK3β 억제제 (예컨대, 미국 특허 출원 공개 제2010/0015711호에 개시된 환형 아닐린-피리디노트라이아진 화합물; 이는 전체적으로 본 명세서에 참고로 포함됨)를 포함한 인자가 보충된 배지, 예컨대 MCDB-131 배지 (미국 캘리포니아주 칼스배드 소재의 Life Technologies)로 처리되어 완성 내배엽 세포의 특징적인 마커를 발현하는 세포로의 분화를 유도한다. 넓은 범위의 GSK3β 억제제, 예컨대 스타우로스포린이 있으며, 바람직한 GSK3β 억제제 14-프로프-2-엔-1-일-3,5,7,14,17,23,27-헵타아자테트라사이클로 [19.3.1.1~2,6~.1~8,12~]헵타코사-1(25),2(27),3,5,8(26),9,11,21,23-노나엔-16-온이 있으며, 이는 본 명세서에서 "MCX 화합물"로 지칭된다. 처리는 만능성 줄기 세포를 약 10 ng/ml 내지 1000 ng/ml, 바람직하게는 50 ng/ml 내지 약 150 ng/ml, 대안적으로 약 75 ng/ml 내지 약 125 ng/ml, 대안적으로 약 100 ng/ml의 GDF8이 보충된 배지와 접촉시키는 것을 포함할 수 있다. 처리는 또한 세포를 약 0.1 내지 10 μM, 바람직하게는 약 0.1 내지 5 μM, 대안적으로 약 0.5 내지 약 2.5 μM, 바람직하게는 약 1.5 μM 또는 약 1.0 μM의 MCX 화합물과 접촉시키는 것을 포함할 수 있다. 배지의 다른 성분은 약 2.7 g/1000 ml 내지 3.6 g/1000 ml, 바람직하게는 2.7 g/1000 ml의 중탄산나트륨; 약 0.1% 내지 2.0%, 바람직하게는 약 0.5%의 FAF-BSA; 1:100 희석 ("1X 농도")의 GlutaMAX™ (미국 캘리포니아주 칼스배드 소재의 Life Technologies Corporation); 및 10 mM D-글루코스의 농도를 얻기 위한 약 2 mM 내지 20 mM의 농도 범위, 바람직하게는 4.5 mM의 D-글루코스를 포함할 수 있다.
만능성 세포는 완성 내배엽 세포로의 그의 분화를 촉진시키기 위하여 대략 2 내지 5일, 바람직하게는 약 3 내지 4일 동안 배양될 수 있다. 일 실시 형태에서, 만능성 세포는 유효량의 TGFβ 신호전달 분자 및/또는 GSK3β 억제제, 예를 들어 유효량의 GDF8 및 MCX 화합물의 존재 하에서 1일 동안 배양된 후, GDF8 및 더 낮은 농도의 MCX 화합물의 존재 하에서 1일 동안 배양된 후, MCX 화합물의 부재 하에서의 GDF8의 존재 하에서 1일 동안 배양된다. 상세하게는, 세포는 GDF8 및 약 1.5 μM의 MCX 화합물의 존재 하에서 1일 동안 배양된 후, GDF8 및 약 0.1 μM의 MCX 화합물의 존재 하에서 1일 동안 배양된 후, MCX 화합물의 부재 하에서의 GDF8의 존재 하에서 1일 동안 배양될 수 있다. 대안적인 실시 형태에서, 세포는 GDF8 및 약 1.5 μM의 MCX 화합물의 존재 하에서 1일 동안 배양된 후, GDF8 및 약 0.1 μM의 MCX 화합물의 존재 하에서 1일 동안 배양될 수 있다.
완성 내배엽 세포의 특징적인 마커를 발현하는 세포의 생성은 특정 프로토콜을 이행하기 전과 후에 마커의 존재에 대해 시험함으로써 결정될 수 있다. 만능성 줄기 세포는 전형적으로 그러한 마커를 발현하지 않는다. 따라서, 만능성 세포의 분화는 세포가 완성 내배엽 세포의 특징적인 마커, 예컨대 CXCR4, FOXA2 및 SOX17을 발현하기 시작할 때 검출될 수 있다. 실시 형태에서, 완성 내배엽 세포의 특징적인 마커를 발현하는 세포는 완성 내배엽 세포이다.
2. 완성 내배엽 세포의 특징적인 마커를 발현하는 세포의 원시 장관 세포의 특징적인 마커를 발현하는 세포로의 분화
완성 내배엽 세포의 특징적인 마커를 발현하는 세포는 원시 장관 세포의 특징적인 마커를 발현하는 세포로 추가로 분화될 수 있다. 일 실시 형태에서, 원시 장관 세포의 특징적인 마커를 발현하는 세포의 형성은 FGF7을 함유하는 배지, 예컨대 MCDB-131로 완성 내배엽 세포의 특징적인 마커를 발현하는 세포를 배양하여 이들 세포를 분화시키는 것을 포함한다. 예를 들어, 배양 배지는 약 10 ng/ml 내지 100 ng/ml, 바람직하게는 약 25 ng/ml 내지 약 75 ng/ml, 대안적으로 약 30 ng/ml 내지 약 60 ng/ml, 대안적으로 약 50 ng/ml의 FGF7을 포함할 수 있다. 세포는 이러한 조건 하에서 약 2 내지 3일, 바람직하게는 약 2일 동안 배양될 수 있다.
다른 실시 형태에서, 원시 장관 세포의 특징적인 마커를 발현하는 세포로의 분화는 완성 내배엽 세포의 특징적인 마커를 발현하는 세포를 FGF7 및 아스코르브산 (비타민 C)과 함께 배양하는 것을 포함한다. 배양 배지, 예컨대 MCDB-131은 약 0.1 mM 내지 약 1.0 mM의 아스코르브산, 바람직하게는 약 0.1 mM 내지 약 1.0 mM, 대안적으로 약 0.2 mM 내지 약 0.4 mM, 대안적으로 약 0.25 mM의 아스코르브산을 포함할 수 있다. 배양 배지는 또한 약 10 ng/ml 내지 100 ng/ml, 바람직하게는 약 10 ng/ml 내지 약 50 ng/ml, 대안적으로 약 15 ng/ml 내지 약 30 ng/ml, 대안적으로 약 50 ng/ml 또는 약 25 ng/ml의 FGF7을 포함할 수 있다. 예를 들어, 배양 배지는 약 0.25 mM의 아스코르브산 및 약 50 ng/ml의 FGF7을 포함할 수 있다. 배지의 다른 성분은 약 2.7 g/1000 ml 내지 3.6 g/1000 ml, 바람직하게는 2.7 g/1000 ml의 중탄산나트륨; 약 0.1% 내지 2.0%, 바람직하게는 약 0.5%의 FAF-BSA; 1:100 희석 ("1X 농도")의 GlutaMAX™; 및 10 mM D-글루코스의 농도를 얻기 위한 약 2 mM 내지 20 mM의 농도 범위, 바람직하게는 4.5 mM의 D-글루코스를 포함할 수 있다. 일 실시 형태에서, 완성 내배엽 세포의 특징적인 마커를 발현하는 세포는 FGF7 및 아스코르브산으로 2일 동안 처리된다. 완성 내배엽 세포의 분화는 세포가 FOXA2의 발현 및 HNF4α의 증가된 발현과 같은 원시 장관 세포의 특징적인 마커를 발현하기 시작할 때 검출될 수 있다. 실시 형태에서, 원시 장관 세포의 특징적인 마커를 발현하는 세포는 원시 장관 세포이다.
3. 원시 장관 세포의 특징적인 마커를 발현하는 세포의 장의 중장 내배엽 세포의 특징적인 마커를 발현하는 세포로의 분화
원시 장관 세포의 특징적인 마커를 발현하는 세포는 장의 중장 내배엽 세포의 특징적인 마커를 발현하는 세포로 추가로 분화될 수 있다. 일 실시 형태에서, 원시 장관 세포는 레틴산 및 BMP4 또는 BMP2가 보충된 배양 배지, 예컨대 BLAR 배지 (미국 캘리포니아주 칼스배드 소재의 Life Technologies, Corporation) 중에서 원시 장관 세포를 배양함으로써 장의 중장 내배엽 세포로 추가로 분화된다. 바람직한 실시 형태에서, 배지에는 약 0.5 μM 내지 약 5 μM의 레틴산, 바람직하게는 약 1 μM, 및 약 10 ng/ml 내지 약 100 ng/ml의 BMP4 또는 BMP2, 바람직하게는 약 50 ng/ml의 BMP4 또는 BMP2가 보충된다. 배지에 대한 다른 보충물은 약 0.1% 내지 2.0%, 바람직하게는 약 0.5%의 FAF-BSA; GlutaMAX™; 및 10 mM D-글루코스의 농도를 얻기 위한 약 2 mM 내지 20 mM의 농도 범위, 바람직하게는 4.5 mM의 D-글루코스를 포함할 수 있다. 일 실시 형태에서, 원시 장 세포의 특징적인 마커를 발현하는 세포는 3 내지 5일 동안, 바람직하게는 5일 동안 BMP4 또는 BMP2 및 레틴산으로 처리된다. 배양의 pH는 (S2D2에서의 정상 pH가 7.3 이상인 것과 대비하여) 5일 3기 컨디셔닝 기간 동안 6.8 내지 7.2의 범위일 수 있다.
본 발명은 장의 중장 내배엽 세포를 생성하기 위하여 선택되는 배양 배지 중에서 인간 만능성 줄기 세포를 배양함으로써 장의 중장 내배엽 세포의 집단을 생성하는 방법에 관한 것이다. 실시 형태에서, 본 방법은 단계적 과정에서 인간 만능성 줄기 세포의 장의 중장 내배엽 세포로의 분화를 유도한다. 실시 형태에서, 장의 중장 내배엽 세포의 집단이 생성된다. 일부 실시 형태에서, 실질적인 장의 중장 내배엽 세포의 집단이 생성된다. 실시 형태에서, 장의 중장 내배엽 세포는 평면 배양물 상에 단층을 형성하고 유지한다. 실시 형태에서, 장의 중장 내배엽 세포는 배양 중에 단층으로서 안정하다. 단층으로서 안정하거나 단층으로서 안정하게 유지되는 세포는 배양 중에 구상체를 형성하지 않는 세포 단층을 지칭한다.
실시 형태에서, 분화된 세포의 50% 초과는 장의 중장 내배엽의 특징적인 마커를 발현한다. 실시 형태에서, 분화된 세포의 60% 초과, 70% 초과, 80% 초과, 90% 초과 또는 95% 초과가 장의 중장 내배엽의 특징적인 마커를 발현한다. 실시 형태에서, 분화된 세포는 장의 중장 내배엽 세포의 특징적인 마커를 발현한다. 실시 형태에서, 장의 중장 내배엽 세포는 FACS 분석 및 qPCR에 의해 결정되는 바와 같이 CDX2 및 FOXA2를 발현한다. 일부 실시 형태에서, 장의 중장 내배엽 세포는 IF 분석 및 qPCR에 의해 결정되는 바와 같이 SOX9, PDX1, KLF5 및 HOXC5로부터 선택되는 전사 인자를 발현한다. 실시 형태에서, 장의 중장 내배엽 세포는 IF 분석 및 qPCR에 의해 결정되는 바와 같이 SOX2, ALB, PTF1A로부터 선택되는, 그리고 qPCR에 의해 결정되는 바와 같이 HOXA13 및 LGR5로부터 선택되는 전사 인자를 발현하지 않는다.
본 발명의 추가의 실시 형태는 장의 중장 내배엽 세포를 생성하는 방법으로서, 상기 방법은 배양 중인 완성 내배엽 세포의 원시 장관 세포로의 분화를 유도하는 단계를 포함한다. 실시 형태에서, 완성 내배엽 세포는 아스코르브산 및 FGF7을 함유하는 배양 배지 중에서 배양된다. 추가의 실시 형태에서, 원시 장관 세포는 레틴산과 BMP2 또는 BMP4를 함유하는 배양 배지 중에서 배양된다. 원시 장관 세포는 장의 중장 내배엽 세포로 분화된다. 일부 실시 형태에서, 원시 장관 세포는 산성 조건 (산성 배양 배지)에서 장의 중장 내배엽 세포로 분화된다. 특정 실시 형태에서, 산성 조건은 BLAR 배지 중에서의 배양이다. 산성 배양의 pH는 (S2D2에서의 정상 pH가 7.3 이상인 것과 대비하여) 원시 장관 세포로부터 장의 중장 내배엽 세포로의 5일 분화 컨디셔닝 기간 동안 6.8 내지 7.2의 범위일 수 있다. 실시 형태에서, 장의 중장 내배엽 세포는 배양 중에 단층을 형성하고 유지한다.
본 명세서에 논의된 실시 형태들 각각에서, 인간 만능성 줄기 세포는 인간 hESC 또는 iPS 세포이다. 상기의 그리고 본 명세서의 실시 형태들 각각에서, 장의 중장 내배엽 세포는 FACS 분석 및 qPCR에 의해 결정되는 바와 같이 CDX2 및 FOXA2를 발현한다. 모든 실시 형태에서, 장의 중장 내배엽 세포는 IF 분석 및 qPCR에 의해 결정되는 바와 같이 SOX9, PDX1, KLF5 및 HOXC5로부터 선택되는 전사 인자를 발현한다. 상기의 그리고 본 명세서의 실시 형태에서, 장의 중장 내배엽 세포는 IF 분석 및 qPCR에 의해 결정되는 바와 같이 SOX2, ALB, PTF1A로부터 선택되는, 그리고 qPCR에 의해 결정되는 바와 같이 HOXA13 및 LGR5로부터 선택되는 전사 인자를 발현하지 않는다. 상기의 그리고 본 명세서의 실시 형태에서, 장의 중장 내배엽 세포는 IF 분석 및 qPCR에 의해 CDX2, FOXA2, SOX9, PDX1, KLF5 및 HOXC5를 발현한다. 실시 형태들 각각에서, 장의 중장 내배엽 세포는 IF 분석 및 qPCR에 의해 결정되는 바와 같이 SOX2, ALB 및 PTF1A를, 그리고 qPCR에 의해 결정되는 바와 같이 HOXA13 및 LGR5를 발현하지 않는다.
특정 배양 성분 및 배양 조건, 특히 산성 배양 조건, 예컨대 BLAR 배지 중에서의 배양을 사용하는, 상기에 그리고 본 명세서에 기재된 분화 프로토콜의 결과로서, 장의 중장 내배엽 세포에 대한 마커를 발현하는 세포의 배양물이 생성되며; 상기 세포는 qPCR에 의해 결정되는 바와 같이 중배엽/중간엽 계통의 마커인 HAND1의 발현이 결여되어 있다. 만능성 줄기 세포를 중장/후장 내배엽 계통으로 유도하기 위하여 분화 프로토콜을 변화시킴으로써, 예컨대 원시 장관 세포 2기보다는 오히려 완성 내배엽 1기에서 줄기 세포를 유도함으로써, qPCR에 의해 결정되는 바와 같이 HAND1을 발현하는 내배엽-중간엽 CDX2+ 중장/후장 세포의 혼합 집단이 생성된다.
소정 실시 형태에서, 장의 중장 내배엽 세포의 집단은 실질적인 장의 중장 내배엽 세포이다. 일부 실시 형태에서, 장의 중장 내배엽 세포의 집단은 70% 초과의 장의 중장 내배엽 세포, 바람직하게는 80% 초과, 90% 초과, 그리고 95% 초과의 장의 중장 내배엽 세포를 포함한다. 일부 실시 형태에서, 장의 중장 내배엽 세포의 집단은 20% 미만의 중간엽 세포, 바람직하게는 15% 미만, 더 바람직하게는 10% 미만, 5% 미만, 2% 미만, 1% 미만, 0.5% 미만을 포함한다. 실시 형태에서, 장의 중장 내배엽 세포는 HAND1의 발현이 결여되어 있다.
