KR20120106735A - Euv 리소그래피용 반사층이 형성된 기판, euv 리소그래피용 반사형 마스크 블랭크, euv 리소그래피용 반사형 마스크, 및 그 반사층이 형성된 기판의 제조 방법 - Google Patents

Euv 리소그래피용 반사층이 형성된 기판, euv 리소그래피용 반사형 마스크 블랭크, euv 리소그래피용 반사형 마스크, 및 그 반사층이 형성된 기판의 제조 방법 Download PDF

Info

Publication number
KR20120106735A
KR20120106735A KR1020127012513A KR20127012513A KR20120106735A KR 20120106735 A KR20120106735 A KR 20120106735A KR 1020127012513 A KR1020127012513 A KR 1020127012513A KR 20127012513 A KR20127012513 A KR 20127012513A KR 20120106735 A KR20120106735 A KR 20120106735A
Authority
KR
South Korea
Prior art keywords
layer
reflective
nitrogen
euv
protective layer
Prior art date
Application number
KR1020127012513A
Other languages
English (en)
Other versions
KR101699574B1 (ko
Inventor
마사키 미카미
미츠히코 고마키네
요시아키 이쿠타
Original Assignee
아사히 가라스 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아사히 가라스 가부시키가이샤 filed Critical 아사히 가라스 가부시키가이샤
Publication of KR20120106735A publication Critical patent/KR20120106735A/ko
Application granted granted Critical
Publication of KR101699574B1 publication Critical patent/KR101699574B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0891Ultraviolet [UV] mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • G03F1/24Reflection masks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70316Details of optical elements, e.g. of Bragg reflectors, extreme ultraviolet [EUV] multilayer or bilayer mirrors or diffractive optical elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7095Materials, e.g. materials for housing, stage or other support having particular properties, e.g. weight, strength, conductivity, thermal expansion coefficient
    • G03F7/70958Optical materials or coatings, e.g. with particular transmittance, reflectance or anti-reflection properties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70983Optical system protection, e.g. pellicles or removable covers for protection of mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Optical Filters (AREA)

Abstract

Ru 보호층으로부터의 산화에 의한 반사율의 저하가 억제된 EUV 마스크 블랭크, 및 그 EUV 마스크 블랭크의 제조에 사용되는 반사층이 형성된 기판, 그리고 그 반사층이 형성된 기판의 제조 방법의 제공. 기판 상에, EUV 광을 반사하는 반사층과, 그 반사층을 보호하는 보호층이 이 순서로 형성된 EUV 리소그래피용 반사층이 형성된 기판으로서, 상기 반사층이, Mo/Si 다층 반사막이고, 상기 보호층이, Ru 층, 또는 Ru 화합물층이고, 상기 반사층과 상기 보호층 사이에, 질소를 0.5 ? 25 at% 함유하고, Si 를 75 ? 99.5 at% 함유하는 중간층이 형성되어 있는 것을 특징으로 하는 EUV 리소그래피용 반사층이 형성된 기판.

