KR20140033217A - 마이크로리소그래피용 투영 노광 장치에 사용하기 위한 패싯 미러 - Google Patents

마이크로리소그래피용 투영 노광 장치에 사용하기 위한 패싯 미러 Download PDF

Info

Publication number
KR20140033217A
KR20140033217A KR1020147002581A KR20147002581A KR20140033217A KR 20140033217 A KR20140033217 A KR 20140033217A KR 1020147002581 A KR1020147002581 A KR 1020147002581A KR 20147002581 A KR20147002581 A KR 20147002581A KR 20140033217 A KR20140033217 A KR 20140033217A
Authority
KR
South Korea
Prior art keywords
mirror
mirrors
separation
illumination
field
Prior art date
Application number
KR1020147002581A
Other languages
English (en)
Other versions
KR101591610B1 (ko
Inventor
우도 딩거
마틴 엔드레스
아민 베르버
노베르트 뮐뵈르거
플로리안 바흐
Original Assignee
칼 짜이스 에스엠티 게엠베하
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102008009600A external-priority patent/DE102008009600A1/de
Priority claimed from DE200910000099 external-priority patent/DE102009000099A1/de
Application filed by 칼 짜이스 에스엠티 게엠베하 filed Critical 칼 짜이스 에스엠티 게엠베하
Publication of KR20140033217A publication Critical patent/KR20140033217A/ko
Application granted granted Critical
Publication of KR101591610B1 publication Critical patent/KR101591610B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/702Reflective illumination, i.e. reflective optical elements other than folding mirrors, e.g. extreme ultraviolet [EUV] illumination systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/06Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the phase of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0927Systems for changing the beam intensity distribution, e.g. Gaussian to top-hat
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/09Multifaceted or polygonal mirrors, e.g. polygonal scanning mirrors; Fresnel mirrors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70075Homogenization of illumination intensity in the mask plane by using an integrator, e.g. fly's eye lens, facet mirror or glass rod, by using a diffusing optical element or by beam deflection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70091Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]
    • G03F7/70116Off-axis setting using a programmable means, e.g. liquid crystal display [LCD], digital micromirror device [DMD] or pupil facets

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Lenses (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)

Abstract

마이크로리소그래피용 투영 노광 장치에서 다발-가이드 광학 부품으로서 패킷 미러가 사용되게 된다. 패싯 미러는 복수의 분리 미러들(21)을 갖는다. 입사 조명광의 개별적인 편향을 위해, 이 분리 미러들(21)이 각각의 경우에, 그것들이 적어도 하나의 틸트 축(x, y)에 대해 틸트될 수 있도록, 액츄에이터에 연결된다. 액츄에이터에 연결되는 제어 디바이스는, 각각의 경우에 적어도 2개의 분리 미러들(21)을 포함하는 분리 미러 그룹들(19)로 그룹화될 수 있도록, 구성된다. 그 결과는, 투영 노광 장치내에 설치될 때, 투영 노광 장치에 의해 조명될 오브젝트 필드의 다양한 조명 기하학적 구조를 설정하기 위한 변화성을 향상시키는 패싯 미러이다. 패싯 미러들을 형성하기 위한 분리 미러들의 다양한 실시예들이 기술된다.