분화된 장의 중장 내배엽 세포의 용도
본 발명의 다른 실시 형태에서, 분화된 장의 중장 내배엽 세포는 단독으로 또는 분화된 또는 성숙한 내분비 세포, 예를 들어 장내분비 세포와 조합되어 당뇨병을 앓고 있거나 이것이 발병될 위험이 있는 환자를 치료하는 데 사용될 수 있다. 그러한 실시 형태에서, 분화된 장의 중장 내배엽 세포, 또는 이들의 혼합물은 당뇨병을 갖는 환자, 예를 들어 제1형 또는 제2형 당뇨병을 갖는 환자에게 투여될 수 있다. 실시 형태에서, 장의 중장 내배엽 세포는 장내분비 세포로 분화되고 성숙한다. 실시 형태에서, 장의 중장 내배엽 세포는 장내분비 세포로 분화되고 성숙하며, 장내분비 세포는 인크레틴 유형 호르몬을 발현하거나 분비한다. 실시 형태에서, 인크레틴 호르몬은 GLP1 및 GIP를 포함한다. 세포의 투여는 신체 내 이식 또는 주입, 특히 피하 공간, 장막, 간, 신장 등 내로의 이식을 통해 행해질 수 있다.
상기에 기재된 본 발명의 일부 실시 형태에서, 장의 중장 내배엽 세포의 분화는 시험관내에서 유도된다. 다른 실시 형태에서, 장의 중장 내배엽 세포는 추가로 생체내에서 분화되고 성숙한다. 다른 실시 형태는 생체내에서, 또는 생체내에서 장내분비 세포와의 혼합물 중에서, 장내분비 세포로 추가로 분화되는 장의 중장 내배엽 세포에 관한 것이다. 그러한 장내분비 세포는 인크레틴 호르몬을 발현하거나 분비한다. 실시 형태에서, 장내분비 세포-분비 인크레틴 호르몬은 GLP1 및 GIP를 포함한다.
추가의 실시 형태에서, 장의 중장 내배엽 세포는 장의 중장 내배엽 세포 유형을 먼저 장내분비 선구체로, 그리고 이어서 인크레틴 발현 또는 분비 장내분비 세포로 고효율로 시험관내 분화를 촉진하는 소분자의 확인을 위한 출발 물질로서의 역할을 한다.
본 명세서에 기재된 것들과 같은 세포 및 세포 집단 및 혼합물은 마이크로- 또는 매크로-캡슐화되고, 후속적으로 포유류 숙주 내로 이식될 수 있다. 캡슐화된 세포 또는 세포 단독은 피하로 또는 신체 내의 다른 어디에든 이식 (투여)될 수 있으며, 이에 의해 세포는 혈관화되고, 생체내에서 분화되고 성숙할 수 있다.
실시예
본 발명은 하기의 비제한적인 실시예를 고려하여 더 이해될 수 있다.
실시예 1
CDX2 및 FOXA2 공존/공동발현을 갖는 장의 중장 내배엽 세포 집단을 생성하는 방법
하기 실시예는 인간 배아 줄기 세포 ("hESC")로부터 장의 중장 내배엽 세포를 생성하기 위한 유도-기반 방법을 기술한다. "장의 중장 내배엽"은 마우스 발생 동안 대략 배아 일수 8.5 ("E8.5")에, 또는 인간 배아 발생 동안 약 3 내지 4주 시점에 존재하는, CDX2-양성 및 FOXA2-양성 내배엽 세포인 상응하는 생체내 또는 원위치(in situ) 세포 유형을 지칭한다.
재료 및 방법
세포 배양: 계대 28의 EZ8 배지 (카탈로그 번호 A1516901 Gibco, Thermo Fisher Scientific)와 함께 배양된 인간 배아 줄기 세포주 H1 ("H1-hESC") (WA01 세포, 미국 위스콘신주 매디슨 소재의 WiCell Research Institute)의 세포를 하기를 함유하는 둘베코 변형 이글 배지 영양소 혼합물 F-12 ("DMEM-F12") (미국 캘리포니아주 칼스배드 소재의 Life Technologies Corporation, 카탈로그 번호 11330-032)의 배지 중에서 1:30 희석의 MATRIGEL™ (미국 뉴욕주 코닝 소재의 Corning Incorporated, 카탈로그 번호 356231) 코팅된 접시 상에 단일 세포로서 0.094 x 106개의 세포/㎠로 시딩(seeding)하였다:
Figure pct00001
시딩 후 약 48시간째에, 배양물을 불완전 PBS (마그네슘 또는 칼슘을 함유하지 않는 인산염 완충 식염수) (미국 캘리포니아주 칼스배드 소재의 Life Technologies, 카탈로그 번호 14190) 중에서 세척하였다. Rock 억제제 Y-27632 (Y 화합물)는 단지 처음 24시간의 배양 동안에만 사용하였다.
분화: 배양물을 하기 프로토콜을 사용하여 분화시켰다. 프로토콜의 1기 내지 3기 동안, 배양물을 평면 부착성 배양물 상에 유지하였다. 그러나, 전체적으로 참고로 포함되는 미국 특허 출원 공개 제2014/0242693호를 포함한 다른 것들은 현탁 배양물을 사용한 분화를 기재해 왔으며; 본 명세서에 기재된 프로토콜은 현탁액 중에서 변형 및 수행될 수 있으며, 이는 제조의 확장성을 제공한다. 하기의 명명법, S#D#은 1기 내지 3기 동안의 정확한 시간을 명시한다. 예를 들어, S1D3은 1기 3일이다. 간략하게 말하면, 각각의 단계는 완성 내배엽(1기), 원시 장관 (2기), 및 장의 중장 내배엽 (3기)으로의 분화를 규정한다.
a. 1기 (3일): 세포를 하기 1기 배지 중에서 1일 동안 배양하였다:
Figure pct00002
이어서, 세포를 하기 배지 중에서 추가 1일 동안 배양하였다:
Figure pct00003
이어서, 세포를 MCX 화합물이 없는 것을 제외하고는 상기 일수 2와 동일한 배지 중에서 추가 1일 동안 배양하였다.
b. 2기 (2일): 세포를 하기 배지로 2일 동안 처리하였다:
Figure pct00004
c. 3기 (5일): 세포를 BLAR 001 주문제작 배지로 5일 동안 처리하였다:
Figure pct00005
도 1a 내지 도 4b (BMP4-기반), 및 도 5a 내지 도 7 (BMP2-기반)에 예시된 바와 같이, CDX2 및 FOXA2 단백질 공존을 가지면서 단층으로 장의 중장 내배엽 세포를 달성하기 위해 이 방법에서 3기 동안 BMP4 또는 BMP2가 사용될 수 있다.
[표 I]
Figure pct00006
Figure pct00007
분화된 세포의 정량화: 단백질 존재 공동-국재화의 정량화를 위하여, S3D5 세포를 수집하고 FACS에 의해 분석하였다. 전체적으로 본 명세서에 참고로 포함되는 문헌[Nature Biotechnology, 2014 (32) 11, 1121-1133]에 기재된 바와 같이, 그리고 표 II에 열거된 항체를 사용하여 FACS 염색을 수행하였다. 간략하게 말하면, 분화된 세포를 TrypLE™ Express (미국 캘리포니아주 칼스배드 소재의 Life Technologies, 카탈로그 번호 12604) 중에서 37℃에서 5 내지 10분 동안 인큐베이션하고, 단일-세포 현탁액으로 방출시키고, 이후에 이것을 0.2% BSA를 함유하는 PBS의 염색 완충액 (미국 캘리포니아주 새너제이 소재의 BD Biosciences, 카탈로그 번호 554657)으로 2회 세척하였다. 4℃에서 30분 동안 LIVE/DEAD 바이올렛 형광 반응성 염료 (미국 캘리포니아주 칼스배드 소재의 Life Technologies, 카탈로그 번호 L34955)를 이용한 후, 차가운 PBS 중에서 단회 세척함으로써 세포내 항체 염색을 달성하였다. 300 μl의 Cytofix/Cytoperm 완충액 (미국 캘리포니아주 새너제이 소재의 BD Biosciences, 카탈로그 번호 554723) 중에서 세포를 고정시킨 후, Perm/Wash 완충액 (미국 캘리포니아주 새너제이 소재의 BD Biosciences, 카탈로그 번호 554722) 중에서 2회 세척하였다. 이어서, 세포를 4℃에서 30분 (비접합된 항체의 경우) 또는 1시간 (접합된 항체의 경우) 동안 적절한 항체와 함께 인큐베이션하고, 이어서 2회 세척한 후, BD FACS Diva 소프트웨어를 사용하여 BD FACS Canto II 상에서 분석하였는데, 이때 적어도 30,000회 사건을 획득하였다. 생존 불가능한 세포를 FACS 분석 동안 배제시키고, 동종형 항체 ("IgG")를 사용함으로써 게이팅(gating)을 결정하였다. 제시된 각각의 FACS 실험에 대하여 IgG FACS 데이터가 상단 패널로서 나타나 있다. 양성 대조군, 예컨대 Caco-2 세포, 또는 음성 대조군, 예컨대 S1D3 완성 내배엽 ("DE") 세포를 사용하여 특이성에 대해 항체를 시험하였다.
[표 II]
Figure pct00008
다양한 단계에서의 단백질 공동-국재화의 정량화를 위하여, Caco-2, S2D2, S3D2 및 S3D5 세포를 단층으로 수집하고, 면역형광 ("IF")에 의해 분석하였다. IF 이미지에서 관찰된 형태는 부착성 배양물의 단층으로부터 세포 스크레이핑(cell scraping)의 방법에 의해 야기된 것임에 유의한다. 문헌[Nature Biotechnology, 2014 (32) 11, 1121-1133]에 기재된 바와 같이, 그리고 표 III에 열거된 항체를 사용하여, H1-hESC-유래 세포를 제조하고 염색하였다. 동결절단(cryosectioning)을 위하여, 세포를 PBS로 헹군 후, 4% PFA (미국 미주리주 세인트 루이스 소재의 Sigma Aldrich, 카탈로그 번호 158127) 중에서 4℃에서 하룻밤 고정시켰다. 고정 후, 4% PFA를 제거하고, 세포를 PBS로 2 회 헹구고, 30% 수크로스 용액 (미국 오하이오주 솔론 소재의 Amresco, 카탈로그 번호 0335)에서 4℃에서 하룻밤 인큐베이션하였다. 샘플을 OCT 용액 (미국 캘리포니아주 토랜스 소재의 Sakura Finetek USA Inc., 카탈로그 번호 4583) 중에서 동결보존시키고, 5 μm 절편을 Superfrost 플러스 슬라이드 (미국 펜실베이니아주 래드너 소재의 VWR International, LLC, 카탈로그 번호 48311-703) 상에 놓았다. IF-염색을 위하여, 1차 항체를 4℃에서 하룻밤 적절한 희석물로 첨가하고, 한편 2차 항체를 실온에서 30분 동안 첨가한 후, PBS로 헹구고, Vectastain 마운팅 시약을 DAPI (미국 캘리포니아주 벌링게임 소재의 Vector Laboratories Inc., 카탈로그 번호 H-1200)와 함께 첨가하였다. Nikon Ti 형광 현미경 (미국 뉴욕주 멜빌 소재의 Nikon Instruments, Inc.)을 사용하여 절편을 시각화하였다.
[표 III]
Figure pct00009
다양한 단계에서의 유전자 발현의 정량화를 위하여, 문헌[Nature Biotechnology, 2014 (32) 11, 1121-1133]에 기재된 바와 같이, Caco-2, H1-hESC, S1D3, S2D2, S3D2 및 S3D5 세포를 수집하였다. 간략하게 말하면, 주문제작 Taqman® 어레이 (미국 캘리포니아주 포스터 시티 소재의 Applied Biosystems)를 사용하여 세포에서 유전자 발현을 평가하였으며; Open Array® (OA)를 CDX2, FOXA2, SOX2, SOX9, PDX1, ALB, PTF1A에 대해 사용하였으며, Taqman® 저밀도 어레이 (TLDA)를 KLF5, HOXC5, 및 LGR5에 대해 사용하였으며, 하우스키핑(housekeeping) 유전자 GAPDH를 두 시험 모두에 대해 사용하였다. 데이터를 Sequence Detection 소프트웨어 (미국 캘리포니아주 포스터 시티 소재의 Applied Biosystems)를 사용하여 분석하고, 하우스키핑 유전자로서 GAPDH를 사용하여 ΔΔCt 방법을 사용하여 미분화된 H1-hESC에 대해 정규화하였다. 프라이머 상세사항은 표 IV에 개략적으로 설명되어 있다.
[표 IV]
Figure pct00010
결과
각각의 단계에 첨가된 중요한 배지 성분, 성장 인자 및 소분자, 그리고 분화 중인 장의 중장 내배엽 세포의 단계-특이적 핵심 마커 (FOXA2; CDX2; KLF5; SOX9; PDX1LO)를 포함하여 분화 방법의 요약이 도 1a에 도시되어 있다. S2D2에 대해 언급된 중성 pH (7.35±0.04)와 대비할 때, 세포를 3기의 전체 동안 BLAR 배지 중에서 약산성인 조건에 노출시켰으며 (pH; S3D1, 6.98±0.05; S3D2, 7.02±0.04; S3D5, 7.18±0.03) (도 1b), 이는 BLAR 배지 중 더 낮은 중탄산나트륨 수준의 결과로서 그러하다. 배양물의 pH는 3기의 5일 동안 약 6.8 내지 7.2의 범위일 수 있다. 도 1c는 S3D5 단층 (좌측), 및 인간 상피 결장 선암종 세포주 ("Caco-2") (우측) - 이는 분화 특성화를 위한 벤치마크로서 사용됨 - 의 대표적인 위상차 이미지를 보여준다. S3D5에서 균일한 형태가 관찰되었다. Nucleocounter® NC-100 (덴마크 알레뢰드 소재의 Chemometec, 카탈로그 번호 900-004)를 사용한 세포수의 특성화는 1개의 hESC가 4.56±2.60개의 S3D5 후장 내배엽 세포로 분화되었음을 보여준다 (도 1d).