Description

EUV 리소그래피용 반사층이 형성된 기판, EUV 리소그래피용 반사형 마스크 블랭크, EUV 리소그래피용 반사형 마스크, 및 그 반사층이 형성된 기판의 제조 방법{REFLECTIVE-LAYER-EQUIPPED SUBSTRATE FOR EUV LITHOGRAPHY, REFLECTIVE MASK BLANK FOR EUV LITHOGRAPHY, REFLECTIVE MASK FOR EUV LITHOGRAPHY, AND PROCESS FOR PRODUCING REFLECTIVE-LAYER-EQUIPPED SUBSTRATE}
본 발명은, 반도체 제조 등에 사용되는 EUV (Extreme Ultraviolet:극단자외. 이하 EUV 로 약칭한다) 리소그래피용 반사층이 형성된 기판, EUV 리소그래피용 반사형 마스크 블랭크 (이하, 「EUV 마스크 블랭크」라고도 한다), 그 EUV 마스크 블랭크를 패터닝한 EUV 리소그래피용 반사형 마스크 (이하, 「EUV 마스크」라고도 한다) 및 그 반사층이 형성된 기판의 제조 방법, 그리고 그 EUV 마스크를 사용한 반도체 집적 회로의 제조 방법에 관한 것이다.
종래, 반도체 산업에 있어서, 실리콘 기판 등에 미세한 패턴으로 이루어지는 집적 회로를 형성하는 데에 있어서 필요한 미세 패턴의 전사 기술로서, 가시광이나 자외광을 사용한 포토리소그래피법이 사용되어 왔다. 그러나, 반도체 디바이스의 미세화가 가속되고 있는 한편, 종래의 포토리소그래피법의 한계에 가까워져 왔다. 포토리소그래피법의 경우, 패턴의 해상 한계는 노광 파장의 1/2 정도이고, 액침법을 이용해도 노광 파장의 1/4 정도라고 말해지고 있고, ArF 레이저 (193 ㎚) 의 액침법을 이용해도 45 ㎚ 정도가 한계라고 예상된다. 그래서 45 ㎚ 보다 짧은 노광 파장을 사용한 차세대의 노광 기술로서 ArF 레이저보다 더욱 단파장인 EUV 광을 사용한 노광 기술인 EUV 리소그래피가 유망시되고 있다. 본 명세서에 있어서, EUV 광이란, 연(軟) X 선 영역 또는 진공 자외선 영역의 파장의 광선을 가리키고, 구체적으로는 파장 10 ? 20 ㎚ 정도, 특히 13.5 ㎚ ± 0.3 ㎚ 정도의 광선을 나타낸다.
EUV 광은, 모든 물질에 대해 흡수되기 쉽고, 또한 이 파장에서 물질의 굴절률이 1 에 가깝기 때문에, 종래의 가시광 또는 자외광을 사용한 포토리소그래피와 같은 굴절 광학계를 사용할 수 없다. 이 때문에, EUV 광 리소그래피에서는, 반사 광학계, 즉 반사형 포토마스크와 미러가 사용된다.
마스크 블랭크는, 포토마스크 제조에 사용되는 패터닝 전의 적층체이다. EUV 마스크 블랭크의 경우, 유리제 등의 기판 상에 EUV 광을 반사하는 반사층과, EUV 광을 흡수하는 흡수체층이 이 순서로 형성된 구조를 갖고 있다. 반사층으로는, 저굴절률층인 몰리브덴 (Mo) 층과 고굴절률층인 규소 (Si) 층을 교대로 적층함으로써, EUV 광을 층 표면에 조사했을 때의 광선 반사율이 높아진 Mo/Si 다층 반사막이 통상적으로 사용된다.
흡수체층에는, EUV 광에 대한 흡수 계수가 높은 재료, 구체적으로는 예를 들어, 크롬 (Cr) 이나 탄탈 (Ta) 을 주성분으로 하는 재료가 사용된다.
상기 반사층과 흡수체층 사이에는, 통상적으로 보호층이 형성된다. 그 보호층은 흡수체층에 패턴 형성할 목적으로 실시되는 에칭 프로세스에 의해 반사층이 데미지를 받지 않도록, 그 반사층을 보호할 목적으로 형성되는 것이다. 특허문헌 1 에는 보호층의 재료로서 루테늄 (Ru) 의 사용이 제안되어 있다. 특허문헌 2 에는, Ru 와 Mo, Nb, Zr, Y, B, Ti, La 에서 선택되는 적어도 1 종을 함유하는 루테늄 화합물 (Ru 함유량 10 ? 95 at%) 로 이루어지는 보호층이 제안되어 있다.
일본 공개특허공보 2002-122981호 (미국 특허 제6699625호 명세서) 일본 공개특허공보 2005-268750호
보호층의 재료로서 Ru 를 사용한 경우, 흡수체층에 대해 높은 에칭 선택비가 얻어짐과 함께, 반사층 상에 보호층을 형성한 경우에도, 보호층 표면에 EUV 광을 조사했을 때에 높은 반사율이 얻어진다. 그러나, 보호층의 재료로서 Ru 를 사용한 경우, 마스크 블랭크 제조시에 실시되는 공정이나 그 마스크 블랭크로부터 포토마스크를 제조할 때에 실시되는 공정 (예를 들어, 세정, 결함 검사, 가열 공정, 드라이 에칭, 결함 수정의 각 공정) 에 있어서, 혹은 그 EUV 노광시에 있어서, Ru 보호층, 나아가서는 다층 반사막의 최상층 (Mo/Si 다층 반사막의 경우, Si 층) 이 산화됨으로써, 보호층 표면에 EUV 광을 조사했을 때의 EUV 광선 반사율이 저하될 가능성이 있다는 문제가 있다.
특히, EUV 노광시의 EUV 광선 반사율의 저하는, 시간 경과적으로 진행되기 때문에, 노광 조건을 도중에 변경할 필요가 생기거나 포토마스크의 수명 단축으로 이어지기 때문에 문제이다.
이하, 본 명세서에 있어서, 마스크 블랭크 제조시에 실시되는 공정이나 그 마스크 블랭크로부터 포토마스크를 제조할 때에 실시되는 공정 (예를 들어, 세정, 결함 검사, 가열 공정, 드라이 에칭, 결함 수정의 각 공정) 에 있어서, 혹은 그 EUV 노광시에 있어서, Ru 보호층, 나아가서는 다층 반사막의 최상층이 산화됨으로써, 보호층 표면에 EUV 광을 조사했을 때의 EUV 광선 반사율이 저하되는 것을, 간단히 「Ru 보호층으로부터의 산화에 의한 EUV 광선 반사율의 저하」라고 하는 경우가 있다.
특허문헌 2 에 기재된 보호층은, 다층 반사막의 반사율의 저하를 초래하지 않고, 또한 충분히 다층 반사막의 산화 방지 효과가 얻어진다고 기재되어 있는데, 여기서 말하는 다층 반사막의 반사율의 저하는, 특허문헌 2 의 단락 번호[0006]의 기재로부터 명확한 바와 같이, Ru 보호층 성막시나 그 후의 가열 처리 등에 의해, 다층 반사막의 최상층인 Si 층과 Ru 보호층이 확산층을 형성함으로써 반사율이 저하되는 것을 의도한 것이고, 상기 서술한 바와 같은, Ru 보호층으로부터의 산화에 의한 EUV 광선 반사율의 저하를 의도하고 있는지는 불분명하다.
상기 서술한 점을 감안하여, 본 발명은, Ru 보호층으로부터의 산화에 의한 EUV 광선 반사율의 저하가 억제된 EUV 리소그래피용 반사층이 형성된 기판, EUV 리소그래피용 반사형 마스크 블랭크, EUV 리소그래피용 반사형 마스크, 및 그 리소그래피용 반사층이 형성된 기판의 제조 방법을 제공하는 것을 목적으로 한다.
본 발명자들은, 상기 과제를 해결하기 위해 예의 검토한 결과, Mo/Si 다층 반사막과 Ru 보호층 사이에 질소 및 Si 를 소정량 함유하는 중간층을 형성함으로써, Ru 보호층으로부터의 산화에 의한 EUV 광선 반사율의 저하를 억제할 수 있다는 것을 알아냈다.
본 발명은, 상기한 본 발명자들의 지견에 기초하여 이루어진 것으로, 기판 상에, EUV 광을 반사하는 반사층과, 그 반사층을 보호하는 보호층이 이 순서로 형성된 EUV 리소그래피용 반사층이 형성된 기판으로서,
상기 반사층이, Mo/Si 다층 반사막이고,
상기 보호층이, Ru 층, 또는 Ru 화합물층이고,
상기 반사층과 상기 보호층 사이에, 질소를 0.5 ? 25 at% 함유하고, Si 를 75 ? 99.5 at% 함유하는 중간층이 형성되어 있는 것을 특징으로 하는 EUV 리소그래피용 반사층이 형성된 기판 (이하, 본 명세서에 있어서, 「본 발명의 반사층이 형성된 기판」이라고도 한다) 을 제공한다.
본 발명의 반사층이 형성된 기판에 있어서, Mo/Si 다층 반사막으로 이루어지는 반사층의 최상층이 Si 막이고, 당해 Si 막면에 상기 중간층을 갖는 것이 바람직하다.
본 발명의 반사층이 형성된 기판에 있어서, 상기 중간층의 막두께가 0.2 ? 2.5 ㎚ 인 것이 바람직하다.
본 발명의 반사층이 형성된 기판에 있어서, 상기 보호층 표면의 표면 조도 rms 가 0.5 ㎚ 이하인 것이 바람직하다.
본 발명의 반사층이 형성된 기판에 있어서, 상기 보호층의 막두께가 1 ? 10 ㎚ 인 것이 바람직하다.
또, 본 발명은, 상기한 본 발명의 반사층이 형성된 기판의 보호층 상에 흡수체층을 형성하여 이루어지는 EUV 리소그래피용 반사형 마스크 블랭크 (이하, 「본 발명의 EUV 마스크 블랭크」라고도 한다) 를 제공한다.
본 발명의 EUV 마스크 블랭크에 있어서, 상기 흡수체층이 탄탈 (Ta) 을 주성분으로 하는 재료로 형성되는 것이 바람직하다.
본 발명의 EUV 마스크 블랭크에 있어서, 에칭 가스로서 염소계 가스를 사용하여 드라이 에칭을 실시했을 때의 상기 보호층과 상기 흡수체층의 에칭 선택비가 10 이상인 것이 바람직하다.
본 발명의 EUV 마스크 블랭크에 있어서, 상기 흡수체층 상에, 탄탈 (Ta) 을 주성분으로 하는 재료로 형성된, 마스크 패턴의 검사에 사용하는 검사광에 있어서의 저반사층이 형성되어 있는 것이 바람직하다.
흡수체층 상에 저반사층이 형성되어 있는 경우에 있어서, 흡수체층에 형성되는 패턴의 검사에 사용되는 광의 파장에 대한 상기 보호층 표면에서의 반사광과, 상기 저반사층 표면에서의 반사광의 콘트라스트가, 30 % 이상인 것이 바람직하다.
또, 본 발명은, 상기한 본 발명의 EUV 마스크 블랭크를 패터닝한 EUV 리소그래피용 반사형 마스크 (이하, 「본 발명의 EUV 마스크」라고도 한다) 를 제공한다.
또, 본 발명은, 상기한 본 발명의 EUV 마스크를 사용하여, 피노광체에 노광을 실시함으로써 반도체 집적 회로를 제조하는 것을 특징으로 하는 반도체 집적 회로의 제조 방법을 제공한다.
또, 본 발명은, 기판의 성막면 상에, EUV 광을 반사하는 다층 반사막을 형성한 후, 상기 다층 반사막 상에 그 다층 반사막의 보호층을 형성함으로써, EUV 리소그래피 (이하, EUVL 이라고도 한다) 용 반사층이 형성된 기판을 제조하는, EUVL 용 반사층이 형성된 기판의 제조 방법으로서,
상기 다층 반사막이, Mo/Si 다층 반사막이고,
상기 보호층이, Ru 층, 또는 Ru 화합물층이고,
상기 Mo/Si 다층 반사막의 형성 후, 그 Mo/Si 다층 반사막의 최상층인 Si 층 표면을, 대기 중에 폭로 (暴露) 시키지 않고, 질소 함유 분위기에 폭로시켜 Si 층 표면에 질소를 함유시킨 후에 상기 보호층을 형성하는 것을 특징으로 하는 EUVL 용 반사층이 형성된 기판의 제조 방법을 제공한다.
본 발명의 EUVL 용 반사층이 형성된 기판의 제조 방법에 있어서, 상기 질소 함유 분위기의 질소 분압 (Torr) 과 폭로 시간 (s) 의 곱이 1 × 10-6 Torr?s (= 1.33 × 10-4 Pa?s) = 1 L (Langmuir)) 이상이고, 그 질소 함유 분위기의 온도가 0 ? 170 ℃ 인 것이 바람직하다.
본 발명의 EUVL 용 반사층이 형성된 기판의 제조 방법에 있어서, 상기 질소 함유 분위기의 온도가 0 ? 160 ℃ 인 것이 바람직하다.
본 발명의 EUVL 용 반사층이 형성된 기판의 제조 방법에 있어서, 상기 질소 함유 분위기의 온도가 0 ? 150 ℃ 인 것이 바람직하다.
본 발명의 EUVL 용 반사층이 형성된 기판의 제조 방법에 있어서, 상기 Si 층 표면을 질소 함유 분위기에 폭로시킬 때, 상기 질소 함유 분위기를 플라스마 상태로 유지하거나, Si 층 표면을 열처리하거나, Si 층 표면에 자외선을 조사하는 것이 Si 층 표면에 대한 질소 함유를 촉진하는 데에 있어서 바람직하다.
본 발명의 반사층이 형성된 기판 및 그 반사층이 형성된 기판을 사용한 EUV 마스크 블랭크에서는, Ru 보호층으로부터의 산화에 의한 EUV 광선 반사율의 저하가 억제되고 있다. 그리고, EUV 노광시의 EUV 광선 반사율의 시간 경과적인 진행의 억제에 의해, 노광 조건을 도중에 변경할 필요가 적어지고, 포토마스크의 수명 장기화를 도모할 수 있다.
또, 본 발명의 EUV 마스크 블랭크를 사용하여 제조되는 EUV 마스크는, EUV 노광시에 있어서, EUV 광선 반사율의 시간 경과적인 변화가 작은, 신뢰성이 높은 EUV 마스크이다.
도 1 은, 본 발명의 EUV 마스크 블랭크의 실시형태를 나타내는 개략 단면도이다.
도 2 는, 도 1 의 EUV 마스크 블랭크의 흡수체층 상에 저반사층을 형성한 실시형태를 나타내는 개략 단면도이다.
도 3 은, 도 2 의 EUV 마스크 블랭크 (1′) 의 흡수체층 (15) 및 저반사층 (16) 에 패턴 형성한 실시형태를 나타내는 개략 단면도이다.
이하, 도면을 참조하여 본 발명을 설명한다.
도 1 은, 본 발명의 EUV 마스크 블랭크의 일 실시형태를 나타내는 개략 단면도이다. 도 1 에 나타내는 마스크 블랭크 (1) 는, 기판 (11) 상에 EUV 광을 반사하는 반사층 (12) 과, 그 반사층 (12) 을 보호하기 위한 보호층 (14) 이, 이 순서로 형성되어 있다. 단, 본 발명의 EUV 마스크 블랭크에서는, 반사층 (12) 과 보호층 (14) 사이에, 질소 및 Si 를 후술하는 소정량 함유하는 중간층 (13) 이 형성되어 있다. 보호층 (14) 에는, 흡수체층 (15) 이 형성되어 있다.
이하, 마스크 블랭크 (1) 의 개개의 구성 요소에 대해 설명한다.
기판 (11) 은, EUV 마스크 블랭크용 기판으로서의 특성을 만족시킨다.
그 때문에, 기판 (11) 은, 낮은 열팽창 계수를 갖는 것이 중요하다. 구체적으로는, 기판 (11) 의 열팽창 계수는, 0 ± 1.0 × 10-7/℃ 인 것이 바람직하고, 보다 바람직하게는 0 ± 0.3 × 10-7/℃, 더욱 바람직하게는 0 ± 0.2 × 10-7/℃, 더욱더 바람직하게는 0 ± 0.1 × 10-7/℃, 특히 바람직하게는 0 ± 0.05 × 10-7/℃ 이다. 또, 기판은, 평활성, 평탄도, 및 마스크 블랭크 또는 패턴 형성 후의 포토마스크의 세정 등에 사용하는 세정액에 대한 내성이 우수한 것이 바람직하다. 기판 (11) 으로는, 구체적으로는 낮은 열팽창 계수를 갖는 유리, 예를 들어 SiO2-TiO2 계 유리 등을 사용하는데, 이것에 한정되지 않고, β 석영 고용체를 석출한 결정화 유리나 석영 유리나 실리콘이나 금속 등의 기판을 사용할 수도 있다. 또, 기판 (11) 상에 응력 보정막과 같은 막을 형성해도 된다.
기판 (11) 은, 표면 조도 rms 가 0.15 ㎚ 이하인 평활한 표면과, 100 ㎚ 이하인 평탄도를 갖고 있는 것이 패턴 형성 후의 포토마스크에 있어서 높은 반사율 및 전사 정밀도가 얻어지기 때문에 바람직하다.
기판 (11) 의 크기나 두께 등은 마스크의 설계값 등에 의해 적절히 결정되는 것이다. 이후에 나타내는 실시예에서는 외형 가로세로 6 인치 (152.4 ㎜) 이고, 두께 0.25 인치 (6.3 ㎜) 의 SiO2-TiO2 계 유리를 사용하였다.
기판 (11) 의 다층 반사막 (12) 이 형성되는 측의 표면에는 결점이 존재하지 않는 것이 바람직하다. 그러나, 존재하고 있는 경우라도, 오목상 결점 및/또는 볼록상 결점에 의해 위상 결점이 생기지 않도록, 오목상 결점의 깊이 및 볼록상 결점의 높이가 2 ㎚ 이하이고, 또한 이들 오목상 결점 및 볼록상 결점의 반치폭이 60 ㎚ 이하인 것이 바람직하다.
EUV 마스크 블랭크의 반사층 (12) 에 특히 요구되는 특성은, 높은 EUV 광선 반사율인 것이다. 구체적으로는, EUV 광의 파장 영역의 광선을 반사층 (12) 표면에 입사 각도 6 도로 조사했을 때에, 파장 13.5 ㎚ 부근의 광선 반사율의 최대값이 60 % 이상인 것이 바람직하고, 65 % 이상인 것이 보다 바람직하다. 또, 반사층 (12) 상에 중간층 (13) 및 보호층 (14) 을 형성한 경우라도, 파장 13.5 ㎚ 부근의 광선 반사율의 최대값이 60 % 이상인 것이 바람직하고, 65 % 이상인 것이 보다 바람직하다.
EUV 마스크 블랭크의 반사층으로는, EUV 파장역에 있어서 높은 반사율을 달성할 수 있다는 점에서, 고굴절률층과 저굴절률층을 교대로 복수 회 적층시킨 다층 반사막이 널리 사용되고 있다. 본 발명의 EUV 마스크 블랭크에서는, 저굴절률층으로서의 Mo 층과 고굴절률층으로서의 Si 층을 교대로 복수 회 적층시킨 Mo/Si 다층 반사막을 사용하는 것이 바람직하다. 이 Mo/Si 다층 반사막에 있어서, 적층되는 Mo/Si 다층 반사막의 최상층은 Si 막이 되도록 하는 것이 바람직하다.
Mo/Si 다층 반사막의 경우에, EUV 광선 반사율의 최대값이 60 % 이상인 반사층 (12) 으로 하려면, 막두께 2.3 ± 0.1 ㎚ 의 Mo 층과 막두께 4.5 ± 0.1 ㎚ 의 Si 층을 반복 단위수가 30 ? 60 이 되도록 적층시키면 된다.
또한, Mo/Si 다층 반사막을 구성하는 각 층은, 마그네트론 스퍼터링법, 이온빔 스퍼터링법 등, 주지된 성막 방법을 이용하여 원하는 두께가 되도록 성막하면 된다. 예를 들어, 이온빔 스퍼터링법을 이용하여 Mo/Si 다층 반사막을 형성하는 경우, 타깃으로서 Mo 타깃을 사용하고, 스퍼터 가스로서 Ar 가스 (가스압 1.3 × 10-2 Pa ? 2.7 × 10-2 Pa) 를 사용하고, 이온 가속 전압 300 ? 1500 V, 성막 속도 0.03 ? 0.30 ㎚/sec 로 두께 2.3 ㎚ 가 되도록, 기판면 상에 Mo 층을 성막하고, 다음으로, 타깃으로서 Si 타깃을 사용하고, 스퍼터 가스로서 Ar 가스 (가스압 1.3 × 10-2 Pa ? 2.7 × 10-2 Pa) 를 사용하고, 이온 가속 전압 300 ? 1500 V, 성막 속도 0.03 ? 0.30 ㎚/sec 로 두께 4.5 ㎚ 가 되도록 Si 층을 성막하는 것이 바람직하다. 이것을 1 주기로 하여 Mo 층 및 Si 층을 40 ? 50 주기 적층시킴으로써 Mo/Si 다층 반사막이 성막된다.
Mo/Si 다층 반사막을 구성하는 Mo 층이나 Si 층을 구성하는 원소의 일부가, 인접하는 층으로 확산됨으로써 반사율의 저하를 초래하는 현상, 요컨대 상호 확산에 의한 반사율 저하가 문제가 되는 경우가 있다. 그러나, 본원 발명자들이 예의 검토한 결과, 반사율 저하의 요인이, 다층 반사막의 최상층인 Si 층으로부터 보호층에 대한 Si 의 확산에 의해 EUV 마스크 블랭크의 상부로부터의 산화가 촉진되는 것에 의한 것, 요컨대, Mo/Si 다층 반사막보다 상측의 막으로부터의 산화에 의한 것이 주요하다는 것을 알아냈다. 그렇다면, 산화에 의한 반사율 저하를 방지하기 위해서는, Mo/Si 다층 반사막 위의 층, 요컨대 보호층으로부터의 산화를 방지하면 충분하다는 것을 알아내어, 본 발명에 이른 것이다.