Description

마이크로리소그래피용 투영 노광 장치에 사용하기 위한 패싯 미러 {FACET MIRROR FOR USE IN A PROJECTION EXPOSURE APPARATUS FOR MICROLITHOGRAPHY}
본 발명은 마이크로리소그래피용 투영 노광 장치에서 다발-가이드 광학 부품(bundle-guiding optical component)으로서 사용하기 위한 패싯 미러(facet mirror)에 관한 것이다. 또한, 본 발명은 적어도 하나의 그러한 패싯 미러를 포함하는 마이크로리소그래피용 투영 노광 장치용 조명 광학소자, 그러한 조명 광학소자를 포함하는 투영 노광 장치, 그러한 투영 노광 장치를 이용하여 마이크로 또는 나노 구조의 부품을 제조하는 방법, 및 그러한 방법에 의해 제조되는 마이크로 또는 나노 구조의 부품에 관한 것이다.
이러한 타입의 패싯 미러들은, 미국 특허 US 6,438,299 Bl 및 미국 특허 US 6,658,084 B2에 개시되어 있다.
본 발명의 목적은, 투영 노광 장치내에 이러한 패싯 미러를 설치하는 것에 의해, 투영 노광 장치를 사용하여 오브젝트 필드(object field)를 조명하기 위해 다양한 조명 기하학적 구조들(illumination geometries)을 설정하기 위한 변화성이 증가되도록, 초기에 언급된 타입의 패싯 미러를 개발하는 것이다.
이러한 목적은, 청구항 1 또는 청구항 4에서 다루어지는 특징들을 갖는 패싯 미러에 의해 본 발명에 따라 달성된다.
패싯 미러가, 본 발명에 따라, 서로 독립적으로 틸트될 수 있는 복수의 분리 미러들(separate mirrors)로 분할됨에 따라, 패싯 미러는 분리 미러 그룹들도 다양하게 분할될 수 있다. 이것은, 조명될 오브젝트 필드의 형태에 적합하기 위한 상이한 경계들을 가진 그룹들을 생성하는데 유용할 수 있다. 블록킹 또는 셰이딩(shading)에 의해 어떠한 광도 손실하지 않고 오브젝트 필드의 복수의 다양한 조명들을 보장하는 분리 미러들은 개별적으로 작동될 수 있다. 특히, 패싯 미러가 장비될 수 있는 조명 광학소자는, 방사원의 광학 파라미터들에, 예컨대, 빔 단면을 가로지르는 빔 발산 또는 강도 분포에 적합될 수 있다. 패싯 미러는, 몇몇의 분리 미러 그룹들이 각각의 경우에서 독력으로 전체 오브젝트 필드를 조명하도록 설계될 수 있다. 본 발명에 따른 패싯 미러에는 10개 보다 많은, 50개 보다 많은, 또는 심지어 100개 보다 많은 그러한 분리 미러 그룹들이 구비될 수 있다. 분리 미러 조명 채널은, 정확히 패싯 미러의 분리 미러들 중 하나에 의해 가이드되는 패싯 미러에 의해 가이되는 조명 광 다발의 빔 경로의 부분이다. 본 발명에 따르면, 이러한 타입의 적어도 2개의 분리-미러 조명 채널들이 전체 오브젝트 필드의 조명을 위해 요구된다. 미국 특허 US 6,438,199 Bl 및 미국 특허 US 6,658,084 B2에 따르면 패싯 미러들의 예에 있어서, 분리 미러 조명 채널들은, 크기가 오브젝트 필드에 대응하는 오브젝트 필드 부분들을 각각의 경우에 조명한다.
청구항 2에 다른 분리 미러들의 예에 있어서, 할당된 분리 미러 조명 채널들이 서로 분리적으로 오브젝트 필드를 조명할 수 있거나 분리 미러 조명 채널들이 규정된 방식으로 서로 겹치도록 배열될 수 있다. 오브젝트 필드는, 2개보다 많은 분리 미러 조명 채널들, 예컨대, 10개보다 많은 분리 미러 조명 채널들에 의해 조명될 수 있다.
청구항 4에 따른 패싯 미러의 장점들은 청구항 1에 따른 패싯 미러를 참조하여 앞서 기술되었던 것들에 대응한다.
청구항 5에 따른 패싯 미러는 특히, 투영 노광 장치의 조명 광학소자에서 필드 패싯 미러로서 사용된다. 분리 미러 그룹들의 크기 및 형태에 따라, 조명될 오브젝트 필드의 대응 크기 및 형태가 획득될 수 있다. 직사각형 오브젝트 필드에 있어서, 각각의 경우에 하나의 분리 미러 그룹에 의해 형성되는 분리 패싯들의 패싯 종횡비는 필드 종횡비에 대응한다. 분리 미러 그룹들은 분리 미러들의 고정된 배열을 가질 필요가 없다. 예를 들어, 분리 미러들은, 복수의 선택된 분리 미러들이, 분리 미러 그룹들에 그리고 따라서 주어진 형태를 가진 패싯에 가변적으로 할당되도록 작동될 수 있다. 동작시에, 패싯 미러는 그 다음으로, 패싯을 이루는 주어진 분리 미러 그룹에 따라, 다양한 주어진 패싯 형태를 지원할 수 있다.
형태가 오브젝트 필드의 전체 형태에 대응하는 분리 패싯들 대신에, 절반의 필드들 - 환언하면, 오브젝트 필드 치수의 절반을 따라 연장하는 - 에 대응하는 분리 패싯들 또는 분리 패싯들의 그룹화들(groupings)이 형성될 수 있다. 이러한 타입의 2개의 절반의 필드들은 각각의 경우에 전체 오브젝트 필드의 조명을 위해 결합된다. 형태가 오브젝트 필드의 부분적인 필드들에 대응하는 분리 패싯들의 그룹화들 또는 분리 패싯들을 형성하는 것이 또한 생각될 수 있다. 서로 상보적일 수 있는 이러한 타입의 몇몇의 부분적인 필드들이 그 다음으로는 전체 오브젝트 필드의 조명을 위해 결합될 수 있다.
청구항 6 및 7에 따른 그룹 형태들은 현재의 오브젝트 필드 기하학적 구조에 잘 적합된다. 아치 형태, 고리 모양, 또는 원형의 엔벨로우프(envelope)가 또한, 분리 미러들의 래스터(raster) 배열로부터, 경계가 요구되는 엔벨로우프의 형태에 유사한 분리 미러 그룹을 선택하는 것에 의한 픽셀 바이 픽셀(pixel-by-pixel) 어림셈에 의해 획득될 수 있다.
청구항 8에 따른 패싯 미러는 특히 투영 노광 장치의 조명 광학소자에서 동공 패싯 미러로서 사용된다.
조명 광학소자에는, 본 발명에 따라 분리 미러들로 분할되는 필드 패싯 미러, 및 본 발명에 따라 분리 미러들로 분할되는 동공 패싯 미러가 바람직하게 장비된다. 특정 조명 각도 분포, 환언하면 조명 설정은 그 다음에, 분리 미러 그룹들을 필드 패싯 미러 및 동공 패싯 미러상에 대응 그룹들로 배열하는 것에 의해 실질적으로 광의 손실 없이 획득될 수 있다. 예컨대, 미국 특허 출원 US 2006/0132747 A1에 기술되어 있는 타입의 경면 반사경(specular reflector)이 또한 본 발명에 따른 분리 미러들로 분할될 수 있다. 경면 반사경이 오브젝트 필드에서의 강도 분포와 조명 각도 분포의 양쪽을 조정하는데 사용되므로, 분리 미러들로의 분할에 기인하는 추가적인 변화성이 특히 유익하다.
청구항 9에 따른 실시예는 마이크로 미러 어레이들로부터 이미 알려져 있는 구조상의 해결책들을 이용하여 획득될 수 있다. 예컨대, 마이크로 미러 어레이는 미국 특허 US 7,061,582 B2에 기술되어 있다. 선택되는 틸팅의 타입은 분리 미러 그룹들의 요구되는 형태들에 좌우된다. 특히, "Mathematisches Mosaik" (Mathematical Mosaic), Cologne (1977) 및 Jan Gulberg: "Mathematics - From the birth of numbers", New York/London (1997)에서의, Istvan Reimann: "Parkette, geometrisch betrachtet" (A geometric view of tilings)로부터 알려져 있는 틸팅이 사용될 수 있다.
청구항 10에 따른 분리 미러의 구성은 비교적 작은 양의 노력을 요구한다. 이러한 타입의 평면 분리 미러들에서조차도 대략적으로 굴곡진 반사면들을 갖게 형성된다. 대안적으로, 패싯 미러의 분리 미러들은 굴곡질 수 있고, 특히 타원형으로 굴곡질 수 있고, 이것은 분리 미러들의 다발-형성 효과를 조명 또는 이미징 광에 각각 초래할 수 있다. 분리 미러들은 특히 오목하게 굴곡진다. 패싯 미러는 특히 다수의 타원면 미러일 수 있다. 이러한 타입의 굴곡진 분리 미러들은 평면 반사면들을 가진 분리 미러 그룹들로 대체될 수 있고, 여기서 이러한 타입의 대체된 굴곡진 분리 미러의 비-평면 면들은 다면체의 마이크로 패싯들에 의해 비슷해진다.
청구항 11에 따른 변위성은, 패싯 미러의 반사면의 특정 형태학을 설정할 때, 변화성을 증가시킨다. 이것은 그룹들을 형성하는 하나만을 가능케 하지 않고, 요구되는 이미징 또는 임의의 다른 다발-형성 효과를 갖는 개개의 그룹화들내에서의 반사면들에 대해서 특정 곡률과 자유면들을 규정하는 것을 가능케 한다. 분리 미러들이 반사면으로의 법선을 따르는 변위를 위해 분리적으로 작동될 수 있음에 따라, 분리 미러들간의 상호 셰이딩(shading)이 최소화될 수 있다.
청구항 12에 따른 배열은, 마이크로 미러 어레이들의 분야로부터 알려져 있는 구성상의 해결책들을 이용하여 획득될 수도 있다.
청구항 13에 따른 작동은, 설정에 따른 분리 미러들의 신속하고 개별적인 작동을 보장한다.
요구된다면, 예컨대, 분리 미러들을 그룹화하거나 집단적으로 차단할 시에, 청구항 14에 따른, 특히 로우(row) 또는 컬럼(column)에 의한, 병행 작동이 분리 미러들을 임의의 노력 없이도 집단적으로 작동될 수 있게 한다.
청구항 15에 따른 설계는, 오브젝트 필드를 가로지르는 조명 강도 또는 특정의 필드-의존(field-dependent) 조명 강도 프로파일(profile)의 조정의 관점에서, 오브젝트 필드 조명의 균질성을 교정될 수 있게 한다. 대안적으로 또는 추가적으로, 분리 미러들을 개별적으로 작동하는 것에 의해 동공 조명이 설정될 수 있음으로써, 동공면의 조명의 강도 분포가 분리 미러들을 작동시키는 것에 의해 설정될 수 있다. 분리 미러들을 작동시키는 것에 의해 동공면의 조명 강도를 배분시키는 것은, 특히 조명될 필드 형태 또는 필드 크기에 따라 일어날 수 있다. 대안적으로 또는 추가적으로, 동공면의 조명 강도는, 입사 조명 각도들의 주어진 변화가 조명될 오브젝트 필드를 통해 설정되도록, 분리 미러들을 작동시키는 것에 의해 배분될 수 있다. 예를 들어, 필드의 중앙에서의 조명 각도 분포는 그 다음으로 필드 에지에서와는 상이해질 수 있다.
분리 미러들의 개별적인 작동은, 다른 이유들로 인한 오브젝트 필드를 가로지르는 조명 각도 분포 또는 강도 분포의 불균일성을 보상하는데, 또는 보다 일반적으로 말해서, 오브젝트 필드를 가로질러 검출된 애초의 강도 분포 값들 또는 조명 각도 분포 값들로부터의 일탈을 교정하는데에도 물론 사용될 수 있다.
청구항 16에 따른 평면 캐리어는 패싯 미러의 제조를 촉진시킨다. 패싯 미러의 캐리어의 평면 배열은, 패싯 미러의 상류에 조명 광 또는 이미징 광을 대응되게 형성하는 것에 의해 획득될 수 있다.
분리 미러들 중 적어도 하나의 미러 몸체는 틸트 조인트(tilt joint)의 적어도 하나의 틸트 축에 대해 견고한 캐리어 몸체에 관하여 틸트될 수 있다. 틸트 조인트는 입방의 조인트일 수 있고, 입방의 조인트는 틸트 축에 수직한 조인트 두께 S 및 틸트 축을 따르는 조인트 길이 L을 가지며, L/S > 50이다. 특히 조정이 작은 노력으로 행해질 수 있게끔 하는 소정의 낮은 강직에서, 그러한 조인트 두께에 대한 조인트 길이의 관계는 미러 몸체로부터 입방의 조인트를 통해 캐리어 몸체로의 충분한 열 소산(heat dissipation)을 보장한다. 조인트 두께에 비해 큰 조인트 길이는 입방의 조인트를 통하는 열 전달을 위한 충분히 큰 단면을 제공한다. 분리 미러를 조정할 때, 조인트 길이에 비해 작은 조인트 두께는 미러 몸체의 주어진 각 편향(angular deflection)을 작은 노력으로 달성될 수 있게끔 한다. 예컨대, 이것은 작은 노력을 요구하는 미러 몸체를 틸트하기 위한 작동 요소들을 이용하는 것을 가능케 하고 따라서 매우 소형화될 수 있다. 미러 몸체를 틸트하기 위한 적합한 작동 요소들은 특히, 일반적인 마이크로-미러 어레이들내에 설치되는 것들이다. 이러한 타입의 마이크로 미러 어레이들은, 예컨대, 유럽 특허 EP 1 289 273 Al에 개시되어 있는 “MEMS”(Micro electromechanical systems)로서 당업자에게 알려져 있다. 매우 더 작은 L/S 비율을 가진 종래의 마이크로 미러의 토션 서스펜션(torsion suspension)(예컨대, 여우(Yeow) 등, Sensors and Actuators A 117 (2005), 331 - 340)에 비해, 본 발명에 따른 고형의 조인트를 이용할 때, 열 전달이 현저히 향상된다. 이것은, 예컨대, 분리 미러에 의해 반사되는 유용한 광으로서 EUV 방사를 이용할 때의 경우에서와 같이, 현저한 잔여 흡수로 인한 열이 미러 몸체로부터 소산될 필요가 있다면, 특히 장점이다. 미러 몸체와 캐리어 몸체 사이의 열 전달은, 특히 층을 이루어 흐르는 냉각액에 의한 능동 냉각을 가능케 하는 캐리어 몸체에서 마이크로 채널들을 제공하는 것에 의해 추가적으로 향상될 수 있다.
청구항 17에 따른 조명 광학소자의 장점들은 본 발명에 따른 패싯 미러를 참조하여 앞서 이미 기술되었던 것들에 상응한다.
청구항 18에 따른 조명 광학소자는, 특히, 분리 미러들로 이루어진 필드 패싯 미러의 장점들을 분리 미러들로 이루어진 동공 패싯 미러의 장점들과 결합시킬 수 있고, 그것은 사실상 어떠한 광도 손실하지 않고 가장 상이한 조명 설정들을 가능케 한다. 동공 패싯 미러는 상류의 필드 패싯 미러보다 더 많은 수의 분리 미러들을 가질 수 있다. 상류의 필드 패싯 미러는 조정을 위해 요구되는 패싯들이 변위를 위해 대응되게 작동될 수 있다면 특히, 틸트될 수 있다면 달성될, 동공 패싯 미러의 다양한 조명 형태들을 가능케 하며, 따라서 조명 광학소자의 다양한 조명 설정들을 가능케 한다. 동공 패싯 미러는 특히, 필드 패싯 미러의 분리 패싯들의 개수보다 더 많은 수의 분리 미러들을 가질 수 있다. 분리 패싯들이 이번에는 분리 패싯 그룹들로 이루어지면, 필드 패싯 미러는 동공 패싯 미러보다 더 많은 수의 분리 미러들을 가질 수 있다.
청구항 19에 따른 부분적인 오브젝트 필드 조명은, 교정에 대한 추가적인 자유도를 초래하는, 오브젝트 필드 조명의 관점에서의 유연성을 더 증가시킨다. 오브젝트 필드내에서 조명되는 오브젝트 필드 부분들의 상대 변위는 따라서 오브젝트 필드 조명이 교정될 수 있게끔 한다.
청구항 20에 따른 필드 패싯 미러를 포함하는 조명 광학소자의 장점들은 청구항 18에 따른 조명 광학소자를 참조하여 앞서 이미 설명되었던 것들에 상응한다.
청구항 21에 따른 투영 노광 장치의 장점들은 앞서 이미 논의되었던 것들에 상응한다.
청구항 22에 따른 투영 노광 장치는 높은 구조 분해(structural resolution)가 획득될 수 있게끔 한다.
청구항 23에 따른 경면 반사경은 조명 광학소자에서 필요로 하는 조명 광의 반사의 수를 감소시킨다. 이것은 조명 광학소자의 총 트랜스미션(transmission)을 증가시킨다.
청구항 24에 따른 별개의 조명은 경면 반사경의 분리 미러들이 서로로부터 거리를 두고 배열될 수 있게 하며, 그것은 분리 미러들 사이에 배열될 분리 미러들에 대한 서스펜션 및 변위 메커니즘 또는 변위 액츄에이터(actuator)들과 같은 디바이스들을 위해 충분한 공간을 제공한다.
청구항 25에 따른 패싯 미러는 예컨대 컬렉터(collector) 패싯 미러일 수 있다. 특히 타원형 분리 미러들을 포함할 수 있는 이러한 타입의 컬렉터 패싯 미러는 일반적으로, 경면 반사경을 사용하지 않는 조명 광학 시스템들에 적용될 수 있다.
청구항 26에 따른 경면 반사경이 상류의 패싯 미러보다 분리 미러들을 더 많이 갖는다면, 상류의 패싯 미러는 경면 반사경의 다양한 조명 형태들을 생성하는데 따라서 조명 광학소자의 다양한 조명 설정들을 생성하는데 사용될 수 있다. 오브젝트 필드의 상이한 조명 각도 분포는 또한, 경면 반사경의 분리 미러들의 개수가 상류의 패싯 미러의 분리 미러들의 개수보다 더 적은 경우에, 조명 광학소자에 의해 획득될 수 있다.
필드 패싯 미러의 분리 미러들의 개수는 경면 반사경의 분리 미러들의 개수를 현저히 초과할 수 있다.
청구항 27에 따른 컬렉터는 조명 광 다발 형성의 관점에서 하류의 패싯 미러에 대한 요구를 감소시킨다. 적어도 하나의 패싯 미러가 컬렉터로부터의 조명을 수렴하도록 노출될 수 있다.
청구항 28에 따른 컬렉터는 패싯 미러보다 더 적은 노력으로 제조된다.
청구항 29에 따른 스캐닝 방행과 긴 축 방향 사이의 각도는, 오브젝트 필드가 부분적으로 조명될 때의 불균질한 조명을 방지 또는 감소시킨다. 이러한 각도는 예컨대, 10°에 상당한다. 예컨대, 1과 3° 사이의 범위, 3과 5° 사이의 범위, 5와 7° 사이의 범위 또는 7과 9° 사이의 범위의 다른 각도들도 생각될 수 있다. 10°보다 더 큰 각도들도 일반적으로 생각될 수 있다. 대안적으로, 오브젝트 필드 부분들은, 스캐닝 방향을 따라 오브젝트 필드 부분들 사이에 연속적인 경계들이 없도록, 배열될 수 있다. 대안적으로 또는 추가적으로, 분리 미러들은, 조명 광학소자들을 통해 오브젝트 필드내로 이미징되는 분리 미러들의 에지들이 스캐닝 방향에 나란하지 않도록, 배향될 수 있다. 조명 광학소자의 적어도 하나의 패싯 미러의 분리 미러들은, 긴 필드축의 특정 부분들에서, 환언하면 특정 필드 높이들에서 더해지는 그림자들에 의해 유발되는 강도 감소를 방지하기 위해, 분리 미러 그룹들의 이미지들에서의 그림자들이 스캐닝 방향에 수직하여 서로에 대해 오프셋되도록, 배열될 수 있다.
청구항 30에 따른 제조 방법의 그리고 청구항 31에 따른 마이크로 구조의 부품의 장점들은, 청구항 1 내지 29를 참조하여 앞서 이미 설명되었던 것들에 상응한다. 높은 집적 밀도를 보이는 마이크로 구조의 부품들이 서브마이크로미터(submicrometer) 범위에서조차 획득될 수 있다.
본 발명은, 투영 노광 장치내에 이러한 패싯 미러를 설치하는 것에 의해, 투영 노광 장치를 사용하여 오브젝트 필드를 조명하기 위해 다양한 조명 기하학적 구조들을 설정하기 위한 변화성이 증가되도록, 초기에 언급된 타입의 패싯 미러를 개발할 수 있다.
이하 본 발명의 실시예들이 도면에 의해 보다 상세히 설명될 것이다.
도 1은 EUV 투영 리소그래피용 투영 노광 장치를 통하는 개략적인 자오 단면을 도시한다.
도 2는 도 1에 따른 투영 노광 장치에서 사용하기 위한 분리 미러들로 이루어지는 필드 패싯 미러의 일부의 개략적인 평면도를 도시한다.
도 3은 도 2에서의 방향 Ⅲ으로부터 도 2에 따른 패싯 미러의 분리 미러들의 로우의 부분의 도면을 도시한다.
도 4 내지 6은, 도 3에 도시된 분리 미러들의 로우의 분리 미러들에 의해 형성되는 반사면들의 로우의 다양한 형태들의 고도로 개략적인 도면들을 도시한다 - 상기 반사면들의 로우는 3개의 상이한 구성들로 도시됨 -.
도 7은 분리 패싯들로 구성되는 필드 패싯 미러의 다른 실시예의 일부의 평면도를 도시한다 - 상기 분리 미러들은 분리 패싯들의 배열을 규정하는 예시적인 분리 미러 그룹들로 그룹화됨 -.
도 8은, 예컨대, 다양한 고리 모양 또는 링 형태의 조명 설정들을 규정하기 위한, 도 1에 따른 투영 노광 장치에서 사용하기 위한 분리 미러들로 구성되는 동공 패싯 미러의 개략적인 평면도를 도시한다.
도 9 내지 13은, 분리 패싯들을 규정하는 분리 미러 그룹들로 그룹화되는 도 2에 따른 패싯 미러의 분리 미러들의 다양한 그룹화들의 예들을 도시한다.
도 14는 도 8과 유사하고, 첫 번째의, 대략적으로 전형적인 조명 설정을 규정하기 위해 조명되는, 원 조명에 노출되는, 복수의 분리 미러 그룹, 복수의 분리 미러들로 이루어지는 동공 패싯 미러를 도시한다.
도 15는 도 14에 따른 동공 패싯 미러를 도시한다 - 동일 개수의 분리 미러 그룹들이, 다른, 대략적으로 링-형태의 조명 설정을 규정하기 위해 또한 원 조명에 노출됨 -.
도 16은 링 형태 또는 아치 모양의 필드의 조명을 위한 도 2에 따른 필드 패싯 미러의 분리 미러들의 그룹화의 다른 실시예를 도시한다.
도 17 내지 20은 분리 미러 그룹들로 그룹화되는 필드 패싯 미러의 분리 미러들의 추가적인 예들을 도시한다.
도 21 및 22는 분리 미러 그룹들로 그룹화되는 동공 패싯 미러의 분리 미러들의 추가적인 예들을 도시한다.
도 23은 분리 미러들로 이루어지는 패싯 미러의 반사면상에 배치되는 분리 미러들과의 틸팅의 다른 실시예를 도시한다.
도 24는 EUV 투영 리소그래피용 투영 노광 장치의 광학 설계의 다른 실시예를 통하는 개략적인 자오 단면을 도시한다 - 투영 노광 장치의 조명 광학소자는 경면 반사경을 포함함 -.
도 25는 EUV 투영 리소그래피용 투영 노광 장치용 조명 시스템의 다른 실시예의 일부를 통하는 개략적인 자오 단면을 도시한다.
도 26은 경면 반사경을 포함하는 EUV 투영 리소그래피용 투영 노광 장치의 조명 광학소자의 광학 설계의 다른 실시예의 도 24에 유사한 도면을 도시한다.
도 27은 조명 광학소자의 컬렉터 패싯 미러의 타원 분리 미러들의 경면 반사경의 분리 미러들로의 할당의 대안적인 버전(version)의 도 26에 유사한 도면을 도시한다.
도 28은 도 26 및 27에 따른 경면 반사경에 부딪치는 소스 이미지들의 평면도를 도시한다.
도 29는 투영 노광 장치의 대안적인 실시예의 부분적으로 조명되는 오브젝트 필드 평면도를 도시한다.
도 30은 도 2에 따른 필드 패싯 미러에서 사용하기 위한 분리 미러의 평면도를 도시한다.
도 31은 도 30의 방향 XXXI로부터의 분리 미러의 도면을 도시한다 - 분리 미러의 반사면이 틸트되지 않은 중립 위치에 도시됨 -.
도 32는 도 31의 확대된 단면도를 도시한다.
도 33은 도 30에서의 방향 XXXII으로부터의 분리 미러의 도면을 도시한다.
도 34는 액츄에이터에 의해 틸트된 위치에서의 분리 미러의 도 31에 유사한 도면을 도시한다.