BMP4를 이용한 분화 방법은 장의 중장 내배엽 세포들을 단층으로 효율적으로 생성 및 유지하며, 각각은 전사체 및 단백질 수준에서 CDX2 및 FOXA2 둘 모두를 포함한다. 도 2a (하단)는 CDX2 및 FOXA2 단백질 둘 모두에 대해 90.0±5.85%의 S3D5 세포가 공존하였음을 보여주는데, 이는 Caco-2 세포에서 관찰된 백분율 (86.0±6.67)과 유사하다. 대조적으로, 완성 내배엽 (DE ― S1D3) 세포에는 CDX2 및 FOXA2 공존이 없었다 (2.3±1.2). 유전자 발현 분석은 3기 동안 CDX2가 유도되었고 (도 2b), FOXA2가 유지되었음 (도 2c)을 보여준다. 도 2d는 FOXA2-양성 원시 장 내배엽 단계, S2D2 (도 2d-i)의 확립 후에 CDX2 단백질 수준 및 CDX2/FOXA2 단백질 공존이 유도되었고, S3D2 (도 2d-ii)까지 점진적으로 증가하였으며, S3D5 (도 2d-iii)에서 Caco-2 세포 (도 2d-iv)에서 보여지는 바와 유사한 수준에 도달하였음을 보여준다. CDX2 단백질은 하단 행에 도시되어 있고, FOXA2 단백질은 상단 행에 도시되어 있다.
추가의 TF의 전사체 및 단백질 수준이 S3D5에서 발견되는데, 이들은 확실한 장의 중장 내배엽 유도를 구성한다. 도 3a 내지 도 3p는 적절한 장의 중장 내배엽이 달성되었음을 보여준다. CDX2 및 FOXA2 공존에 더하여, S3D5 세포는 또한 SOX9, PDX1, KLF5, HOXC5의 공존을 나타내었지만, SOX2, ALB, PTF1A, 및 LGR5는 발현하지 않았다. 모든 TF의 단백질 존재는 별개의 단일 채널 이미지로 도시되어 있다. 도 3a (하단)는 S3D5에서 CDX2 및 SOX9 둘 모두에 대해 98.7±0.25%의 세포가 공존하였음을 보여준다. SOX9 유전자 발현의 강한 유도는 Caco-2 세포에서 관찰된 수준과 비견되었으며 (도 3b), IF-분석에 의해 평가된 바와 같이 단백질 존재가 관찰되었다 (도 3c). 69.4±14.2%의 세포는 CDX2 및 PDX1 둘 모두에 대해 동시-양성이었다 (도 3d - 하단). 췌장-편향된 S4D3 세포 (예를 들어, 미국 특허 출원 공개 제2014/0242693호 참조)와 대비할 때, PDX1 유전자 발현은 낮은 수준으로 유도되었으며 (도 3e), 이는 IF-분석에서 낮은 내지 부재하는 단백질 수준으로 반영되었다 (도 3f).
S3D5 세포는 전방 내배엽 TF SOX2를 발현하지 않았고, S3D5 세포의 단지 1.45±0.15만이 SOX2 및 CDX2 공존을 나타내었으며 (도 3g ― 하단; 도 3i), 유전자 발현은 hESC 및 Caco-2 세포에서 관찰된 수준 미만이었다 (도 3h). 후장 내배엽의 적절한 발생에 필수적인, KLF5의 유전자 발현이 S3D5에서 상향조절되었다 (도 3j). S3D5에서 CDX2-양성 세포 내의 KLF5의 단백질 공존이 관찰되었다 (도 3k). ALB 유전자 발현 (도 3l), 및 단백질 존재 (도 3m)는 S3D5 세포에서 관찰되지 않았다. 유사하게, 췌장 계통 마커인 PTF1A의 유전자 발현은 췌장-편향된 S4D3 세포와 대비할 때 S3D5 세포에서 유도되지 않았다 (도 3n). 배아 장의 중장 내배엽에 존재하는 호메오박스 유전자, HOXC5는 S3D5 세포에서 강하게 유도되었다 (도 3o). 도 3p는 마우스에서 임신 중기에 시작하는 배아 장 내배엽의 마커인 LGR5가 S3D5 세포에서 유도되지 않았음을 보여준다 (도 3p). 도 3q는 장 후장 내배엽의 마커인 HOXA13이 S3D5 세포에서 유도되지 않았음을 보여준다 (도 3p).
도 4a 및 도 4b는 분화 중인 S3D5 세포의 증식 프로파일을 예시한다. 도 4a는 Caco-2 세포의 경우 대부분의 CDX2-단백질 양성 세포가 (KI67 단백질과의 동시발현에 의해 나타난 바와 같이) 활성 세포 주기에 있으며 (좌측), 3기 동안의 H1-hESC-유래 세포의 증식 지수는 시간 경과에 따라 감소되었음 (S3D2 ― 중간; S3D5 ― 우측)을 보여준다. CDX2 (상단 행) 및 KI67 (하단 행) 단백질 수준이 단일 채널 이미지로서 도시되어 있다. FACS에 의해 평가된, 총 S3D5 세포 (총 세포는 90% 초과의 CDX2-양성 세포임)의 KI67-단백질 양성 세포의 백분율은 16.8±3.12였는데, 이는 S1D3에서 관찰된 백분율 (97.3±1.3), 및 Caco-2 세포에서 관찰된 백분율 (99.2±0.2)과는 대조적이었다 (도 4b).
BMP2는 이 방법에서 3기 동안 BMP4에 대한 대안으로서 사용되어, CDX2 및 FOXA2 단백질 공존을 갖는 장의 중장 내배엽 세포의 단층을 생성할 수 있다. 도 5a는 각각의 단계에 첨가된 배지 성분, 성장 인자 및 소분자, 그리고 분화 중인 장의 중장 내배엽 세포의 단계-특이적 핵심 마커 (FOXA2, CDX2, KLF5, SOX9, 및 PDX1LO)를 포함하여 분화 방법의 요약을 도시한다. S2D2에서 언급된 중성 pH (7.35±0.04)와 대비할 때, 세포를 3기의 전체 동안 BLAR 배지 중에서 약산성인 조건에 노출시켰으며 (pH; S3D1, 6.92; S3D2, 7.01; S3D5, 7.22) (도 5b), 이는 BLAR 산성 배지 중 더 낮은 중탄산나트륨 수준의 결과로서 그러하다. 도 5c는 S3D5 단층 (좌측), 및 Caco-2 세포 (우측)의 대표적인 위상차 이미지를 도시한다. S3D5에서 균일한 형태가 관찰되었다.
분화 방법은 단층으로 적절한 장의 중장 내배엽 세포들을 생성 및 유지하며, 각각은 전사체 및 단백질 수준에서 CDX2, FOXA2, KLF5, SOX9, PDX1LO 및 HOXC5를 포함한다. 모든 TF 단백질 수준은 단일 채널 IF 이미지로서 도시되어 있다. 도 6a (하단)는 CDX2 및 FOXA2 단백질 둘 모두에 대해 94%의 S3D5 세포가 공존하였음을 보여주는데, 이는 Caco-2 세포에서 관찰된 백분율 (86.0±6.67)과 유사하다. 유전자 발현 분석은 3기 동안 CDX2가 유도되었고 (도 6b), FOXA2가 유지되었음 (도 6c)을 보여준다. 도 6d는 CDX2 단백질 수준 및 완전한 CDX2/FOXA2 단백질 공존이 S3D5에서 유도되었음을 보여주는데 (도 6d), 이는 Caco-2 세포에서 관찰된 수준 (도 2d-iv)과 비견된다. 도 6e (하단)는 S3D5에서 CDX2 및 SOX9 둘 모두에 대해 99.8%의 세포가 공존하였음을 보여준다. SOX9 유전자 발현의 강한 유도는 Caco-2 세포에서의 수준과 유사하게 관찰되었으며 (도 6f), IF-분석에 의해 평가된 바와 같이 단백질 존재가 관찰되었다 (도 6g). 45.5%의 세포는 CDX2 및 PDX1 둘 모두에 대해 동시-양성이었다 (도 6h - 하단). 췌장-편향된 S4D3 세포와 대비할 때, PDX1 유전자 발현은 낮은 수준으로 유도되었으며 (도 6i), IF-분석에서 낮은 내지 부재하는 단백질 수준이 반영되었다 (도 6j). 전방 내배엽 TF SOX2는 0.8%의 S3D5 세포가 SOX2 및 CDX2 공존을 나타낸 바와 같이 S3D5 세포에서 관찰되지 않았으며 (도 6k ― 하단; 도 6m), 유전자 발현은 hESC 및 Caco-2 세포에서 관찰된 수준 미만이었다 (도 6l). 후장 내배엽의 적절한 발생을 입증하기 위한 필수 마커인 KLF5의 유전자 발현이 S3D5에서 강하게 상향조절되었다 (도 6n). S3D5에서 CDX2-양성 세포 내의 KLF5의 단백질 공존이 관찰되었다 (도 6o). ALB 유전자 발현 (도 6p), 및 단백질 존재 (도 6q)는 S3D5 세포에서 관찰되지 않았다. 췌장 계통 할당 TF인 PTF1A의 유전자 발현은 췌장-편향된 S4D3 세포와 대비할 때 S3D5 세포에서 유도되지 않았다 (도 6r). 배아 장의 중장 내배엽에 존재하는 호메오박스 유전자, HOXC5는 S3D5 세포에서 강하게 유도되었다 (도 6s). 도 6t는 임신 중기에 시작하는 배아 장 내배엽의 마커인 LGR5가 S3D5 세포에서 유도되지 않았음을 보여준다. 도 6u는 장 후장 내배엽의 마커인 HOXA13이 S3D5 세포에서 유도되지 않았음을 보여준다 (도 6u).
도 7은 분화 중인 S3D5 세포의 증식 프로파일을 특성화하는데, 이는 Caco-2 세포의 경우 대부분의 CDX2-단백질 양성 세포가 (KI67 단백질과의 동시발현에 의해 나타난 바와 같이) 활성 세포 주기에 있으며 (좌측), 이와 대비하여, 3기 동안의 H1-hESC-유래 세포의 증식 지수는 더 낮았음 (S3D5 ― 우측)을 보여준다. CDX2 (상단 행) 및 KI67 (하단 행) 단백질 수준이 단일 채널 이미지로서 도시되어 있다. FACS에 의해 평가된 바와 같은, 총 S3D5 세포 (총 세포는 90% 초과의 CDX2-양성 세포임)의 KI67-단백질 양성 세포의 백분율은 14.1%였는데, 이는 S1D3에서 관찰된 백분율 (97.3±1.3)과 대조적이었고, Caco-2 세포에서 관찰된 백분율 (99.2±0.2)과 대비되었다 (도 7; 도 4b).
실시예 2
완성 내배엽으로부터 시작하여 FGF4 및 WNT-효능제를 사용한 장 배양은 CDX2+ 중장/후장 세포의 내배엽-중간엽 혼합물을 생성한다
본 실시예는 완성 내배엽 단계에서 시작하여 FGF4 및 WNT-효능제를 사용한 장 배양으로부터 CDX2+ 중장/후장 세포의 내배엽-중간엽-혼합 품질이 생성되었음을 보여준다 (문헌[Spence et al., Nature, 2011; 470:105-109]; 문헌[Watson et al. Nature Med, 2014; 11:1310-1314]). 하기의 문헌[Spence et al.]에 기재된 중장/후장 내배엽 세포에 대한 유도를 조사하기 위하여, hESC를 하기 프로토콜을 사용하여 분화시켰다. 본 실시예에 개략적으로 설명된 분화 조건은 하기에 의해 실시예 1과 상이함에 유의한다: (i) 장 조건 출발점이 완성 내배엽 단계에서 시작되며; (ii) RA 및 BMP4 또는 BMP2와 상이한 성장 인자 및 소분자가 사용되고; (iii) 산성 배양 조건은 사용되지 않는다.
재료 및 방법
세포 배양: H1-hESC 세포를 실시예 1에 기재된 바와 같이 배양하고 유지하였다.
분화: 배양물을 하기 프로토콜을 사용하여 분화시켰다.
1기-모방(Mimic) (3일): 세포를 하기 1기 배지 중에서 1일 동안 배양하였다:
Figure pct00011
이어서, 세포를 하기 배지 중에서 추가 1일 동안 배양하였다:
Figure pct00012
이어서, 세포를 하기 배지 중에서 추가 1일 동안 배양하였다:
Figure pct00013
1기 후 (2일): 예를 들어, pS1d1은 1기 후 1일이고, pS1d2는 1기 후 2일이다. 세포를 하기의 1기 후 배지 중에서 2일 동안 배양하였다:
Figure pct00014
정량화: 위상차 이미징 및 유전자 발현의 정량화는 실시예 1에서의 절차를 따랐다.
결과
각각의 단계에 첨가된 배지 성분, 성장 인자 및 소분자, 그리고 분화 중인 장의 중장/후장 내배엽 세포의 단계-특이적 시그너처 또는 핵심 마커 (HAND1)를 포함하여 분화 방법의 요약이 도 8a에 도시되어 있다. 장 컨디셔닝 (1기 후)은 500 ng/ml의 FGF4, 및 3 μM Chiron99021 (문헌[Watson et al.]), 또는 500 ng/ml의 Wnt3A (문헌[Spence et al.])를 사용하여, 완성 내배엽 단계에서 시작하였다. 용어 "1기-모방"은 실시예 1에 기재된 1기 컨디셔닝을 지칭하는 "S1D3-원래(Original)"와 상이한, 본 실시예에서의 완성 내배엽 분화 프로토콜을 지칭한다. 도 8b는 H1-hESC 세포 (상단 행, 좌측), 500 ng/ml의 FGF4 및 3 μM Chiron99021로 2일간 컨디셔닝된 1기 후 세포 (상단 행, 중간), 500 ng/ml의 FGF4 및 500 ng/ml의 Wnt3A로 2일간 컨디셔닝된 1기 후 세포 (상단 행, 우측), 그리고 이와 함께 (실시예 1 로부터의) RA/BMP4에 의해 컨디셔닝된 S3D5 단층 (하단 행, 좌측) 및 RA/BMP2에 의해 컨디셔닝된 S3D5 단층 (하단 행, 우측)의 위상차 이미지를 보여준다.
CDX2 유전자 발현의 유도는 2일의 컨디셔닝 후에 달성되었지만, RA/BMP2 또는 RA/BMP4 S3D5와 대비하여 훨씬 더 낮은 수준으로 이루어졌다 (도 8c). 그러나, 내배엽 마커 FOXA2의 유전자 발현은 유지되었고 (도 8d), 중배엽/중간엽 마커 HAND1이 강하게 유도되었다 (도 8f). 또한, KLF5는 RA/BMP4 및 RA/BMP2 컨디셔닝에 의한 것과 달리 2일 시점에서 유도되지 않았다 (도 8e). 도 8f에 결론적으로 도시된 바와 같이, 이러한 유전자 발현 패턴은 CDX2+ FOXA2+ 내배엽 집단뿐만 아니라 상당한 중간엽 CDX2+ 세포 집단을 함유하는 문헌[Watson et al.] 및 문헌[Spence et al.]에서 보여지는 불균질한 세포 집단에 대한 반영이다. 대조적으로, RA/BMP4 또는 RA/BMP2 2기 후 (원시 장관 세포) 컨디셔닝은 중배엽/중간엽 마커 HAND1을 유도하지 않았으며; 단지 내배엽 CDX2+ FOXA2+ 집단이 유도되었다.
본 발명 및 그의 다양한 실시 형태를 기술함에 있어서, 명확함을 위해 특정 용어가 사용된다. 그러나, 본 발명은 그렇게 선택되는 특정 용어에 한정되는 것으로 의도되지 않는다. 당업자는 다른 등가의 구성요소가 사용될 수 있고 다른 방법이 본 발명의 광범위한 개념을 벗어나지 않고서 개발될 수 있다는 것을 인식할 것이다. 본 명세서의 어디에서든 인용된 모든 참고 문헌은 마치 각각이 개별적으로 포함된 것처럼 참고로 포함된다.