본 발명의 EUV 마스크 블랭크는, 반사층 (12) 과 보호층 (14) 사이에, 질소를 0.5 ? 25 at% 함유하고, Si 를 75 ? 99.5 at% 함유하는 중간층 (13) 을 형성함으로써, Ru 보호층으로부터의 산화에 의한 EUV 광선 반사율의 저하를 억제한다. 반사층 (12) 과 보호층 (14) 사이에, 상기 조성의 중간층 (13) 을 형성함으로써, Ru 보호층으로부터의 산화에 의한 EUV 광선 반사율의 저하가 억제되는 이유는 이하에 의한 것으로 생각된다.
상기 조성의 중간층 (13) 은, 반사층 (12) 의 최상층인 Si 층 중에 Ru 보호층의 산화에 의해 질소가 다량으로 함유되는 것에 의한 반사율의 저하가 생기지 않도록, 중간층 (13) 에 미리 질소를 함유시킴으로써, 성막 후의 반사율이 높고, 또한 산화를 억제하는 효과를 갖는다고 생각된다. 이로써, 마스크 블랭크 제조시에 실시되는 공정이나 그 마스크 블랭크로부터 포토마스크를 제조할 때에 실시되는 공정 (예를 들어, 세정, 결함 검사, 가열 공정, 드라이 에칭, 결함 수정의 각 공정) 에 있어서, 혹은 그 EUV 노광시에 있어서, Ru 보호층이 산화되는 상황이 생겼을 경우에도, 산화를 억제하는 효과를 갖는 중간층 (13) 이 존재함으로써, 그 중간층 (13) 아래에 있는 Mo/Si 다층 반사막이 산화되는 것, 보다 구체적으로는 Mo/Si 다층 반사막의 최상층인 Si 층이 산화되는 것이 억제된다고 생각되고, 그 결과 Ru 보호층으로부터의 산화에 의한 EUV 광선 반사율의 저하가 억제된다고 생각된다.
또한, 반사층 (12) (Mo/Si 다층 반사막) 과 보호층 (14) (Ru 보호층) 사이에 중간층 (13) 을 형성함으로써, 보호층 (14) 의 형성시에 Mo/Si 다층 반사막의 최상층인 Si 층 중의 Si 가 Ru 보호층 중으로 확산되는 것도 억제할 수 있다.
중간층 (13) 에 있어서의 질소의 함유율이 0.5 at% 미만인 경우, 상기 서술한 추가적인 산화를 억제하는 효과가 불충분해져, Ru 보호층으로부터의 산화에 의한 EUV 광선 반사율의 저하를 억제하는 효과가 불충분해진다.
상세하게는 후술하는데, 본 발명에 있어서, 상기 조성의 중간층 (13) 은, Mo/Si 다층 반사막을 형성한 후, Mo/Si 다층 반사막의 최상층인 Si 층 표면을 질소 함유 분위기에 폭로시킴으로써 형성할 수 있다. 중간층 (13) 에 대한 질소의 함유는, Mo/Si 다층 반사막의 최상층인 Si 층의 성막시, 또는 중간층 (13) 상에 형성되는 보호층 (14) 의 성막시 중 어느 때, 혹은 그들 양방의 성막시에 질소가 첨가되고 있었던 것이라고 생각되지만, 중간층 (13) 에 있어서의 질소의 함유율이 25 at% 초과가 되는 조건에서 중간층을 형성한 경우에는, 질소를 첨가한 성막은 성막 중의 결점이 증가하여 문제가 생긴다.
중간층 (13) 은 질소를 0.5 ? 15 at% 함유하고, Si 를 85 ? 99.5 at% 함유하는 것이 바람직하고, 질소를 0.5 ? 10 at% 함유하고, Si 를 90 ? 99.5 at% 함유하는 것이 보다 바람직하고, 질소를 1 ? 9 at% 함유하고, Si 를 91 ? 99 at% 함유하는 것이 더욱 바람직하고, 질소를 3 ? 9 at% 함유하고, Si 를 91 ? 97 at% 함유하는 것이 더욱더 바람직하고, 질소를 5 ? 8 at% 함유하고, Si 를 92 ? 95 at% 함유하는 것이 특히 바람직하다.
중간층 (13) 중의 Si 가 침식될 우려가 있기 때문에, 중간층 (13) 은 불소를 함유하지 않는 것이 바람직하다. 또, 중간층 (13) 중에 탄소나 수소가 함유되어 있으면, 그 중간층 (13) 중의 산소와 반응하여, 그 중간층 (13) 중의 산소가 방출되어, 그 중간층 (13) 의 구조가 열화될 우려가 있기 때문에, 그 중간층 (13) 은 탄소나 수소를 함유하지 않는 것이 바람직하다. 이들 이유로부터, 중간층 (13) 에 있어서의 불소, 탄소 및 수소의 함유율은 각각 3 at% 이하인 것이 바람직하고, 1 at% 이하인 것이 보다 바람직하다. 또, 동일하게, Ni, Y, Ti, La, Cr 또는 Rh 와 같은 원소의 중간층 (13) 에 있어서의 함유율은, 마스크 블랭크를 에칭했을 경우에, 에칭 레이트의 차이에 의한 표면 조도의 증가를 방지하기 때문에, 이들 원소의 합계의 함유 비율로, 3 at% 이하인 것이 바람직하고, 1 at% 이하인 것이 보다 바람직하다.
또, 중간층 (13) 에 있어서의 산소의 함유율도, 3 at% 이하인 것이 바람직하고, 1 at% 이하인 것이 보다 바람직하다.
본 발명에 있어서, 중간층 (13) 의 막두께는 0.2 ? 2.5 ㎚ 인 것이, Ru 보호층으로부터의 산화에 의한 EUV 광선 반사율의 저하를 억제하는 효과라는 점에서 바람직하고, 0.4 ? 2 ㎚ 인 것이 보다 바람직하고, 0.5 ? 1.5 ㎚ 인 것이 더욱 바람직하다. 또, 다층 반사막의 최상층인 Si 층의 막두께는, 질소 함유 분위기에 폭로시켜 중간층 (13) 을 형성하기 위해, 2 ? 4.8 ㎚ 인 것이 바람직하고, 2.5 ? 4.5 ㎚ 인 것이 더욱 바람직하고, 3.0 ? 4 ㎚ 인 것이 특히 바람직하다.
본 발명에 있어서, 상기 조성의 중간층 (13) 은, Mo/Si 다층 반사막의 형성 후, 그 Mo/Si 다층 반사막의 최상층인 Si 층 표면을, 대기 중에 폭로시키지 않고, 질소 함유 분위기에 폭로시킴으로써 그 Si 층 표면을 경미하게 질화시킴으로써, 즉, Si 층 표면에 질소를 함유시킴으로써 형성할 수 있다. 또한, 본 명세서에 있어서의 질소 함유 분위기란, 질소 가스 분위기, 또는 질소 가스와 아르곤 등의 불활성 가스의 혼합 가스 분위기를 의미한다. 그 혼합 가스 분위기의 경우, 분위기 중의 질소 가스 농도가 20 vol% 이상인 것이 바람직하고, 50 vol% 이상인 것이 보다 바람직하고, 80 vol% 이상인 것이 더욱 바람직하다.
여기서, Mo/Si 다층 반사막의 형성 후, 그 Mo/Si 다층 반사막의 최상층인 Si 층 표면을, 대기 중에 폭로시키지 않고, 질소 함유 분위기에 폭로시키는 것은, 질소 분위기에 폭로시키기 전에, 그 Si 층 표면을 대기 중에 폭로시키면, 그 Si 층 표면이 산화되어 버려, 그 후, 질소 분위기에 폭로시켜도 그 Si 층 표면의 질화에 의해, 그 Si 층 표면에 질소를 함유시킬 수 없어, 소정량의 질소 및 Si 를 함유하는 중간층 (13) 을 형성할 수 없을 가능성이 있기 때문이다.
본 발명에 있어서, Si 층 표면을 폭로시키는 질소 함유 분위기는, 질소 분압 (Torr) 과 폭로 시간 (s) 의 곱이 1 × 10-6 Torr?s (= 1 L (Langmuir)) 이상인 것이 바람직하다. 질소 분압을 Pa 표기로 나타내는 경우에는, 질소 함유 분위기의 질소 분압 (Pa) 과 폭로 시간 (s) 의 곱이 1.33 × 10-4 Pa?s 이상인 것이 바람직한 것이 된다.
질소 분압과 폭로 시간의 곱은, 질소 함유 분위기 중의 질소가 Si 층 표면에 충돌하는 빈도를 나타내는 지표이고, 이하, 본 명세서에 있어서, 「질소의 폭로량」이라고 하는 경우도 있다. 이 값이 1 × 10-6 Torr?s 이상 (1.33 × 10-4 Pa?s 이상) 인 것이, Si 층 표면의 질화에 의해 상기 조성의 중간층 (13) 을 형성하는 데에 바람직하고, 1 × 10-3 Torr?s 이상 (1.33 × 10-1 Pa?s 이상) 인 것이 보다 바람직하고, 1 × 10-2 Torr?s 이상 (1.33 Pa?s 이상) 인 것이 더욱 바람직하고, 1 × 10-1 Torr?s 이상 (13.3 Pa?s 이상) 인 것이 더욱 바람직하다.
또한, Si 층 표면을 폭로시키는 질소 함유 분위기에 있어서의 질소 분압은, 1 × 10-4 Torr ? 820 Torr (1.33 × 10-2 Pa ? 109.32 kPa) 인 것이 바람직하다.
여기서, 질소 함유 분위기가 질소 가스 분위기인 경우, 상기 질소 분압은 그 질소 가스 분위기의 분위기 압력을 나타낸다.
Si 층 표면의 산화를 방지하기 위해서는, Si 층 표면을 폭로시키는 질소 함유 분위기에 있어서의 산소 농도가 극히 낮은 것이 바람직하다. 구체적으로는, 질소 함유 분위기에 있어서의 질소 분압이 상기 범위인 경우, 즉, 질소 함유 분위기에 있어서의 질소 분압이 1 × 10-4 Torr ? 820 Torr (1.33 × 10-2 Pa ? 109.32 kPa) 인 경우, 분위기 중의 산소 분압이 1 × 10-6 Torr (1.33 × 10-4 Pa) 이하인 것이 바람직하다.
또, Si 층 표면의 산화를 방지하기 위해서는, Si 층 표면을 폭로시키는 질소 함유 분위기에 있어서의 O3, H2O 및 OH 기를 함유하는 화합물로 이루어지는 기체 성분의 농도도 극히 낮은 것이 바람직하다. 구체적으로는, 질소 함유 분위기에 있어서의 질소 분압이 상기 범위인 경우, 즉, 질소 함유 분위기에 있어서의 질소 분압이 1 × 10-4 Torr ? 820 Torr (1.33 × 10-2 Pa ? 109.32 kPa) 인 경우, 분위기 중의 O3, H2O 및 OH 기를 함유하는 화합물로 이루어지는 기체 성분의 분압이, 각각 1 × 10-6 Torr (1.33 × 10-4 Pa) 이하인 것이 바람직하다.
또, Si 층을 침식시킬 우려가 있기 때문에, 질소 함유 분위기에 있어서의 F2 의 농도도 극히 낮은 것이 바람직하다. 구체적으로는, 질소 함유 분위기에 있어서의 질소 분압이 상기 범위인 경우, 즉, 질소 함유 분위기에 있어서의 질소 분압이 1 × 10-4 Torr ? 820 Torr (1.33 × 10-2 Pa ? 109.32 kPa) 인 경우, 분위기 중의 F2 의 분압이 1 × 10-6 Torr 이하인 것이 바람직하다.
본 발명에 있어서, Si 층 표면을 폭로시키는 질소 함유 분위기의 온도는, 0 ? 170 ℃ 인 것이 바람직하다. 질소 함유 분위기의 온도가 0 ℃ 미만이면, 진공 중의 잔류 수분의 흡착에 의한 영향의 문제가 발생할 우려가 있다. 질소 함유 분위기의 온도가 170 ℃ 초과이면, Si 층의 질화가 과도하게 진행되어, Mo/Si 다층 반사막의 EUV 광선 반사율의 저하가 발생할 우려가 있다.
질소 함유 분위기의 온도는 10 ? 160 ℃ 인 것이 보다 바람직하고, 20 ? 150 ℃, 20 ? 140 ℃, 20 ? 120 ℃ 인 것이 더욱 바람직하다.
또한, 후술하는 바와 같이, Si 층 표면을 질소 함유 분위기에 폭로시킬 때에, 그 Si 층 표면을 상기 온도 범위에서 열처리해도 된다.
본 발명에 있어서는, Mo/Si 다층 반사막의 최상층인 Si 층 표면을 질소 함유 분위기에 폭로시켜, 그 Si 층 표면을 경미하게 질화시킴으로써, 즉, Si 층 표면에 질소를 함유시킴으로써, 중간막 (13) 을 형성함으로써, 보호층 (14) (Ru 보호층) 의 성막 후의 EUV 광선 반사율의 저하가 없고, 산화 내구성을 향상시킬 수 있기 때문에 바람직하다.
후술하는 실시예 1, 2 에서는, Si 층 표면을 질소 함유 분위기에 폭로시키는 시간을 각각 600 sec, 6000 sec 로 하고 있는데, Si 층 표면을 질소 함유 분위기에 폭로시키는 시간은 이것에 한정되지 않고, 상기 서술한 질소 함유 분위기에 관한 조건을 만족시키는 범위에서 적절히 선택할 수 있다.
또한, 실시예 3, 4 에 나타내는 순서와 같이 Mo/Si 다층 반사막을 형성한 후, 그 Mo/Si 다층 반사막의 최상층인 Si 층 표면을, 대기 중에 폭로시키지 않고, 질소 함유 분위기에 폭로시킬 때에, 그 질소 함유 분위기에서 열처리함으로써 중간층 (13) 을 형성해도 된다. Mo/Si 다층 반사막의 최상층인 Si 층 표면을 질소 분위기에 폭로시킬 때에, 그 Si 층 표면을 열처리함으로써, 그 Si 층 표면의 질화, 즉, 그 Si 층 표면으로의 질소의 함유가 촉진된다.
또한, Mo/Si 다층 반사막을 형성한 후, 그 Mo/Si 다층 반사막의 최상층인 Si 층 표면을 대기 중에 폭로시키지 않고, 질소 함유 분위기에서 열처리하려면, Si 층의 형성 후, Mo/Si 다층 반사막이 형성된 기판을 Si 층을 형성한 성막 챔버 내, 또는 그 성막 챔버에 인접하는 챔버 내에 유지한 상태에서, 챔버 중의 가스를 질소 가스 (또는 질소 가스와 아르곤 등의 불활성 가스의 혼합 가스) 로 치환하고, 그 치환한 가스 중에서 Si 층을 열처리하면 된다.
Si 층 표면을 질소 함유 분위기 중에서 열처리할 때의 열처리 온도는, 120 ? 160 ℃, 특히 130 ? 150 ℃ 인 것이 바람직하다.
실시예 1 ? 4 에 나타내는 순서와 같이, 감압 분위기하에서 Si 층 표면을 질소 가스, 또는 질소 가스와 아르곤 등의 불활성 가스의 혼합 가스에 폭로시키는 순서는, 다층 반사막의 성막과 보호층의 성막을 동일한 챔버를 사용하여 실시하는 경우에, Si 층 표면을 질소 가스 (또는 질소 가스와 아르곤 등의 불활성 가스의 혼합 가스) 에 폭로시키는 순서의 실시 후, 보호층의 성막을 실시하기 전에 챔버 내의 질소 가스 (또는 질소 가스와 아르곤 등의 불활성 가스의 혼합 가스) 를 배기하는 것이 중요하다는 점을 고려하면 바람직한 순서이다. 또, 이 순서는, Si 층 표면에 대한 질소 가스 (또는 질소 가스와 아르곤 등의 불활성 가스의 혼합 가스) 의 폭로량을 제어함으로써, 중간층 (13) 의 질소 함유량을 제어할 수 있다는 점에서도 바람직한 순서이다.
또한, 실시예 3, 4 에 나타내는 순서와 같이 Mo/Si 다층 반사막을 형성한 후, 그 Mo/Si 다층 반사막의 최상층인 Si 층 표면을, 대기 중에 폭로시키지 않고, 질소 함유 분위기에 폭로시킬 때에, 그 질소 함유 분위기에서 열처리함으로써, 그 Si 층 표면의 질화, 즉, 그 Si 층 표면에 대한 질소의 함유를 촉진시킬 수 있는 것을 상기 서술하였으나, 감압 분위기하에서 Si 층 표면을 질소 가스, 또는 질소 가스와 아르곤 등의 불활성 가스의 혼합 가스에 폭로시키는 경우, 그 감압 분위기를 플라스마 상태로 유지하는 것도, Si 층 표면의 질화를 진행시키는 데에 있어서, 즉, Si 층 표면에 대한 질소 함유를 촉진하는 데에 바람직하다.
단, 이 경우에도, 플라스마 상태에서 이온화된 질소 가스 (또는 질소 가스와 아르곤 등의 불활성 가스의 혼합 가스) 에 전압을 인가하여 Si 층 표면에 이온 조사하면, 이온화된 질소가 가속된 상태에서 Si 층 표면에 충돌하기 때문에, Si 층의 질화가 과도하게 진행되어 Mo/Si 다층 반사막의 EUV 광선 반사율의 저하가 발생할 우려가 있기 때문에, 플라스마 상태에서 이온화된 질소 가스 (또는 질소 가스와 아르곤 등의 불활성 가스의 혼합 가스) 에 전압을 인가하지 않는 것, 요컨대, 이온 조사를 하지 않는 것이 중간층 (13) 의 질소량을 적당량으로 제어할 수 있다는 점에서 특히 바람직하다.
또, 감압 분위기하에서 Si 층 표면을 질소 가스, 또는 질소 가스와 아르곤 등의 불활성 가스의 혼합 가스에 폭로시키는 경우, 그 감압 분위기 중에서 Si 층 표면에 자외선을 조사하는 것도 Si 층 표면의 질화, 즉, Si 층 표면의 질소 함유를 촉진하는 데에 바람직하다.
보호층 (14) 은, 에칭 프로세스, 통상적으로는 드라이 에칭 프로세스에 의해 흡수체층 (15) 에 패턴 형성할 때에, 반사층 (12) 이 에칭 프로세스에 의한 데미지를 받지 않게 반사층 (12) 을 보호할 목적으로 형성된다. 따라서 보호층 (14) 의 재질로는, 흡수체층 (15) 의 에칭 프로세스에 의한 영향을 받기 어려운, 요컨대 이 에칭 속도가 흡수체층 (15) 보다 느리고, 또한 이 에칭 프로세스에 의한 데미지를 받기 어려운 물질이 선택된다.
또, 보호층 (14) 은, 보호층 (14) 을 형성한 후에도 반사층 (12) 에서의 EUV 광선 반사율을 저해하지 않도록, 보호층 (14) 자체도 EUV 광선 반사율이 높은 것이 바람직하다.
본 발명에서는, 상기 조건을 만족시키기 위해, 보호층 (14) 으로서 Ru 층, 또는 Ru 화합물층이 형성된다. 상기 Ru 화합물층의 Ru 화합물로서 RuB, RuNb, 및 RuZr 로 이루어지는 군에서 선택되는 적어도 1 종이 바람직하다. 보호층 (14) 이 Ru 화합물층인 경우, Ru 의 함유율은 50 at% 이상, 80 at% 이상, 특히 90 at% 이상인 것이 바람직하다. 단, 보호층 (14) 이 RuNb 층인 경우, 보호층 (14) 중의 Nb 의 함유율이 5 ? 40 at%, 특히 5 ? 30 at% 인 것이 바람직하다.
보호층 (14) 에는, 인접하는 중간층 (13) 으로부터 약간이지만 Si 가 확산될 가능성이 있다. 중간층 (13) 으로부터 확산된 Si 를 보호층 (14) 이 함유하는 경우, 보호층 (14) 중의 Si 의 함유율이 0.1 ? 4.5 at% 인 것이 바람직하고, 0.1 ? 4 at% 인 것이 보다 바람직하다.
중간층 (13) 으로부터 확산된 Si 를 보호층 (14) 이 함유하는 경우, 중간층 (13) 으로부터의 거리가 증가함에 따라 보호층 (14) 중의 Si 함유율이 감소해 가는 조성, 요컨대, 중간층 (13) 과의 계면 부근의 Si 함유율이 높고, 흡수체층 (15) 과의 계면 부근의 Si 함유율이 낮아지도록, 보호층 (14) 중의 Si 함유율이 경사진 조성이어도 된다. 이와 같은 경사 조성인 경우, 흡수체층 (15) 과의 계면 부근의 Si 함유율은 낮은 것이 바람직하고, 구체적으로는, 4 at% 이하인 것이 바람직하고, 흡수체층 (15) 과의 계면 부근은 Si 를 함유하지 않는 것이 보다 바람직하다.
보호층 (14) 에는, 인접하는 중간층 (13) 으로부터 약간이지만 질소도 확산될 가능성이 있다. 중간층 (13) 으로부터 확산된 질소를 보호층 (14) 이 함유하는 경우, 보호층 (14) 중의 질소 함유율은 0.1 ? 10 at% 인 것이 바람직하고, 0.1 ? 5 at% 인 것이 보다 바람직하다.