도 35는 도 30 내지 34에 따른 분리 미러의 틸트 조인트의 단면도를 도시한다 - 틸트 조인트는 고형의 조인트임 -.
도 36은 액츄에이터의 2 전극 사이에 전압이 인가되지 않는, 도 30 내지 34에 따른 분리 미러들의 미러 몸체의 제어된 틸팅에 대한 정전 용량 액츄에이터의 실시예의 개략도를 도시한다.
도 37은 도 36에 따른 액츄에이터 - 그 2 전극들 사이에 전압이 인가됨 - 를 도시한다.
도 38 및 39는 분리 미러들로 이루어지는 패싯 미러의 반사면상의 틸팅들의 추가적인 실시예들을 도시한다.
도 1은 마이크로 리소그래피용 투영 노광 장치(1)를 통하는 개략적인 자오 단면을 도시한다. 투영 노광 장치(1)의 조명 시스템(2)은 오브젝트 면(6)내의 오브젝트 필드(5)를 조명하기 위한 방사원(3)과 조명 광학소자(4)를 갖는다. 이러한 프로세스에 있어서, 오브젝트 필드(5)에 배열되고 레티클 홀더(reticle holder)(도시되지 않음)에 의해 평면내에 홀드되는 레티클(도면에는 도시되지 않음)이 조명된다. 투영 광학소자(7)는 오브젝트 필드(5)를 이미지 평면(9)내의 이미지 필드(8)에 이미징하는데 사용된다. 레티클상의 구조가, 이미지 필드(8)의 영역내의 이미지 평면(9)내에 배열되고 웨이퍼 홀더(도시되지 않음)에 의해 적소에 홀드되는 웨이퍼(도면에서는 도시되지 않음)의 감광층상으로 이미징된다.
방사원(3)은 5 nm와 30 nm 사이 범위의 유용한 광을 방출하는 EUV 방사원이다. 방사원은 플라즈마 소스(plasma source), 예컨대 GDPP 소스(gas discharge produced plasma) 또는 LPP 소스(laser produced plasma)일 수 있다. 싱크로트론(synchrotron)에 기반하는 방사원이 방사원(3)으로서 또한 적용 가능하다. 당업자라면, 예컨대, 미국 특허 US 6,859,515 B2에서 이러한 타입의 방사원에 관련한 유용한 정보를 찾을 것이다. 방사원(3)에 의해 방출되는 EUV 방사(10)는 컬렉터(11)에 의해 포커싱된다. 대응 컬렉터는 유럽 특허 EP 1 225 481 A에 개시되어 있다. 컬렉터(11)의 하류에서, EUV 방사(10)가 필드 패싯 미러(13)를 맞추기 전에 중간의 초점면(12)을 통해 전파된다. 필드 패싯 미러(13)는 오브젝트 면(6)과 광학적으로 결합되는 조명 광학소자(4)의 평면에 배열된다.
이하에서 EUV 방사(10)는 조명 광 또는 이미징 광으로서도 칭해진다.
필드 패싯 미러(13)의 하류에서, EUV 방사(10)는 동공 패싯 미러(14)에 의해 반사된다. 동공 패싯 미러(14)는, 투영 광학소자(7)의 동공면과 광학적으로 결합되는 조명 광학소자(4)의 동공면에 배열된다. 빔 경로의 방향에 대응되는 16, 17 및 18로 표시되는 미러들을 포함하는 트랜스미션 광학소자(15) 형태의 이미징 광학 조립체 및 동공 패싯 미러(14)에 의해서, 서브필드(subfield) 또는 분리 미러 그룹들로도 칭해지며 이하에서 보다 상세하게 기술될 필드 패싯 미러(13)의 분리 필드 패싯들(19)이 오브젝트 필드(5)내로 이미징된다. 트랜스미션 광학소자(15)의 최종 미러(18)는 그레이징 인서던스 미러(grazing incidence mirror)이다.
도 1은 위치적 관계의 설명을 촉진하는 카아티이젼 xyz 좌표계(Cartesian xyz coordinate system)를 도시한다 - 좌표계는 오브젝트 면(6)과 이미지 면(9) 사이의 투영 노광 장치(1)의 구성 요소들의 우치적인 관계의 설명을 위한 글로벌 좌표계임 -. x-축은 도 1에 도면상의 평면에 수직하게 그 내부로 연장한다. y-축은 도 1에서의 우측을 향해 연장한다. z-축은 도 1에서 하향 연장하고 따라서 오브젝트 면(6)에 그리고 이미지 면(9)에 수직하다.
도 2는 필드 패싯 미러(13)의 구조상의 세부의 고도로 개략적인 도면을 도시한다. 필드 패싯 미러(13)의 전체 반사면(20)은, 분리 미러들(21)의 래스터(raster)를 형성하도록, 로우 및 칼럼으로 분할된다. 분리 미러들(21)의 각각의 개별적인 반사 면들은 평면이다. 분리 미러들의 로우(22)는 복수의 바로 인접한 분리 미러들(21)을 포함한다. 분리 미러들의 하나의 로우(22)는 수십에서 수백의 분리 미러들(21)을 포함할 수 있다. 도 2에 따른 예에 있어서, 분리 미러들(21)은 정사각형이다. 가능한 적은 갭으로 달성될 틸팅을 가능하게 하는 분리 미러들의 다른 형태들도 적용될 수 있다. 분리 미러들에 대한 그러한 대안적인 형태들은 틸팅의 수학 이론으로부터 알려져 있다. 이에 관하여, 이스트반 레이만(Istvan Reimann): "Mathematisches Mosaik"(Mathematical Mosaic), Cologne(1977)의 "Parkette, geometrisch betrachtet" (A geometric view of tilings), 및 얀 굴베르그(Jan Gulberg): "Mathematics - From the birth of numbers", New York/London (1997)에 대해 언급될 것이다.
필드 패싯 미러(13)는 특히 독일 특허 DE 10 2006 036 064 Al에 기술된 바와 같이 구성될 수 있다.
필드 패싯 미러(13)의 설계에 따라, 분리 미러들의 칼럼(23)은 복수의 분리 미러들(21)도 포함한다. 분리 미러들의 하나의 칼럼(23)은 예컨대 수십의 분리 미러들(21)로 이루어진다.
도 2는 위치적 관계의 더 용이한 설명을 위해 필드 패싯 미러(13)의 로컬 좌표계로서 역할을 하는 카아티이젼 xyz 좌표계를 도시한다. 대응 로컬 xyz 좌표계들은, 패싯 미러의 또는 그 부분의 평면도를 도시하는 후속 도면들에서 또한 찾을 수 있다. 도 2에 있어서, x-축은 우측을 향해 수평 연장되고 분리 미러들의 로우들(22)에 나란하다. y-축은 도 2에서 상향 연장되고 분리 미러들의 칼럼들(23)에 나란하다. z-축은 도 2의 도면상의 평면에 수직하고 상기 도면상의 평면의 밖으로 연장한다.
투영 노광 동안에, 레티클 홀더 및 웨이퍼 홀더가 y-방향으로 동기적으로 스캔된다. 스캐닝 방향과 y-방향 사이의 작은 각도가, 이하에서 설명될 바와 같이, 생각될 수 있다.
필드 패싯 미러(13)의 반사면(20)은 x-방향에서의 x0의 연장을 갖는다. y-방향에 있어서, 필드 패싯 미러(13)의 반사면(20)은 y0의 연장을 갖는다.
필드 패싯 미러(13)의 설계에 따라, 분리 미러들(21)은, 예컨대 600 ㎛ × 600 ㎛ 내지 예컨대 2 mm × 2 mm의 범위의 x/y 연장들을 갖는다. 분리 미러들(21)은 조명 광(10)에 대한 포커싱 효과를 갖도록 하는 형태를 가질 수 있다. 분리 미러들(21)의 그러한 포커싱 효과는, 필드 패싯 미러(13)가 발산 조명 광(3)에 노출될 때, 특히 유리하다. 전체 필드 패싯 미러(13)는 설계에 따라 예컨대 300 mm × 300 mm 또는 600 mm × 600 mm에 상당하는 x0/y0 연장을 갖는다. 분리 필드 패싯들(19)은 25 mm × 4 mm 또는 104 mm × 8 mm의 일반적인 x/y 연장들을 나타낸다. 그 개별적인 필드 패싯들(19)을 형성하는 분리 미러들(21)의 크기와 개개의 분리 필드 패싯들(19)의 크기 사이의 관계에 따라, 분리 필드 패싯들(19)의 각각은 대응하는 개수의 분리 미러들(21)을 갖는다.
분리 미러들(21)의 각각은 입사 조명 광(10)의 개별적인 편향을 위해 액츄에이터(24)에 연결된다; 이것은, 분리 패싯들의 로우(22)의 일부의 보다 상세한 도면을 도시하는 도 3과 함께 도 2에 반사면(20) 아래의 좌측의 구석에 배열되는 2개의 파선으로 된 분리 미러들(21)로 예시되어 있다. 액츄에이터들(24)은 각각의 경우에, 분리 미러들(21)의 반사측으로부터 멀리 있는 분리 미러들(21)의 일측에 배열된다. 액츄에이터들(24)은 예컨대 피에조일렉트릭(piezoelectric) 액츄에이터들일 수 있다. 그러한 액츄에이터들의 설계들은 마이크로-미러 어레이들의 설계로부터 알려져 있다.
분리 미러들의 로우(22)의 액츄에이터들(24)은 각각의 경우에 신호 라인들(25)을 통해 로우 신호 버스(26)에 연결된다. 분리 미러들의 하나의 로우(22)는 로우 신호 버스들(26)의 각각에 할당된다. 분리 미러들의 로우들(22)의 로우 신호 버스들(26)은 다음으로서 주 신호 버스(27)에 연결된다. 상기 주 신호 버스(27)는 신호를 통해 필드 패싯 미러(13)의 제어 디바이스(28)에 연결된다. 제어 디바이스(28)는 특히, 분리 미러들(21)을 병행 작동시키도록 구성된다, 환언하면 하나의 로우 또는 하나의 칼럼의 분리 미러들(21)이 집단적으로 작동된다.
분리 미러들(21)의 각각은 서로 수직한 2개의 틸트 축들에 관하여 개별적으로 틸트될 수 있다 - 그 틸트 축들 중 첫 번째의 것이 x-축에 나란하고 2개의 틸트 축들 중 두 번째의 것이 y-축에 나란함 -. 2개의 틸트 축들은 개개의 분리 미러들(21)의 분리 반사면들내에 배치된다.
그에 추가로, 분리 미러들(21)은 액츄에이터들(24)에 의해 z-방향으로 개별적으로 변위될 수 있다. 따라서, 분리 미러들(21)은 반사면(20)에 대한 법선을 따라 변위하기 위해 서로 분리적으로 작동될 수 있다. 이것은 도 4 내지 6에서의 고도의 개략적인 도면에서 도시된 바와 같이, 반사면(20)의 전체 형태학이 변화될 수 있게끔 한다. 이것은 반사면 윤곽을, 하나의 평면내에 모두 배열되는 프레넬 렌즈(Fresnel lense)들을 닮은 미러 영역들의 형태로, 큰 화살 모양의 높이를 갖게, 환언하면 반사면의 형태학에 있어서 고변형을 갖게 제조될 수 있게끔 한다. 프레넬 존(Fresnel zone)들을 닮은 미러 영역들로의 분할은, 그러한 큰 화살 모양의 높이를 가진 미러 면 형태학의 기본 곡률을 제거한다.
도 4는 분리 미러들의 로우(22)의 섹션의 분리 미러들(21)의 분리 반사 표면들을 도시한다 - 분리 미러들의 이러한 로우(22)의 모든 분리 미러들(21)은 제어 디바이스(28) 및 액츄에이터들(24)에 의해 동일한 절대 z-위치로 설정됨 -. 그 결과는 분리 미러들의 로우(22)의 평면 로우 반사면이다. 필드 패싯 미러(13)의 모든 분리 미러들(21)이 도 4에 따라 설정되면, 필드 패싯 미러(13)의 전체 반사면(20)은 평면이다.
도 5는, 중앙의 분리 미러(21m)가 인접한 분리 미러들(21r1, 21r2, 21r3)에 관하여 네거티브(negative)의 z-방향에서 변위되는, 분리 미러들의 로우(22)의 분리 미러들(21)의 작동을 도시한다. 이것은, 도 5에 따른 분리 미러들의 로우(22)에 부딪치는 EUV 방사(10)의 대응 상(phase) 오프셋을 유발하는, 계단식 배열을 초래한다. 2개의 중앙 분리 미러들(21m)에 의해 반사되는 EUV 방사(10)는 최대 상 오프셋이 되기 쉽다. 에지들에서의 분리 미러들(21r3)은 최소 상 오프셋을 만든다. 사이에 배치된 분리 미러들(21r1, 21r2)은, 중앙의 분리 미러들(21m)에 의해 만들어지는 상 래그(phase lag)에 관하여 점진적으로 더 낮아지고 낮아지는 상 래그를 만든다.
도 6은, 분리 미러들의 볼록한 로우(22)는, 한편으로 분리 미러들(21)의 z-방향으로의 서로에 대한 오프셋 배열에 의해서 그리고 다른 편으로 분리 미러들(21)을 서로에 대해 배향시키는 것에 의해, 형성된다. 이것은 필드 패싯 미러(13)의 분리 미러 그룹들의 이미징 효과를 생성하기 위해 유용할 수 있다. 당연히, 분리 미러들(21)의 그룹들의 대응하는 오목한 배열도 생각될 수 있다.
도 5 및 6을 참조하여 앞서 설명된 대응 형태들은 x-치수에 한정되지 않고 제어 디바이스(28)를 통한 작동에 따라 필드 패싯 미러(13)의 y-치수로도 계속될 수 있다.
제어 디바이스(28)를 통한 액츄에이터들(24)의 개별적인 작동은, 적어도 2개의 분리 미러들(21)을 각기 포함하는 앞서 언급된 분리 미러 그룹들내에 배열될 분리 미러들(21)의 주어진 그룹화를 가능케 한다 - 각각의 경우에서 하나의 분리 미러 그룹은 필드 패싯 미러(13)의 분리 필드 패싯(19)을 규정함 -. 몇몇의 분리 미러들(21)로 이루어진 이 분리 필드 패싯들(19)은 예컨대 미국 특허 6,438,199 Bl 또는 미국 특허 US 6,658,084 B2로부터 알려져 있는 필드 패싯들과 동일한 효과를 갖는다.
도 7은 이러한 타입의 그룹화를 예시한다 - 도면은 도 2의 예시와 비교하여 더 많은 수의 분리 미러들(21)을 포함하는 필드 패싯 미러(13)의 대안적인 실시예의 필드 패싯 판의 반사면(20)의 섹션을 도시함 -. 도 2 내지 6을 참조하여 이미 앞서 설명되었던 것들에 대응하는 구성 요소들은 동일한 참조 번호들을 갖고 다시 상세하게 논의되지는 않는다. 도 7의 예에서의 반사면(20)에는, 총 12개의 분리 미러 그룹들(19)이 제어 디바이스(28)를 통한 조합된 작동에 의해 형성된다. 각각의 분리 미러 그룹들(19)은 24 × 3 어레이의 분리 미러들(21)로 이루어진다, 환언하면 그것은 각각 24개의 분리 미러들(21)의 분리 미러들의 3개의 로우를 갖는다. 따라서, 분리 미러 그룹들(19)의 각각은, 환언하면 이러한 그룹화에 의해 형성된 분리 필드 패싯들의 각각은 8 대 1의 종횡비를 갖는다. 이러한 종횡비는 조명될 오브젝트 필드(5)의 종횡비에 대응한다.
분리 미러 그룹들(19)의 각각의 분리 미러들(21)은, 분리 미러 그룹들(19)의 각각의 형태가 일반적인 필드 패싯 미러의 분리 패싯의 형태에 대응하도록, 서로에 대해 배열된다. 따라서, 각각의 분리 미러 그룹들(19)은 분리 패싯을 규정한다.
도 8은 투영 노광 장치(1)에 설치된 동공 패싯 미러(14)의 세부를 도시한다. 동공 패싯 미러(14)는 복수의 분리 미러들(21)이 구비되어 있는 둥근 동공 패싯 판(29)을 포함한다. 도 8에 따른 실시예에 있어서, 유용한 분리 미러들(21)은 동공 패싯 판(29)의 중앙(30)에 대해 고리 모양 구성으로 배열된다. 이러한 구성의 고리 모양 폭은 11개의 인접한 분리 미러들(21)의 폭에 대략적으로 대응한다. 마찬가지로, 동공 패싯 판(29)의 중앙(30)에는 대응 래스터 패턴으로 배열된 분리 미러들(21)도 구비되어 있다; 하지만, 이 분리 미러들(21)은, 그것들이 도 8에 따른 고리 모양, 환언하면 링-형태의 설정에서는 사용되지 않으므로, 도시되지 않았다.
이러한 고리 모양 구성의 분리 미러들(21)은 도 2 내지 7에 따른 상기한 필드 패싯 미러(13)에 대응하는 로우 및 칼럼들의 래스터 패턴으로 배열된다. 동공 패싯 미러(14)의 분리 미러들(21)은 액츄에이터들도 가지며 제어 디바이스(28)에 의해 작동된다. 이 액츄에이터들과 작동의 신호 연결의 타입은 상기한 필드 패싯 미러(13)의 것들에 대응한다.
동공 패싯 미러(14)의 분리 미러들(21)은 분리 미러 그룹들로도 그룹화될 수 있다. 이것은 이하에서 도 14 및 15에 의해 설명될 것이다.
도 9 내지 13은 분리 미러 그룹들로 그룹화되는 필드 패싯 미러(13)의 분리 미러들(21)의 다양한 예들을 도시한다.
도 9는 필드 패싯 미러(13)의 모든 분리 미러들(21)이 단일 분리 미러 그룹(31)으로 그룹화되는 경우를 도시한다. 이러한 경우에 있어서, 필드 패싯 미러(13)의 모든 분리 미러들(21)은 동일한 방식으로 제어 디바이스(28)에 의해 작동된다; 예컨대, 동일 z-위치에 있는 미러들이 동일 틸트 각도를 통해 x-축에 대해 그리고 y-축에 대해 틸트된다. 만약, 이 2개의 틸트 각도들이 0에 상당하면, 필드 패싯 미러(13)는 분리 미러들(21)로 이루어지는 평면 미러일 수 있다. 필드 패싯 미러(13)의 총 종횡비는 x0/y0이다.
도 10에 따르면, 필드 패싯 미러(13)는 2개의 분리 미러 그룹들(32, 33)로 분할된다. 도 10의 상부의 분리 미러 그룹(32)은 상부의 절반의 필드 패싯 미러(13)를 포함하고, 분리 미러 그룹(33)은 하부의 절반의 필드 패싯 미러(13)를 포함한다. 이 2개의 그룹들(32, 33)의 각각의 분리 미러들(21)은 제어 디바이스(28)에 의해 동일한 방식으로 다시 작동된다. 이것은 분리 미러 그룹들(32, 33)에 대응하는 2개의 분리 패싯들을 포함하는 필드 패싯 미러를 초래할 수 있다. 이 분리 패싯들(32, 33)의 종횡비는 2 x0/y0이다.
도 11에 따르면, 필드 패싯 미러(13)는, 4 x0/y0의 종횡비를 갖고 각각의 경우에 반사면(20)의 전체 로우 폭을 커버하는 총 4개의 분리 미러 그룹들(34 내지 37)로 분할된다. 따라서, 이 4개의 분리 미러 그룹들(34 내지 37)은 상기한 종횡비를 갖는 4개의 분리 패싯들을 규정한다.
도 12에 따르면, 필드 패싯 미러(13)의 분리 미러들(21)은, 각각의 경우에 필드 패싯 미러(13)의 로우에 대응하고 8 x0/y0의 종횡비를 갖는 총 8개의 미러 그룹들(38 내지 45)로 분할된다. 이러한 그룹화는 따라서 총 8개의 분리 패싯들을 갖는 필드 패싯 미러를 만들 수 있다.
도 13에 따르면, 필드 패싯 미러(13)의 분리 패싯들(21)은, 필드 패싯 미러(13)의 각 로우에서 8개의 인접한 분리 미러들(21)이 각각의 경우에 하나의 분리 미러 그룹(46)으로 그룹화되도록, 그룹화된다. 이 분리 미러 그룹들(46)의 각각은 8:1의 종횡비를 갖는다. 필드 패싯 미러(13)의 분리 미러들의 각 로우(22)가 예컨대 80개의 분리 미러들(21)로 이루어지면, 도 13의 그룹화에 따른 각 로우(22)는 총 80개의 분리 미러 그룹들(46)까지 추가되는 10개의 분리 미러 그룹들(46)을 포함한다. 도 13에 따른 실시예에 있어서, 이것은 필드 패싯 미러로 하여금 80개의 분리 패싯들로 형성될 수 있게 한다.
도 14 및 15는, 앞서 설명된 도 2 내지 7 및 9 내지 13에 따른 그룹들로 분할되는 총 19개의 분리 미러 그룹들을 갖는 필드 패싯 미러에 의한, 동공 패싯 미러(14)에 유사한, 동공 패싯 미러(47)의 조명을 도시한다. 도 8에 따른 동공 패싯 미러(14)와 같이, 동공 패싯 미러(47)의 둥근 동공 패싯 판(29)은, 로우 및 칼럼들의 래스터 패턴을 형성하는 분리 미러들(21)로 커버된다. 동공 패싯 미러(47)의 조명되는 분리 미러들(21)은 해칭된 선들에 의해 표시된다. 조명은 각각의 경우에 원형 경계를 갖는 분리 미러 그룹들(48)로 지향된다. 분리 미러 그룹들(48)의 원형 경계내에서, 조명 광의 빔 경로내에서 상류에 배열되는 필드 패싯 미러에 의해 만들어지는 다수의 이미지들이 배열된다 - 상기 다수의 이미지들은 원형으로 추정되는 방사원의 이미지들이거나 상기 방사원의 이미저의 이미지임 -. 이러한 방사원은 원형으로 가정되는 도 1의 방사원(1)에 따라 구비될 수 있다. 상기 방사원의 이러한 이미지는 조명 및 이미징 광의 빔 경로의 중간 초점내에 배치될 수 있다. 이 다수의 이미지들은 또한 소스 이미지들로도 칭해진다. 동공 패싯 미러(47)의 중간 초점내에서의 소스의 이미지가 원형으로부터 일탈하면, 분리 미러 그룹들(48)의 형태가 소스 이미지들의 형태에 대응되게 적합될 수 있다. 방사원의 이미지가 예컨대 타원형이면, 동공 패싯 미러(47)상의 분리 미러 그룹들(48)이 대응하는 타원형 경계를 가질 수 있다. 방사원의 이미지들 또는 소스 이미지들의 다른 형태들 - 예컨대, 동공 패싯 미러(47)상에서의 최적의 틸팅을 초래하는 육각형 또는 직사각형 형태 - 도 생각될 수 있다. 방사원 이미지의 그러한 형태는 중간 초점면내에서의 대응하는 다이어프램(diaphragm) 배열에 의해 획득될 수 있다. 조명 광학소자(4)는, 동공 패싯 미러(47)의 분리 미러 그룹들(48)의 그룹 배열을 변화시키는 것에 의해, 다이어프램의 변화로 인한, 중간 초점내에서의 방사원 이미지의 형태의 변화에 적합될 수 있다. 이것은, 방사원이 변화될 때, 예컨대, GDPP 방사원이 LPP 방사원으로 대체될 때에도 적용될 수 있다.
동공 패싯 미러(47)의 분리 미러 그룹들(48)의 각각은 정확히 하나의 분리 미러 그룹에 의해, 예컨대 필드 패싯 미러(13)의 분리 미러 그룹들(19)(예컨대, 도 7)에 의해 조명된다. 동공 패싯 미러(47)에는 총 19개의 조명되는 분리 미러 그룹들(48)이 구비된다. 이미 언급된 바와 같이, 상류의 필드 패싯 미러(13)는 19개의 할당된 분리 미러 그룹들(19)로 분할된다. 필드 패싯 미러(13)의 19개의 분리 미러 그룹들(19)의 동공 패싯 미러(47)상의 19개의 분리 미러 그룹들(48)로의 할당은, 필드 패싯 미러(13)로부터 오브젝트 필드(5)로의 EUV 방사(10)의 광 경로에 대한 총 19개 채널들을 초래한다.
동공 패싯 미러의 분리 미러 그룹들(48)의 각각 내에서, 9개의 중앙 분리 미러들(21)이 완전하게 조명되며 중앙 분리 미러들(21)을 에워싸는 추가적인 분리 미러들(21)이 부분적으로 조명된다. 이러한 적어도 부분적으로 조명되는 분리 미러들(21)은 제어 디바이스(28)에 의해 그룹으로서 작동될 분리 미러 그룹(48)을 형성한다. 분리 미러 그룹들(48)의 각각의 분리 미러들(21)은, 필드 패싯 미러(13)의 할당된 분리 미러 그룹, 예컨대, 도 7에 따른 실시예의 할당된 분리 미러 그룹(19)의 이미지가 동공 패싯 미러(47)의 분리 미러 그룹(48) 및 하류의 트랜스미션 광학소자(16)를 통해 오브젝트 필드(5)내로 이미징되도록, 작동된다. 필드 패싯 미러(13)에 의해, 제2 방사원들이 투영 평면(7)의 동공면내로 이미징되는 분리 미러 그룹들(48)의 위치에 제2 방사원들이 만들어진다. 따라서, 동공 패싯 미러(47)상의 EUV 방사(10)의 강도 분포는 오브젝트 평면(6)내의 오브젝트 필드(5)의 조명의 조명 각도 분포에 직접적으로 상관된다.