Claims (22)

  1. 장의 중장 내배엽 세포의 집단을 생성하는 방법으로서,
    인간 만능성(pluripotent) 줄기 세포를 배양 배지 중에서 배양하여 장의 중장 내배엽 세포로의 분화를 유도하는 단계를 포함하며, 실질적인 장의 중장 내배엽 세포의 집단이 생성되는, 방법.
  2. 장의 중장 내배엽 세포의 집단을 생성하는 방법으로서,
    인간 만능성 줄기 세포를 배양 배지 중에서 배양하여 장의 중장 내배엽 세포로의 분화를 유도하는 단계를 포함하며, 분화된 세포는 장의 중장 내배엽 세포이고, 상기 장의 중장 내배엽 세포는 단층으로서 형성되고 안정하게 유지되는, 방법.
  3. 제1항 또는 제2항에 있어서,
    a. 상기 인간 만능성 줄기 세포를 GDF-8 및 GSK3β 억제제 화합물을 함유하는 제1 배양 배지 중에서 완성 내배엽 세포로 배양하는 단계;
    b. 상기 완성 내배엽 세포를 아스코르브산 및 FGF7을 함유하는 제2 배양 배지 중에서 원시 장관 세포로 배양하는 단계; 및
    c. 원시 장관 세포를 레틴산 및 BMP2 또는 BMP4를 함유하는 제3 배양 배지 중에서 장의 중장 내배엽 세포로 배양하는 단계를 포함하는, 방법.
  4. 제1항 또는 제2항에 있어서, 상기 장의 중장 내배엽 세포는 CDX2 및 FOXA2를 발현하는, 방법.
  5. 제1항 또는 제2항에 있어서, 상기 장의 중장 내배엽 세포는 SOX9, PDX1, KLF5 및 HOXC5로 이루어진 군으로부터 선택되는 전사 인자를 발현하는, 방법.
  6. 제1항 또는 제2항에 있어서, 상기 장의 중장 내배엽 세포는 SOX2, ALB, PTF1A, HOXA13 및 LGR5로 이루어진 군으로부터 선택되는 전사 인자를 발현하지 않는, 방법.
  7. 제1항에 있어서, 상기 장의 중장 내배엽 세포는 배양 중에 단층을 형성하고 유지하는, 방법.
  8. 제1항 또는 제2항에 있어서, 상기 세포의 집단은 중간엽 세포를 포함하지 않는, 방법.
  9. 제1항 또는 제2항에 있어서, 상기 세포의 집단은 HAND1을 발현하지 않는, 방법.
  10. 제1항 또는 제2항에 있어서, 분화는 시험관내(in vitro)에서 유도되는, 방법.
  11. 당뇨병을 앓고 있거나 이것이 발병될 위험이 있는 환자를 치료하는 방법으로서,
    인간 만능성 줄기 세포를 장의 중장 내배엽 세포로 분화시키는 단계 및 분화된 세포를 상기 환자 내에 이식하는 단계를 포함하는, 방법.
  12. 제11항에 있어서, 이식된 장의 중장 내배엽 세포를 생체내(in vivo)에서 분화시키는 단계를 추가로 포함하는, 방법.
  13. 제11항에 있어서, 상기 당뇨병은 제1형 또는 제2형 당뇨병인, 방법.
  14. 제12항에 있어서, 상기 장의 중장 내배엽 세포는 생체내에서 장내분비 세포로 추가로 분화되며, 상기 장내분비 세포는 인크레틴 호르몬을 분비하는, 방법.
  15. 제14항에 있어서, 상기 인크레틴 호르몬은 GLP1 및 GIP인, 방법.
  16. 제11항에 있어서, 상기 장의 중장 내배엽 세포는 CDX2 및 FOXA2를 발현하는, 방법.
  17. 제11항에 있어서, 상기 장의 중장 내배엽 세포는 SOX9, PDX1, KLF5 및 HOXC5로 이루어진 군으로부터 선택되는 전사 인자를 발현하는, 방법.
  18. 제11항에 있어서, 상기 장의 중장 내배엽 세포는 SOX2, ALB, PTF1A, HOXA13 및 LGR5로 이루어진 군으로부터 선택되는 전사 인자를 발현하지 않는, 방법.
  19. 장의 중장 내배엽 세포를 생성하는 방법으로서,
    배양 중인 완성 내배엽 세포의 원시 장관 세포로의 분화를 유도하는 단계를 포함하며, 상기 완성 내배엽 세포는 아스코르브산 및 FGF7을 함유하는 배양 배지 중에서 배양되는, 방법.
  20. 제19항에 있어서, 상기 원시 장관 세포는 레틴산 및 BMP2 또는 BMP4를 함유하는 배양 배지 중에서 배양되어 장의 중장 내배엽 세포로 분화되는, 방법.
  21. 제19항에 있어서, 상기 배양 배지는 산성인, 방법.
  22. 제19항에 있어서, 상기 장의 중장 내배엽 세포는 배양 중에 단층을 형성하고 유지하는, 방법.
KR1020187029579A 2016-04-14 2017-04-04 만능성 줄기 세포의 장의 중장 내배엽 세포로의 분화 KR102162505B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020207027896A KR102403165B1 (ko) 2016-04-14 2017-04-04 만능성 줄기 세포의 장의 중장 내배엽 세포로의 분화