중간층 (13) 으로부터 확산된 질소를 보호층 (14) 이 함유하는 경우, 중간층 (13) 으로부터의 거리가 증가함에 따라 보호층 (14) 중의 질소 함유율이 감소해 가는 조성, 요컨대, 중간층 (13) 과의 계면 부근의 질소 함유율이 높고, 흡수체층 (15) 과의 계면 부근의 질소 함유율이 낮아지도록, 보호층 (14) 중의 질소 함유율이 경사진 조성이어도 된다.
본 발명에 있어서, 인접하는 중간층 (13) 으로부터 Si 나 질소가 보호층 (14) 중에 약간 확산되었다고 해도, 보호층 (14) 의 특성은 거의 악화되지 않는다.
본 발명에 있어서, 보호층 (14) 표면의 표면 조도 rms 가 0.5 ㎚ 이하인 것이 바람직하다. 보호층 (14) 표면의 표면 조도가 크면 그 보호층 (14) 상에 형성되는 흡수체층 (15) 의 표면 조도가 커지고, 그 흡수체층 (15) 에 형성되는 패턴의 에지 러프니스가 커져, 패턴의 치수 정밀도가 나빠진다. 패턴이 미세해짐에 따라 에지 러프니스의 영향이 현저해지기 때문에, 흡수체층 (15) 표면은 평활한 것이 요구된다.
보호층 (14) 표면의 표면 조도 rms 가 0.5 ㎚ 이하이면, 그 보호층 (14) 상에 형성되는 흡수체층 (15) 표면이 충분히 평활하기 때문에, 에지 러프니스의 영향에 의해 패턴의 치수 정밀도가 악화될 우려가 없다. 보호층 (14) 표면의 표면 조도 rms 는, 0.4 ㎚ 이하인 것이 보다 바람직하고, 0.3 ㎚ 이하인 것이 더욱 바람직하다.
보호층 (14) 의 두께는, 1 ? 10 ㎚ 인 것이, EUV 광선 반사율을 높이고 또한 내(耐)에칭 특성이 얻어진다는 이유에서 바람직하다. 보호층 (14) 의 두께는, 1 ? 5 ㎚ 인 것이 보다 바람직하고, 2 ? 4 ㎚ 인 것이 더욱 바람직하다.
보호층 (14) 은, 마그네트론 스퍼터링법, 이온빔 스퍼터링법 등 주지된 성막 방법을 이용하여 성막할 수 있다.
이온빔 스퍼터링법을 이용하여, 보호층 (14) 으로서 Ru 층을 형성하는 경우, 타깃으로서 Ru 타깃을 사용하여 아르곤 (Ar) 분위기 중에서 방전시키면 된다.
구체적으로는, 이하의 조건으로 이온빔 스퍼터링을 실시하면 된다.
?스퍼터 가스:Ar (가스압 1.3 × 10-2 Pa ? 2.7 × 10-2 Pa).
?이온 가속 전압:300 ? 1500 V.
?성막 속도:0.03 ? 0.30 ㎚/sec.
또한, 본 발명의 EUV 마스크 블랭크의 흡수체층을 형성하기 전의 상태, 즉, 도 1 에 나타내는 마스크 블랭크 (1) 의 흡수체층 (15) 을 제외한 구조가 본 발명의 반사층이 형성된 기판이다. 본 발명의 반사층이 형성된 기판은, EUV 마스크 블랭크의 전구체를 이루는 것이다.
본 발명의 반사층이 형성된 기판은, 후술하는 실시예에 기재하는 순서에 따라, 보호층 (14) 표면을 오존수 세정했을 경우에, 세정 전후에서의 EUV 광선 반사율의 저하가 0.9 % 이하인 것이 바람직하고, 0.5 % 이하인 것이 보다 바람직하다.
본 발명의 반사층이 형성된 기판은, 후술하는 실시예에 기재하는 순서에 따라 가열 처리를 했을 경우에, 가열 처리 전후에서의 EUV 광선 반사율의 저하가 7 % 이하인 것이 바람직하고, 6 % 이하인 것이 보다 바람직하다.
또한, 오존수 세정의 전후에서의 EUV 광선 반사율의 저하에 비해, 가열 처리 전후에서의 EUV 광선 반사율의 저하값이 큰 것은, 본 발명에 의한 효과를 확인하기 위해서, 후술하는 실시예에서는, 마스크 블랭크 제조시에 실시되는 가열 공정이나 마스크 블랭크로부터 포토마스크를 제조시에 실시되는 가열 공정보다, 가혹한 조건으로 가열 처리를 실시했기 때문이다.
흡수체층 (15) 에 특히 요구되는 특성은, EUV 광선 반사율이 매우 낮은 것이다. 구체적으로는, EUV 광의 파장 영역의 광선을 흡수체층 (15) 표면에 조사했을 때에, 파장 13.5 ㎚ 부근의 최대 광선 반사율이 0.5 % 이하인 것이 바람직하고, 0.1 % 이하인 것이 보다 바람직하다.
상기 특성을 달성하기 위해, EUV 광의 흡수 계수가 높은 재료로 구성되는 것이 바람직하고, 탄탈 (Ta) 을 주성분으로 하는 재료로 형성되어 있는 것이 바람직하다.
이와 같은 흡수체층 (15) 으로는, Ta 를 주성분으로 하는 막인 것이 바람직하고, 특히, TaN 이나 TaBN 을 주성분으로 하는 막이 예시된다. 다른 예로는, Ta, B, Si 및 질소 (N) 를 이하에 서술하는 비율로 함유하는 것 (TaBSiN 막) 을 들 수 있다.
?B 의 함유율:1 at% 이상 5 at% 미만, 바람직하게는 1 ? 4.5 at%, 보다 바람직하게는 1.5 ? 4 at%.
?Si 의 함유율:1 ? 25 at%, 바람직하게는 1 ? 20 at%, 보다 바람직하게는 2 ? 12 at%.
?Ta 와 N 의 조성비 (원자비) (Ta:N) : 8:1 ? 1:1.
?Ta 의 함유율:바람직하게는 50 ? 90 at%, 보다 바람직하게는 60 ? 80 at%.
?N 의 함유율:바람직하게는 5 ? 30 at%, 보다 바람직하게는 10 ? 25 at%.
상기 조성의 흡수체층 (15) 은, 그 결정 상태는 아모르퍼스이고, 표면의 평활성이 우수하다.
상기 조성의 흡수체층 (15) 은, 표면 조도 rms 가 0.5 ㎚ 이하인 것이 바람직하다. 흡수체층 (15) 표면의 표면 조도가 크면 흡수체층 (15) 에 형성되는 패턴의 에지 러프니스가 커져, 패턴의 치수 정밀도가 나빠진다. 패턴이 미세해짐에 따라 에지 러프니스의 영향이 현저해지기 때문에, 흡수체층 (15) 표면은 평활한 것이 요구된다.
흡수체층 (15) 표면의 표면 조도 rms 가 0.5 ㎚ 이하이면, 흡수체층 (15) 표면이 충분히 평활하기 때문에, 에지 러프니스의 영향에 의해 패턴의 치수 정밀도가 악화될 우려가 없다. 흡수체층 (15) 표면의 표면 조도 rms 는, 0.4 ㎚ 이하인 것이 보다 바람직하고, 0.3 ㎚ 이하인 것이 더욱 바람직하다.
흡수체층 (15) 은, 상기 구성인 것에 의해, 에칭 가스로서 염소계 가스를 사용하여 드라이 에칭을 실시했을 때의 에칭 속도가 빠르고, 보호층 (14) 과의 에칭 선택비는 10 이상을 나타낸다. 본 명세서에 있어서, 에칭 선택비는, 하기 (1) 식을 사용하여 계산할 수 있다.
?에칭 선택비
= (흡수체층 (15) 의 에칭 속도) / (보호층 (14) 의 에칭 속도) … (1)
에칭 선택비는, 10 이상이 바람직하고, 11 이상인 것이 더욱 바람직하고, 12 이상인 것이 더욱 바람직하다.
흡수체층 (15) 의 두께는, 50 ? 100 ㎚ 인 것이 바람직하다. 상기한 구성의 흡수층 (15) 은, 마그네트론 스퍼터링법이나 이온빔 스퍼터링법과 같은 스퍼터링법 등의 성막 방법을 이용하여 형성할 수 있다.
본 발명의 EUV 마스크 블랭크는, 도 2 에 나타내는 EUV 마스크 블랭크 (1′) 와 같이, 흡수체층 (15) 상에 마스크 패턴의 검사에 사용하는 검사광에 있어서의 저반사층 (16) 이 형성되어 있는 것이 바람직하다.
EUV 마스크를 제작할 때, 흡수체층에 패턴을 형성한 후, 이 패턴이 설계대로 형성되어 있는지의 여부를 검사한다. 이 마스크 패턴의 검사에서는, 검사광으로서 통상적으로 257 ㎚ 정도의 광을 사용한 검사기가 사용된다. 요컨대, 이 257 ㎚ 정도의 광의 반사율 차이, 구체적으로는, 흡수체층 (15) 이 패턴 형성에 의해 제거되어 폭로된 면과 패턴 형성에 의해 제거되지 않고 남은 흡수체층 (15) 표면의 반사율 차이에 의해 검사된다. 여기서, 전자는 보호층 (14) 표면이다. 따라서, 검사광의 파장에 대한 보호층 (14) 표면과 흡수체층 (15) 표면의 반사율 차이가 작으면 검사시의 콘트라스트가 나빠져, 정확한 검사를 할 수 없게 된다.
상기한 구성의 흡수체층 (15) 은, EUV 광선 반사율이 매우 낮아, EUV 마스크 블랭크의 흡수층으로서 우수한 특성을 갖고 있지만, 검사광의 파장에 대해 보았을 경우, 광선 반사율이 반드시 충분히 낮다고는 할 수 없다. 이 결과, 검사광의 파장에서의 흡수체층 (15) 표면의 반사율과 보호층 (14) 표면의 반사율 차이가 작아져, 검사시의 콘트라스트가 충분히 얻어지지 않을 가능성이 있다. 검사시의 콘트라스트가 충분히 얻어지지지 않으면 마스크 검사에 있어서 패턴의 결함을 충분히 판별할 수 없어, 정확한 결함 검사를 실시할 수 없게 된다.
도 2 에 나타내는 EUV 마스크 블랭크 (1′) 와 같이, 흡수체층 (15) 상에 저반사층 (16) 을 형성함으로써, 검사시의 콘트라스트가 양호해지고, 바꾸어 말하면, 검사광의 파장에서의 광선 반사율이 매우 낮아진다. 이와 같은 목적으로 형성하는 저반사층 (16) 은, 검사광의 파장 영역의 광선을 조사했을 때에, 그 검사광의 파장의 최대 광선 반사율이 15 % 이하인 것이 바람직하고, 10 % 이하인 것이 보다 바람직하고, 5 % 이하인 것이 더욱 바람직하다.
저반사층 (16) 에 있어서의 검사광의 파장의 광선 반사율이 15 % 이하이면, 그 검사시의 콘트라스트가 양호하다. 구체적으로는, 보호층 (14) 표면에 있어서의 검사광의 파장의 반사광과 저반사층 (16) 표면에 있어서의 검사광의 파장의 반사광의 콘트라스트가, 30 % 이상, 바람직하게는 40 % 이상이 된다.
본 명세서에 있어서, 콘트라스트는 하기 (2) 식을 사용하여 구할 수 있다.
?콘트라스트 (%) = ((R2 - R1) / (R2 + R1)) × 100 … (2)
여기서, 검사광의 파장에 있어서의 R2 는 보호층 (14) 표면에서의 반사율이며, R1 은 저반사층 (16) 표면에서의 반사율이다. 또한, 상기 R1 및 R2 는, 도 2 에 나타내는 EUV 마스크 블랭크 (1′) 의 흡수체층 (15) 및 저반사층 (16) 에 패턴을 형성한 상태 (요컨대, 도 3 에 나타내는 상태) 에서 측정한다. 상기 R2 는, 도 3 중, 패턴 형성에 의해 흡수체층 (15) 및 저반사층 (16) 이 제거되어 외부로 폭로된 보호층 (14) 표면에서 측정한 값이며, R1 은 패턴 형성에 의해 제거되지 않고 남은 저반사층 (16) 표면에서 측정한 값이다.
본 발명에 있어서, 상기 식으로 나타내는 콘트라스트가 45 % 이상인 것이 보다 바람직하고, 60 % 이상인 것이 더욱 바람직하고, 80 % 이상인 것이 특히 바람직하다.
저반사층 (16) 은, 상기 특성을 달성하기 위해, 검사광의 파장의 굴절률이 흡수체층 (15) 보다 낮은 재료로 구성되고, 그 결정 상태가 아모르퍼스인 것이 바람직하다.
이와 같은 저반사층 (16) 의 구체예로는, Ta 및 산소를 주성분으로 하는 막인 것이 바람직하고, 특히, TaNO 나 TaBNO 를 주성분으로 하는 막이 예시된다. 다른 예로는, Ta, B, Si 및 산소 (O) 를 이하에 서술하는 비율로 함유하는 것 (저반사층 (TaBSiO)) 을 들 수 있다.
?B 의 함유율:1 at% 이상 5 at% 미만, 바람직하게는 1 ? 4.5 at%, 보다 바람직하게는 1.5 ? 4 at%.
?Si 의 함유율:1 ? 25 at%, 바람직하게는 1 ? 20 at%, 보다 바람직하게는 2 ? 10 at%.
?Ta 와 O 의 조성비 (원자비) (Ta:O) : 7:2 ? 1:2, 바람직하게는 7:2 ? 1:1, 보다 바람직하게는 2:1 ? 1:1.
또, 저반사층 (16) 의 구체예로는, Ta, B, Si, O 및 N 을 이하에 서술하는 비율로 함유하는 것 (저반사층 (TaBSiON)) 을 들 수 있다.
?B 의 함유율:1 at% 이상 5 at% 미만, 바람직하게는 1 ? 4.5 at%, 보다 바람직하게는 2 ? 4.0 at%.
?Si 의 함유율:1 ? 25 at%, 바람직하게는 1 ? 20 at%, 보다 바람직하게는 2 ? 10 at%.
?Ta 와 O 및 N 의 조성비 (원자비) (Ta:(O+N)) : 7:2 ? 1:2, 바람직하게는 7:2 ? 1:1, 보다 바람직하게는 2:1 ? 1:1.
저반사층 ((TaBSiO), (TaBSiON)) 은, 상기 구성인 것에 의해, 그 결정 상태는 아모르퍼스이고, 그 표면이 평활성이 우수하다. 구체적으로는, 저반사층 ((TaBSiO), (TaBSiON)) 표면의 표면 조도 rms 가 0.5 ㎚ 이하인 것이 바람직하다.
상기한 바와 같이, 에지 러프니스의 영향에 의해 패턴의 치수 정밀도의 악화를 방지하기 때문에, 흡수체층 (15) 표면은 평활한 것이 요구된다. 저반사층 (16) 은, 흡수체층 (15) 상에 형성되기 때문에, 동일한 이유에 의해, 그 표면은 평활한 것이 요구된다.
저반사층 (16) 표면의 표면 조도 rms 가 0.5 ㎚ 이하이면, 저반사층 (16) 표면이 충분히 평활하기 때문에, 에지 러프니스의 영향에 의해 패턴의 치수 정밀도가 악화될 우려가 없다. 저반사층 (16) 표면의 표면 조도 rms 는, 0.4 ㎚ 이하인 것이 보다 바람직하고, 0.3 ㎚ 이하인 것이 더욱 바람직하다.
흡수체층 (15) 상에 저반사층 (16) 을 형성하는 경우, 흡수체층 (15) 과 저반사층 (16) 의 합계 두께가 55 ? 130 ㎚ 인 것이 바람직하다. 또, 저반사층 (16) 의 두께가 흡수체층 (15) 의 두께보다 크면 흡수체층 (15) 에서의 EUV 광 흡수 특성이 저하될 우려가 있기 때문에, 저반사층 (16) 의 두께는 흡수체층 (15) 의 두께보다 작은 것이 바람직하다. 이 때문에, 저반사층 (16) 의 두께는 5 ? 30 ㎚ 인 것이 바람직하고, 10 ? 20 ㎚ 인 것이 보다 바람직하다.
저반사층 ((TaBSiO), (TaBSiON)) 은, 마그네트론 스퍼터링법이나 이온빔 스퍼터링법과 같은 스퍼터링법 등의 성막 방법을 이용하여 형성할 수 있다.
또한, 도 2 에 나타내는 EUV 마스크 블랭크 (1′) 와 같이, 흡수체층 (15) 상에 저반사층 (16) 을 형성하는 것이 바람직하다는 것은, 패턴의 검사광의 파장과 EUV 광의 파장이 상이하기 때문이다. 따라서, 패턴의 검사광으로서 EUV 광 (13.5 ㎚ 부근) 을 사용하는 경우, 흡수체층 (15) 상에 저반사층 (16) 을 형성할 필요는 없다고 생각된다. 검사광의 파장은, 패턴 치수가 작아짐에 따라 단파장측으로 시프트되는 경향이 있고, 장래적으로는 193 ㎚, 나아가서는 13.5 ㎚ 으로 시프트되는 것도 생각된다. 검사광의 파장이 13.5 ㎚ 인 경우, 흡수체층 (15) 상에 저반사층 (16) 을 형성할 필요는 없다고 생각된다.
본 발명의 EUV 마스크 블랭크는, 반사층 (12), 중간층 (13), 보호층 (14), 흡수체층 (15), 저반사층 (16) 이외에, EUV 마스크 블랭크의 분야에 있어서 공지된 기능막을 갖고 있어도 된다. 이와 같은 기능막의 구체예로는, 예를 들어, 일본 공표특허공보 2003-501823호 (본 출원 명세서의 개시로서 도입된다) 에 기재되어 있는 바와 같이, 기판의 정전 척킹을 촉진시키기 위해서, 기판의 이면측에 실시되는 고유전성 코팅을 들 수 있다. 여기서, 기판의 이면이란, 도 1 의 기판 (11) 에 있어서, 반사층 (12) 이 형성되어 있는 측과는 반대측의 면을 가리킨다. 이와 같은 목적으로 기판의 이면에 실시하는 고유전성 코팅은, 시트 저항이 100 Ω/□ 이하가 되도록, 구성 재료의 전기 전도율과 두께를 선택한다. 고유전성 코팅의 구성 재료로는, 공지된 문헌에 기재되어 있는 것에서 넓게 선택할 수 있다. 예를 들어, 일본 공표특허공보 2003-501823호에 기재된 고유전율의 코팅, 구체적으로는, 실리콘, TiN, 몰리브덴, 크롬, TaSi 로 이루어지는 코팅을 적용할 수 있다. 고유전성 코팅의 두께는, 예를 들어 10 ? 1000 ㎚ 로 할 수 있다.
고유전성 코팅은, 공지된 성막 방법, 예를 들어, 마그네트론 스퍼터링법, 이온빔 스퍼터링법과 같은 스퍼터링법, CVD 법, 진공 증착법, 전해 도금법을 이용하여 형성할 수 있다.
또한, 본 발명은, 상기한 EUV 리소그래피용 반사막이 형성된 기판, 및 EUV 리소그래피용 반사형 마스크 블랭크에 더하여, 그 EUV 마스크 블랭크에 패턴 형성한 EUV 마스크도 제공한다.
본 발명의 EUV 마스크는, 본 발명의 EUV 마스크 블랭크의 흡수체층 (흡수체층 상에 저반사층이 형성되어 있는 경우에는, 흡수체층 및 저반사층) 을 적어도 패터닝함으로써 제조할 수 있다. 흡수체층 (흡수체층 상에 저반사층이 형성되어 있는 경우에는, 흡수체층 및 저반사층) 의 패터닝 방법은 특별히 한정되지 않고, 예를 들어, 흡수체층 (흡수체층 상에 저반사층이 형성되어 있는 경우에는, 흡수체층 및 저반사층) 상에 레지스트를 도포하여 레지스트 패턴을 형성하고, 이것을 마스크로 하여 흡수체층 (흡수체층 상에 저반사층이 형성되어 있는 경우에는, 흡수체층 및 저반사층) 을 에칭하는 방법을 채용할 수 있다. 레지스트의 재료나 레지스트 패턴의 묘화법은, 흡수체층 (흡수체층 상에 저반사층이 형성되어 있는 경우에는, 흡수체층 및 저반사층) 의 재질 등을 고려하여 적절히 선택하면 된다. 흡수체층 (흡수체층 상에 저반사층이 형성되어 있는 경우에는, 흡수체층 및 저반사층) 의 에칭 방법도 특별히 한정되지 않고, 반응성 이온 에칭 등의 드라이 에칭 또는 웨트 에칭을 채용할 수 있다. 흡수체층 (흡수체층 상에 저반사층이 형성되어 있는 경우에는, 흡수체층 및 저반사층) 을 패터닝한 후, 레지스트를 박리액으로 박리함으로써, 본 발명의 EUV 마스크가 얻어진다.
본 발명에 관련된 EUV 마스크를 사용한 반도체 집적 회로의 제조 방법에 대해 설명한다. 본 발명은, EUV 광을 노광용 광원으로서 사용하는 포토리소그래피법에 의한 반도체 집적 회로의 제조 방법에 적용할 수 있다. 구체적으로는, 레지스트를 도포한 실리콘 웨이퍼 등의 기판을 스테이지 상에 배치하고, 반사경을 조합하여 구성한 반사형 노광 장치에 상기 EUV 마스크를 설치한다. 그리고, EUV 광을 광원으로부터 반사경을 개재하여 EUV 마스크에 조사하고, EUV 광을 EUV 마스크에 의해 반사시켜 레지스트가 도포된 기판에 조사한다. 이 패턴 전사 공정에 의해, 회로 패턴이 기판 상에 전사된다. 회로 패턴이 전사된 기판은, 현상에 의해 감광 부분 또는 비감광 부분을 에칭한 후, 레지스트를 박리한다. 반도체 집적 회로는, 이와 같은 공정을 반복함으로써 제조된다.