도 14에 따른 조명 예에 있어서, 분리 미러 그룹들(48)은 동공 패싯 판(29)을 가로질러 대략적으로 동등하게 분포된다. 따라서, 오브젝트 필드(5)는 동공 패싯 판(29)의 전체 개구를 가로질러 분포되는 조명 각도들에 의해 조명된다. 그 결과는, 투영 광학소자(7)의 이미지측 개구수에 의해 규정되는 전체 방향들로부터의 오브젝트 필드(5)의 대략적으로 일반적인 조명이다.
도 15는 도 14와는 상이한 동공 패싯 미러(47)의 조명을 도시한다 - 환언하면, 투영 노광 장치(1)의 조명 설정이 변경되었음 -. 동공 패싯 판(29)의 에지에서 분리 미러 그룹들(49)은, 필드 패싯 미러(13)의 개개의 분리 미러 그룹들, 예컨대, 도 7에 따른 분리 미러 그룹(19)의 집단적 작동 또는 그룹와이즈(groupwise)에 의해 조명된다. 그 결과는 오브젝트 면(6)내의 오브젝트 필드(5)의 조명의 대략적으로 고리 모양의 조명 각도 분포이다. 이러한 식으로 조정될 수 있는 조명 분포의 링의 최대 폭은 분리 미러 그룹들(49)의 폭에 의해 규정된다.
조명 설정이 도 15에 따라 변경된 때조차도 개별적인 필드 패싯들이 오브젝트 필드(5)내로 이미정되는 것을 보장하기 위해, 분리 필드 패싯들, 예컨대, 도 7에 따른 실시예의 분리 미러 그룹들(19) 및 분리 미러 그룹들(49)의 분리 미러들(21)의 양쪽은, 제어 디바이스(28)를 이용하여 개개의 그룹들을 틸팅하는 것에 의해, 상응하게 재조정될 필요가 있다. 환언하면, 한편의 필드 패싯 미러(13)의 분리 미러 그룹들과 다른 편의 동공 패싯 미러(47)의 미러 그룹들이, 조명 설정이 변화되었을 때, 제어 디바이스(28)에 의해 동기적으로 작동될 필요가 있다.
도 15에 따른 조명은 도 8에 따른 동공 패싯 미러(14)를 이용할 때에도 가능하다. 상기 동공 패싯 미러(14)는, 오브젝트 필드(5)에서의 최소 및 최대 조명 각도들에 의해 상이한 다양한 고리 모양의 조명 설정들로 오브젝트 필드를 조명하는데 사용될 수 있다.
도 16은 필드 패싯 미러(13)의 분리 미러들(21)의 그룹화의 다른 대안적인 버전을 도시한다. 도 16에 따른 필드 패싯 미러(13)의 분리 미러 그룹(50)은, 분리 미러 그룹(50)이 아치형의 엔벨로우프(envelope)(51)를 갖도록, 그룹화된다. 엔벨로우프(51)는 대응하는 분리 미러들(21)을 선택하는 것에 의해 재생된다. 분리 미러 그룹(50)은 도 16에 해칭으로 도시된 그 분리 미러들(21)을 포함한다. 상응하게, 분리 미러 그룹(50)은 오브젝트 면(6)내의 아치형 또는 고리 모양의 오브젝트 필드(5)를 상응하게 조명하기 위한 아치형의 분리 패싯을 형성한다. 마찬가지로, 아치형 또는 고리모양의 엔벨로우프들(51)로 복수의 그러한 분리 미러 그룹들(50)이 대응하게 형성된 오브젝트 필드들을 조명하기 위해 형성될 수 있다. 앞서 설명된 다른 분리 미러 그룹화들과 같이, 분리 패싯들(21), 필드 패싯 머리(13)의 개수가, 한편으로는 분리 미러 그룹들의 요구되는 개수에 따라 그리고 다른 편으로는 분리 미러들(21)의 틸팅 또는 래스터 패턴에 의해 요구되는 엔벨로우프, 예컨대 엔벨로우프(51)를 재생하기 위해 요구되는 해상도에 따라 제공될 필요가 있다.
도 17 내지 20은 필드 패싯 미러(13)의 분리 패싯들(19) 또는 분리 미러 그룹들의 배열들 또는 구성들의 다양한 예들을 도시한다. 도 2 내지 16을 참조하여 앞서 기술된 바와 같이, 이 분리 미러 그룹들(19)의 각각은 그 다음에, 상세하게 도시되지는 않은 복수의 분리 미러들(21)로 분할된다. 도 17 내지 20에 도시된 그룹화들의 각각은 하나의 그리고 동일한 필드 패싯 미러(13)에 의해 만들어질 수 있다. 도면은 각각의 경우의 분리 미러 그룹들(19)만을 도시한다; 사용하지 않는 이 그룹들 사이에 구비되는 다른 편의 분리 미러들은 도시되지 않았다.
도 17에 따른 필드 패싯 미러(13)는 분리 미러 그룹들(19)의 총 4개의 칼럼들(52)로 그룹화된다. 필드 패싯 미러(13)는 중앙의 십자 형태의 영역(53)내의 상류의 구성 요소들에 의해 그늘진다; 이러한 영역(53)에서, 인접한 분리 미러 그룹들(19)이 서로로부터 더 먼 거리로 배열됨으로써, 영역(53)내에는 그룹화된 분리 미러들이 없다.
도 18에 따른 필드 패싯 미러(13)는, 그 다음에 복수의 분리 미러들(도시되지 않음)로 이루어지는 분리 미러 그룹들(19)이 도 7에 도시된 섹션에 의해 예시되는 방식으로 서로에 대해 오프셋되는 칼럼들로 배열되도록, 그룹화된다. 이러한 분리 미러 그룹들(19)의 구성에 있어서, 중앙에서 폭이 증가하는 필드 패싯 미러(13)의 수평 중앙 부분(54)은 그룹화된 분리 미러들(21)에 의해 커버되지 않는다. 부분(54)도, 도 18에 따른 필드 패싯 미러(13)의 상류에 배열되는, 구성 요소들에 의해 그늘진다.
도 18에 따른 필드 패싯 미러(13)에 있어서, 분리 미러 그룹들(19)은 슈퍼그룹(supergroup)들(55)로 배열된다. 인접한 슈퍼그룹 로우들의 일부는, 도 18에 따른 필드 패싯 미러(13)의 원형 엔벨로우프를 형성하기 위해 서로에 대해 오프셋된다.
도 17 및 18에 따른 필드 패싯 미러(13)의 분리 미러 그룹들(19)은 13:1의 종횡비 x/y를 갖는다. 이 분리 미러 그룹들(19)은 따라서 13개의 인접한 정사각형 분리 미러들(21)에 의해 형성될 수 있다
도 19는 복수의 아치형 또는 고리 모양의 분리 미러 그룹들(50)의 예를 도시한다 - 각각의 분리 미러 그룹(50)은 도 16을 참조하여 앞서 기술된 것에 대응함 -. 분리 미러 그룹들(50), 환언하면 도 19에 따른 필드 패싯 미러(13)의 분리 패싯들은, 도 19에서 각각이 하나 위에 또 하나가 있도록 배열되는 10개의 분리 미러 그룹들(50)의 슈퍼그룹들(56)로 배열된다. 슈퍼그룹들(56)은 그 다음에 5개의 슈퍼그룹 칼럼들로 배열된다. 슈퍼그룹(56)은 대칭적으로 배열되며, 그것은 그것들을 원형 엔벨로우프(57)내에서 내접될 수 있게끔 한다.
도 20은 아치형 또는 고리모양의 분리 미러 그룹들(50)로 분할되는 필드 패싯 미러(13)의 다른 구성을 도시한다. 분리 미러 그룹들(50)은 그 다음에, 각각의 경우에 상이한 개수의 분리 미러 그룹들(50)을 포함하는 슈퍼그룹들(58)로 그룹화된다. 도 20의 좌측 바닥에 도시된 슈퍼그룹(58a)은 예컨대 9개의 분리 미러 그룹들(50)로 분할된다. 다른 슈퍼그룹들(58)은 더 많거나 더 적은 분리 미러 그룹들(50)을 갖는다. 컬렉터(11)에 의해 형성되는 중앙의 그늘짐으로 인해서, 필드 패싯 미러(13)의 중앙 부분(59)에는 분리 미러 그룹들(13)이 구비되지 않는다.
도 19 및 20에 따른 실시예들의 분리 미러 그룹들(50)의 종횡비도 x/y = 13:1에 상당한다 - x는 x-방향에서의 분리 미러 그룹들(50) 중 하나의 폭을 말하고 y는 y-방향으로의 그것의 연장을 말함 -.
도 21 및 22는 동공 패싯 미러(47)의 분리 미러 그룹들(60, 61)로의 다양한 분할들을 나타낸다. 다시, 도면들은 분리 미러 그룹들만을 나타낸다; 그룹화된 분리 미러들 사이의 분리 미러들은 도시되지 않았다. 도 21 및 22에 따른 분할들은 하나의 그리고 동일한 동공 패싯 미러(47)를 이용하여 획득될 수 있다.
도 21에 따른 실시예에 있어서, 동공 패싯 미러(47)는 중앙 영역(62)에 관하여 복수의 동심원들을 형성하는 분리 미러 그룹들(60)로 분할된다. 각각의 분리 미러 그룹들(60)은, 도 8, 14 및 15를 참조하여 앞서 설명된 바와 같이, 그 다음에 동공 패싯 미러(47)의 복수의 분리 미러들(21)로 이루어진다. 동공 패싯 미러(47)는 총 개수가 100개보다 더 많은 분리 미러 그룹들(60)을 포함한다; 도 21에 따른 실시예에 있어서, 분리 미러들(21)의 개수는 1,000개보다 더 많은 개수에 상당한다.
도 22에 따른 분리 미러들(21)은, 둥근 분리 미러 그룹들(61)이 대략 육방 최밀 충진(hexagonal-close packing)으로 배열되도록, 그룹화된다.
도 21 및 22에 따른 그룹화들은, 주어진 조명 각도 분포를 가진 조명 설정들을 형성하기 위해 특히 적합한 것으로 증명되었다. 요구된다면, 일부의 분리 미러 그룹들(60, 61) 또는 그것들의 슈퍼그룹들은, 특정 조명 설정을 규정하기 위해 필드 패싯 미러(13)의 그것들의 상류의 분리 미러 그룹들(19)을 틸팅하는 것에 의해 차단될 수 있다.
도 2에 대한 대안으로서, 도 23은 분리 미러들(21)로 커버되는 상기한 패싯 미러들 중 하나의 반사면(20)의 틸팅을 도시한다. 도 23에 따른 틸팅의 분리 미러들(21)도 정사각형이다. 분리 미러들(21)은 로우 및 칼럼의 래스터 패턴으로 배열되지 않고, 인접한 칼럼들이 분리 미러들(21)의 에지 길이의 절반만큼 서로에 대하여 오프셋된다.
도 23에 따른 틸팅은 아치형 또는 고리 모양의 분리 미러 그룹들, 예컨대, 도 19 및 20에 따른 분리 미러 그룹들(50)을, 로우 및 칼럼의 래스터 패턴으로 배열된 틸팅보다 주어진 최대의 허용 가능한 손실에서 더 낮은 분리 미러 또는 픽셀 해상도를 요구하는, 엔벨로우프(51) 다음으로 적은 손실로 형성될 수 있게 한다.
도 24는 대안적인 조명 광학소자를 포함하는 투영 노광 장치(1)를 도시한다. 도 1 내지 23을 참조하여 앞서 이미 설명된 것에 대응하는 구성 요소들은 동일한 참조 번호를 갖고 다시 상세하게 논의되지는 않는다.
방사원(3)의 하류의 제1 구성 요소는, 그게 아니었으면 도 1에 따른 배열로 컬렉터(11)의 기능을 가졌을, 다발-형성 컬렉터(63)이다. 컬렉터(63)의 하류에는 경면 반사경(64)이 배열된다. 상기 경면 반사경(64)은, EUV 방사(10)가 오브젝트 면(6)내의 오브젝트 필드(5)를 조명하도록 입사 EUV 방사(10)를 형성하며, 그것은 주어진, 예컨대 균질적으로 조명되는, 도 24에 도시되지 않은 투영 광학소자의 동공 면(65)내의, 원형 경계를 가진 동공 조명 분포, 환언하면 대응 조명 설정을 초래한다 - 상기 동공 면(65)은 레티클의 하류에 배열됨 -. 경면 반사경(65)의 효과는 미국 특허 US 2006/0132747 Al에 기술되어 있다. 상기한 패싯 미러들과 같이, 경면 반사경(64)의 반사면은 분리 미러들(21)로 분할되어 있다. 조명 요구 사항에 따라, 경면 반사경(64)의 이 분리 미러들은 분리 미러 그룹들로, 환언하면 경면 반사경(64)의 패싯들로 그룹화된다.
도 25는 도 1에 따른 조명과는 상이한 동공 패싯 미러(14)의 대안적인 조명을 도시한다. 도 1 내지 23을 참조하여 앞서 설명된 것에 대응하는 구성 요소들은 동일한 참조 번호들을 갖고 다시 상세하게 논의되지는 않는다. 도 25에 있어서, 조명 시스템(2)은 동공 패싯 미러(14)를 포함해서 동공 패싯 미러(14)까지 도시되었다.
도 1에 따른 조명 시스템(2)과는 대조적으로, 도 25에 따른 조명 시스템(2)에는 컬렉터(11)와 필드 패싯 미러(13) 사이의 중간 초점면이 구비되어 있지 않다. 도 25에 보다 상세하게 도시되지 않은 필드 패싯 미러(13)의 분리 미러 그룹들의 반사면들은 평면의 면들일 수 있다.
상기한 필드 패싯 미러(13)의 분리 미러 그룹들의 다양한 실시예들 중 하나에 있어서, 분리 미러들(21) 중 일부의 작동은 이러한 그룹의 나머지 분리 미러들(21)과는 개별적으로 상이할 수 있다, 환언하면 그것들은 분리 미러 그룹에서 제외될 수 있다. 따라서, 이런식으로 형성되는 필드 패싯 미러(13)의 다양한 분리 패싯들에는, 오브젝트 필드(5)에서의 조명 강도의 균질성을 교정하기 위해 유용할 수 있는 특정 블록킹(blocking) 또는 셰이딩(shading)이 개별적으로 제공될 수 있다.
따라서, 동공 패싯 미러(14, 47)의 분리 미러 그룹들의 상기한 다양한 실시예들 중 하나에 있어서, 분리 미러들(21) 중 일부의 작동이 이러한 그룹의 다른 분리 미러들(21)과는 개별적으로 상이할 수 있다, 환언하면 그것들이 분리 미러 그룹에서 제외된다. 동공 패싯 미러(14, 47)상의 다양한 소스 이미지들(예컨대, 도 14 및 15에서 48)은 특정 블록킹 또는 셰이딩에 의해서 개별적으로 차단될 수 있다. 이것은 오브젝트 필드(5)의 조명 각도들을 가로지르는 특정 강도 분포들을 교정하기 위해 또는 설정하기 위해 유용할 수 있다.
따라서, 경면 반사경(64)에 결합되는 분리 미러 그룹들의 분리 패싯들은 분리 미러 그룹에서 개별적으로 제외될 수 있다.
도 26은 조명 광학소자의 다른 실시예를 도시한다. 도 1 내지 25를 참조하여 앞서 설명된 것에 대응하는 구성 요소들과 기능들은 동일한 참조 번호를 갖고 다시 상세하게 논의되지는 않는다.
방사원(3)의 하류의 제1 구성 요소는, 환언하면 패싯들이 구비되지 않는, 연속적인 미러 면을 가진 컬렉터(66)이다. 미러 면은 예컨대 타원형 미러 면일 수 있다. 컬렉터(66)는 네스트화된 컬렉터(nested collector)로 대체될 수 있다.
중간 초점면(12)의 하류에는, EUV 방사(10)가 컬렉터 패싯 미러(67)에 부딪친다. 상기 컬렉터 패싯 미러(67)는, 그곳에 고정된 타원형 분리 미러들(69)의 x/y 어레이에 결합된 평면 캐리어 판(68)을 갖는다. 타원 분리 미러들(69)은, EUV 방사(10)의 최대 부분을 컬렉터 패싯 미러(67)의 타원 분리 미러들(69)에 의해 반사되게끔 하는, 밀접하여 인접된 반사면들을 갖는다. 타원 분리 미러들(69)은, 타원 분리 미러들(69)로 하여금 개별적으로 틸트될 수 있게 하는 액츄에이터들(도시되지 않음)에 연결된다. 타원 분리 미러들(69)은, 그것들이 EUV 방사(10)의 동일한 입체각을 모두 흡수하도록 형성된다.
방사원(3)은 타원 컬렉터(66)의 하나의 초점에 배치되고, 중간 초점면(12)의 중간 포커스는 그것의 다른 초점상에 배치된다.
컬렉터 패싯 미러(67)의 하류에는, 경면 반사경(70)이 EUV 방사(10)의 빔 경로내에 배열된다 - 경면 반사경(70)은 분리 미러들(21)의 x/y 어레이를 포함함 -. EUV 방사(10)에 의해 부딪쳐지는 각각의 타원 분리 미러(69)는, EUV 방사(10)를, 부딪쳐진 타원 분리 미러들(69)의 개수에 대응하는 다수의 방사 채널들로 분할되게끔 하는, 다음의 빔 경로내의 경면 반사경(70)의 분리 미러들(21) 중 하나에 할당된다 - 이 방사 채널들의 각각은 타원 분리 미러들(69) 중 하나에 부딪치며 그 다음에 경면 반사경(70)의 각각의 할당된 분리 미러(21)에 부딪침-.
중간 초점면(12)의 중간 포커스는 타원 분리 미러들(69)의 초점들의 각각에 배치되며, 타원 분리 미러(69)의 제2 초점은 상기 타원 분리 미러(69)에 할당되는 경면 반사경(70)의 분리 미러(21)에 배치된다. 환언하면, 경면 반사경(70)은 방사원(3)의 소스 이미지들(72)을 위한 이미지 면(71)내에 배치된다. 그 소스 이미지들(72)은 이미지 면(71)내에 분산 배열된다, 환언하면 그것들이 서로로부터 거리를 두고 배열된다. 이것은, 경면 반사경(70)의 위치에서의 소스 이미지들(72)의 평면도인, 도 28에 도시되어 있다. 경면 반사경의 조명되는 분리 패싯들(21)의 개수에 대응하여, 등거의 x/y 래스터 패턴으로 배열되는 총 수백의 그러한 소스 이미지들(72)에 제공된다. 총 소스 이미지들(72)의 엔벨로우프는 대략적으로 콩팥 또는 콩의 형태를 갖는다.
경면 반사경(70)상의 소스 이미지들(72)로부터 나아가서, 레티클이 배열된 오브젝트 면(6)내의 오브젝트 필드(5)의 오브젝트 필드 부분들(73)은 개별 방사 채널들을 통해 조명된다. 오브젝트 필드 부분들(73)은 오브젝트 필드(5)를 대체로 일그러진 직사각형 x/y 래스터 패턴의 방식으로 커버한다.
오브젝트 필드 부분들(73)은, 그것들이 각각의 경우 하나의 소스 이미지(72)에 할당됨에 따라, 소스 스폿(spot)들로도 칭해진다. 오브젝트 필드 부분들(73)의 조명된 형태는 타원 분리 미러들(69)의 경계 형태와 상관된다.
경면 반사경(70)은 도 26에 따른 조명 광학소자의 동공면내에 배열되지 않는다.
오브젝트 필드(5)는 예컨대 y-방향으로 8 mm의 슬롯 폭 및 x-방향으로 104 mm의 폭을 가진 부분적으로 고리 모양의 형태를 갖는다. 경면 반사경(70)의 분리 미러들(21)은, 오브젝트 필드 부분들(73)에 의해 형성되는 오브젝트 필드가 오브젝트 면(6)내에서 조명되고 요구되는 강도 분포가 하류의 투영 광학소자의 동공면과 일치하는 조명 광학소자의 하류의 동공면내에서 획득되며 따라서 요구되는 조명 각도 분포가 레티클에서 획득되는 것을 보장하도록, EUV 방사의 방사 채널을 형성한다.
도 26은, 인접한 타원 분리 미러들(69)이 EUV 방사(10)로 하여금 경면 반사경(70)의 인접한 분리 미러들(21)에 부딪치게끔 하는 채널 바이 채널(channel-by-channel)의 개괄도이다. 그러한 인접한 관계는 필수가 아니다. 사실, 그러한 인접한 매열들을 제거하는 것이 요구될 수 있음으로써, 예컨대, 한편의 타원 분리 미러들(69)과 다른 편의 경면 반사경(70)의 분리 미러들(21)의 근접 관계가 포인트 반전, 미러링(mirroring)을 통해서 또는 식별 기능을 통해서, 서로에게로 변형되지 않을 수 있다. 이것은 이하에서는, 경면 반사경(70)의 분리 미러들(21)에 대한 타원 분리 미러들(69)의 대안적인 관계를 도시하는 도 27에 예시된 근접 관계의 혼합으로도 칭해진다.
근접 관계가 도 27에 따라 혼합될 때, 이것은, 오브젝트 필드(5)로 하여금 양호한 균질성으로 조명될 수 있게 하는, 경면 반사경(70)에 의해 오브젝트 필드 부분들(73)의 대응 혼합될 조명을 초래한다. 이것은, 예컨대, 미러 면들의 선택적 오염의 결과로서 경면 반사경(70)의 상류에 배열되는 광학 시스템들의 반사성의, 특히 표면을 가로지르는, 변화들 또는 방사원(3)의 방출 특성의 변화들에 기인하는, 오브젝트 필드 조명의 균질성에 대한 영향들을 감소시킨다.
경면 반사경(70)의 분리 미러들(21)에 대한 타언 분리 미러들(69)의 혼합된 할당은, 예컨대, 미국 특허 US 6,438,199 Bl에 개시된 알고리즘들을 이용하여 일어날 수 있다. 이러한 할당은, 예컨대, 경면 반사경(70)의 인접한 분리 미러들(21)이 인접하지 않은 타원 분리 미러들(69)로부터의 광과 부딪치는 것을 초래하는, 십자형일 수 있다.
경면 반사경(70)의 분리 미러들(21)의 개수는 컬렉터 패싯 미러(67)의 타원 분리 미러들(69)의 개수를 초과한다. 이러한 식으로, 타원 분리 미러들(69)의 액츄에이터들은, 경면 반사경(70)의 분리 미러들(21)의 다양한 서브그룹들이 오브젝트 필드(5)의 다양한 요구되는 조명들을 획득하도록 조정되도록, 작동될 수 있다. 소스 이미지들(72)의 각각은 분리 미러들(21)의 정확히 하나상에서 생성될 수 있다.
경면 반사경(70)의 분리 미러들(21)은 각각의 경우에, 그것들을 이미지 면(71)에 관하여 개별적으로 틸트될 수 있게끔 하는, 액츄에이터들에도 연결된다. 타원 분리 미러들(69)을 조정한 후에, 이것은 하나로 하여금 경면 반사경(70)의 분리 미러들(21)을 상응하게 재조정할 수 있게끔 한다.
도 26 및 27은 오브젝트 필드 포인트들(73)의 그룹에 그리고 경면 반사경(70)의 분리 미러들(21)의 그룹(75)에 할당되고 y-방향을 따라 연장하는 타원 분리 미러들(69)의 그룹(74)의 개략도를 도시한다 - 분리 미러들(21)의 그룹(75)과 오브젝트 필드 포인트들(73)의 그룹은 y-방향을 따라서도 연장함 -.
한편의 컬렉터 패싯 미러(67)의 액츄에이터들과 다른 편의 경면 반사경(70)은, 타원 분리 미러들(69) 또는 경면 반사경(70)의 분리 미러들(21)이 그룹들로 작동될 수 있도록, 작동될 수 있다. 그러한 특정 그룹들의 작동은 하지만 필수는 아니다.
컬렉터 패싯 미러(67)는 분리하여 사전 제조되는 타원 분리 미러들(69)로부터 조립될 수 있다. 컬렉터 패싯 미러(67)를 제조하는 다른 방법은, 예컨대 단일-다이아몬드 공정을 통해서, 상기 컬렉터 패싯 미러(67)를 모놀리식적으로(monolithically) 형성될 수 있게끔 한다. 컬렉터 패싯 미러(67)는 그 다음에, HSQ 또는 폴리아미드 스핀-코팅에 의해 평탄해진다. HSQ 방법은 “파라드 살마씨 등(Farhad Salmassi et al.), Applied Optics, 볼륨(Volume) 45, 넘버 11, 페이지 2404 내지 2408”에 기술되어 있다.
컬렉터 패싯 미러(67)를 제조하는 다른 방법은, 컬렉터 패싯 미러(67)를 전기 도금에 의해 베이스 몸체로부터 동 전기적으로(galvanically) 형성될 수 있게끔 한다.
방사원(3), 컬렉터(66) 및 컬렉터 패싯 미러(67)는 다수 소스 어레이로 집적될 수 있다. 이러한 타입의 다수 소스 어레이는 이러한 어플리케이션에 완전하게 통합되는 것으로 간주되는, 독일 특허 출원 번호 10 2007 008 702.2에 기술되어 있다. 조명될 영역에 있어서, 환언하면 오브젝트 필드에 있어서, 다수 소스 어레이의 각각의 방사원은 부분적인 영역만을, 환언하면 오브젝트 필드 부분만을 조명하는 것이 가능하다.