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662322636P 2016-04-14 2016-04-14
US62/322,636 2016-04-14
PCT/US2017/025847 WO2017180361A1 (en) 2016-04-14 2017-04-04 Differentiation of pluripotent stem cells to intestinal midgut endoderm cells

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020207027896A Division KR102403165B1 (ko) 2016-04-14 2017-04-04 만능성 줄기 세포의 장의 중장 내배엽 세포로의 분화

Publications (2)

Publication Number Publication Date
KR20180125519A true KR20180125519A (ko) 2018-11-23
KR102162505B1 KR102162505B1 (ko) 2020-10-06

Family

ID=60039713

Family Applications (4)

Application Number Title Priority Date Filing Date
KR1020187029579A KR102162505B1 (ko) 2016-04-14 2017-04-04 만능성 줄기 세포의 장의 중장 내배엽 세포로의 분화
KR1020237008352A KR102619151B1 (ko) 2016-04-14 2017-04-04 만능성 줄기 세포의 장의 중장 내배엽 세포로의 분화
KR1020207027896A KR102403165B1 (ko) 2016-04-14 2017-04-04 만능성 줄기 세포의 장의 중장 내배엽 세포로의 분화
KR1020227017510A KR102509926B1 (ko) 2016-04-14 2017-04-04 만능성 줄기 세포의 장의 중장 내배엽 세포로의 분화

Family Applications After (3)

Application Number Title Priority Date Filing Date
KR1020237008352A KR102619151B1 (ko) 2016-04-14 2017-04-04 만능성 줄기 세포의 장의 중장 내배엽 세포로의 분화
KR1020207027896A KR102403165B1 (ko) 2016-04-14 2017-04-04 만능성 줄기 세포의 장의 중장 내배엽 세포로의 분화
KR1020227017510A KR102509926B1 (ko) 2016-04-14 2017-04-04 만능성 줄기 세포의 장의 중장 내배엽 세포로의 분화

Country Status (16)

Country Link
US (2) US10420803B2 (ko)
EP (1) EP3443073B1 (ko)
JP (3) JP6705911B2 (ko)
KR (4) KR102162505B1 (ko)
CN (2) CN115449506A (ko)
AR (1) AR108134A1 (ko)
AU (1) AU2017251651B2 (ko)
BR (1) BR112018070293A2 (ko)
CA (1) CA3020905A1 (ko)
MA (1) MA45479A (ko)
MX (1) MX2018012629A (ko)
PH (1) PH12018502061A1 (ko)
RU (2) RU2021100063A (ko)
SG (1) SG11201807915QA (ko)
TW (1) TW201803983A (ko)
WO (1) WO2017180361A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MA45479A (fr) * 2016-04-14 2019-02-20 Janssen Biotech Inc Différenciation de cellules souches pluripotentes en cellules de l'endoderme de l'intestin moyen
WO2020243666A1 (en) 2019-05-31 2020-12-03 W. L. Gore & Associates, Inc. A biocompatible membrane composite
CN114173837A (zh) 2019-05-31 2022-03-11 W.L.戈尔及同仁股份有限公司 生物相容性膜复合材料
WO2020243663A1 (en) 2019-05-31 2020-12-03 W. L. Gore & Associates, Inc. A biocompatible membrane composite
CN114401752B (zh) 2019-05-31 2023-04-04 W.L.戈尔及同仁股份有限公司 具有受控氧扩散距离的细胞封装装置
CN110540962B (zh) * 2019-08-28 2022-02-25 北京协同创新研究院 一种制备人定型内胚层细胞的方法
JPWO2022025269A1 (ko) * 2020-07-30 2022-02-03

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120276624A1 (en) * 2003-12-23 2012-11-01 D Amour Kevin Allen Methods for identifying factors for differentiating definitive endoderm