실시예
이하, 실시예를 사용하여 본 발명을 추가로 설명한다.
(실시예 1)
본 실시예에서는, 도 2 에 나타내는 마스크 블랭크 (1′) 를 제작한다.
성막용 기판 (11) 으로서 SiO2-TiO2 계의 유리 기판 (외형 가로세로 6 인치 (152.4 ㎜), 두께가 6.3 ㎜) 을 사용하였다. 이 유리 기판의 열팽창률은 0.2 × 10-7/℃, 영률은 67 ㎬, 푸아송비는 0.17, 비강성은 3.07 × 107 ㎡/s2 이다. 이 유리 기판을 연마에 의해, 표면 조도 rms 가 0.15 ㎚ 이하인 평활한 표면과, 100 ㎚ 이하의 평탄도로 형성하였다.
기판 (11) 의 이면측에는, 마그네트론 스퍼터링법을 이용하여 두께 100 ㎚ 의 Cr 막을 성막함으로써, 시트 저항 100 Ω/□ 의 고유전성 코팅 (도시하지 않음) 을 실시하였다.
평판 형상을 한 통상적인 정전 척에, 형성한 Cr 막을 사용하여 기판 (11) (외형 가로세로 6 인치 (152.4 ㎜), 두께 6.3 ㎜) 을 고정시키고, 그 기판 (11) 의 표면 상에 이온빔 스퍼터법을 이용하여 Mo 층을, 이어서 Si 층을 교대로 성막하는 것을 50 주기 반복함으로써, 합계 막두께 340 ㎚ ((2.3 ㎚ + 4.5 ㎚) × 50) 의 Mo/Si 다층 반사막 (반사층 (12)) 을 형성하였다. 또한, 다층 반사막 (12) 의 최상층은 Si 층이다.
Mo 층 및 Si 층의 성막 조건은 이하와 같다.
(Mo 층의 성막 조건)
?타깃:Mo 타깃.
?스퍼터 가스:Ar 가스 (가스압:0.02 Pa).
?전압:700 V.
?성막 속도:0.064 ㎚/sec.
?막두께:2.3 ㎚.
(Si 층의 성막 조건)
?타깃:Si 타깃 (붕소 도프).
?스퍼터 가스:Ar 가스 (가스압:0.02 Pa).
?전압:700 V.
?성막 속도:0.077 ㎚/sec.
?막두께:4.5 ㎚.
다음으로, Mo/Si 다층 반사막의 최상층인 Si 층 표면을, 하기 조건에 따라 질소 함유 분위기에 폭로시켰다.
(폭로 조건)
?캐리어 가스:Ar 가스, 유량 17 sccm.
?폭로 가스:질소 가스, 유량 50 sccm.
(RF 방전 중에 질소 가스 및 캐리어 가스를 공급)
?질소 가스 분압: 0.2 mTorr (2.6 × 10-2 Pa).
?분위기 압력:0.3 mTorr (3.5 × 10-2 Pa).
?분위기 온도:20 ℃.
?폭로 시간:600 sec.
?폭로량:1.2 × 105 L (1 L (Langmuir) = 1 × 10-6 Torr?s = 1.33 × 10-4 Pa?s).
?RF 방전의 주파수:1.8 ㎒.
?RF 파워:500 W.
다음으로, 보호층 (14) 인 Ru 층을, 이온빔 스퍼터법을 이용하여 형성하였다.
보호층 (14) 의 형성 조건은 이하와 같다.
?타깃:Ru 타깃.
?스퍼터 가스:Ar 가스 (가스압:0.02 Pa).
?전압:700 V.
?성막 속도:0.052 ㎚/sec.
?막두께:2.5 ㎚.
다음으로, 보호층 (14) 상에, 흡수체층 (15) 으로서 TaBSiN 층을, 마그네트론 스퍼터링법을 이용하여 형성한다.
TaBSiN 층의 성막 조건은 이하와 같다.
(TaBSiN 층의 성막 조건)
?타깃:TaBSi 화합물 타깃 (조성비:Ta 80 at%, B 10 at%, Si 10 at%).
?스퍼터 가스:Ar 과 N2 의 혼합 가스 (Ar:86 체적%, N2:14 체적%, 가스압:0.3 Pa).
?투입 전력:150 W.
?성막 속도:0.12 ㎚/sec.
?막두께:60 ㎚.
다음으로, 흡수체층 (15) 상에, 저반사층 (16) 으로서 TaBSiON 층을, 마그네트론 스퍼터링법을 이용하여 형성함으로써, 도 2 에 나타내는 마스크 블랭크 (1′) 를 제작한다.
TaBSiON 막의 성막 조건은 이하와 같다.
(TaBSiON 층의 성막 조건)
?타깃:TaBSi 타깃 (조성비:Ta 80 at%, B 10 at%, Si 10 at%).
?스퍼터 가스:Ar 과 N2 와 O2 의 혼합 가스 (Ar:60 체적%, N2:20 체적%, O2:20 체적%, 가스압:0.3 Pa)
?투입 전력:150 W.
?성막 속도:0.18 ㎚/sec.
?막두께:10 ㎚.
상기 순서에 의해 얻어진 마스크 블랭크에 대해 하기 평가를 실시한다.
(1) 막 조성
상기 순서에 의해 보호층 (14) 까지 형성한 샘플에 대해, 보호층 (14) 의 표면으로부터 반사층 (Mo/Si 다층 반사막) (12) 까지의 깊이 방향 조성을, X 선 광 전자 분광 장치 (X-ray Photoelectron Spectrometer) (알박 파이사 제조:Quantera SXM) 를 사용하여 측정함으로써, Mo/Si 다층 반사막의 최상층인 Si 층과 보호층 (14) 사이에 중간층 (13) 이 형성되어 있는 것을 확인하였다.
중간층 (13) 의 조성은, 질소 6 at%, Si 94 at% 였다. 또, 중간층 (13) 의 막두께는 1 ㎚ 였다.
(2) 표면 조도
상기 순서에 의해 보호층 (14) 까지 형성한 샘플에 대해, 보호층 (14) 의 표면 조도를, JIS-B 0601 (1994년) 에 따라, 원자간력 현미경 (Atomic Force Microscope) (세이코 인스트루먼트사 제조:번호 SPI3800) 을 사용하여 확인하였다. 보호층 (14) 의 표면 조도 rms 는 0.15 ㎚ 였다.
(3) 세정 내성
상기 순서에 의해 보호층 (14) 까지 형성한 샘플에 대해, 보호층 (14) 표면을 오존수에 의한 스핀 세정으로 합계 600 초 처리하였다. 이 처리 전후에 보호층 (14) 표면에 EUV 광 (파장 13.5 ㎚) 을 조사하고, EUV 반사율을 EUV 반사율계 (AIXUV 사 제조 MBR (제품명)) 를 사용하여 측정하였다. 이 처리 전후에서의 EUV 반사율의 저하는 0.5 % 였다.
(4) 가열 처리 내성
상기 순서에 의해 보호층 (14) 까지 형성한 샘플에 대해, 210 ℃ 에서 10 분간의 가열 처리 (대기 중) 를 하였다. 이 처리 전후에서의, EUV 반사율의 저하는 4.1 % 였다.
(5) 반사 특성 (콘트라스트 평가)
상기 순서에 의해 보호층 (14) 까지 형성한 샘플에 대해, 보호층 (14) 표면에 있어서의 패턴 검사광 (파장 257 ㎚) 의 반사율을 분광 광도계를 사용하여 측정한다. 또, 저반사층 (16) 까지 형성한 샘플에 대해, 저반사층 (16) 표면에 있어서의 패턴 검사광의 반사율을 측정한다. 그 결과, 보호층 (14) 표면에서의 반사율은 60.0 % 이고, 저반사층 (16) 표면의 반사율은 6.9 % 이다. 이들의 결과와 상기 서술한 (2) 식을 사용하여 콘트라스트를 구하면 79.4 % 가 된다.
얻어지는 EUV 마스크 블랭크 (1′) 에 대해, 저반사층 (16) 표면에 EUV 광 (파장 13.5 ㎚) 을 조사하여 EUV 광의 반사율을 측정한다. 그 결과, EUV 광의 반사율은 0.4 % 이고, EUV 흡수 특성이 우수하다는 것이 확인된다.
(6) 에칭 특성
에칭 특성에 대해서는, 상기 순서에 의해 제작되는 EUV 마스크 블랭크를 사용하여 평가하는 대신에 이하의 방법으로 평가한다.
RF 플라스마 에칭 장치의 시료대 (4 인치 석영 기판) 상에, 시료로서 하기에 기재된 방법에 의해 Ru 막 또는 TaBSiN 막이 각각 성막된 Si 칩 (10 ㎜ × 30 ㎜) 을 설치한다. 이 상태에서 시료대에 설치된 Si 칩의 Ru 막 또는 TaNBSiN 막을 이하의 조건으로 플라스마 RF 에칭한다.
?바이어스 RF:50 W.
?에칭 시간:120 sec.
?트리거 압력:3 Pa.
?에칭 압력:1 Pa.
?에칭 가스:Cl2/Ar.
?가스 유량 (Cl2/Ar) :20/80 sccm.
?전극 기판간 거리:55 ㎜.
Ru 막의 성막은, 이온빔 스퍼터링법에 의해, 이하의 성막 조건으로 실시한다.
(Ru 막의 성막 조건)
?타깃:Ru 타깃.
?스퍼터 가스:Ar 가스 (가스압:2 mTorr, 유량:15 sccm).
?출력:150 W.
?성막 속도:0.023 ㎚/sec.
?막두께:2.5 ㎚
TaBSiN 막은, 마그네트론 스퍼터링법을 이용하여, TaB 타깃 및 Si 타깃을 질소 분위기하에서 동시 방전시킴으로써 성막한다. 또한, 성막은 이하의 3 가지 조건으로 실시한다.
(TaBSiN 막의 성막 조건 (1))
?타깃:TaB 타깃 (조성비:Ta 80 at%, B 20 at%), Si 타깃.
?스퍼터 가스:Ar 과 N2 의 혼합 가스 (Ar:86 체적%, N2:14 체적%, 가스압:2 mTorr (0.3 Pa)).
?출력:150 W (TaB 타깃), 30 W (Si 타깃).
?성막 속도:0.13 ㎚/sec.
?막두께:60 ㎚.
(TaBSiN 막의 성막 조건 (2))
?타깃:TaB 타깃 (조성비:Ta 80 at%, B 20 at%), Si 타깃.
?스퍼터 가스:Ar 가스, N2 가스 (Ar:86 체적%, N2:14 체적%, 가스압:2 mTorr (0.3 Pa)).
?출력:150 W (TaB 타깃), 50 W (Si 타깃).
?성막 속도:0.12 ㎚/sec.
?막두께:60 ㎚.
(TaBSiN 막의 성막 조건 (3))
?타깃:TaB 타깃 (조성비:Ta 80 at%, B 20 at%), Si 타깃.
?스퍼터 가스:Ar 가스, N2 가스 (Ar:86 체적%, N2:14 체적%, 가스압:2 mTorr (0.3 Pa), 유량:13 sccm (Ar), 2 sccm (N2)).
?출력:150 W (TaB 타깃), 100 W (Si 타깃).
?성막 속도:0.11 ㎚/sec.
?막두께:60 ㎚.
상기 조건으로 성막한 Ru 막, 및 TaBSiN 막 (1) ? (3) 에 대해 에칭 속도를 구하고, 하기 (3) 식을 사용하여 에칭 선택비를 구한다.
?에칭 선택비
= (TaBSiN 막의 에칭 속도) / (Ru 막의 에칭 속도) … (3)
보호층 (13) 과의 에칭 선택비는, 10 이상이 바람직하지만, TaBSiN 막 (1) ? (3) 의 에칭 선택비는 이하와 같고, 모두 충분한 선택비를 갖고 있다.
?TaBSiN 막 (1) :10.0.
?TaBSiN 막 (2) :12.3.
?TaBSiN 막 (3) :13.9.
(실시예 2)
실시예 2 는, 질소 함유 분위기에 대한 폭로 조건을 이하의 조건으로 한 것 이외에는, 실시예 1 과 동일한 순서로 실시하였다.
(폭로 조건)
?캐리어 가스:Ar 가스, 유량 17 sccm.
?폭로 가스:질소 가스, 유량 50 sccm. (RF 방전 중에 질소 가스 및 캐리어 가스를 공급).
?질소 가스 분압:0.2 mTorr (2.6 × 10-2 Pa).
?분위기 압력:0.3 mTorr (3.5 × 10-2 Pa).
?분위기 온도:20 ℃.
?폭로 시간:6000 sec.
?폭로량:1.2 × 106 L (1 L (Langmuir) = 1 × 10-6 Torr?s = 1.33 × 10-4 Pa?s).
?RF 방전의 주파수:1.8 ㎒.
?RF 파워:500 W.
상기 순서에 의해 얻어진 마스크 블랭크에 대해 하기 평가를 실시하였다.
(1) 막 조성
상기 순서에 의해 보호층 (14) 까지 형성한 샘플에 대해, 보호층 (14) 의 표면으로부터 반사층 (Mo/Si 다층 반사막) (12) 까지의 깊이 방향 조성을, X 선 광 전자 분광 장치 (X-ray Photoelectron Spectrometer) (알박 파이사 제조:Quantera SXM) 를 사용하여 측정함으로써, Mo/Si 다층 반사막의 최상층인 Si 층과 보호층 (14) 사이에 중간층 (13) 이 형성되어 있는 것을 확인하였다. 중간층 (13) 의 조성은, 질소 8 at%, Si 92 at% 였다. 또, 중간층 (13) 의 막두께는 1 ㎚ 였다.
(2) 표면 조도
상기 순서에 의해 보호층 (14) 까지 형성한 샘플에 대해, 보호층 (14) 의 표면 조도를, JIS-B 0601 (1994년) 에 따라, 원자간력 현미경 (Atomic Force Microscope) (세이코 인스트루먼트사 제조:번호 SPI3800) 을 사용하여 확인하였다. 보호층 (14) 의 표면 조도 rms 는 0.15 ㎚ 였다.
(3) 세정 내성
상기 순서에 의해 보호층 (14) 까지 형성한 샘플에 대해, 보호층 (14) 표면을 오존수에 의한 스핀 세정으로 합계 600 초 처리하였다. 이 처리 전후에 보호층 (14) 표면에 EUV 광 (파장 13.5 ㎚) 을 조사하고, EUV 반사율을 EUV 반사율계 (AIXUV 사 제조 MBR (제품명)) 를 사용하여 측정하였다. 이 처리 전후에서의 EUV 반사율의 저하는 0.3 % 였다.
(4) 가열 처리 내성
상기 순서에 의해 보호층 (14) 까지 형성한 샘플에 대해, 210 ℃ 에서 10 분간의 가열 처리 (대기 중) 를 한다. 이 처리 전후에서의, EUV 반사율의 저하는 3.7 % 이다.
(실시예 3)
실시예 3 은, RF 방전을 실시하는 Si 층 표면의 질소 함유 분위기 (질소와 아르곤의 혼합 가스 분위기) 에 대한 폭로 대신에, 하기의 RF 방전을 실시하지 않는 폭로 조건으로 열처리를 실시한 것 이외에는, 실시예 1 과 동일한 순서를 실시하였다.
Mo/Si 다층 반사막의 형성 후, 대기 중에 폭로시키지 않고, Mo/Si 다층 반사막의 최상층인 Si 층 표면을, 하기 조건에 따라 질소 함유 분위기 중 (질소와 아르곤의 혼합 가스 분위기 중) 에서 열처리한다.
(폭로 조건)
?분위기 가스:Ar 가스 (캐리어 가스), 유량 17 sccm. 질소 가스, 유량 50 sccm.
?질소 가스 분압:0.2 mTorr (2.6 × 10-2 Pa).
?분위기 압력:0.3 mTorr (3.5 × 10-2 Pa).
?열처리 온도:140 ℃.
?열처리 시간:600 sec.
?질소 분압 × 열처리 시간 (질소 함유 분위기에 대한 폭로 시간) :1.2 × 105 L (1 L (Langmuir) = 1 × 10-6 Torr?s = 1.33 × 10-4 Pa?s)
상기 순서에 의해 얻어지는 마스크 블랭크에 대해 하기 평가를 실시한다.
(1) 막 조성
상기 순서에 의해 보호층 (14) 까지 형성한 샘플에 대해, 보호층 (14) 의 표면으로부터 반사층 (Mo/Si 다층 반사막) (12) 까지의 깊이 방향 조성을, X 선 광 전자 분광 장치 (X-ray Photoelectron Spectrometer) (알박 파이사 제조:Quantera SXM) 를 사용하여 측정함으로써, Mo/Si 다층 반사막의 최상층인 Si 층과 보호층 (14) 사이에 중간층 (13) 이 형성되어 있는 것을 확인한다. 중간층 (13) 의 조성은, 질소 6 at%, Si 94 at% 이다. 또, 중간층 (13) 의 막두께는 1 ㎚ 이다.
(2) 표면 조도
상기 순서에 의해 보호층 (14) 까지 형성한 샘플에 대해, 보호층 (14) 의 표면 조도를, JIS-B 0601 (1994년) 에 따라, 원자간력 현미경 (Atomic Force Microscope) (세이코 인스트루먼트사 제조:번호 SPI3800) 을 사용하여 확인한다. 보호층 (14) 의 표면 조도 rms 는 0.15 ㎚ 이다.
(3) 세정 내성
상기 순서에 의해 보호층 (14) 까지 형성한 샘플에 대해, 보호층 (14) 표면을 오존수에 의한 스핀 세정으로 합계 600 초 처리한다. 이 처리 전후에 보호층 (14) 표면에 EUV 광 (파장 13.5 ㎚) 을 조사하고, EUV 반사율을 EUV 반사율계 (AIXUV 사 제조 MBR (제품명)) 를 사용하여 측정한다. 이 처리 전후에서의 EUV 반사율의 저하는 0.5 % 이다.
(4) 가열 처리 내성
상기 순서에 의해 보호층 (14) 까지 형성한 샘플에 대해, 210 ℃ 에서 10 분간의 가열 처리 (대기 중) 를 한다. 이 처리 전후에서의, EUV 반사율의 저하는 4.3 % 이다.
(실시예 4)
실시예 4 는, 질소 함유 분위기 중 (질소와 아르곤의 혼합 가스 분위기 중) 에서의 폭로 조건을 이하의 조건으로 하는 것 이외에는, 실시예 3 과 동일한 순서를 실시한다.
(폭로 조건)
?분위기 가스:Ar 가스 (캐리어 가스), 유량 17 sccm. 질소 가스, 유량 50 sccm.
?질소 가스 분압: 0.2 mTorr (2.6 × 10-2 Pa).
?분위기 압력:0.3 mTorr (3.5 × 10-2 Pa).
?열처리 온도:140 ℃.
?열처리 시간:6000 sec.
?질소 분압 × 열처리 시간 (질소 함유 분위기에 대한 폭로 시간):1.2 × 106 L (1 L (Langmuir) = 1 × 10-6 Torr?s = 1.33 × 10-4 Pa?s).
상기 순서에 의해 얻어지는 마스크 블랭크에 대해 하기 평가를 실시한다.
(1) 막 조성
상기 순서에 의해 보호층 (14) 까지 형성한 샘플에 대해, 보호층 (14) 의 표면으로부터 반사층 (Mo/Si 다층 반사막) (12) 까지의 깊이 방향 조성을, X 선 광 전자 분광 장치 (X-ray Photoelectron Spectrometer) (알박 파이사 제조:Quantera SXM) 를 사용하여 측정함으로써, Mo/Si 다층 반사막의 최상층인 Si 층과 보호층 (14) 사이에 중간층 (13) 이 형성되어 있는 것을 확인한다. 중간층 (13) 의 조성은, 질소 8 at%, Si 92 at% 이다. 또, 중간층 (13) 의 막두께는 1 ㎚ 이다.
(2) 표면 조도
상기 순서에 의해 보호층 (14) 까지 형성한 샘플에 대해, 보호층 (14) 의 표면 조도를, JIS-B 0601 (1994년) 에 따라, 원자간력 현미경 (Atomic Force Microscope) (세이코 인스트루먼트사 제조:번호 SPI3800) 을 사용하여 확인한다. 보호층 (14) 의 표면 조도 rms 는 0.15 ㎚ 이다.
(3) 세정 내성
상기 순서에 의해 보호층 (14) 까지 형성한 샘플에 대해, 보호층 (14) 표면을 오존수에 의한 스핀 세정으로 합계 600 초 처리한다. 이 처리 전후에 보호층 (14) 표면에 EUV 광 (파장 13.5 ㎚) 을 조사하고, EUV 반사율을 EUV 반사율계 (AIXUV 사 제조 MBR (제품명)) 를 사용하여 측정한다. 이 처리 전후에서의 EUV 반사율의 저하는 0.3 % 이다.