타원 분리 미러(69) 또는 분리 미러(21)가 굴곡져 있으면 앞서 설명된 실시예들의 분리 미러들(21)조차도 다음에는 복수의 평면 마이크로 미러들로 구성될 수 있다 - 상기 복수의 평면 면들은 다면체를 닮도록 굴곡진 분리 미러(21)의 또는 타원 분리 미러(69)의 개개의 굴곡진 면에 가까움 -.
일반적으로, 타원 분리 미러들(69) 또는 굴곡진 분리 미러들(21)의 굴곡진 면들에 가까운 마이크로 미러들은 다음에는 액츄에이터들에 의해 변위될 수 있다. 이러한 경우에 있어서, 마이크로 미러들은 분리 미러들(69, 21)의 이미징 특성들에 영향을 주는데 사용될 수 있다.
이러한 타입의 마이크로 미러들은, 예컨대, 분리 미러들이 옆으로 부착된 스프링 조인트들을 이용하여 이동 가능하게 장착되고, 정전적으로(electrostatically) 작동될 수 있는 마이크로 미러 어레이(MMA)처럼 설계될 수 있다. 예컨대, 유럽 특허 EP 1 289 273 Al에 기술되어 있는 이러한 타입의 마이크로 미러 어레이들은 “MEMS(마이크로 전자기계 시스템)”으로서 당업자에게 알려져 있다.
앞서 기술된 실시예들에 있어서, 분리 미러들(21 및 69)은, 투영 노광 장치(1)의 오브젝트 필드(5)내에서, EUV 방사(10), 환언하면 조명 광을 중첩하기 위한 조명 채널들을 제공한다. 그러한 조명 채널들(AK)은 도 26 및 27에 개략적으로 예시되어 있다. 대응하는 조명 채널들도 도 1 내지 25에 따른 실시예들에서 찾을 수 있다. 분리 미러들(21 및 69)은, 이 분리 미러 조명 채널들이 오브젝트 필드(5)보다 더 작은 오브젝트 필드(5)내의 오브젝트 부분들을 조명하는 그러한 연장을 가진 미러 면들을 갖는다. 이것은 경면 반사경(70)에 대해서 도 26 및 27에 개략적으로 도시되어 있다. 상이한 분리-미러 조명 채널들에 할당되는 오브젝트 필드 부분들을 조립하는 것에 의한 이러한 오브젝트 필드(5)의 조명은 도 1 내지 25에 따른 실시예들에도 대체로 적용될 수 있다.
도 29는 총 22개의 조명 채널들에 의해 조명되는 예시적인 오브젝트 필드(5)의 개략도이다 - 상기 조명 채널들은 대응 개수의 22개의 오브젝트 필드 부분들(76)을 조명함 -. 오브젝트 필드 부분들(76) 사이의 경계들(77, 78)은 각각 x-방향 또는 y-방향으로 연장한다.
웨이퍼 홀더 및 레티클 홀더가, 도 29에 따른 오브젝트 필드 조명을 갖춘 투영 노광 장치(1)를 이용하는 투영 노광 동안에, 동기적으로 변위되는 스캐닝 방향 yscan은 y-방향에 정확히 나란하지는 않다, 환언하면 그것은 오브젝트 필드(5)의 긴 필드 축 x에 수직하고 않고 각도 α를 통해 상기 필드 축 x에 관하여 틸트된다. 따라서, 오브젝트 필드(5)를 통해 스캔될 때, 레티클 상의 포인트는, 스캐닝 프로세스 중 일부 동안에, 2개의 오브젝트 필드 부분들(76) 사이에서 y-방향으로 연장하는 경계들(78) 중 하나만이라도 본다. 이것은 이미징될 레티클 상의 포인트들이 오브젝트 필드(5)를 통한 전체 스캐닝 프로세스 동안 내내 경계들(78) 중 하나를 따라 이동하는 것을 방지하며, 그것은 오브젝트 필드가 부분적으로 조명될 때에 노출되는 이미징될 레티클 상의 포인트들의 강도의 균질성을 향상시킨다.
대안적으로, 오브젝트 필드 부분들은, 스캐닝 방향을 따라 오브젝트 필드 포인트들 사이에 연속적인 경계들이 없도록 배열될 수 있다. 서로에 대해 오프셋되는 중첩된 오브젝트 필드 부분들의 그러한 배열은, 예컨대, 90°를 통해 회전되는 도 23에 따른 배열에 대응하는 오브젝트 필드(5)가 도 23에 따른 분리 패싯들(21)에 대응하는 오브젝트 필드 부분들을 이용하여 조명되면, 획득된다. 이러한 경우에 있어서, 스캐닝 방향에 수직하여 서로에 대해 오프셋되는 오브젝트 필드 부분들의 로우가 있고, 그 결과로서 스캐닝 방향 yscan이 y-방향과 정확히 일치하는 경우에서조차, 오브젝트 필드(5)를 통해 스캔될 때의 내내 오브젝트 필드 부분들 사이의 경계를 따라 이동하는 레티클 상에 단일의 포인트가 없게 된다. 따라서, 이러한 타입의 오프셋 배열은 또한 필드 포인트들이 스캐닝 프로세스 동안에 노출되는 강도의 원치 않는 비균질성을 회피하는데 도움을 준다.
대응 균질화는, 오브젝트 필드 부분들이, 스캐닝 방향에 나란하지 않는 에지들이 있는 경계 형태들을 가지면, 획득될 수 있다. 이것은, 예컨대, 오브젝트 필드 부분들의 형태를 규정하는 사다리꼴 또는 마름모꼴 분리 미러들(21)에 의해 획득될 수 있다.
분리 미러들(21, 69)의 뚜렷한 에지들이 이미지 필드내로 이미징되는 것 - 그것은 이미지 필드(8)내의 원치 않는 강도 비균질성의 원인이 될 것임 -을 방지하기 위해, 분리 미러들(21, 69)의 이미지들의 특정 디포커싱(defocussing) 또는 미러 이미지의 특정 수차가 트랜스미션 광학소자(15)를 이용하여 달성될 수 있다. 이러한 목적을 달성하기 위해, 트랜스미션 광학소자(15)는, 분리 미러들(21, 69)의 이미지들의 뚜렷한 에지들이 오브젝트 면(6)의 상류 또는 하류에서 생성되도록, 구성될 수 있다.
분리 미러들(21, 69)은, 사용되는 EUV 파장에 대해서 분리 미러들(21, 69)의 반사성을 최적화하기 위해, 몰리브덴 및 실리콘의 분리 층들을 포함하는 다층 코팅을 가질 수 있다.
분리 미러들로 분할되지 않는 동공 패싯들을 포함하는 동공 패싯 미러의 경우에 있어서, 분리-미러 조명 채널들은 하나의 그리고 동일한 동공 패싯에 의해 그룹들로 오브젝트 필드(5)에 트랜스미션될 수 있다. 이 각각의 동공 패싯들은, 이러한 동공 패싯에 할당되는 분리-미러 조명 채널들을 조합하는 그룹 조명 채널을 규정한다. 그룹 조명 채널들의 개수는 그 다음에, 분리 미러들로 분할되지 않는 동공 패싯들의 개수에 대응한다. 그룹 조명 채널의 분리 미러 조명 채널들로의 분할에 따라서, 이 각각의 동공 패싯들 및 각각의 그룹 조명 채널은 그 다음에, 동공 패싯 미러의 다수의 분리 미러들에 할당된다. 조명 각도 분포를 수정하기 위해서, 동공 패싯들의 개수는 그룹 조명 채널들의 개수를 초과할 수 있다.
필드 패싯 미러와 동공 패싯 미러의 양쪽이 분리 미러들(21)로 분할되는 실시예들에 있어서, 필드 패싯 미러의 인접한 분리 미러들(21)은 (도 26 및 27에 따른 경면 반사경의 앞서의 설명과 비교하여) 인접한 동공 패싯 분리 미러들을 통해 트랜스미션될 필요가 없다; 사실, 전체 오브젝트 필드(5)의 조합된 조명에 대해서 공간적으로 무작위적으로 혼합되는, 필드 패싯 분리 미러들과 동공 패싯 분리 미러들의 그룹들이 제공될 수 있다.
하기는, 분리 미러, 예컨대, 도 30 내지 34에 의해, 도 2에 따른 필드 패싯 미러(13)를 형성하는 분리 미러들(21) 중 하나의 실시예의 더욱 상세한 설명이다. 도 1 내지 29를 참조하여 앞서 이미 설명된 것들에 대응하는 구성 요소들은 동일한 참조 번호들을 갖고 다시 상세히 논의되지 않는다.
도 31 내지 34에 다른 분리 미러(21)는 미러 판의 형태인 미러 몸체(79)를 갖는다. 미러 몸체(79)는 실리콘으로 구성된다. 미러 몸체(79)는 EUV 방사(10)를 반사하기 위한, 도 30 내지 34에 다른 실시예에서 대략적으로 정사각형 형태인 직사각형 반사 면(80)을 갖는다. 반사면(80)에는 EUV 방사(10)에 대한 분리 미러(21)의 반사성을 최적화하기 위한 다층 반사 코팅이 구비될 수 있다.
분리 미러(21)의 미러 몸체(79)는 실리콘의 단단한 캐리어 몸체에 관하여 2개의 틸트 축에 대해서 틸트될 수 있다. 이 2개의 틸트 축은 도 30 내지 34에서 w1 및 w2로 표시된다. 이 2개의 틸트 축 w1, w2의 각각은, 각각의 경우에 고형의 조인트인 틸트 조인트(82, 83)의 부분이다. 2개의 틸트 축 w1, w2은 서로에 대해 수직하다. 틸트 축 w1은 x-축에 나란하고 틸트 축 w2은 y-축에 나란하다. 미러 몸체(70) 및 캐리어 몸체(81)는 FiO2 또는 Fi3N4로 형성될 수도 있다. 틸트 축 w2은 미러 몸체(79)의 연장면내에 배치된다. 미러 몸체(79)의 실제 반사면(80)에 이웃하여, 틸트될 수 없는 작은 데드(dead) 표면 영역(83a)가 있다 - 데드 표면 영역(83a)은 도 30에서 틸트 축 w2 위에 도시됨 -. 2개의 틸트 축 w1, w2의 양쪽은 반사면(80)의 평면에 나란하게 연장된다. 대안적으로, 틸트 조인트들(82, 83)은, 2개의 틸트 축 w1, w2 중 적어도 하나가 반사면(80)의 평면내에 배치되도록, 배열될 수도 있다.
분리 미러(21)를 형성하기 위해 적합한 EUV 및 고진공 호환 재료들의 다른 예들은, CVD(화학 기상 증착) 다이아몬드, SiC(실리콘 탄화물), SiO2(실리콘 산화물), Al2O3, 구리, 니켈, 알루미늄 합금 및 몰리브덴을 포함한다.
도 32는 틸트 축 w1의 틸트 조인트(82)의 확대도를 도시한다. 틸트 조인트(83)는 대응적으로 형성된다.
틸트 축 w1에 수직하게, 환언하면 도 32의 z-방향으로, 틸트 조인트(82)는 조인트 두께 S를 갖는다. 틸트 축 w1을 따라, 환언하면 도 32의 x-방향으로, 틸트 조인트(82)는 조인트 길이 L(예컨대, 도 33)을 갖는다. 조인트 길이 L의 크기는 미러 몸체(79)의 횡단 연장에 필적한다.
도 30 내지 34에 따른 분리 미러(21)에 있어서, 조인트 길이 L은 대략 1mm에 상당한다. 도면에서는 과도하게 큰 조인트 두께 S는 1 ㎛에 상당한다. 도 30 내지 34에 따른 분리 미러(21)에 있어서, L/S의 몫은 따라서 대략 1000에 상당한다.
미러 몸체(79)는, 치수, 특히 그 조인트 두께 S와 조인트 길이 L이 틸트 조인트(82)의 그것에 대응하는, 틸트 조인트(83)를 통해 중간 캐리어 몸체(84)와 하나의 조각으로 연결된다. 중간 캐리어 몸체(84)는 또한 실리콘으로 구성된다. 도 33의 단면에 따르면, 중간 캐리어 몸체(84)는 L자 형태이고 틸트 조인트(83)에 바로 인접한 조인트 부분(85), 및 미러 몸체(79)의 아래, 환언하면 반사면(80)으로부터 떨어져 있는 미러 몸체(79)의 측부에 배열된 판 부분(86)을 갖는다. 틸트 조인트(83)의 영역에 있어서, 미러 몸체(79)와 중간 캐리어 몸체(84)의 조인트 부분(85)의 사이에는 거리(B)가 있다 - 거리(B)는 틸트 조인트(83)의 폭으로도 칭해짐 -.
중간 캐리어 몸체(84)의 판 부분(86)은 틸트 조인트(82)를 통해 캐리어 몸체(81)의 조인트 부분(87)과 하나의 조각으로 연결된다. 조인트 부분(87)은 캐리어 몸체(81)의 판 부분(88)에 고정된다. 캐리어 몸체(81)의 판 부분(88)은 중간 캐리어 몸체(84)의 판 부분 아래에 배열된다. 도 31 및 33에 도시된 중립 위치에 있어서, 미러 몸체(79), 중간 캐리어 몸체(84)의 판 부분(86) 및 캐리어 몸체(81)의 판 부분(88)은 서로 나란하다.
2개의 전극 액츄에이터(89, 90)가 2개의 틸트 축 x1, x2(예컨대, 도 34)에 대한 미러 몸체(79)의 제어된 틸팅을 위해 구비된다. 전극 액츄에이터(89)는 틸트 조인트(82)에 할당되고 따라서, w1-액츄에이터(90)로도 칭해진다. 전극 액츄에이터(90)는 틸트 조인트(83)에 할당되고 따라서 w2-액츄에이터로도 칭해진다. w2-액츄에이터의 제1 전극은 전기적으로 전도성인 미러 몸체(79) 그 자체이다. w2-액츄에이터(90)의 반대측 전극(91)은 중간 캐리어 몸체(84)의 판 부분(86)에 적용되는 전도성 코팅이다 - 상기 코팅은 미러 몸체(79)를 면함 -. 분리 미러(21)의 중립 위치에 있어서, 반대측 전극(79)은 대략 100 ㎛의 미러 몸체(79)로부터의 거리를 갖는다.
w2-액츄에이터(90)의 2개의 전극(90, 91)은 신호 라인(92)을 통해 작동 가능한 전압원(93)에 연결된다. 전압원(93)은 신호 라인(94)을 통해 액츄에이터 제어 디바이스(95)에 연결된다.
반대측 전극(91)은 동시에 w1-액츄에이터(89)의 전극이다. w1-액츄에이터(89)의 반대측 전극(96)은 캐리어 몸체(81)의 판 부분(88)에 적용되는 전도성 코팅에 의해 형성된다. w1-액츄에이터(89)의 반대측 전극(96)은 중간 캐리어 몸체(84)의 판 부분(86)을 면하는 캐리어 몸체(81)의 판 부분(88)의 측부에 배열된다. 중립 위치에 있어서, 환언하면 포스 프리(force-free) 상태에서, 중간 캐리어 몸체(84)의 판 부분(86)으로부터의 w1-액츄에이터(89)의 반대측 전극(96)의 거리는 100 ㎛에 상당한다.
전극(91, 96)은 신호 라인(92)을 통해 다른 전압원(97)에 전기적으로 연결된다. 전압원(97)은 다른 제어 라인(98)을 통해 액츄에이터 제어 디바이스(95)에 연결된다.
직류 전압 V1 및 V2(예컨대, 도 34)가 인가될 때, 중간 캐리어 몸체(84)의 판 부분(86)이 캐리어 몸체(81)의 판 부분(88)쪽으로 틸트 축 w1에 대해 제어 가능하게 틸트될 수 있으며, 미러 몸체(79)가 각각의 경우에 주어진 틸트 각도를 통해 중간 캐리어 몸체(84)의 판 부분(86)에 관하여 틸트 축 w2에 대해 제어 가능하게 틸트될 수 있다. 개개의 틸트 축 w1, w2에 대한 틸트 각도의 계수는, 다른 것들 중에서도, 틸트 조인트(82, 83)의 치수에, 전극(90, 91, 96)의 표면적에, 서로로부터의 그들의 거리에, 그리고 물론 인가된 전압 V1, V2의 크기에 좌우된다. 인가되는 전압 V1, V2은 틸트 각도를 2개의 틸트 축 w1, w2에 대해 연속적으로 조정될 수 있게끔 한다.
도 34는 전압 V1 및 V2를 인가한 후에, 중간 캐리어 몸체(84)의 판 부분(86)이 캐리어 몸체(81)의 판 부분(88)에 관하여 캐리어 몸체(81)의 판 부분(88)쪽으로 한편의 틸트 축 w1에 대해 틸트되고, 미러 몸체(79)가 중간 캐리어 몸체(84)의 판 부분(86)에 관하여 중간 캐리어 몸체(84)의 판 부분(86) 쪽으로 틸트 축 w2에 대해 틸트된 틸트 위치를 도시한다. 입사 EUV 방사(10)는, 도 34에 개괄된 바와 같이, 규정된 방식으로 미러 몸체(79)의 반사면(80)에 의해 편향된다.
도 35는 틸트 조인트(82)의 실시예에서의 치수 관계를 나타내는, 도 32의 대안적인 도면이다. 이러한 실시예에 있어서, 조인트 두께 S는 또한 대략 1 ㎛에 상당하고, 조인트 폭 B은 대략 20 ㎛에 상당하며, 도 35의 도면 평면에 수직한 조인트 길이 L은 대략 1 mm에 상당한다.
도 36 및 37은 적어도 하나의 틸트 축 w1, w2에 대해 예컨대 개별적인 미러(21)의 반사면(80)의 제어된 틸팅에 대한 액츄에이터(119)의 다른 실시예를 도시한다. 도 30 내지 35를 참조하여 앞서 이미 설명된 것들에 대응하는 구성 요소들은 동일한 참조 번호를 가지며 다시 상세히는 논의되지 않는다.
액츄에이터(119)는, 도 36 및 37에는 도시되지 않은 조인트 몸체와의 가동 연결을 설치하도록, 액츄에이터(119)에 할당되는 틸트 조인트가 자유 단부(121)(예컨대, 도 36 및 37)에 구비되어 있는 가동 전극(120)을 갖는다. 가동 전극(120)은 편평하고 도 36 및 37의 단면도에 도시된다. 도 36 및 37에 따른 단면도에 있어서, 가동 전극(120)은 굴곡져 있다.
액츄에이터(119)의 반대측 전극(22)은 캐리어 몸체(81)의 판 부분(88)과 견고하게 연결되어 있다. 반대측 전극(122)은, 예컨대, 캐리어 몸체(81)의 판 부분(88)에 적용되는 코팅이다. 가동 전극(120)과 반대측 전극(122)의 사이에는 층이 유전체(123)의 형태로 배열되어 있다. 유전체(123)는 반대측 전극(122)상의 편평한 코팅일 수 있다.
반대측 전극(122)은 접촉 영역(124)에서 가동 전극(120)과 직접 접촉되어 있다. 가동 전극(120)의 원거리 영역(125)은 반대측 전극(122)으로부터 그리고 유전체(123)로부터 이격되어 있다. 가동 전극(120)의 자유 단부(121)는 원거리 영역(125)의 부분이다.
도 36 및 37은 가동 전극(120)의 2개의 위치를 도시한다. 도 36은 2개의 전극(120, 122) 사이에 인가되는 전압이 없는 중립 위치를 도시한다. 가동 전극(120)의 자유 단부(121)는 그 다음에 판 부분(88)으로부터 최대 거리에 배치된다. 도 37은 대략 80 V의 틸팅 전압이 전극들(120, 122) 사이에 인가되는 위치를 도시한다.
도 37에 따른 이러한 틸트된 위치에 있어서, 접촉 영역(124)에 이웃하는 가동 전극(120)의 영역이 또한 유전체(123)와 접촉하게 되어, 캐리어 몸체(81)의 판 부분(88)으로부터의 자유 단부(121)의 거리를 상응하게 감소시킨다.
도 36 및 37에 따른 그러한 액츄에이터들(119)은 마이크로-스크롤 드라이브(micro-scroll drive)들로도 칭해진다.
틸트 조인트들의 다른 실시예들은 조인트 길이 L 대 조인트 두께 S의 상이한 치수 관계를 가질 수 있다. L/S는 50보다 더 크거나, 100보다 더 크거나, 250보다 더 크거나 500보다도 더 클 수 있다. 1000보다 더 큰 L/S 관계도 생각될 수 있다.
미러 몸체(79)를 틸트하기 위한 앞서 설명된 액츄에이터들은 틸트 축들(w1, w2)에 대한 개개의 틸트 각도를 측정하기 위한 통합된 센서를 포함할 수 있다. 이러한 센서는 특히 프리셋(preset) 틸팅 각도를 감시하기 위해 사용될 수 있다.
도 38 및 39는 분리 미러들(21)을 포함하는 앞서 기술된 패싯 미러들 중 하나의 반사면(20)의 틸팅의 추가적인 실시예들을 도시한다.
도 38에 따른 틸팅에 있어서, 인접한 칼럼들의 분리 미러들(21)은 y-방향으로 서로에 대해 오프셋된다. 이것은 도 38에서 2개의 칼럼들 S1 및 S2에 의해 예시되어 있다. 이 칼럼들 S1, S2에 배열된 분리 미러 그룹(19)의 인접한 분리 미러들(21)은 각각의 경우에, 분리 미러들(21)의 y-연장의 절반만큼 y-방향으로 서로에 대해 오프셋된다. 다른 인접한 칼럼에서는, 칼럼들 S3 및 S4를 비교하여, 이러한 칼럼들내에서 서로 이웃하여 배열되는 분리 미러 그룹(19)의 분리 미러들(21)은 각각의 경우에, 분리 미러들(21)의 완전한 y-연장만큼 y-방향으로 서로에 대해 오프셋된다. 이러한 오프셋은, 개개의 분리 미러들(21)의 비교적 큰 y-연장에도 불구하고, 분리 미러 그룹들(19)의 주어진 큰 곡률 반경을 달성될 수 있게끔 한다. 이러한 식으로, 예컨대, 분리 미러 그룹(19)은 굴곡진 오브젝트 필드 형태에 적합될 수 있다. 도 38의 에지에서의 분리 미러 그룹들(19) 중 하나는 더욱 용이하게 식별될 수 있도록 하이라이트(highlighted)된다.
도 39는 분리 미러들(21)의 배열의 다른 실시예 및 분리 미러 그룹들(19)로의 이 분리 미러들(21)의 대안적인 그룹화를 도시한다. 도 39의 x-방향에 부분적으로만 도시된, 분리 미러 그룹들(19)은 도 38에 따른 분리 미러 그룹들(19)의 그것에 대응하는 x/y 종횡비를 갖는다. 도 38에 따른 분리 미러 그룹들(19)과는 대조적으로, 도 39에 따른 분리 미러 그룹들(19)은 직사각형 형태이다. 도 39에 따른 이 분리 미러 그룹들(19)의 각각은 직사각형 오브젝트 필드를 조명할 수 있다. 도 39에 따른 직사각형 분리 미러 그룹들(19)을 이용하여 아치형의 오브젝트 필드를 조명하는 것도 생각될 수 있다; 이 경우에, 그레이징 인서던스 미러(18)는, 예컨대, (예컨대, 도 1) 그 다음에 대응하는 필드 형성을 보장할 것이다.
패싯 미러가 분리 미러들(21)과 틸트되는 방식은 목조 지붕널(wooden shingle)들로 틸트되는 주택의 벽을 닮았다. 분리 미러 그룹들(19)의 각각은 하나 위에 또 하나가 배열되는 인접한 분리 미러들(2)의 7개의 로우들을 포함한다. 이러한 로우들 사이의 조인트들(140)은 계속해서 수평적이다, 환언하면 그것들은 x-방향으로 연장된다. 로우들 중 하나의 인접한 분리 미러들(21) 사이의 조인트들(141)은 y-방향에 관하여, 즉, 분리 미러들(21)의 칼럼 배열의 방향에 관하여 각도 T로 배열된다. 예시된 실시예에 있어서, 각도 T는 대략 12°에 상당한다. 다른 조인트 각도들 T도, 예컨대, 5°, 8°, 15°, 19° 또는 20°의 조인트 각도들(T)도 생각될 수 있다.
분리 미러들(21)의 각각은, 분리 미러들(19)의 x/y 종횡비에 대응하는 x/y 종횡비를 갖는다. 도 39에 따르면, 이것은 그 사례가 아닌 것처럼 여겨진다; 이것은 분리 미러들(21)이 x-방향에서 볼 때의 압축된 도면으로 도시된 사실에 기인한다.
투영 노광 장치(1)는 마이크로 또는 나노 구조의 부품, 특히 마이크로칩과 같은 반도체 부품의 리소그래피 제조를 위해, 오브젝트 필드(5)의 레티클의 적어도 일부를 이미지 필드(8)의 웨이퍼상의 감광층의 영역상으로 이미징하는데 사용된다. 투영 노광 장치(1)가 스캐너 또는 스테퍼(stepper)로서 설계되었는지의 여부에 따라, 레티클 또는 웨이퍼는 임시 동기화 방식으로, 즉 스캐너 모드에서 동작시에 연속적으로 또는 스테퍼 모드에서 동작시에 증가적으로, y-방향으로 변위된다.
분리 미러들(21 및 69)에 대한 틸트 각도들의 규정된 설정은, 이 분리 미러들(21 및 69)이 조명 광학소자의 필드면들에 배열되지 않을 경우, 이미징 광(10)의 강도 스캐닝 프로파일, 환언하면 강도 분포를 y-방향으로 이미지 필드(8)를 가로질러 규정될 수 있게끔 한다. 이러한 타입의 스캐닝 프로파일은 가우스 분포를 닮은 y-좌표의 함수일 수 있다. 대안적으로, 이러한 타입의 스캐닝 프로파일은 사다리꼴 형태의 y-좌표의 함수일 수 있다. 이러한 타입의 대안적인 스캐닝 프로파일은 직사각형 함수를 가우스 함수와 컨볼루션하는 것에 의해서도 획득될 수 있다.