Family Cites Families (267)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3209652A (en) 1961-03-30 1965-10-05 Burgsmueller Karl Thread whirling method
AT326803B (de) 1968-08-26 1975-12-29 Binder Fa G Maschenware sowie verfahren zur herstellung derselben
US3935067A (en) 1974-11-22 1976-01-27 Wyo-Ben Products, Inc. Inorganic support for culture media
CA1201400A (en) 1982-04-16 1986-03-04 Joel L. Williams Chemically specific surfaces for influencing cell activity during culture
US4499802A (en) 1982-09-29 1985-02-19 Container Graphics Corporation Rotary cutting die with scrap ejection
US4537773A (en) 1983-12-05 1985-08-27 E. I. Du Pont De Nemours And Company α-Aminoboronic acid derivatives
US4557264A (en) 1984-04-09 1985-12-10 Ethicon Inc. Surgical filament from polypropylene blended with polyethylene
US5089396A (en) 1985-10-03 1992-02-18 Genentech, Inc. Nucleic acid encoding β chain prodomains of inhibin and method for synthesizing polypeptides using such nucleic acid
US5215893A (en) 1985-10-03 1993-06-01 Genentech, Inc. Nucleic acid encoding the ba chain prodomains of inhibin and method for synthesizing polypeptides using such nucleic acid
US4737578A (en) 1986-02-10 1988-04-12 The Salk Institute For Biological Studies Human inhibin
US5863531A (en) 1986-04-18 1999-01-26 Advanced Tissue Sciences, Inc. In vitro preparation of tubular tissue structures by stromal cell culture on a three-dimensional framework
US5804178A (en) 1986-11-20 1998-09-08 Massachusetts Institute Of Technology Implantation of cell-matrix structure adjacent mesentery, omentum or peritoneum tissue
CA1340581C (en) 1986-11-20 1999-06-08 Joseph P. Vacanti Chimeric neomorphogenesis of organs by controlled cellular implantation using artificial matrices
US5567612A (en) 1986-11-20 1996-10-22 Massachusetts Institute Of Technology Genitourinary cell-matrix structure for implantation into a human and a method of making
NZ229354A (en) 1988-07-01 1990-09-26 Becton Dickinson Co Treating polymer surfaces with a gas plasma and then applying a layer of endothelial cells to the surface
EP0363125A3 (en) 1988-10-03 1990-08-16 Hana Biologics Inc. Proliferated pancreatic endocrine cell product and process
SU1767433A1 (ru) 1989-11-27 1992-10-07 Пермский государственный медицинский институт Способ определени инсулинорезистентности имунного генеза у больных сахарным диабетом I типа
US5837539A (en) 1990-11-16 1998-11-17 Osiris Therapeutics, Inc. Monoclonal antibodies for human mesenchymal stem cells
AU668349B2 (en) 1991-04-25 1996-05-02 Chugai Seiyaku Kabushiki Kaisha Reconstituted human antibody against human interleukin 6 receptor
US5449383A (en) 1992-03-18 1995-09-12 Chatelier; Ronald C. Cell growth substrates
GB9206861D0 (en) 1992-03-28 1992-05-13 Univ Manchester Wound healing and treatment of fibrotic disorders
CA2114282A1 (en) 1993-01-28 1994-07-29 Lothar Schilder Multi-layered implant
JP3525221B2 (ja) 1993-02-17 2004-05-10 味の素株式会社 免疫抑制剤
JP2813467B2 (ja) 1993-04-08 1998-10-22 ヒューマン・セル・カルチャーズ・インコーポレーテッド 細胞培養法および培地
US5523226A (en) 1993-05-14 1996-06-04 Biotechnology Research And Development Corp. Transgenic swine compositions and methods
GB9310557D0 (en) 1993-05-21 1993-07-07 Smithkline Beecham Plc Novel process and apparatus
TW257671B (ko) 1993-11-19 1995-09-21 Ciba Geigy
US6001647A (en) 1994-04-28 1999-12-14 Ixion Biotechnology, Inc. In vitro growth of functional islets of Langerhans and in vivo uses thereof
US6703017B1 (en) 1994-04-28 2004-03-09 Ixion Biotechnology, Inc. Reversal of insulin-dependent diabetes by islet-producing stem cells, islet progenitor cells and islet-like structures
US5834308A (en) 1994-04-28 1998-11-10 University Of Florida Research Foundation, Inc. In vitro growth of functional islets of Langerhans
US6083903A (en) 1994-10-28 2000-07-04 Leukosite, Inc. Boronic ester and acid compounds, synthesis and uses
CN1075387C (zh) 1994-12-29 2001-11-28 中外制药株式会社 含有il-6拮抗剂的抗肿瘤剂的作用增强剂
US5843780A (en) 1995-01-20 1998-12-01 Wisconsin Alumni Research Foundation Primate embryonic stem cells
US5718922A (en) 1995-05-31 1998-02-17 Schepens Eye Research Institute, Inc. Intravitreal microsphere drug delivery and method of preparation
US5908782A (en) 1995-06-05 1999-06-01 Osiris Therapeutics, Inc. Chemically defined medium for human mesenchymal stem cells
US5681561A (en) 1995-06-07 1997-10-28 Life Medical Sciences, Inc. Compositions and methods for improving autologous fat grafting
AU5734998A (en) 1997-01-10 1998-08-03 Life Technologies, Inc. Embryonic stem cell serum replacement
KR100568438B1 (ko) 1997-04-24 2006-04-07 오르토-맥네일 파마슈티칼, 인코퍼레이티드 염증성 질환의 치료에 유용한 치환된 이미다졸, 이의 제조방법 및 이를 포함하는 약제학적 조성물
CA2294944A1 (en) 1997-07-03 1999-01-14 Osiris Therapeutics, Inc. Human mesenchymal stem cells from peripheral blood
EP1015576B1 (en) 1997-09-16 2005-05-04 Egea Biosciences, LLC Method for the complete chemical synthesis and assembly of genes and genomes
US6670127B2 (en) 1997-09-16 2003-12-30 Egea Biosciences, Inc. Method for assembly of a polynucleotide encoding a target polypeptide
WO1999020741A1 (en) 1997-10-23 1999-04-29 Geron Corporation Methods and materials for the growth of primate-derived primordial stem cells
CO4980885A1 (es) 1997-12-29 2000-11-27 Ortho Mcneil Pharm Inc Compuestos de trifenilpropanamida utiles en el tratamiento de inflamaciones y metodos para preparar dicho compuesto
DE69929681T2 (de) 1998-03-18 2006-10-26 Osiris Therapeutics, Inc. Mesenchymale stammzellen für die prävention und behandlung von immunantworten bei transplantationen
MY132496A (en) 1998-05-11 2007-10-31 Vertex Pharma Inhibitors of p38
US6413773B1 (en) 1998-06-01 2002-07-02 The Regents Of The University Of California Phosphatidylinositol 3-kinase inhibitors as stimulators of endocrine differentiation
US6667176B1 (en) 2000-01-11 2003-12-23 Geron Corporation cDNA libraries reflecting gene expression during growth and differentiation of human pluripotent stem cells
US7410798B2 (en) 2001-01-10 2008-08-12 Geron Corporation Culture system for rapid expansion of human embryonic stem cells
US6610540B1 (en) 1998-11-18 2003-08-26 California Institute Of Technology Low oxygen culturing of central nervous system progenitor cells
US6413556B1 (en) 1999-01-08 2002-07-02 Sky High, Llc Aqueous anti-apoptotic compositions
US6458593B1 (en) 1999-01-21 2002-10-01 Vitro Diagnostics, Inc. Immortalized cell lines and methods of making the same
US6800460B1 (en) 1999-03-11 2004-10-05 Schering Corporation Mammalian cytokine complexes
US6815203B1 (en) 1999-06-23 2004-11-09 Joslin Diabetes Center, Inc. Methods of making pancreatic islet cells
US6333029B1 (en) 1999-06-30 2001-12-25 Ethicon, Inc. Porous tissue scaffoldings for the repair of regeneration of tissue
US6306424B1 (en) 1999-06-30 2001-10-23 Ethicon, Inc. Foam composite for the repair or regeneration of tissue
EP1224259A4 (en) 1999-09-27 2005-04-27 Univ Florida INVERSION OF INSULIN DEPENDENT DIABETES BY ISOLATED STEM CELLS, PROGENITOR ISLANDIC CELLS, AND INSULAR TYPE STRUCTURES
US6685936B2 (en) 1999-10-12 2004-02-03 Osiris Therapeutics, Inc. Suppressor cells induced by culture with mesenchymal stem cells for treatment of immune responses in transplantation
US20030082155A1 (en) 1999-12-06 2003-05-01 Habener Joel F. Stem cells of the islets of langerhans and their use in treating diabetes mellitus
AU778155B2 (en) 1999-12-13 2004-11-18 Scripps Research Institute, The Markers for identification and isolation of pancreatic islet alpha and beta cell progenitors
US7439064B2 (en) 2000-03-09 2008-10-21 Wicell Research Institute, Inc. Cultivation of human embryonic stem cells in the absence of feeder cells or without conditioned medium
US7005252B1 (en) 2000-03-09 2006-02-28 Wisconsin Alumni Research Foundation Serum free cultivation of primate embryonic stem cells
US6436704B1 (en) 2000-04-10 2002-08-20 Raven Biotechnologies, Inc. Human pancreatic epithelial progenitor cells and methods of isolation and use thereof
US6458589B1 (en) 2000-04-27 2002-10-01 Geron Corporation Hepatocyte lineage cells derived from pluripotent stem cells
EP1302534A4 (en) 2000-06-26 2004-06-16 Renomedix Inst Inc CELL FRACTIONS CONTAINING CELLS CAPABLE OF DIFFERENCING INTO NEURAL CELLS
EP2404603A1 (en) 2000-10-23 2012-01-11 Glaxosmithkline LLC Novel trisubstituted-8H-pyrido[2,3-d]pyrimidin-7-one compounds for the treatment of CSBP/p38 kinase mediated diseases
JP2004526676A (ja) 2000-12-08 2004-09-02 オーソ−マクニール・フアーマシユーチカル・インコーポレーテツド キナーゼ阻害剤として有用な大員複素環式化合物
US6849643B2 (en) 2000-12-08 2005-02-01 Ortho-Mcneil Pharmaceutical, Inc. Indazolyl-substituted pyrroline compounds as kinase inhibitors
US6599323B2 (en) 2000-12-21 2003-07-29 Ethicon, Inc. Reinforced tissue implants and methods of manufacture and use
JP2005503759A (ja) 2001-01-24 2005-02-10 アメリカ合衆国 幹細胞の膵臓内分泌細胞への分化方法
EP1360189A1 (en) 2001-01-25 2003-11-12 Millennium Pharmaceuticals, Inc. Formulation of boronic acid compounds
US6656488B2 (en) 2001-04-11 2003-12-02 Ethicon Endo-Surgery, Inc. Bioabsorbable bag containing bioabsorbable materials of different bioabsorption rates for tissue engineering
EP1379626A2 (en) 2001-04-19 2004-01-14 DeveloGen Aktiengesellschaft für entwicklungsbiologische Forschung A method for differentiating stem cells into insulin-producing cells
WO2002088335A1 (fr) 2001-04-24 2002-11-07 Ajinomoto Co., Inc. Cellules souches et procede d'extraction de ces cellules
EP1393066A4 (en) 2001-05-15 2006-01-25 Rappaport Family Inst For Res INSULIN-PRODUCING CELLS DERIVED FROM HUMAN EMBRYONAL STEM CELLS
US6626950B2 (en) 2001-06-28 2003-09-30 Ethicon, Inc. Composite scaffold with post anchor for the repair and regeneration of tissue
KR100418195B1 (ko) 2001-07-05 2004-02-11 주식회사 우리기술 전력케이블의 다중절연진단장치 및 그 방법
GB0117583D0 (en) 2001-07-19 2001-09-12 Astrazeneca Ab Novel compounds
US7432104B2 (en) 2001-08-06 2008-10-07 Bresgen Inc. Methods for the culture of human embryonic stem cells on human feeder cells
US6617152B2 (en) 2001-09-04 2003-09-09 Corning Inc Method for creating a cell growth surface on a polymeric substrate
EP1298201A1 (en) 2001-09-27 2003-04-02 Cardion AG Process for the production of cells exhibiting an islet-beta-cell-like state
WO2003033697A1 (en) 2001-10-18 2003-04-24 Ixion Biotechnology, Inc. Conversion of liver stem and progenitor cells to pancreatic functional cells
DE60233248D1 (de) 2001-11-15 2009-09-17 Childrens Medical Center Verfahren zur isolierung, expansion und differenzierung fötaler stammzellen aus chorionzotte, fruchtwasser und plazenta und therapeutische verwendungen davon
US7033831B2 (en) 2001-12-07 2006-04-25 Geron Corporation Islet cells from human embryonic stem cells
JP4653952B2 (ja) 2001-12-07 2011-03-16 サイトリ セラピューティクス インコーポレイテッド 処理済み脂肪吸引細胞で患者を治療するためのシステムと方法
AU2002218893A1 (en) 2001-12-21 2003-07-09 Thromb-X Nv Compositions for the in vitro derivation and culture of embryonic stem (es) cell lines with germline transmission capability
CN1671835A (zh) 2001-12-28 2005-09-21 塞拉提斯股份公司 一种建立多能人胚泡衍生的干细胞的方法
US20030162290A1 (en) 2002-01-25 2003-08-28 Kazutomo Inoue Method for inducing differentiation of embryonic stem cells into functioning cells
US20030180268A1 (en) 2002-02-05 2003-09-25 Anthony Atala Tissue engineered construct for supplementing or replacing a damaged organ
AU2003231358A1 (en) 2002-04-17 2003-10-27 Otsuka Pharmaceutical Co., Ltd. METHOD OF FORMING PANCREATIC Beta CELLS FROM MESENCHYMAL CELLS
US20040161419A1 (en) 2002-04-19 2004-08-19 Strom Stephen C. Placental stem cells and uses thereof
DE60319364T2 (de) 2002-05-08 2009-02-19 Janssen Pharmaceutica N.V. Substituierte pyrroline als kinase inhibitoren
GB0210539D0 (en) 2002-05-08 2002-06-19 Univ Edinburgh Control of es cell self renewal and lineage specification, and medium therefor
US20060003446A1 (en) 2002-05-17 2006-01-05 Gordon Keller Mesoderm and definitive endoderm cell populations
CN1662643A (zh) 2002-05-28 2005-08-31 贝克顿·迪金森公司 人腺泡细胞的扩增和转分化
CA2488602A1 (en) 2002-06-05 2003-12-18 Janssen Pharmaceutica N.V. Substituted pyrrolines as kinase inhibitors
GB0212976D0 (en) 2002-06-06 2002-07-17 Tonejet Corp Pty Ltd Ejection method and apparatus
CN1171991C (zh) 2002-07-08 2004-10-20 徐如祥 人神经干细胞的培养方法
US6877147B2 (en) 2002-07-22 2005-04-05 Broadcom Corporation Technique to assess timing delay by use of layout quality analyzer comparison
US7838290B2 (en) 2002-07-25 2010-11-23 The Scripps Research Institute Hematopoietic stem cells and methods of treatment of neovascular eye diseases therewith
JP2005534345A (ja) 2002-07-29 2005-11-17 エス セル インターナショナル ピーティーイー リミテッド インスリン陽性、グルコース応答性細胞の分化のための多段階方法
WO2004016747A2 (en) 2002-08-14 2004-02-26 University Of Florida Bone marrow cell differentiation
AU2003268534A1 (en) 2002-09-06 2004-03-29 Amcyte Inc. Cd56 positive human adult pancreatic endocrine progenitor cells
US9969977B2 (en) 2002-09-20 2018-05-15 Garnet Biotherapeutics Cell populations which co-express CD49c and CD90
US20040062753A1 (en) 2002-09-27 2004-04-01 Alireza Rezania Composite scaffolds seeded with mammalian cells
AU2003285172A1 (en) 2002-11-08 2004-06-03 The Johns Hopkins University Human embryonic stem cell cultures, and compositions and methods for growing same
US7144999B2 (en) 2002-11-23 2006-12-05 Isis Pharmaceuticals, Inc. Modulation of hypoxia-inducible factor 1 alpha expression
AU2003302702B2 (en) 2002-12-05 2008-08-07 Technion Research & Development Foundation Ltd. Cultured human pancreatic islets, and uses thereof
ES2571355T3 (es) 2002-12-16 2016-05-24 Technion Res & Dev Foundation Sistema de cultivo sin células alimentadoras ni xenocontaminantes para células madre embrionarias humanas
US20050118148A1 (en) 2002-12-20 2005-06-02 Roland Stein Compositions and methods related to mammalian Maf-A
RU2359671C2 (ru) 2003-01-29 2009-06-27 Такеда Фармасьютикал Компани Лимитед Способ получения препарата с покрытием
NZ541749A (en) 2003-01-29 2009-06-26 Takeda Pharmaceutical Process for producing coated preparation comprising pioglitazone hydrochloride and a coating material
WO2005045001A2 (en) 2003-02-14 2005-05-19 The Board Of Trustees Of The Leland Stanford Junior University Insulin-producing cells derived from stem cells
US20070155661A1 (en) 2003-02-14 2007-07-05 The Board Of Trustees Of The Leland Standord Junior University Methods and compositions for modulating the development of stem cells
WO2004087885A2 (en) 2003-03-27 2004-10-14 Ixion Biotechnology, Inc. Method for transdifferentiation of non-pancreatic stem cells to the pancreatic pathway
US20060194315A1 (en) 2003-03-31 2006-08-31 Condie Brian G Compositions and methods for the control, differentiaton and/or manipulation of pluripotent cells through a gamma-secretase signaling pathway
US20090203141A1 (en) 2003-05-15 2009-08-13 Shi-Lung Lin Generation of tumor-free embryonic stem-like pluripotent cells using inducible recombinant RNA agents
JP4950659B2 (ja) 2003-06-27 2012-06-13 エチコン、インコーポレイテッド 胎盤組織から由来最多分娩後細胞、及びそれらを作成し使用する方法。
IL161903A0 (en) 2003-07-17 2005-11-20 Gamida Cell Ltd Ex vivo progenitor and stem cell expansion for usein the treatment of disease of endodermally- deri ved organs
ITRM20030395A1 (it) 2003-08-12 2005-02-13 Istituto Naz Per Le Malattie Infettive Lazz Terreno di coltura per il mantenimento, la proliferazione e il differenziamento di cellule di mammifero.
WO2005017117A2 (en) 2003-08-14 2005-02-24 Martin Haas Multipotent amniotic fetal stem cells (mafsc) and banking of same
US7157275B2 (en) 2003-08-15 2007-01-02 Becton, Dickinson And Company Peptides for enhanced cell attachment and growth
EP1670900A4 (en) 2003-08-27 2008-06-11 Stemcells California Inc ENHANCED PANCREATIC STEM CELL AND PRECURSOR CELL POPULATIONS AND METHOD OF IDENTIFYING, INSULATING AND ENRICHING SUCH POPULATIONS
JP2007515433A (ja) 2003-12-17 2007-06-14 アラーガン インコーポレイテッド Cyp26aおよびcyp26bの選択的阻害剤を使用するレチノイド反応性障害の処置方法
US20060030042A1 (en) 2003-12-19 2006-02-09 Ali Brivanlou Maintenance of embryonic stem cells by the GSK-3 inhibitor 6-bromoindirubin-3'-oxime
CN1946838A (zh) 2003-12-23 2007-04-11 赛瑟拉公司 定形内胚层
MX2009009225A (es) 2003-12-23 2009-09-28 Cythera Inc Endodermo definitivo.
US20050266554A1 (en) 2004-04-27 2005-12-01 D Amour Kevin A PDX1 expressing endoderm
US7625753B2 (en) 2003-12-23 2009-12-01 Cythera, Inc. Expansion of definitive endoderm cells
TWI334443B (en) 2003-12-31 2010-12-11 Ind Tech Res Inst Method of single cell culture of undifferentiated human embryonic stem cells
WO2005065354A2 (en) 2003-12-31 2005-07-21 The Burnham Institute Defined media for pluripotent stem cell culture
WO2005071066A1 (en) 2004-01-23 2005-08-04 Board Of Regents, The University Of Texas System Methods and compositions for preparing pancreatic insulin secreting cells