(4) 가열 처리 내성
상기 순서에 의해 보호층 (14) 까지 형성한 샘플에 대해, 210 ℃ 에서 10 분간의 가열 처리 (대기 중) 를 한다. 이 처리 전후에서의, EUV 반사율의 저하는 3.7 % 이다.
(비교예 1)
비교예 1 은, 반사층 (Mo/Si 다층 반사막) (12) 의 형성 후, Mo/Si 다층 반사막의 최상층인 Si 층을 질소 함유 분위기에 폭로시키지 않고 보호층 (14) 을 형성한 것 이외에는 실시예 1 과 동일한 순서로 실시하였다.
상기 순서에 의해 얻어진 마스크 블랭크에 대해 하기 평가를 실시하였다.
(1) 막 조성
상기 순서에 의해 보호층 (14) 까지 형성한 샘플에 대해, 보호층 (14) 의 표면으로부터 반사층 (Mo/Si 다층 반사막) (12) 까지의 깊이 방향 조성을, X 선 광 전자 분광 장치 (X-ray Photoelectron Spectrometer) (알박 파이사 제조:Quantera SXM) 를 사용하여 측정함으로써, Mo/Si 다층 반사막의 최상층인 Si 층과 보호층 (14) 사이에 중간층 (13) 의 형성은 확인되지 않고, Si 층과 보호층 (14) 의 적층체에 있어서의 질소 함유율은 0 % 였다.
(2) 표면 조도
상기 순서에 의해 보호층 (14) 까지 형성한 샘플에 대해, 보호층 (14) 의 표면 조도를, JIS-B 0601 (1994년) 에 따라, 원자간력 현미경 (Atomic Force Microscope) (세이코 인스트루먼트사 제조:번호 SPI3800) 을 사용하여 확인하였다. 보호층 (14) 의 표면 조도 rms 는 0.15 ㎚ 였다.
(3) 세정 내성
상기 순서에 의해 보호층 (14) 까지 형성한 샘플에 대해, 보호층 (14) 표면을 오존수에 의한 스핀 세정으로 합계 600 초 처리하였다. 이 처리 전후에 보호층 (14) 표면에 EUV 광 (파장 13.5 ㎚) 을 조사하고, EUV 반사율을 EUV 반사율계 (AIXUV 사 제조 MBR (제품명)) 를 사용하여 측정하였다. 이 처리 전후에서의 EUV 반사율의 저하는 2.1 % 였다.
이 결과로부터, 비교예 1 의 마스크 블랭크는, 실시예 1 ? 4 의 마스크 블랭크에 비해 세정 내성이 떨어지는 것이 확인되었다.
(4) 가열 처리 내성
상기 순서에 의해 보호층 (14) 까지 형성한 샘플에 대해, 210 ℃ 에서 10 분간의 가열 처리 (대기 중) 를 하였다. 이 처리 전후에서의, EUV 반사율의 저하는 7.8 % 였다.
이 결과로부터, 비교예 1 의 마스크 블랭크는, 실시예 1 ? 4 의 마스크 블랭크에 비해 가열 처리 내성이 떨어지는 것이 확인되었다.
(비교예 2)
비교예 2 는, Si 층 표면을 질소 함유 분위기 대신에 하기 폭로 조건으로 Ar 가스 분위기에 폭로시킨 것 이외에는, 실시예 1 과 동일한 순서로 실시하였다.
(폭로 조건)
?폭로 가스:Ar 가스, 유량 17 sccm (RF 방전 중에 Ar 가스를 공급).
?분위기 압력:0.1 mTorr (1.3 × 10-2 Pa).
?분위기 온도:20 ℃.
?폭로 시간:600 sec.
?RF 방전의 주파수:1.8 ㎒.
?RF 파워:500 W.
상기 순서에 의해 얻어진 마스크 블랭크에 대해 하기 평가를 실시하였다.
(1) 막 조성
상기 순서에 의해 보호층 (14) 까지 형성한 샘플에 대해, 보호층 (14) 의 표면으로부터 반사층 (Mo/Si 다층 반사막) (12) 까지의 깊이 방향 조성을, X 선 광 전자 분광 장치 (X-ray Photoelectron Spectrometer) (알박 파이사 제조:Quantera SXM) 를 사용하여 측정함으로써, Mo/Si 다층 반사막의 최상층인 Si 층과 보호층 (14) 사이에 중간층 (13) 의 형성은 확인되지 않고, Si 층과 보호층 (14) 의 적층체에 있어서의 질소 함유율은 0 % 였다.
(2) 표면 조도
상기 순서에 의해 보호층 (14) 까지 형성한 샘플에 대해, 보호층 (14) 의 표면 조도를, JIS-B 0601 (1994년) 에 따라, 원자간력 현미경 (Atomic Force Microscope) (세이코 인스트루먼트사 제조:번호 SPI3800) 을 사용하여 확인하였다. 보호층 (14) 의 표면 조도 rms 는 0.15 ㎚ 였다.
(3) 세정 내성
상기 순서에 의해 보호층 (14) 까지 형성한 샘플에 대해, 보호층 (14) 표면을 오존수에 의한 스핀 세정으로 합계 600 초 처리하였다. 이 처리 전후에 보호층 (14) 표면에 EUV 광 (파장 13.5 ㎚) 을 조사하고, EUV 반사율을 EUV 반사율계 (AIXUV 사 제조 MBR (제품명)) 를 사용하여 측정하였다. 이 처리 전후에서의 EUV 반사율의 저하는 2.9 % 였다.
이 결과로부터, 비교예 2 의 마스크 블랭크는, 실시예 1 ? 4 의 마스크 블랭크에 비해 세정 내성이 떨어지는 것이 확인되었다.
(4) 가열 처리 내성
상기 순서에 의해 보호층 (14) 까지 형성한 샘플에 대해, 210 ℃ 에서 10 분간의 가열 처리 (대기 중) 를 한다. 이 처리 전후에서의, EUV 반사율의 저하는 7.8 % 이다.
이 결과로부터, 비교예 2 의 마스크 블랭크는, 실시예 1 ? 4 의 마스크 블랭크에 비해 가열 처리 내성이 떨어지는 것이 확인된다.
(비교예 3)
비교예 3 은, Si 층 표면을 열처리도 RF 방전도 하지 않고, 하기 폭로 조건으로 폭로을 실시한 것 이외에는, 실시예 1 과 동일한 순서를 실시한다.
Mo/Si 다층 반사막의 형성 후, 대기 중으로 폭로시키지 않고, Mo/Si 다층 반사막의 최상층인 Si 층 표면을, 하기 조건에 따라 질소 함유 분위기 중 (질소와 아르곤의 혼합 가스 분위기 중) 에서 폭로시킨다.
(폭로 조건)
?분위기 가스:Ar 가스 (캐리어 가스), 유량 17 sccm. 질소 가스, 유량 50 sccm.
?질소 가스 분압:0.2 mTorr (2.6 × 10-2 Pa).
?분위기 압력:0.3 mTorr (3.5 × 10-2 Pa).
?분위기 온도:20 ℃.
?폭로 시간:600 sec.
상기 순서에 의해 얻어지는 마스크 블랭크에 대해 하기 평가를 실시한다.
(1) 막 조성
상기 순서에 의해 보호층 (14) 까지 형성한 샘플에 대해, 보호층 (14) 의 표면으로부터 반사층 (Mo/Si 다층 반사막) (12) 까지의 깊이 방향 조성을, X 선 광 전자 분광 장치 (X-ray Photoelectron Spectrometer) (알박 파이사 제조:Quantera SXM) 를 사용하여 측정함으로써, Mo/Si 다층 반사막의 최상층인 Si 층과 보호층 (14) 사이에 중간층 (13) 의 형성은 확인되지 않고, Si 층과 보호층 (14) 의 적층체에 있어서의 질소 함유율은 0.2 % 이다.
(2) 표면 조도
상기 순서에 의해 보호층 (14) 까지 형성한 샘플에 대해, 보호층 (14) 의 표면 조도를, JIS-B 0601 (1994년) 에 따라, 원자간력 현미경 (Atomic Force Microscope) (세이코 인스트루먼트사 제조:번호 SPI3800) 을 사용하여 확인한다. 보호층 (14) 의 표면 조도 rms 는 0.15 ㎚ 이다.
(3) 세정 내성
상기 순서에 의해 보호층 (14) 까지 형성한 샘플에 대해, 보호층 (14) 표면을 오존수에 의한 스핀 세정으로 합계 600 초 처리한다. 이 처리 전후에 보호층 (14) 표면에 EUV 광 (파장 13.5 ㎚) 을 조사하고, EUV 반사율을 EUV 반사율계 (AIXUV 사 제조 MBR (제품명)) 를 사용하여 측정한다. 이 처리 전후에서의 EUV 반사율의 저하는 1.9 % 이다. 이 결과로부터, 비교예 3 의 마스크 블랭크는, 실시예 1 ? 4 의 마스크 블랭크에 비해 세정 내성이 떨어지는 것이 확인된다.
(4) 가열 처리 내성
상기 순서에 의해 보호층 (14) 까지 형성한 샘플에 대해, 210 ℃ 에서 10 분간의 가열 처리 (대기 중) 를 실시한다. 이 처리 전후에서의, EUV 반사율의 저하는 7.4 % 이다.
이 결과로부터, 비교예 3 의 마스크 블랭크는, 실시예 1 ? 4 의 마스크 블랭크에 비해 가열 처리 내성이 떨어지는 것이 확인된다.
(비교예 4)
비교예 4 는, 질소 함유 분위기 중에서의 Si 층 표면의 열처리 대신에, 하기 조건에 따라 Ar 가스 분위기 중에서 열처리하는 것 이외에는, 실시예 3 과 동일한 순서로 실시하였다.
(열처리 조건)
?분위기 가스:Ar 가스, 유량 17 sccm.
?분위기 압력:0.1 mTorr (1.3 × 10-2 Pa).
?열처리 온도:140 ℃.
?열처리 시간:600 sec.
상기 순서에 의해 얻어진 마스크 블랭크에 대해 하기 평가를 실시한다.
(1) 막 조성
상기 순서에 의해 보호층 (14) 까지 형성한 샘플에 대해, 보호층 (14) 의 표면으로부터 반사층 (Mo/Si 다층 반사막) (12) 까지의 깊이 방향 조성을, X 선 광 전자 분광 장치 (X-ray Photoelectron Spectrometer) (알박 파이사 제조:Quantera SXM) 를 사용하여 측정함으로써, Mo/Si 다층 반사막의 최상층인 Si 층과 보호층 (14) 사이에 중간층 (13) 의 형성은 확인되지 않고, Si 층과 보호층 (14) 의 적층체에 있어서의 질소 함유율은 0 % 이다.
(2) 표면 조도
상기 순서에 의해 보호층 (14) 까지 형성한 샘플에 대해, 보호층 (14) 의 표면 조도를, JIS-B 0601 (1994년) 에 따라, 원자간력 현미경 (Atomic Force Microscope) (세이코 인스트루먼트사 제조:번호 SPI3800) 을 사용하여 확인한다. 보호층 (14) 의 표면 조도 rms 는 0.15 ㎚ 이다.
(3) 세정 내성
상기 순서에 의해 보호층 (14) 까지 형성한 샘플에 대해, 보호층 (14) 표면을 오존수에 의한 스핀 세정으로 합계 600 초 처리한다. 이 처리 전후에 보호층 (14) 표면에 EUV 광 (파장 13.5 ㎚) 을 조사하고, EUV 반사율을 EUV 반사율계 (AIXUV 사 제조 MBR (제품명)) 를 사용하여 측정한다. 이 처리 전후에서의 EUV 반사율의 저하는 2.9 % 이다. 이 결과로부터, 비교예 4 의 마스크 블랭크는, 실시예 1 ? 4 의 마스크 블랭크에 비해 세정 내성이 떨어지는 것이 확인된다.
(4) 가열 처리 내성
상기 순서에 의해 보호층 (14) 까지 형성한 샘플에 대해, 210 ℃ 에서 10 분간의 가열 처리 (대기 중) 를 한다. 이 처리 전후에서의, EUV 반사율의 저하는 7.8 % 이다.
이 결과로부터, 비교예 4 의 마스크 블랭크는, 실시예 1 ? 4 의 마스크 블랭크에 비해 가열 처리 내성이 떨어지는 것이 확인된다.
(비교예 5)
비교예 5 는, Si 층 표면을 질소 함유 분위기 중 (질소와 아르곤의 혼합 가스 분위기 중) 에서 열처리하기 전에, 대기 중에 폭로시키는 것 이외에는, 실시예 3 과 동일한 순서를 실시한다.
(대기 폭로 조건)
?폭로 가스:대기 (N2:약 78 체적%, O2:약 21 체적%).
?분위기 압력:760 Torr (1.0 × 105 Pa).
?분위기 온도:20 ℃.
?폭로 시간:600 sec.
(질소 폭로 조건)
?분위기 가스:Ar 가스 (캐리어 가스), 유량 17 sccm. 질소 가스, 유량 50 sccm.
?질소 가스 분압: 0.2 mTorr (2.6 × 10-2 Pa).
?분위기 압력:0.3 mTorr (3.5 × 10-2 Pa).
?열처리 온도:140 ℃.
?열처리 시간:600 sec.
?질소 분압 × 열처리 시간 (질소 함유 분위기에 대한 폭로 시간) :1.2 × 106 L (1 L (Langmuir) = 1 × 10-6 Torr?s = 1.33 × 10-4 Pa?s)
상기 순서에 의해 얻어진 마스크 블랭크에 대해 하기 평가를 실시한다.
(1) 막 조성
상기 순서에 의해 보호층 (14) 까지 형성한 샘플에 대해, 보호층 (14) 의 표면으로부터 반사층 (Mo/Si 다층 반사막) (12) 까지의 깊이 방향 조성을, X 선 광 전자 분광 장치 (X-ray Photoelectron Spectrometer) (알박 파이사 제조:Quantera SXM) 를 사용하여 측정함으로써, Mo/Si 다층 반사막의 최상층인 Si 층과 보호층 (14) 사이에 중간층 (13) 이 형성되어 있는 것을 확인한다. 중간층 (13) 의 조성은, 산소 4 at%, 질소 1 at%, Si 95 at% 이다. 또, 중간층 (13) 의 막두께는 1 ㎚ 이다.
(2) 표면 조도
상기 순서에 의해 보호층 (14) 까지 형성한 샘플에 대해, 보호층 (14) 의 표면 조도를, JIS-B 0601 (1994년) 에 따라, 원자간력 현미경 (Atomic Force Microscope) (세이코 인스트루먼트사 제조:번호 SPI3800) 을 사용하여 확인한다. 보호층 (14) 의 표면 조도 rms 는 0.15 ㎚ 이다.
(3) 세정 내성
상기 순서에 의해 보호층 (14) 까지 형성한 샘플에 대해, 보호층 (14) 표면을 오존수에 의한 스핀 세정으로 합계 600 초 처리한다. 이 처리 전후에 보호층 (14) 표면에 EUV 광 (파장 13.5 ㎚) 을 조사하고, EUV 반사율을 EUV 반사율계 (AIXUV 사 제조 MBR (제품명)) 를 사용하여 측정한다. 이 처리 전후에서의 EUV 반사율의 저하는 0.8 % 이다. 이 결과로부터, 비교예 5 의 마스크 블랭크는, 비교예 1 에 비하면 세정 내성이 개선되어 있지만, 실시예 1 ? 4 의 마스크 블랭크에 비해 세정 내성이 떨어지는 것이 확인된다.
(4) 가열 처리 내성
상기 순서에 의해 보호층 (14) 까지 형성한 샘플에 대해, 210 ℃ 에서 10 분간의 가열 처리 (대기 중) 를 한다. 이 처리 전후에서의, EUV 반사율의 저하는 8.1 % 이다.
이 결과로부터, 비교예 5 의 마스크 블랭크는, 실시예 1 ? 4 의 마스크 블랭크에 비해 가열 처리 내성이 떨어지는 것이 확인된다.
(실시예 5)
실시예 5 는, Mo/Si 다층 반사막의 최상층인 Si 층을 질소 함유 분위기 (질소와 아르곤의 혼합 가스 분위기) 에 폭로시킬 때에, 이하의 조건에 따라, RF 방전을 실시하지 않고, Si 층 표면에 자외선을 조사하는 것 이외에는, 실시예 1 과 동일한 순서로 실시하였다.
(폭로 조건)
?캐리어 가스:Ar 가스, 유량 17 sccm.
?폭로 가스:질소 가스, 유량 50 sccm.
?질소 가스 분압:0.2 mTorr (2.6 × 10-2 Pa).
?분위기 압력:0.3 mTorr (3.5 × 10-2 Pa).
?분위기 온도:20 ℃.
?폭로 시간:600 sec.
?폭로량:1.2 × 106 L (1 L (Langmuir) = 1 × 10-6 Torr?s = 1.33 × 10-4 Pa?s).
?자외선 조사 광원:아르곤 엑시머 램프.
?자외선 파장:126 ㎚.
?램프창 (불화마그네슘) ? 기판간 거리:5 ㎝.
상기 순서에 의해 얻어진 마스크 블랭크에 대해 하기 평가를 실시하였다.
(1) 막 조성
상기 순서에 의해 보호층 (14) 까지 형성한 샘플에 대해, 보호층 (14) 의 표면으로부터 반사층 (Mo/Si 다층 반사막) (12) 까지의 깊이 방향 조성을, X 선 광 전자 분광 장치 (X-ray Photoelectron Spectrometer) (알박 파이사 제조:Quantera SXM) 를 사용하여 측정함으로써, Mo/Si 다층 반사막의 최상층인 Si 층과 보호층 (14) 사이에 중간층 (13) 이 형성되어 있는 것을 확인하였다. 중간층 (13) 의 조성은, 질소 8 at%, Si 92 at% 였다. 또, 중간층 (13) 의 막두께는 1 ㎚ 였다.
(2) 표면 조도
상기 순서에 의해 보호층 (14) 까지 형성한 샘플에 대해, 보호층 (14) 의 표면 조도를, JIS-B 0601 (1994년) 에 따라, 원자간력 현미경 (Atomic Force Microscope) (세이코 인스트루먼트사 제조:번호 SPI3800) 을 사용하여 확인하였다. 보호층 (14) 의 표면 조도 rms 는 0.15 ㎚ 였다.
(3) 세정 내성
상기 순서에 의해 보호층 (14) 까지 형성한 샘플에 대해, 보호층 (14) 표면을 오존수에 의한 스핀 세정으로 합계 600 초 처리하였다. 이 처리 전후에 보호층 (14) 표면에 EUV 광 (파장 13.5 ㎚) 을 조사하고, EUV 반사율을 EUV 반사율계 (AIXUV 사 제조 MBR (제품명)) 를 사용하여 측정하였다. 이 처리 전후에서의 EUV 반사율의 저하는 0.3 % 였다.
(4) 가열 처리 내성
상기 순서에 의해 보호층 (14) 까지 형성한 샘플에 대해, 210 ℃ 에서 10 분간의 가열 처리 (대기 중) 를 한다. 이 처리 전후에서의, EUV 반사율의 저하는 3.7 % 이다.
산업상 이용가능성
본 발명의 EUV 리소그래피용 반사층이 형성된 기판, 및 그 반사층이 형성된 기판을 사용한 EUV 리소그래피용 반사형 마스크 블랭크에서는, Ru 보호층으로부터의 산화에 의한 EUV 광선 반사율의 저하가 억제되고 있다. 그리고, EUV 노광시의 EUV 광선 반사율의 시간 경과적인 진행의 억제에 의해, 노광 조건을 도중에 변경할 필요가 적어지고, 포토마스크의 수명 장기화를 도모할 수 있다.
또, 본 발명의 EUV 마스크 블랭크를 사용하여 제조되는 EUV 마스크는, EUV 노광시에 있어서, EUV 광선 반사율의 시간 경과적인 변화가 작은, 신뢰성이 높은 EUV 마스크이고, 보다 미세화된 반도체 집적 회로의 제조에 있어서 유용하다.
또한, 2009년 12월 9일에 출원된 일본 특허출원 2009-279371호, 2009년 12월 25일에 출원된 일본 특허출원 2009-294310호, 2010년 2월 3일에 출원된 일본 특허출원 2010-021944호, 2010년 3월 24일에 출원된 일본 특허출원 2010-067421호 및 2010년 6월 14일에 출원된 일본 특허출원 2010-134822호의 각각의 명세서, 특허 청구의 범위, 도면 및 요약서의 전체 내용을 여기에 인용하고, 본 발명의 개시로서 받아들이는 것이다.
1, 1′:EUV 마스크 블랭크
11:기판
12:반사층
13:중간층
14:보호층
15:흡수체층
16:저반사층