Claims (22)

  1. 마이크로리소그래피용 투영 노광 장치(1)에서 광학 부품으로서 사용하기 위한 패싯 미러(facet mirror)(13, 14; 47; 64; 67, 70)로서,
    - 입사 조명 광(10)의 개별적인 편향을 위해, 각각의 경우에 있어서, 적어도 하나의 액츄에이터(24)에, 분리 작동에 의해 적어도 하나의 틸트 축(x, y)에 대해 틸트될 수 있도록 연결되는 복수의 분리 미러(separate mirror)들(21; 69),
    - 분리 미러들(21; 69)의, 각각의 경우에서의 설정될 적어도 2개의 분리 미러들의 분리 미러 그룹들(19; 31; 32, 33; 34 내지 37; 38 내지 45; 46; 48; 50; 60; 61)로의 주어진 그룹화를 가능케 하도록 구성되는, 액츄에이터들(24)에 연결되는, 제어 디바이스(28)를 포함하고,
    상기 제어 디바이스(28)는, 하나의 분리 미러 그룹의 개별적인 분리 미러들의 작동이 상기 분리 미러 그룹의 나머지 분리 미러들과는 개별적으로 상이할 수 있도록 구성되는, 패싯 미러.
  2. 청구항 1에 있어서,
    상기 분리 미러 그룹들은, 투영 노광 장치(1)내에서 조명될 오브젝트 필드(object field)(5)의 필드 형태에 대응하는 패싯 형태를 갖는 분리 패싯들(19; 31; 32, 33; 34 내지 37; 38 내지 45; 46; 50)을 형성하는 것을 특징으로 하는, 패싯 미러.
  3. 청구항 1에 있어서,
    상기 분리 미러 그룹들은, 투영 노광 장치(1)내에서 조명될 오브젝트 필드(5)의 필드 형태에 대응하는 패싯 형태를 갖는 분리 패싯들(19; 31; 32, 33; 34 내지 37; 38 내지 45; 46; 50)을 형성하며, 상기 분리 미러 그룹들의 크기 및 형태에 따라, 조명될 오브젝트 필드의 대응하는 크기 및 형태가 달성될 수 있는 것을 특징으로 하는, 패싯 미러.
  4. 청구항 1 내지 청구항 3 중 어느 한 항에 있어서,
    상기 분리 미러 그룹들(19; 31; 32, 33; 34 내지 37; 38 내지 45; 46)은 직사각형 엔벨로우프(envelope)를 갖는 것을 특징으로 하는, 패싯 미러.
  5. 청구항 1 내지 청구항 4 중 어느 한 항에 있어서,
    상기 분리 미러 그룹들(48; 49; 50)은 아치 형태, 고리 모양, 또는 원형의 엔벨로우프(51)를 갖는 것을 특징으로 하는, 패싯 미러.
  6. 청구항 1 내지 청구항 5 중 어느 한 항에 있어서,
    상기 분리 미러 그룹들은 투영 노광 장치(1)내에서 조명될 오브젝트 필드(5)에서의 조명 각도 분포에 대응하는 배열을 갖는 미러 영역들(48; 49; 60; 61)을 형성하는 것을 특징으로 하는, 패싯 미러.
  7. 청구항 1 내지 청구항 6 중 어느 한 항에 있어서,
    분리 미러들(21)은 다각형이고 분리 패싯들 또는 미러 영역들을 틸팅의 방식으로 커버하는 것을 특징으로 하는, 패싯 미러.
  8. 청구항 1 내지 청구항 7 중 어느 한 항에 있어서,
    개별적인 분리 미러들의 작동에 의해, 오브젝트 필드 조명의 균질성이 오브젝트 필드를 가로지르는 조명 강도에 관하여 교정될 수 있는 것을 특징으로 하는, 패싯 미러.
  9. 청구항 1 내지 청구항 7 중 어느 한 항에 있어서,
    개별적인 분리 미러들의 작동에 의해, 오브젝트 필드 조명의 균질성이 특정의 필드-의존 조명 강도 프로파일(field-dependent illumination intensity profile)을 조정하는 것에 관하여 교정될 수 있는 것을 특징으로 하는, 패싯 미러.
  10. 청구항 1 내지 청구항 9 중 어느 한 항에 있어서,
    분리 미러들은, 동공면의 조명의 강도 분포가 조명될 필드 크기 또는 필드 형태에 따라 설정될 수 있도록, 개별적으로 작동될 수 있는 것을 특징으로 하는, 패싯 미러.
  11. 오브젝트 필드 조명의 균질성을 교정하기 위한 방법으로서,
    - 입사 조명 광(10)의 개별적인 편향을 위해, 각각의 경우에 있어서, 적어도 하나의 액츄에이터(24)에, 분리 작동에 의해 적어도 하나의 틸트 축(x, y)에 대해 틸트될 수 있도록 연결되는 복수의 분리 미러들(21; 69)을 포함하는 패싯 미러를 제공하는 단계,
    - 분리 미러들(21; 69)의, 각각의 경우에서의 설정될 적어도 2개의 분리 미러들의 분리 미러 그룹들(19; 31; 32, 33; 34 내지 37; 38 내지 45; 46; 48; 50; 60; 61)로의 주어진 그룹화를 가능케 하도록 구성되는, 액츄에이터들(24)에 연결되는, 제어 디바이스(28)를 제공하는 단계,
    하나의 분리 미러 그룹의 개별적인 분리 미러들(21; 69)을 상기 분리 미러 그룹의 나머지 분리 미러들과는 개별적으로 상이하게 작동시키는 단계를 포함하는, 오브젝트 필드 조명의 균질성 교정 방법.
  12. 청구항 11에 있어서,
    상기 분리 미러 그룹들은 분리 패싯들(19; 31; 32, 33; 34 내지 37; 38 내지 45; 46; 50)을 형성하고, 상기 개별적인 분리 미러들(21; 69)은, 다양한 패싯들(19; 31; 32, 33; 34 내지 37; 38 내지 45; 46; 50)에 특정의 블록킹들(blockings) 또는 셰이딩들(shadings)이 개별적으로 주어지도록, 작동되는 것을 특징으로 하는, 오브젝트 필드 조명의 균질성 교정 방법.
  13. 청구항 11 또는 청구항 12에 있어서,
    개별적인 분리 미러들(21; 69)이 오브젝트 필드(5)내의 조명 강도의 균질성을 교정하기 위해 작동되는 것을 특징으로 하는, 오브젝트 필드 조명의 균질성 교정 방법.
  14. 청구항 11 또는 청구항 12에 있어서,
    개별적인 분리 미러들(21; 69)이 오브젝트 필드(5)의 조명 각도들을 가로지르는 특정 강도 분포를 교정하도록 또는 설정하도록 작동되는 것을 특징으로 하는, 오브젝트 필드 조명의 균질성 교정 방법.
  15. 청구항 11 또는 청구항 12에 있어서,
    개별적인 분리 미러들(21; 69)은, 동공면의 조명의 강도 분포가 설정되도록, 작동되는 것을 특징으로 하는, 오브젝트 필드 조명의 균질성 교정 방법.
  16. 청구항 11 또는 청구항 12에 있어서,
    개별적인 분리 미러들(21; 69)은, 동공면의 조명의 강도 분포가 조명될 필드 크기 또는 필드 형태에 따라 설정되도록 그리고/또는 조명될 오브젝트 필드를 가로지르는 입사 조명 각도들의 주어진 변화가 설정되도록, 작동되는 것을 특징으로 하는, 오브젝트 필드 조명의 균질성 교정 방법.
  17. 청구항 1 내지 청구항 10 중 어느 한 항에 기재된 적어도 하나의 패싯 미러를 포함하는 마이크로리소그래피용 투영 노광 장치(1)용 조명 광학소자(4).
  18. 청구항 17에 있어서,
    분리 미러 그룹들(74, 75)은, 오브젝트 필드(5)내의 인접한 오브젝트 필드 부분들(73; 76)을 조명하고, 조합해서 전체 오브젝트 필드를 형성하는 분리-미러 조명 채널들에 할당되는 것을 특징으로 하는, 조명 광학소자.
  19. 청구항 17 또는 청구항 18에 기재된 조명 광학소자(4), 조명 및 이미징(imaging) 광(10)을 생성하기 위한 방사원(3) 및 투영 노광 장치의 오브젝트 필드(5)를 이미지 필드(8)내로 이미징하기 위한 투영 광학소자(7)를 포함하는 투영 노광 장치.
  20. 청구항 19에 있어서,
    상기 패싯 미러는, 방사원(3)과 오브젝트 필드(5) 사이의 조명 광(10)의 빔 경로내에 배열되는 경면 반사경(specular reflector)(64; 70)인 것을 특징으로 하는, 투영 노광 장치.
  21. 청구항 19 또는 청구항 20에 있어서,
    투영 노광 장치(1)의 이미지 필드(8)의 그리고 오브젝트 필드(5)의 긴 필드 축(x)에 수직하게(y) 각도(α)로 연장하는, 투영 노광 동안에, 패턴이 투영될 웨이퍼를 홀드하기 위한 웨이퍼 홀더가, 투영될 패턴을 포함하는 레티클(reticle)을 홀드하기 위한 레티클 홀더와 동기적으로 변위되는 스캐닝 방향(yscan)을 갖는, 투영 노광 장치.
  22. 마이크로 또는 나노 구조의 부품 제조 방법으로서,
    - 감광 재료의 층이 적어도 부분에 적용된 웨이퍼를 제공하는 단계;
    - 이미징될 구조를 포함하는 레티클을 제공하는 단계;
    - 청구항 19 내지 청구항 21 중 어느 한 항에 기재된 투영 노광 장치(1)를 제공하는 단계;
    - 투영 노광 장치(1)의 투영 광학소자(7)에 의해 상기 층의 영역 상으로 상기 레티클의 적어도 일부를 투영하는 단계를 포함하는 마이크로 또는 나노 구조의 부품 제조 방법.
KR1020147002581A 2008-02-15 2009-02-06 마이크로리소그래피용 투영 노광 장치에 사용하기 위한 패싯 미러 KR101591610B1 (ko)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US2893108P 2008-02-15 2008-02-15
DE102008009600.8 2008-02-15
US61/028,931 2008-02-15
DE102008009600A DE102008009600A1 (de) 2008-02-15 2008-02-15 Facettenspiegel zum Einsatz in einer Projektionsbelichtungsanlage für die Mikro-Lithographie
US14345609P 2009-01-09 2009-01-09
DE102009000099.2 2009-01-09
DE200910000099 DE102009000099A1 (de) 2009-01-09 2009-01-09 Mikrospiegelarray mit Doppelbiegebalken Anordnung und elektronischer Aktorik
US61/143,456 2009-01-09
PCT/EP2009/000825 WO2009100856A1 (en) 2008-02-15 2009-02-06 Facet mirror for use in a projection exposure apparatus for microlithography