US7794704B2 (en) 2004-01-23 2010-09-14 Advanced Cell Technology, Inc. Methods for producing enriched populations of human retinal pigment epithelium cells for treatment of retinal degeneration
GB2441530B (en) 2004-02-12 2009-09-23 Univ Newcastle Stem Cells
US7964401B2 (en) 2004-02-19 2011-06-21 Kyoto University Screening method for somatic cell nuclear reprogramming substance affecting ECAT2 and ECAT3
JP2008500809A (ja) 2004-03-09 2008-01-17 ライフスキャン・インコーポレイテッド インスリン産生細胞を発生させるための方法
JP2007528226A (ja) 2004-03-10 2007-10-11 リージェンツ オブ ザ ユニヴァーシティ オブ カリフォルニア 胚幹細胞の増殖用組成物および方法
AU2005224569B2 (en) 2004-03-23 2011-07-14 Toshihiro Akaike Method of proliferating pluripotent stem cell
WO2005097980A2 (en) 2004-03-26 2005-10-20 Geron Corporation New protocols for making hepatocytes from embryonic stem cells
JP4491014B2 (ja) 2004-04-01 2010-06-30 ウイスコンシン アラムニ リサーチ ファンデーション 幹細胞の内胚葉および膵臓系統への分化
SG152273A1 (en) 2004-04-27 2009-05-29 Cythera Inc Pdx1 expressing endoderm
JP5687816B2 (ja) * 2004-07-09 2015-03-25 ヴィアサイト,インコーポレイテッド 胚体内胚葉を分化させるための因子を同定する方法
WO2006020919A2 (en) 2004-08-13 2006-02-23 University Of Georgia Research Foundation, Inc. Compositions and methods for self-renewal and differentiation in human embryonic stem cells
WO2006026473A2 (en) 2004-08-25 2006-03-09 University Of Georgia Research Foundation, Inc. METHODS AND COMPOSITIONS UTILIZING MYC AND GSK3ß TO MANIPULATE THE PLURIPOTENCY OF EMBRYONIC STEM CELLS
DE102004043256B4 (de) 2004-09-07 2013-09-19 Rheinische Friedrich-Wilhelms-Universität Bonn Skalierbarer Prozess zur Kultivierung undifferenzierter Stammzellen in Suspension
AU2005282414C1 (en) 2004-09-08 2011-04-07 Wisconsin Alumni Research Foundation Culturing human embryonic stem cells
NZ553241A (en) 2004-09-08 2009-11-27 Wisconsin Alumni Res Found Medium and culture of pluripotent stem cells
SG158171A1 (en) * 2004-12-23 2010-01-29 Cythera Inc Expansion of definitive endoderm cells
WO2006073911A1 (en) 2004-12-30 2006-07-13 Stemlifeline, Inc. Methods and compositions relating to embryonic stem cell lines
AU2006208944A1 (en) 2005-01-28 2006-08-03 Imperial College Innovations Limited Methods for embryonic stem cell culture
EP1859026A2 (en) 2005-01-31 2007-11-28 ES Cell International Pte Ltd. Directed differentiation of embryonic stem cells and uses thereof
WO2006088867A2 (en) 2005-02-15 2006-08-24 Medistem Laboratories, Incorporated Method for expansion of stem cells
ES2627419T3 (es) 2005-03-04 2017-07-28 Lifescan, Inc. Células estromales adultas derivadas del páncreas
GB0505970D0 (en) 2005-03-23 2005-04-27 Univ Edinburgh Culture medium containing kinase inhibitor, and uses thereof
ATE553198T1 (de) 2005-04-15 2012-04-15 Geron Corp Behandlung von krebs durch die kombinierte hemmung der proteasom- und telomeraseaktivitäten
CN100425694C (zh) 2005-04-15 2008-10-15 北京大学 诱导胚胎干细胞向胰腺细胞分化的方法
US20080208351A1 (en) 2005-04-26 2008-08-28 Aarhus Universitet Biocompatible Material for Surgical Implants and Cell Guiding Tissue Culture Surfaces
WO2006126574A1 (ja) 2005-05-24 2006-11-30 Kumamoto University Es細胞の分化誘導方法
AU2006202209B2 (en) 2005-05-27 2011-04-14 Lifescan, Inc. Amniotic fluid derived cells
AU2006257859B2 (en) 2005-06-10 2009-12-10 Irm Llc Compounds that maintain pluripotency of embryonic stem cells
WO2006138433A2 (en) 2005-06-14 2006-12-28 The Regents Of The University Of California Induction of cell differentiation by class i bhlh polypeptides
EP1931764A1 (en) 2005-06-21 2008-06-18 GE Healthcare Bio-Sciences AB Method for cell culture
EP3599277A1 (en) 2005-06-22 2020-01-29 Asterias Biotherapeutics, Inc. Suspension culture of human embryonic stem cells
CN101341138B (zh) 2005-06-30 2012-11-14 詹森药业有限公司 作为gsk-3抑制剂的环状苯胺基-吡啶并三嗪类
WO2007012144A1 (en) 2005-07-29 2007-02-01 Australian Stem Cell Centre Limited Compositions and methods for growth of pluripotent cells
US20080194021A1 (en) 2005-07-29 2008-08-14 Mays Robert W Use of a Gsk-3 Inhibitor to Maintain Potency of Culture Cells
WO2007025234A2 (en) 2005-08-26 2007-03-01 The Trustees Of Columbia University In The City Of New York Generation of pancreatic endocrine cells from primary duct cell cultures and methods of use for treatment of diabetes
EP1962719A4 (en) 2005-08-29 2011-05-04 Technion Res And Dev Of Foundation Ltd MEDIA FOR BREEDING STEM CELLS
US8962318B2 (en) 2005-09-02 2015-02-24 Agency For Science, Technology And Research Method of deriving mesenchymal stem cells from ES cells using FGF2
WO2007030870A1 (en) 2005-09-12 2007-03-22 Es Cell International Pte Ltd Cardiomyocyte production
WO2008048671A1 (en) 2006-10-18 2008-04-24 University Of Illinois Embryonic-like stem cells derived from adult human peripheral blood and methods of use
WO2007047509A2 (en) 2005-10-14 2007-04-26 Regents Of The University Of Minnesota Differentiation of non-embryonic stem cells to cells having a pancreatic phenotype
US7732202B2 (en) 2005-10-21 2010-06-08 International Stem Cell Corporation Oxygen tension for the parthenogenic activation of human oocytes for the production of human embryonic stem cells
ES2743202T3 (es) 2005-10-27 2020-02-18 Viacyte Inc Endodermo de intestino proximal dorsal y ventral que expresa PDX1
EA014166B1 (ru) 2005-12-13 2010-10-29 Киото Юниверсити Ядерный фактор перепрограммирования
WO2007082963A1 (es) 2006-01-18 2007-07-26 Fundación Instituto Valenciano De Infertilidad Líneas de células madre embrionarias humanas y métodos para usar las mismas
CN105802904B (zh) 2006-02-23 2021-04-20 维亚赛特公司 用于培养可分化细胞的组合物和方法
US7695965B2 (en) 2006-03-02 2010-04-13 Cythera, Inc. Methods of producing pancreatic hormones
NZ571427A (en) 2006-03-02 2012-07-27 Viacyte Inc Endocrine precursor cells, pancreatic hormone-expressing cells and methods of production
GB0615327D0 (en) 2006-03-30 2006-09-13 Univ Edinburgh Culture medium containing kinase inhibitors and uses thereof
EP2021462B1 (en) 2006-04-28 2019-01-09 Lifescan, Inc. Differentiation of human embryonic stem cells
US8741643B2 (en) 2006-04-28 2014-06-03 Lifescan, Inc. Differentiation of pluripotent stem cells to definitive endoderm lineage
CA2650561C (en) 2006-05-02 2014-02-25 Wisconsin Alumni Research Foundation Method of differentiating stem cells into cells of the endoderm and pancreatic lineage
US8685730B2 (en) 2006-05-02 2014-04-01 Wisconsin Alumni Research Foundation Methods and devices for differentiating pluripotent stem cells into cells of the pancreatic lineage
US9598673B2 (en) 2006-05-19 2017-03-21 Creative Medical Health Treatment of disc degenerative disease
US7964402B2 (en) 2006-05-25 2011-06-21 Sanford-Burnham Medical Research Institute Methods for culture and production of single cell populations of human embryonic stem cells
CN101541953A (zh) 2006-06-02 2009-09-23 佐治亚大学研究基金会 通过从人胚胎干细胞获得的定形内胚层细胞的分化得到胰和肝内胚层细胞及组织
WO2007143193A1 (en) 2006-06-02 2007-12-13 University Of Georgia Research Foundation, Inc. Pancreatic and liver endoderm cells and tissue by differentiation of definitive endoderm cells obtained from human embryonic stems
US8415153B2 (en) 2006-06-19 2013-04-09 Geron Corporation Differentiation and enrichment of islet-like cells from human pluripotent stem cells
CN100494359C (zh) 2006-06-23 2009-06-03 中日友好医院 神经干细胞三维立体培养体外扩增的方法
US20080003676A1 (en) 2006-06-26 2008-01-03 Millipore Corporation Growth of embryonic stem cells
EP2046946B8 (en) 2006-06-26 2017-01-25 Lifescan, Inc. Pluripotent stem cell culture
US8968994B2 (en) 2006-07-06 2015-03-03 Jeremy Micah Crook Method for stem cell culture and cells derived therefrom
WO2008013664A2 (en) 2006-07-26 2008-01-31 Cythera, Inc. Methods of producing pancreatic hormones
DK2733203T3 (en) 2006-08-02 2019-02-04 Technion Res & Dev Foundation PROCEDURES FOR EXPANSION OF EMBRYONAL STEM CELLS IN A SUSPENSION CULTURE
KR101331510B1 (ko) 2006-08-30 2013-11-20 재단법인서울대학교산학협력재단 저농도의 포도당을 함유하는 인간 배아줄기세포용 배지조성물 및 이를 이용한 인간 배아 줄기세포로부터 인슐린생산 세포 또는 세포괴로 분화시키는 방법, 그리고그로부터 유도된 인슐린 생산 세포 또는 세포괴
JP2008099662A (ja) 2006-09-22 2008-05-01 Institute Of Physical & Chemical Research 幹細胞の培養方法
WO2008039521A2 (en) 2006-09-26 2008-04-03 Nmt Medical, Inc. Method for modifying a medical implant surface for promoting tissue growth
CA2667053C (en) 2006-10-17 2015-04-28 Stiefel Laboratories, Inc. Talarazole metabolites
WO2008048647A1 (en) 2006-10-17 2008-04-24 Cythera, Inc. Modulation of the phosphatidylinositol-3-kinase pathway in the differentiation of human embryonic stem cells
JP5067949B2 (ja) 2006-11-09 2012-11-07 独立行政法人国立国際医療研究センター 霊長類動物胚性幹細胞の培養及び継代方法、並びにその分化誘導方法
TW200836749A (en) 2007-01-09 2008-09-16 Vioquest Pharmaceuticals Inc Compositions including triciribine and bortezomib and derivatives thereof and methods of use thereof
CN101641436A (zh) 2007-01-30 2010-02-03 佐治亚大学研究基金会 用于产生内胚层和中胚层细胞系及多能游走细胞(mmc)的早期中胚层细胞即稳定的中内胚层细胞群
GB0703188D0 (en) 2007-02-19 2007-03-28 Roger Land Building Large scale production of stem cells
WO2008148105A1 (en) 2007-05-25 2008-12-04 Medistem Laboratories, Inc. Endometrial stem cells and methods of making and using same
KR20160005142A (ko) 2007-06-29 2016-01-13 셀룰러 다이내믹스 인터내셔널, 인코포레이티드 배아줄기세포 배양을 위한 자동화 방법 및 장치
KR101555824B1 (ko) 2007-07-18 2015-09-25 라이프스캔, 인코포레이티드 인간 배아 줄기 세포의 분화
EP2610336A1 (en) 2007-07-31 2013-07-03 Lifescan, Inc. Differentiation of human embryonic stem cells
CA2696622C (en) 2007-08-24 2016-07-19 Stichting Het Nederlands Kanker Instituut Compositions for the treatment of neoplastic diseases
US20110151447A1 (en) 2007-11-06 2011-06-23 Children's Medical Center Corporation Method to produce induced pluripotent stem (ips) cells from non-embryonic human cells
US9062290B2 (en) 2007-11-27 2015-06-23 Lifescan, Inc. Differentiation of human embryonic stem cells
SG154367A1 (en) 2008-01-31 2009-08-28 Es Cell Int Pte Ltd Method of differentiating stem cells
WO2009096049A1 (ja) 2008-02-01 2009-08-06 Kyoto University 人工多能性幹細胞由来分化細胞
US20100330677A1 (en) 2008-02-11 2010-12-30 Cambridge Enterprise Limited Improved Reprogramming of Mammalian Cells, and Cells Obtained
WO2009110215A1 (ja) 2008-03-03 2009-09-11 独立行政法人 科学技術振興機構 繊毛細胞の分化誘導方法
EP2479260B1 (en) 2008-03-17 2016-01-06 Agency For Science, Technology And Research Microcarriers for stem cell culture
RU2359030C1 (ru) 2008-03-19 2009-06-20 Общество С Ограниченной Ответственностью "Лаборатория Клеточных Технологий" Способ получения эндотелиальных клеток из эмбриональных стволовых клеток человека (варианты)
US8338170B2 (en) 2008-04-21 2012-12-25 Viacyte, Inc. Methods for purifying endoderm and pancreatic endoderm cells derived from human embryonic stem cells
EP2283117B1 (en) 2008-04-21 2013-10-23 Viacyte, Inc. Methods for purifying pancreatic endoderm cells derived from human embryonic stem cells
WO2009132083A2 (en) 2008-04-22 2009-10-29 President And Fellows Of Harvard College Compositions and methods for promoting the generation of pdx1+ pancreatic cells
US7939322B2 (en) 2008-04-24 2011-05-10 Centocor Ortho Biotech Inc. Cells expressing pluripotency markers and expressing markers characteristic of the definitive endoderm
US8623648B2 (en) 2008-04-24 2014-01-07 Janssen Biotech, Inc. Treatment of pluripotent cells
WO2009154606A1 (en) 2008-06-03 2009-12-23 Cythera, Inc. Growth factors for production of definitive endoderm
US20090298178A1 (en) 2008-06-03 2009-12-03 D Amour Kevin Allen Growth factors for production of definitive endoderm
DE102008032236A1 (de) 2008-06-30 2010-04-01 Eberhard-Karls-Universität Tübingen Isolierung und/oder Identifizierung von Stammzellen mit adipozytärem, chondrozytärem und pankreatischem Differenzierungspotential
CA2729121C (en) 2008-06-30 2019-04-09 Centocor Ortho Biotech Inc. Differentiation of pluripotent stem cells
US20100028307A1 (en) 2008-07-31 2010-02-04 O'neil John J Pluripotent stem cell differentiation
WO2010022395A2 (en) 2008-08-22 2010-02-25 President And Fellows Of Harvard College Methods of reprogramming cells
CA2742268C (en) 2008-10-31 2020-02-18 Centocor Ortho Biotech Inc. Differentiation of human embryonic stem cells to the pancreatic endocrine lineage
MX2011004563A (es) 2008-10-31 2011-06-01 Centocor Ortho Biotech Inc Diferenciacion de celulas madre embrionarias humanas al linaje endocrino pancreatico.
US8008075B2 (en) 2008-11-04 2011-08-30 Viacyte, Inc. Stem cell aggregate suspension compositions and methods of differentiation thereof
AU2008363829B2 (en) 2008-11-04 2014-11-20 Viacyte, Inc. Stem cell aggregate suspension compositions and methods for differentiation thereof
CN102282254B (zh) * 2008-11-14 2015-12-16 维赛特公司 源于人多能干细胞的胰腺细胞的包封
KR101837080B1 (ko) 2008-11-20 2018-03-09 얀센 바이오테크 인코포레이티드 마이크로-캐리어 상의 만능 줄기 세포 배양
EP2356218B1 (en) 2008-12-05 2017-05-03 INSERM (Institut National de la Santé et de la Recherche Médicale) Method and medium for neural differentiation of pluripotent cells
JP2012527880A (ja) * 2009-05-29 2012-11-12 ノヴォ ノルディスク アー/エス hPS細胞由来の胚体内胚葉からの特定の内胚葉の派生
KR102058901B1 (ko) 2009-07-20 2019-12-24 얀센 바이오테크 인코포레이티드 인간 배아 줄기 세포의 분화
WO2011011349A2 (en) 2009-07-20 2011-01-27 Centocor Ortho Biotech Inc. Differentiation of human embryonic stem cells
KR101861584B1 (ko) 2009-10-29 2018-05-28 얀센 바이오테크 인코포레이티드 만능 줄기 세포
FI20096288A0 (fi) 2009-12-04 2009-12-04 Kristiina Rajala Formulations and methods for culturing stem cells
SG181822A1 (en) 2009-12-23 2012-08-30 Centocor Ortho Biotech Inc Differentiation of human embryonic stem cells
WO2011079017A2 (en) 2009-12-23 2011-06-30 Centocor Ortho Biotech Inc. Differentiation of human embryonic stem cells
JP5812492B2 (ja) 2010-02-03 2015-11-11 国立研究開発法人国立がん研究センター 誘導肝幹細胞及びその製造方法、並びに、該細胞の応用
US20120322152A1 (en) 2010-03-02 2012-12-20 Michael Raghunath Culture Additives To Boost Stem Cell Proliferation And Differentiation Response
CN105176930B (zh) 2010-03-31 2021-05-04 斯克里普斯研究所 重编程细胞
JP2013524836A (ja) 2010-04-25 2013-06-20 マウント・シナイ・スクール・オブ・メディスン 多能性細胞からの前部前腸内胚葉の生成
KR101903562B1 (ko) 2010-05-12 2018-10-02 얀센 바이오테크 인코포레이티드 인간 배아 줄기 세포의 분화
BR112013002811A8 (pt) 2010-08-05 2020-01-28 Wisconsin Alumni Res Found meios básicos simplificados para cultura celular pluripotente de humano
CN103154239B (zh) 2010-08-31 2018-05-15 詹森生物科技公司 人胚胎干细胞的分化
US9181528B2 (en) 2010-08-31 2015-11-10 Janssen Biotech, Inc. Differentiation of pluripotent stem cells
US9376665B2 (en) * 2010-11-02 2016-06-28 National University Corporation Kumamoto University Method for producing intestinal cells
MY177150A (en) 2011-02-28 2020-09-08 Stempeutics Res Malaysia Sdn Bhd Isolation and expansion of adult stem cells, their therapeutic composition and uses thereof
US20130274184A1 (en) 2011-10-11 2013-10-17 The Trustees Of Columbia University In The City Of New York Er stress relievers in beta cell protection
EP2766474B1 (en) 2011-10-14 2020-10-07 Children's Medical Center Corporation Inhibition and enhancement of reprogramming by chromatin modifying enzymes
CN105143446B (zh) * 2011-12-22 2020-11-03 詹森生物科技公司 人胚胎干细胞分化成单一激素胰岛素阳性细胞
US10519422B2 (en) 2012-02-29 2019-12-31 Riken Method of producing human retinal pigment epithelial cells
RU2018108850A (ru) 2012-06-08 2019-02-26 Янссен Байотек, Инк. Дифференцировка эмбриональных стволовых клеток человека в панкреатические эндокринные клетки
US20150247123A1 (en) 2012-09-03 2015-09-03 Novo Nordisk A/S Generation of pancreatic endoderm from Pluripotent Stem cells using small molecules
WO2014062138A1 (en) * 2012-10-19 2014-04-24 Agency For Science, Technology And Research Methods of differentiating stem cells into one or more cell lineages
US10138465B2 (en) 2012-12-31 2018-11-27 Janssen Biotech, Inc. Differentiation of human embryonic stem cells into pancreatic endocrine cells using HB9 regulators
WO2014106141A1 (en) 2012-12-31 2014-07-03 Janssen Biotech, Inc. Suspension and clustering of human pluripotent cells for differentiation into pancreatic endocrine cells
IL311689A (en) * 2013-02-06 2024-05-01 Viacyte Inc Cell preparations derived from dedifferentiated and reprogrammed cells
US8859286B2 (en) 2013-03-14 2014-10-14 Viacyte, Inc. In vitro differentiation of pluripotent stem cells to pancreatic endoderm cells (PEC) and endocrine cells
WO2014152321A1 (en) 2013-03-15 2014-09-25 The Jackson Laboratory Isolation of non-embryonic stem cells and uses thereof
JP6602288B2 (ja) * 2013-04-03 2019-11-06 フジフィルム セルラー ダイナミクス,インコーポレイテッド 浮遊液中で内胚葉前駆細胞を培養するための方法および組成物
JP6588969B2 (ja) * 2014-05-16 2019-10-09 ヤンセン バイオテツク,インコーポレーテツド 膵内分泌細胞内のmafa発現を強化するための小分子の使用
US20170304369A1 (en) * 2014-10-08 2017-10-26 Agency For Science, Technology And Research Methods of differentiating stem cells into liver cell lineages
MA45479A (fr) * 2016-04-14 2019-02-20 Janssen Biotech Inc Différenciation de cellules souches pluripotentes en cellules de l'endoderme de l'intestin moyen