Claims (17)

  1. 기판 상에, EUV 광을 반사하는 반사층과, 상기 반사층을 보호하는 보호층이 이 순서로 형성된 EUV 리소그래피용 반사층이 형성된 기판으로서,
    상기 반사층이, Mo/Si 다층 반사막이고,
    상기 보호층이, Ru 층, 또는 Ru 화합물층이고,
    상기 반사층과 상기 보호층 사이에, 질소를 0.5 ? 25 at% 함유하고, Si 를 75 ? 99.5 at% 함유하는 중간층이 형성되어 있는 것을 특징으로 하는 EUV 리소그래피용 반사층이 형성된 기판.
  2. 제 1 항에 있어서,
    상기 Mo/Si 다층 반사막으로 이루어지는 반사층의 최상층이 Si 막이고, 상기 중간층이 당해 Si 막면에 접하여 형성되어 있는, EUV 리소그래피용 반사층이 형성된 기판.
  3. 제 1 항 또는 제 2 항에 있어서,
    상기 중간층의 막두께가 0.2 ? 2.5 ㎚ 인, EUV 리소그래피용 반사층이 형성된 기판.
  4. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
    상기 보호층 표면의 표면 조도 rms 가 0.5 ㎚ 이하인, EUV 리소그래피용 반사층이 형성된 기판.
  5. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,
    상기 보호층의 막두께가 1 ? 10 ㎚ 인, EUV 리소그래피용 반사층이 형성된 기판.
  6. 제 1 항 내지 제 5 항 중 어느 한 항에 기재된 반사층이 형성된 기판의 보호층 상에 흡수체층을 형성하여 이루어지는, EUV 리소그래피용 반사형 마스크 블랭크.
  7. 제 6 항에 있어서,
    상기 흡수체층이 탄탈 (Ta) 을 주성분으로 하는 재료로 형성되는, EUV 리소그래피용 반사형 마스크 블랭크.
  8. 제 6 항 또는 제 7 항에 있어서,
    에칭 가스로서 염소계 가스를 사용하여 드라이 에칭을 실시했을 때의 상기 보호층과 상기 흡수체층의 에칭 선택비가 10 이상인, EUV 리소그래피용 반사형 마스크 블랭크.
  9. 제 6 항 내지 제 8 항 중 어느 한 항에 있어서,
    상기 흡수체층 상에, 탄탈 (Ta) 을 주성분으로 하는 재료로 형성된, 마스크 패턴의 검사에 사용하는 검사광에 있어서의 저반사층이 형성되어 있는, EUV 리소그래피용 반사형 마스크 블랭크.
  10. 제 9 항에 있어서,
    흡수체층에 형성되는 패턴의 검사에 사용되는 광의 파장에 대한 상기 보호층 표면에서의 반사광과, 상기 저반사층 표면에서의 반사광의 콘트라스트가, 30 % 이상인, EUV 리소그래피용 반사형 마스크 블랭크.
  11. 제 6 항 내지 제 10 항 중 어느 한 항에 기재된 EUV 마스크 블랭크를 패터닝 한, EUV 리소그래피용 반사형 마스크.
  12. 기판의 성막면 상에, EUV 광을 반사하는 다층 반사막을 형성한 후, 상기 다층 반사막 상에 상기 다층 반사막의 보호층을 형성함으로써, EUV 리소그래피 (EUVL) 용 반사층이 형성된 기판을 제조하는, EUVL 용 반사층이 형성된 기판의 제조 방법으로서,
    상기 다층 반사막이, Mo/Si 다층 반사막이고,
    상기 보호층이, Ru 층, 또는 Ru 화합물층이고,
    상기 Mo/Si 다층 반사막의 형성 후, 상기 Mo/Si 다층 반사막의 최상층인 Si 층 표면을, 대기 중에 폭로시키지 않고, 질소 함유 분위기에 폭로시킨 후에 상기 보호층을 형성하는 것을 특징으로 하는 EUVL 용 반사층이 형성된 기판의 제조 방법.
  13. 제 12 항에 있어서,
    상기 질소 함유 분위기의 질소 분압 (Torr) 과 폭로 시간 (s) 의 곱이 1 × 10-6 Torr?s 이상이고, 상기 질소 함유 분위기의 온도가 0 ? 170 ℃ 인, EUVL 용 반사층이 형성된 기판의 제조 방법.
  14. 제 12 항에 있어서,
    상기 질소 함유 분위기의 질소 분압 (Torr) 과 폭로 시간 (s) 의 곱이 1 × 10-6 Torr?s 이상이고, 상기 질소 함유 분위기의 온도가 0 ? 160 ℃ 인, EUVL 용 반사층이 형성된 기판의 제조 방법.
  15. 제 12 항에 있어서,
    상기 질소 함유 분위기의 질소 분압 (Torr) 과 폭로 시간 (s) 의 곱이 1 × 10-6 Torr?s 이상이고, 상기 질소 함유 분위기의 온도가 0 ? 150 ℃ 인, EUVL 용 반사층이 형성된 기판의 제조 방법.
  16. 제 12 항 내지 제 15 항 중 어느 한 항에 있어서,
    상기 Si 층 표면을 질소 함유 분위기에 폭로시킬 때, 상기 질소 함유 분위기를 플라스마 상태로 유지하거나, 또는 상기 Si 층 표면을 열처리하거나, 또는 상기 Si 층 표면에 자외선을 조사하는, EUVL 용 반사층이 형성된 기판의 제조 방법.
  17. 제 11 항에 기재된 EUV 리소그래피용 반사형 마스크를 사용하여, 피노광체에 노광을 실시함으로써 반도체 집적 회로를 제조하는 것을 특징으로 하는 반도체 집적 회로의 제조 방법.
KR1020127012513A 2009-12-09 2010-12-09 Euv 리소그래피용 반사층이 형성된 기판, euv 리소그래피용 반사형 마스크 블랭크, euv 리소그래피용 반사형 마스크, 및 그 반사층이 형성된 기판의 제조 방법 KR101699574B1 (ko)