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020107020158A Division KR101593712B1 (ko) 2008-02-15 2009-02-06 마이크로리소그래피용 투영 노광 장치에 사용하기 위한 패싯 미러

Publications (2)

Publication Number Publication Date
KR20140033217A true KR20140033217A (ko) 2014-03-17
KR101591610B1 KR101591610B1 (ko) 2016-02-03

Family

ID=40602234

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020147002581A KR101591610B1 (ko) 2008-02-15 2009-02-06 마이크로리소그래피용 투영 노광 장치에 사용하기 위한 패싯 미러
KR1020107020158A KR101593712B1 (ko) 2008-02-15 2009-02-06 마이크로리소그래피용 투영 노광 장치에 사용하기 위한 패싯 미러

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020107020158A KR101593712B1 (ko) 2008-02-15 2009-02-06 마이크로리소그래피용 투영 노광 장치에 사용하기 위한 패싯 미러

Country Status (7)

Country Link
US (2) US9411241B2 (ko)
EP (1) EP2243047B1 (ko)
JP (3) JP5487118B2 (ko)
KR (2) KR101591610B1 (ko)
CN (2) CN103293665B (ko)
TW (2) TWI603154B (ko)
WO (1) WO2009100856A1 (ko)

Families Citing this family (164)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7843632B2 (en) * 2006-08-16 2010-11-30 Cymer, Inc. EUV optics
DE102009000099A1 (de) * 2009-01-09 2010-07-22 Carl Zeiss Smt Ag Mikrospiegelarray mit Doppelbiegebalken Anordnung und elektronischer Aktorik
CN103293665B (zh) 2008-02-15 2016-07-06 卡尔蔡司Smt有限责任公司 微光刻的投射曝光设备使用的分面镜
DE102009045135A1 (de) * 2009-09-30 2011-03-31 Carl Zeiss Smt Gmbh Beleuchtungsoptik für die Mikrolithographie
DE102009045694B4 (de) 2009-10-14 2012-03-29 Carl Zeiss Smt Gmbh Beleuchtungsoptik für die Mikrolithographie sowie Beleuchtungssystem und Projektionsbelichtungsanlage mit einer derartigen Beleuchtungsoptik
DE102009054540B4 (de) * 2009-12-11 2011-11-10 Carl Zeiss Smt Gmbh Beleuchtungsoptik für die EUV-Mikrolithographie
DE102009054888A1 (de) 2009-12-17 2011-06-22 Carl Zeiss SMT GmbH, 73447 Optisches Element mit einer Mehrzahl von refletiven Facettenelementen
JP2013516079A (ja) * 2009-12-29 2013-05-09 エーエスエムエル ネザーランズ ビー.ブイ. 照明システム、リソグラフィ装置および照明方法
DE102010001388A1 (de) * 2010-01-29 2011-08-04 Carl Zeiss SMT GmbH, 73447 Facettenspiegel zum Einsatz in der Mikrolithografie
EP2542941B1 (en) * 2010-03-05 2015-05-06 Micronic Mydata AB 1.5d slm for lithography
DE102011004615A1 (de) * 2010-03-17 2011-09-22 Carl Zeiss Smt Gmbh Beleuchtungsoptik für die Projektionslithografie
DE102010029651A1 (de) 2010-06-02 2011-12-08 Carl Zeiss Smt Gmbh Verfahren zum Betrieb einer Projektionsbelichtungsanlage für die Mikrolithographie mit Korrektur von durch rigorose Effekte der Maske induzierten Abbildungsfehlern
DE102011085132A1 (de) 2010-11-24 2012-05-24 Carl Zeiss Smt Gmbh Optische Baugruppe für die Projektionslithografie
DE102010062720B4 (de) 2010-12-09 2012-07-12 Carl Zeiss Smt Gmbh EUV-Lithographiesystem
DE102011003928B4 (de) * 2011-02-10 2012-10-31 Carl Zeiss Smt Gmbh Beleuchtungsoptik für die Projektionslithographie
DE102011004326A1 (de) 2011-02-17 2012-08-23 Carl Zeiss Smt Gmbh Optische Baugruppe für eine Beleuchtungsoptik für die Projektionslithographie
DE102011005840A1 (de) 2011-03-21 2012-09-27 Carl Zeiss Smt Gmbh Steuerbare Mehrfachspiegelanordnung, optisches System mit einer steuerbaren Mehrfachspiegelanordnung sowie Verfahren zum Betreiben einer steuerbaren Mehrfachspiegelanordnung
DE102011077234A1 (de) 2011-06-08 2012-12-13 Carl Zeiss Smt Gmbh EUV-Spiegelanordnung, optisches System mit EUV-Spiegelanordnung und Verfahren zum Betreiben eines optischen Systems mit EUV-Spiegelanordnung
EP2689427B1 (en) 2011-03-23 2017-05-03 Carl Zeiss SMT GmbH Euv mirror arrangement, optical system comprising euv mirror arrangement and method for operating an optical system comprising an euv mirror arrangement
DE102011005940A1 (de) 2011-03-23 2012-09-27 Carl Zeiss Smt Gmbh EUV-Spiegelanordnung, optisches System mit EUV-Spiegelanordnung und Verfahren zum Betreiben eines optischen Systems mit EUV-Spiegelanordnung
DE102011006100A1 (de) 2011-03-25 2012-09-27 Carl Zeiss Smt Gmbh Spiegel-Array
JP6008938B2 (ja) 2011-04-14 2016-10-19 カール・ツァイス・エスエムティー・ゲーエムベーハー ファセットミラーデバイス
DE102011076297A1 (de) 2011-05-23 2012-11-29 Carl Zeiss Smt Gmbh Blende
US8681413B2 (en) 2011-06-27 2014-03-25 Kla-Tencor Corporation Illumination control
DE102011078928A1 (de) * 2011-07-11 2013-01-17 Carl Zeiss Smt Gmbh Beleuchtungsoptik für die Projektionslithografie
DE102011080052A1 (de) 2011-07-28 2013-01-31 Carl Zeiss Smt Gmbh Spiegel, optisches System mit Spiegel und Verfahren zur Herstellung eines Spiegels
DE102011082065A1 (de) 2011-09-02 2012-09-27 Carl Zeiss Smt Gmbh Spiegel-Array
DE102011086513A1 (de) 2011-11-16 2013-05-16 Carl Zeiss Smt Gmbh Projektionsbelichtungsverfahren und Projektionsbelichtungsanlage für die Mikrolithographie
WO2013097897A1 (en) 2011-12-28 2013-07-04 Carl Zeiss Smt Gmbh Mask and scanning projection exposure method for microlithography
DE102012201235B4 (de) 2012-01-30 2013-08-29 Carl Zeiss Smt Gmbh Verfahren zum Einstellen einer Beleuchtungsgeometrie für eine Be-leuchtungsoptik für die EUV-Projektionslithographie
DE102012202536A1 (de) 2012-02-20 2013-08-22 Carl Zeiss Smt Gmbh Projektionsbelichtungsverfahren und Projektionsbelichtungsanlage für die Mikrolithographie
CN104246617B (zh) * 2012-03-09 2018-09-25 卡尔蔡司Smt有限责任公司 Euv投射光刻的照明光学单元及包含该照明光学单元的光学系统
DE102012203716A1 (de) 2012-03-09 2013-09-12 Carl Zeiss Smt Gmbh Beleuchtungsoptik für die EUV-Projektionslithografie sowie optisches System mit einer derartigen Beleuchtungsoptik
DE102012203950A1 (de) 2012-03-14 2013-09-19 Carl Zeiss Smt Gmbh Beleuchtungsoptik für eine Projektionsbelichtungsanlage
DE102012204273B4 (de) 2012-03-19 2015-08-13 Carl Zeiss Smt Gmbh Beleuchtungsoptik für die EUV-Projektionslithografie
DE102012204833A1 (de) 2012-03-27 2013-02-28 Carl Zeiss Smt Gmbh Glatte euv-spiegel und verfahren zu ihrer herstellung
DE102012206609B4 (de) * 2012-04-23 2023-08-10 Carl Zeiss Smt Gmbh Strahlführungsoptik für ein Vielstrahlsystem sowie Verfahren
DE102012206612A1 (de) 2012-04-23 2013-10-24 Carl Zeiss Smt Gmbh Optisches Bauelement zur Führung eines Strahlungsbündels
DE102012207511A1 (de) 2012-05-07 2013-05-08 Carl Zeiss Smt Gmbh Facettenspiegel
DE102012207866A1 (de) 2012-05-11 2013-11-14 Carl Zeiss Smt Gmbh Baugruppe für eine Projektionsbelichtungsanlage für die EUV-Projektionslithografie
DE102012208016A1 (de) 2012-05-14 2013-05-08 Carl Zeiss Smt Gmbh Beleuchtungsoptik für die Mikrolithographie
DE102012208064A1 (de) 2012-05-15 2013-11-21 Carl Zeiss Smt Gmbh Beleuchtungsoptik für die EUV-Projektionslithographie
DE102012208521A1 (de) 2012-05-22 2013-06-27 Carl Zeiss Smt Gmbh Beleuchtungssystem für eine Projektionsbelichtungsanlage für die Projektionslithographie
DE102012010093A1 (de) 2012-05-23 2013-11-28 Carl Zeiss Smt Gmbh Facettenspiegel
DE102012209132A1 (de) 2012-05-31 2013-12-05 Carl Zeiss Smt Gmbh Beleuchtungsoptik für die Projektionslithographie
DE102012210174A1 (de) 2012-06-18 2013-06-06 Carl Zeiss Smt Gmbh Optisches Bauelement
DE102012210961A1 (de) 2012-06-27 2013-06-06 Carl Zeiss Smt Gmbh Baugruppe für eine Projektionsbelichtungsanlage für die EUV-Projektionslithografie
DE102012212064A1 (de) 2012-07-11 2014-01-16 Carl Zeiss Smt Gmbh Lithographianlage mit segmentiertem Spiegel
DE102012212453A1 (de) 2012-07-17 2014-01-23 Carl Zeiss Smt Gmbh Beleuchtungsoptik
DE102012212664A1 (de) 2012-07-19 2014-01-23 Carl Zeiss Smt Gmbh Verfahren zum Einstellen eines Beleuchtungssettings
DE102012213515A1 (de) 2012-08-01 2014-02-06 Carl Zeiss Smt Gmbh Verfahren zum Betreiben einer mikrolithographischen Projektionsbelichtungsanlage
DE102012213937A1 (de) 2012-08-07 2013-05-08 Carl Zeiss Smt Gmbh Spiegel-Austauscharray
DE102012219936A1 (de) 2012-10-31 2014-04-30 Carl Zeiss Smt Gmbh EUV-Lichtquelle zur Erzeugung eines Nutz-Ausgabestrahls für eine Projektionsbelichtungsanlage
DE102012220596A1 (de) 2012-11-13 2014-05-15 Carl Zeiss Smt Gmbh Verfahren zum Zuordnen einer Pupillenfacette eines Pupillenfacettenspiegels einer Beleuchtungsoptik einer Projektionsbelichtungsanlage zu einer Feldfacette eines Feldfacettenspiegels der Beleuchtungsoptik
DE102013202590A1 (de) 2013-02-19 2014-09-04 Carl Zeiss Smt Gmbh EUV-Lichtquelle zur Erzeugung eines Nutz-Ausgabestrahls für eine Projektionsbelichtungsanlage
DE102013204305A1 (de) 2013-03-13 2014-09-18 Carl Zeiss Smt Gmbh Anordnung zur Aktuierung wenigstens eines Elementes in einem optischen System
JP6410741B2 (ja) 2013-03-14 2018-10-24 カール・ツァイス・エスエムティー・ゲーエムベーハー 投影リソグラフィのための照明光学ユニット
DE102014204388A1 (de) 2013-03-14 2014-09-18 Carl Zeiss Smt Gmbh Beleuchtungsoptik für die Projektionslithographie
WO2014139872A1 (en) 2013-03-14 2014-09-18 Carl Zeiss Smt Gmbh Illumination optical unit for projection lithography
DE102013218748A1 (de) 2013-09-18 2014-10-02 Carl Zeiss Smt Gmbh Optisches Bauelement
DE102013209442A1 (de) 2013-05-22 2014-11-27 Carl Zeiss Smt Gmbh Optisches Bauelement
DE102013211268B4 (de) 2013-06-17 2014-11-20 Carl Zeiss Smt Gmbh Beleuchtunsoptik für die lithografische Projektionsbelichtung
DE102013212613B4 (de) * 2013-06-28 2015-07-23 Carl Zeiss Sms Gmbh Beleuchtungsoptik für ein Metrologiesystem sowie Metrologiesystem mit einer derartigen Beleuchtungsoptik
DE102013213545A1 (de) * 2013-07-10 2015-01-15 Carl Zeiss Smt Gmbh Beleuchtungsoptik für die Projektionslithografie
DE102013217269A1 (de) * 2013-08-29 2015-03-05 Carl Zeiss Smt Gmbh Mikrospiegel-Array
DE102013218130A1 (de) 2013-09-11 2015-03-12 Carl Zeiss Smt Gmbh Beleuchtungsoptik für die EUV-Projektionslithografie
DE102013218131A1 (de) * 2013-09-11 2015-03-12 Carl Zeiss Smt Gmbh Beleuchtungsoptik sowie Beleuchtungssystem für die EUV-Projektionslithographie
DE102013218749A1 (de) * 2013-09-18 2015-03-19 Carl Zeiss Smt Gmbh Beleuchtungssystem sowie Beleuchtungsoptik für die EUV-Projektionslithografie
DE102013219057A1 (de) 2013-09-23 2015-03-26 Carl Zeiss Smt Gmbh Facettenspiegel für eine Projektionsbelichtungsanlage
DE102013219986A1 (de) 2013-10-02 2015-04-02 Carl Zeiss Smt Gmbh Projektionsbelichtungsverfahren und Projektionsbelichtungsanlage für die Mikrolithographie
DE102014220203A1 (de) 2013-11-21 2015-05-21 Carl Zeiss Smt Gmbh Mikrolithographische Projektionsbelichtungsanlage
EP2876499B1 (en) * 2013-11-22 2017-05-24 Carl Zeiss SMT GmbH Illumination system of a microlithographic projection exposure apparatus
DE102013224435A1 (de) 2013-11-28 2015-05-28 Carl Zeiss Smt Gmbh Messanordnung zur Messung optischer Eigenschaften eines reflektiven optischen Elements, insbesondere für die Mikrolithographie
DE102014201622A1 (de) 2014-01-30 2015-08-20 Carl Zeiss Smt Gmbh Verfahren zum Herstellen eines Spiegelelements
DE102014203189A1 (de) * 2014-02-21 2015-08-27 Carl Zeiss Smt Gmbh Spiegel-Array
DE102014203187A1 (de) * 2014-02-21 2015-08-27 Carl Zeiss Smt Gmbh Beleuchtungsoptik für die Projektionslithografie
DE102014206589A1 (de) 2014-04-04 2015-10-08 Carl Zeiss Smt Gmbh Verfahren zum Justieren eines Spiegels einer mikrolithographischen Projektionsbelichtungsanlage
DE102014210609A1 (de) 2014-06-04 2015-12-17 Carl Zeiss Smt Gmbh Optisches System, insbesondere für eine mikrolithographische Projektionsbelichtungsanlage
NL2015073A (en) 2014-07-15 2016-04-12 Asml Netherlands Bv Lithography apparatus and method of manufacturing devices.
DE102014222884A1 (de) 2014-11-10 2016-05-25 Carl Zeiss Smt Gmbh Beleuchtungseinrichtung für ein Projektionsbelichtungssystem
DE102014215088A1 (de) 2014-07-31 2016-02-04 Carl Zeiss Smt Gmbh Beleuchtungseinrichtung für ein Projektionsbelichtungssystem
DE102014216802A1 (de) * 2014-08-25 2016-02-25 Carl Zeiss Smt Gmbh Beleuchtungsoptik für die EUV-Projektions-Lithographie
DE102014217612A1 (de) 2014-09-03 2016-03-03 Carl Zeiss Smt Gmbh Beleuchtungoptik für die Projektonslithograpfie
DE102014217611A1 (de) * 2014-09-03 2016-03-03 Carl Zeiss Smt Gmbh Beleuchtungsoptik für die Projektionslithografie
DE102014217608A1 (de) 2014-09-03 2014-11-20 Carl Zeiss Smt Gmbh Verfahren zum Zuordnen einer zweiten Facette eines im Strahlengang zweiten facettierten Elements einer Beleuchtungsoptik
DE102014217610A1 (de) 2014-09-03 2016-03-03 Carl Zeiss Smt Gmbh Beleuchtungsoptik für die Projektionslithografie
DE102014221175A1 (de) 2014-10-17 2016-04-21 Carl Zeiss Smt Gmbh Beleuchtungsoptik für ein Projektionsbelichtungssystem
DE102014221173A1 (de) 2014-10-17 2016-04-21 Carl Zeiss Smt Gmbh Strahlungsquellenmodul
DE102014223326B4 (de) 2014-11-14 2018-08-16 Carl Zeiss Smt Gmbh Verfahren zur Vorhersage mindestens eines Beleuchtungsparameters zur Bewertung eines Beleuchtungssettings und Verfahren zur Optimierung eines Beleuchtungssettings
CN107111242B (zh) 2014-11-18 2020-04-24 卡尔蔡司Smt有限责任公司 Euv投射光刻的照明光学单元
DE102014223453A1 (de) 2014-11-18 2016-05-19 Carl Zeiss Smt Gmbh Beleuchtungsoptik für die EUV-Projektionslithographie
DE102014226272A1 (de) 2014-12-17 2016-06-23 Carl Zeiss Smt Gmbh Spiegel-Einrichtung
DE102014226921A1 (de) 2014-12-23 2016-06-23 Carl Zeiss Smt Gmbh Strahlungsquellenmodul
TWI701517B (zh) 2014-12-23 2020-08-11 德商卡爾蔡司Smt有限公司 光學構件
DE102014226920A1 (de) 2014-12-23 2016-06-23 Carl Zeiss Smt Gmbh Optische Komponente
DE102014226918A1 (de) 2014-12-23 2016-06-23 Carl Zeiss Smt Gmbh Optische Komponente
DE102014226917A1 (de) 2014-12-23 2015-12-17 Carl Zeiss Smt Gmbh Beleuchtungssystem für die EUV-Projektionslithographie
DE102015201870A1 (de) * 2015-02-03 2016-08-04 Carl Zeiss Smt Gmbh Anordnung zur Positionsmanipulation eines Elementes, insbesondere in einem optischen System
DE102015208571A1 (de) 2015-05-08 2016-11-10 Carl Zeiss Smt Gmbh Beleuchtungsoptik für die EUV-Projektionslithografie
DE102015202411A1 (de) 2015-02-11 2016-08-11 Carl Zeiss Smt Gmbh Beleuchtungsoptik für die EUV-Projektionslithografie
CN107223217B (zh) 2015-02-11 2020-06-02 卡尔蔡司Smt有限责任公司 Euv投射光刻的照明光学系统
DE102015203469A1 (de) 2015-02-26 2015-04-23 Carl Zeiss Smt Gmbh Verfahren zur Erzeugung einer gekrümmten optischen Spiegelfläche
DE102015208514A1 (de) * 2015-05-07 2016-11-10 Carl Zeiss Smt Gmbh Facettenspiegel für die EUV-Projektionslithografie sowie Beleuchtungsoptik mit einem derartigen Facettenspiegel
DE102015209175A1 (de) 2015-05-20 2016-11-24 Carl Zeiss Smt Gmbh Pupillenfacettenspiegel
DE102015212658A1 (de) 2015-07-07 2017-01-12 Carl Zeiss Smt Gmbh Lithographieanlage und verfahren zum betreiben einer lithographieanlage
DE102015212878A1 (de) 2015-07-09 2017-01-12 Carl Zeiss Smt Gmbh Strahlführungsvorrichtung
DE102015213275A1 (de) 2015-07-15 2017-01-19 Carl Zeiss Smt Gmbh Spiegelanordnung für eine Lithographiebelichtungsanlage und Spiegelanordnung umfassendes optisches System
DE102015216438A1 (de) 2015-08-27 2017-03-02 Carl Zeiss Smt Gmbh Sensoranordnung für eine Lithographieanlage, Lithographieanlage und Verfahren zum Betreiben einer Lithographieanlage
WO2017050360A1 (en) 2015-09-23 2017-03-30 Carl Zeiss Smt Gmbh Method of operating a microlithographic projection apparatus and illuminations system of such an apparatus
DE102016217555A1 (de) 2015-12-04 2016-11-17 Carl Zeiss Smt Gmbh Optisches system einer mikrolithographischen projektionsanlage sowie verfahren zum messen eines kippwinkels
DE102015224598A1 (de) 2015-12-08 2016-03-03 Carl Zeiss Smt Gmbh Beleuchtungsoptik
DE102015224742B4 (de) 2015-12-09 2020-06-18 Carl Zeiss Smt Gmbh Anlage und Verfahren zum Betreiben einer Anlage
DE102015225510A1 (de) * 2015-12-16 2017-01-12 Carl Zeiss Smt Gmbh Spiegelelement, insbesondere für eine mikrolithographische Projektionsbelichtungsanlage
US10890849B2 (en) 2016-05-19 2021-01-12 Nikon Corporation EUV lithography system for dense line patterning
DE102016212260A1 (de) 2016-07-05 2017-06-22 Carl Zeiss Smt Gmbh Vorrichtung zur Messung einer Ausrichtung eines Moduls
DE102016215300A1 (de) 2016-08-17 2016-12-29 Carl Zeiss Smt Gmbh Beleuchtungsoptik
DE102016217426A1 (de) 2016-09-13 2017-08-24 Carl Zeiss Smt Gmbh Strahlteiler
DE102016222033A1 (de) 2016-11-10 2016-12-29 Carl Zeiss Smt Gmbh Verfahren zur Zuordnung von Feldfacetten zu Pupillenfacetten zur Schaffung von Beleuchtungslicht-Ausleuchtungskanälen in einem Be-leuchtungssystem in einer EUV-Projektionsbelichtungsanlage
JP2018091759A (ja) * 2016-12-05 2018-06-14 リコーエレメックス株式会社 光切断検査装置
DE102017200428B3 (de) 2017-01-12 2018-06-21 Carl Zeiss Smt Gmbh Projektionsbelichtungsanlage sowie Verfahren zum Vermessen eines Abbildungsfehlers
DE102017200658A1 (de) 2017-01-17 2017-03-02 Carl Zeiss Smt Gmbh Beleuchtungsoptik für eine Projektionsbelichtungsanlage
DE102017200663A1 (de) 2017-01-17 2017-03-02 Carl Zeiss Smt Gmbh Verfahren zur Zuordnung von Ausgangs-Kippwinkeln von kippbaren Feldfacetten eines Feldfacettenspiegels für eine Projektionsbelich-tungsanlage für die Projektionslithografie
WO2018141382A1 (de) 2017-02-01 2018-08-09 Carl Zeiss Smt Gmbh Anlage und verfahren zum betreiben einer anlage
DE102017202930A1 (de) 2017-02-23 2017-04-13 Carl Zeiss Smt Gmbh Verfahren zur Regelung einer Beleuchtungsdosis einer Beleuchtung eines Objekt-feldes einer Projektionsbelichtungsanlage sowie Projektionsbelichtungsanlage zur Durchführung des Verfahrens
US11537051B2 (en) 2017-03-16 2022-12-27 Nikon Corporation Control apparatus and control method, exposure apparatus and exposure method, device manufacturing method, data generating method and program
US11934105B2 (en) 2017-04-19 2024-03-19 Nikon Corporation Optical objective for operation in EUV spectral region
US11054745B2 (en) 2017-04-26 2021-07-06 Nikon Corporation Illumination system with flat 1D-patterned mask for use in EUV-exposure tool
US11300884B2 (en) 2017-05-11 2022-04-12 Nikon Corporation Illumination system with curved 1d-patterned mask for use in EUV-exposure tool
WO2018208912A2 (en) * 2017-05-11 2018-11-15 Nikon Corporation Illumination system with curved 1d-patterned mask for use in euv-exposure tool
DE102017210162A1 (de) 2017-06-19 2017-08-17 Carl Zeiss Smt Gmbh Beleuchtungsoptik für die EUV-Projektionslithographie
DE102017210686B4 (de) 2017-06-26 2020-01-23 Carl Zeiss Smt Gmbh Verfahren zum Justieren eines Beleuchtungssystems für die Mikrolithographie
EP3422102A1 (en) 2017-06-26 2019-01-02 ASML Netherlands B.V. Methods and patterning devices and apparatuses for measuring focus performance of a lithographic apparatus, device manufacturing method
DE102017212352A1 (de) 2017-07-19 2018-07-26 Carl Zeiss Smt Gmbh Reinigungsmodul und Verfahren zur in situ Reinigung einer Quellkammer einer EUV-Strahlungsquelle, Strahlungsquellenmodul und Beleuchtungssystem für eine Projektionsbelichtungsanlage sowie Projektionsbelichtungsanlage
DE102017215664A1 (de) 2017-09-06 2019-03-07 Carl Zeiss Smt Gmbh Optisches System für eine Projektionsbelichtungsanlage
DE102017216703A1 (de) 2017-09-21 2019-03-21 Carl Zeiss Smt Gmbh Verfahren zur Charakterisierung mindestens einer optischen Komponente einer Projektionsbelichtungsanlage
DE102017217266A1 (de) * 2017-09-28 2019-03-28 Carl Zeiss Smt Gmbh Verfahren zur Bestimmung von Eigenschaften einer EUV-Quelle
DE102017219217B4 (de) 2017-10-26 2021-03-25 Carl Zeiss Smt Gmbh Masken für die Mikrolithographie, Verfahren zur Bestimmung von Kantenpositionen der Bilder der Strukturen einer derartigen Maske und System zur Durchführung eines derartigen Verfahrens
DE102017220586A1 (de) 2017-11-17 2019-05-23 Carl Zeiss Smt Gmbh Pupillenfacettenspiegel, Beleuchtungsoptik und optisches System für eine Projek-tionsbelichtungsanlage
DE102018200167A1 (de) * 2018-01-08 2019-07-11 Carl Zeiss Smt Gmbh Pupillenfacettenspiegel, Beleuchtungsoptik und optisches System für eine Projektionsbelichtungsanlage
DE102018201457A1 (de) 2018-01-31 2019-08-01 Carl Zeiss Smt Gmbh Beleuchtungsoptik für die Projektionslithographie
DE102018211077A1 (de) 2018-07-05 2018-10-25 Carl Zeiss Smt Gmbh Lithographieanlage und verfahren zum betreiben einer lithographieanlage
DE102018212224A1 (de) 2018-07-23 2020-01-23 Carl Zeiss Smt Gmbh Vorrichtung zur Rückkopplung von emittierter Strahlung in eine Laserquelle
DE102018221128A1 (de) 2018-12-06 2020-06-10 Carl Zeiss Smt Gmbh Verfahren zum Tauschen eines Spiegels in einer Projektionsbelichtungsanlage sowie Lagedaten-Messeinrichtung zum Durchführen des Verfahrens
DE102019200193B3 (de) 2019-01-09 2020-02-06 Carl Zeiss Smt Gmbh Optisches System für eine Projektionsbelichtungsanlage
DE102019217507A1 (de) 2019-02-04 2020-08-06 Carl Zeiss Smt Gmbh Facettenspiegel und Verfahren zu dessen Herstellung
DE102020116091A1 (de) * 2019-10-30 2021-05-06 Taiwan Semiconductor Manufacturing Co., Ltd. Abstimmbare beleuchtungsvorrichtung fürlithographiesysteme
DE102020205123A1 (de) 2020-04-23 2021-10-28 Carl Zeiss Smt Gmbh Facetten-Baugruppe für einen Facettenspiegel
DE102020206876B4 (de) 2020-06-03 2022-01-05 Carl Zeiss Smt Gmbh EUV-Strahlungsquelle, Einsatz für eine EUV-Strahlungsquelle und Einsatz für einen Einsatz für eine EUV-Strahlungsquelle
DE102020212351A1 (de) 2020-09-30 2022-03-31 Carl Zeiss Smt Gmbh Mikrospiegel-Array für eine beleuchtungsoptische Komponente einer Projektionsbelichtungsanlage
DE102020213837A1 (de) 2020-11-04 2021-08-19 Carl Zeiss Smt Gmbh Facettenspiegel-Vorrichtung
KR20230130117A (ko) 2021-01-19 2023-09-11 칼 짜이스 에스엠티 게엠베하 투영 노광 시스템을 설정하는 방법, 마이크로리소그래피용투영 노광 방법 및 투영 노광 시스템
DE102021212394A1 (de) 2021-11-03 2023-05-04 Carl Zeiss Smt Gmbh Optisches system, lithographieanlage und verfahren
DE102021213827A1 (de) 2021-12-06 2023-06-07 Carl Zeiss Smt Gmbh Verfahren zur Optimierung einer Pupillen-Blendenform zur Nachbildung von Beleuchtungs- und Abbildungseigenschaften eines optischen Produktionssystems bei der Beleuchtung und Abbildung eines Objekts mittels eines optischen Messsystems
DE102021214366A1 (de) 2021-12-15 2023-06-15 Carl Zeiss Smt Gmbh Vorrichtung und Verfahren zur Vermeidung einer Degradation einer optischen Nutzoberfläche eines Spiegelmoduls, Projektionssystem, Beleuchtungssystem sowie Projektionsbelichtungsanlage
DE102022213100A1 (de) 2022-01-13 2023-07-13 Carl Zeiss Smt Gmbh Aktuator-/sensor-vorrichtung, optikmodul und lithographieanlage
DE102022204098A1 (de) 2022-04-27 2023-11-02 Carl Zeiss Smt Gmbh Beleuchtungsoptik für die Projektionslithografie
DE102022204996A1 (de) 2022-05-19 2023-11-23 Carl Zeiss Smt Gmbh Verfahren und Vorrichtung zur Bestimmung eines Restgases mittels eines Restgasanalyseverfahrens in einem Vakuum einer Vakuumkammer
DE102022207546B3 (de) 2022-07-25 2023-10-12 Carl Zeiss Smt Gmbh Facettenspiegel-Baugruppe, Beleuchtungsoptik, optisches System, Projektionsbelichtungsanlage, Verfahren zur Herstellung eines mikrostrukturierten Bauteils sowie Bauteil
DE102022209214A1 (de) 2022-09-05 2024-03-07 Carl Zeiss Smt Gmbh Einzelspiegel eines Pupillenfacettenspiegels und Pupillenfacettenspiegel für eine Beleuchtungsoptik einer Projektionsbelichtungsanlage
WO2024056600A1 (en) 2022-09-13 2024-03-21 Carl Zeiss Smt Gmbh Method to adjust an illumination beam path within an illumination optics and illumination optics having an adjustment system
DE102022209908A1 (de) 2022-09-21 2024-03-21 Carl Zeiss Smt Gmbh Facettenspiegel, Beleuchtungsoptik, Anordnung eines Facettenspiegels, Projektionsbelichtungsanlage und Verfahren zur Herstellung eines nanostrukturierten Bauelements
DE102023208870A1 (de) 2022-09-23 2024-03-28 Carl Zeiss Smt Gmbh Verfahren zum Betreiben einer Projektionsbelichtungsanlage
DE102023202360A1 (de) 2023-03-15 2023-06-01 Carl Zeiss Smt Gmbh Optische Baugruppe für eine Beleuchtungsoptik einer Projektionsbelichtungsanlage
DE102023203095A1 (de) 2023-04-04 2023-05-25 Carl Zeiss Smt Gmbh Verfahren zum Vorgeben einer Soll-Verteilung einer Beleuchtungs-Intensität über eine Feldhöhe eines Feldes einer Projektionsbelichtungsanlage