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120276624A1 (en) * 2003-12-23 2012-11-01 D Amour Kevin Allen Methods for identifying factors for differentiating definitive endoderm

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Int. J. Mol. Sci., vol.15, pp.23418~23447( 2014)* *

Also Published As

Publication number Publication date
KR20230038322A (ko) 2023-03-17
CN109563478B (zh) 2022-09-27
PH12018502061A1 (en) 2019-06-24
US20170296594A1 (en) 2017-10-19
JP2020146042A (ja) 2020-09-17
KR20200115680A (ko) 2020-10-07
AR108134A1 (es) 2018-07-18
WO2017180361A1 (en) 2017-10-19
EP3443073A4 (en) 2019-10-23
JP2022132249A (ja) 2022-09-07
US10420803B2 (en) 2019-09-24
KR20220070585A (ko) 2022-05-31
US20190365823A1 (en) 2019-12-05
AU2017251651A1 (en) 2018-10-04
CN115449506A (zh) 2022-12-09
EP3443073A1 (en) 2019-02-20
JP2019511228A (ja) 2019-04-25
JP6705911B2 (ja) 2020-06-03
MA45479A (fr) 2019-02-20
KR102403165B1 (ko) 2022-05-26
EP3443073B1 (en) 2024-06-05
KR102162505B1 (ko) 2020-10-06
RU2741114C2 (ru) 2021-01-22
RU2018139710A (ru) 2020-05-14
BR112018070293A2 (pt) 2019-01-29
CA3020905A1 (en) 2017-10-19
RU2018139710A3 (ko) 2020-07-06
RU2021100063A (ru) 2021-01-27
CN109563478A (zh) 2019-04-02
MX2018012629A (es) 2019-02-28
SG11201807915QA (en) 2018-10-30
TW201803983A (zh) 2018-02-01
KR102509926B1 (ko) 2023-03-14
AU2017251651B2 (en) 2023-08-10
KR102619151B1 (ko) 2023-12-27

Similar Documents

Publication Publication Date Title
KR102162505B1 (ko) 만능성 줄기 세포의 장의 중장 내배엽 세포로의 분화
RU2684215C2 (ru) Способ получения панкреатических эндокринных клеток (варианты) и способ увеличения выхода бета-клеток
KR102390167B1 (ko) SC-β 세포 및 조성물 그리고 그 생성 방법
KR102084561B1 (ko) 췌장 내분비 세포로의 분화를 위한 공기-액체 계면에서의 인간 배아 줄기세포의 배양
ES2902650T3 (es) Inducción eficiente de endodermo definitivo a partir de células madre pluripotentes
AU2015267148A1 (en) Methods and systems for converting precursor cells into gastric tissues through directed differentiation
JP6954711B2 (ja) 真正膵臓前駆細胞の単離
US20180119105A1 (en) Method for production of insulin-producing cells
RU2772585C2 (ru) КЛЕТКИ SC-β И КОМПОЗИЦИИ И СПОСОБЫ ДЛЯ ИХ СОЗДАНИЯ
Lundin Evaluating and Optimizing a Protocol for Mesodermal Differentiation of Pluripotent Stem Cells towards Cardiomyocytes and Adipocytes

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
A107 Divisional application of patent
GRNT Written decision to grant