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6195201B1 (en) * 1999-01-27 2001-02-27 Svg Lithography Systems, Inc. Reflective fly's eye condenser for EUV lithography
US20020136351A1 (en) * 2000-10-27 2002-09-26 Wolfgang Singer Illumination system with variable adjustment of the illumination
US20050030656A1 (en) * 2001-11-09 2005-02-10 Hubert Holderer Facet mirror having a number of mirror facets
US20050030653A1 (en) * 2002-02-09 2005-02-10 Hubert Holderer Facet mirror having a number of mirror facets

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3060357B2 (ja) * 1994-06-22 2000-07-10 キヤノン株式会社 走査型露光装置及び該走査型露光装置を用いてデバイスを製造する方法
JPH0881168A (ja) 1994-09-14 1996-03-26 Mitsubishi Denki Bill Techno Service Kk 多速度型引戸に於ける異物挟み込み検出装置
US6438299B1 (en) 1997-09-30 2002-08-20 The United States Of America As Represented By The Secretary Of The Navy Assembly and method for furcating optical fibers
JPH11150051A (ja) * 1997-11-17 1999-06-02 Nikon Corp 露光方法及び装置
US6438199B1 (en) * 1998-05-05 2002-08-20 Carl-Zeiss-Stiftung Illumination system particularly for microlithography
US6859515B2 (en) * 1998-05-05 2005-02-22 Carl-Zeiss-Stiftung Trading Illumination system, particularly for EUV lithography
WO2002027405A2 (en) * 2000-09-29 2002-04-04 Carl Zeiss Illumination system particularly for microlithography
US20050002090A1 (en) * 1998-05-05 2005-01-06 Carl Zeiss Smt Ag EUV illumination system having a folding geometry
DE10138313A1 (de) 2001-01-23 2002-07-25 Zeiss Carl Kollektor für Beleuchtugnssysteme mit einer Wellenlänge < 193 nm
DE19931848A1 (de) 1999-07-09 2001-01-11 Zeiss Carl Fa Astigmatische Komponenten zur Reduzierung des Wabenaspektverhältnisses bei EUV-Beleuchtungssystemen
WO2001009684A1 (de) 1999-07-30 2001-02-08 Carl Zeiss Steuerung der beleuchtungsverteilung in der austrittspupille eines euv-beleuchtungssystems
JP4401060B2 (ja) * 2001-06-01 2010-01-20 エーエスエムエル ネザーランズ ビー.ブイ. リトグラフ装置、およびデバイス製造方法
EP1289273A1 (de) 2001-08-28 2003-03-05 Siemens Aktiengesellschaft Scanning-Kamera
JP2005508520A (ja) * 2001-11-09 2005-03-31 カール・ツァイス・エスエムティー・アーゲー 傾斜調節ミラー
TWI253545B (en) * 2001-11-30 2006-04-21 Asml Netherlands Bv Imaging apparatus
DE10219514A1 (de) 2002-04-30 2003-11-13 Zeiss Carl Smt Ag Beleuchtungssystem, insbesondere für die EUV-Lithographie
US6700644B2 (en) * 2002-06-05 2004-03-02 Euv Llc Condenser for photolithography system
KR100480620B1 (ko) 2002-09-19 2005-03-31 삼성전자주식회사 마이크로 미러 어레이를 구비한 노광 장치 및 이를 이용한노광 방법
DE10317667A1 (de) 2003-04-17 2004-11-18 Carl Zeiss Smt Ag Optisches Element für ein Beleuchtungssystem
EP1486824A1 (en) * 2003-06-11 2004-12-15 ASML Netherlands B.V. A movable stage system for in a lithographic projection apparatus, lithographic projection apparatus and device manufacturing method
EP1668421A2 (en) * 2003-09-12 2006-06-14 Carl Zeiss SMT AG Illumination system for a microlithography projection exposure installation
US6977718B1 (en) * 2004-03-02 2005-12-20 Advanced Micro Devices, Inc. Lithography method and system with adjustable reflector
JP2006080109A (ja) * 2004-09-07 2006-03-23 Nikon Corp 照明装置、露光装置及びマイクロデバイスの製造方法
US7136214B2 (en) * 2004-11-12 2006-11-14 Asml Holding N.V. Active faceted mirror system for lithography
KR101119576B1 (ko) * 2004-11-17 2012-03-16 가부시키가이샤 니콘 조명 장치, 노광 장치 및 마이크로 디바이스의 제조 방법
JP2006253486A (ja) * 2005-03-11 2006-09-21 Nikon Corp 照明装置、投影露光方法、投影露光装置、及びマイクロデバイスの製造方法
JP2006253487A (ja) * 2005-03-11 2006-09-21 Nikon Corp 照明装置、投影露光方法、投影露光装置、及びマイクロデバイスの製造方法
EP1947682B1 (en) 2005-10-11 2012-01-18 Nikon Corporation Multilayer reflecting mirror, multilayer reflecting mirror manufacturing method, optical system, exposure apparatus and device manufacturing method
JP2007234717A (ja) * 2006-02-28 2007-09-13 Nikon Corp 露光装置
GB2438601B (en) * 2006-05-24 2008-04-09 Exitech Ltd Method and unit for micro-structuring a moving substrate
KR20090013746A (ko) * 2006-05-25 2009-02-05 가부시키가이샤 니콘 조명 광학 장치, 노광 장치 및 디바이스 제조방법
DE102006036064A1 (de) * 2006-08-02 2008-02-07 Carl Zeiss Smt Ag Beleuchtungssystem für eine Projektionsbelichtungsanlage mit Wellenlängen ≦ 193 nm
US8937706B2 (en) * 2007-03-30 2015-01-20 Asml Netherlands B.V. Lithographic apparatus and method
CN103293665B (zh) 2008-02-15 2016-07-06 卡尔蔡司Smt有限责任公司 微光刻的投射曝光设备使用的分面镜

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6195201B1 (en) * 1999-01-27 2001-02-27 Svg Lithography Systems, Inc. Reflective fly's eye condenser for EUV lithography
US20020136351A1 (en) * 2000-10-27 2002-09-26 Wolfgang Singer Illumination system with variable adjustment of the illumination
US20050030656A1 (en) * 2001-11-09 2005-02-10 Hubert Holderer Facet mirror having a number of mirror facets
US20050030653A1 (en) * 2002-02-09 2005-02-10 Hubert Holderer Facet mirror having a number of mirror facets

Also Published As

Publication number Publication date
JP6121581B2 (ja) 2017-04-26
TW201516586A (zh) 2015-05-01
CN103293665B (zh) 2016-07-06
US9411241B2 (en) 2016-08-09
CN101946190A (zh) 2011-01-12
TWI603154B (zh) 2017-10-21
JP5487118B2 (ja) 2014-05-07
WO2009100856A1 (en) 2009-08-20
EP2243047A1 (en) 2010-10-27
KR101591610B1 (ko) 2016-02-03
JP2011512659A (ja) 2011-04-21
JP2016075962A (ja) 2016-05-12
KR101593712B1 (ko) 2016-02-12
TWI639892B (zh) 2018-11-01
KR20100126370A (ko) 2010-12-01
EP2243047B1 (en) 2021-03-31
CN103293665A (zh) 2013-09-11
TW200942983A (en) 2009-10-16
CN101946190B (zh) 2013-06-19
US20160313646A1 (en) 2016-10-27
US9996012B2 (en) 2018-06-12
US20110001947A1 (en) 2011-01-06
JP2014140047A (ja) 2014-07-31

Similar Documents

Publication Publication Date Title
US9996012B2 (en) Facet mirror for use in a projection exposure apparatus for microlithography
US8294877B2 (en) Illumination optical unit for projection lithography
JP5717513B2 (ja) 投影リソグラフィ用の照明光学系
US9411239B2 (en) Illumination optical unit for EUV projection lithography
EP2013663A1 (en) Illumination system for euv lithography as well as a first and second optical element for use in an illumination system of this type
JP6348478B2 (ja) Euv投影リソグラフィのための照明光学ユニット
US9791784B2 (en) Assembly for a projection exposure apparatus for EUV projection lithography
US10488567B2 (en) Faceted mirror for EUV projection lithography and illumination optical unit with same
US10126658B2 (en) Illumination optical unit for EUV projection lithography
TW201702637A (zh) 光瞳琢面反射鏡
KR20230036135A (ko) Euv 복사선을 안내하기 위한 광학 조명 시스템
KR20220043204A (ko) Euv 방사선을 안내하기 위한 광학 조명 시스템
JP6410741B2 (ja) 投影リソグラフィのための照明光学ユニット
JP2016517026A5 (ko)

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190118

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20200116

Year of fee payment: 5