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
JP2009279371 2009-12-09
JPJP-P-2009-279371 2009-12-09
JPJP-P-2009-294310 2009-12-25
JP2009294310 2009-12-25
JPJP-P-2010-021944 2010-02-03
JP2010021944 2010-02-03
JPJP-P-2010-067421 2010-03-24
JP2010067421 2010-03-24
JP2010134822 2010-06-14
JPJP-P-2010-134822 2010-06-14
PCT/JP2010/072161 WO2011071123A1 (ja) 2009-12-09 2010-12-09 Euvリソグラフィ用反射層付基板、euvリソグラフィ用反射型マスクブランク、euvリソグラフィ用反射型マスク、および該反射層付基板の製造方法

Publications (2)

Publication Number Publication Date
KR20120106735A true KR20120106735A (ko) 2012-09-26
KR101699574B1 KR101699574B1 (ko) 2017-01-24

Family

ID=44145668

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020127012513A KR101699574B1 (ko) 2009-12-09 2010-12-09 Euv 리소그래피용 반사층이 형성된 기판, euv 리소그래피용 반사형 마스크 블랭크, euv 리소그래피용 반사형 마스크, 및 그 반사층이 형성된 기판의 제조 방법

Country Status (7)

Country Link
US (2) US8580465B2 (ko)
EP (2) EP2511945A4 (ko)
JP (2) JP5699938B2 (ko)
KR (1) KR101699574B1 (ko)
CN (1) CN102687071B (ko)
TW (2) TWI464529B (ko)
WO (2) WO2011071123A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160034315A (ko) * 2013-07-22 2016-03-29 호야 가부시키가이샤 다층 반사막을 구비한 기판, euv 리소그래피용 반사형 마스크 블랭크, euv 리소그래피용 반사형 마스크 및 그 제조 방법과 반도체 장치의 제조 방법
KR20190075339A (ko) * 2017-12-21 2019-07-01 삼성전자주식회사 극자외선 마스크 블랭크, 극자외선 마스크 블랭크를 이용하여 제조된 포토마스크, 포토마스크를 이용한 리소그래피 장치 및 포토마스크를 이용한 반도체 장치 제조 방법
KR20210059007A (ko) * 2013-09-27 2021-05-24 호야 가부시키가이샤 마스크 블랭크용 기판, 다층 반사막 부착 기판, 반사형 마스크 블랭크, 반사형 마스크 및 반도체 장치의 제조방법

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5803919B2 (ja) * 2010-07-27 2015-11-04 旭硝子株式会社 Euvリソグラフィ用反射層付基板、およびeuvリソグラフィ用反射型マスクブランク
DE102011083462A1 (de) * 2011-09-27 2013-03-28 Carl Zeiss Smt Gmbh EUV-Spiegel mit einer Oxynitrid-Deckschicht mit stabiler Zusammensetzung
JP6125772B2 (ja) * 2011-09-28 2017-05-10 Hoya株式会社 反射型マスクブランク、反射型マスクおよび反射型マスクの製造方法
US10838124B2 (en) 2012-01-19 2020-11-17 Supriya Jaiswal Materials, components, and methods for use with extreme ultraviolet radiation in lithography and other applications
DE102012203633A1 (de) 2012-03-08 2013-09-12 Carl Zeiss Smt Gmbh Spiegel für den EUV-Wellenlängenbereich, Herstellungsverfahren für einen solchen Spiegel und Projektionsbelichtungsanlage mit einem solchen Spiegel
JP6069919B2 (ja) 2012-07-11 2017-02-01 旭硝子株式会社 Euvリソグラフィ用反射型マスクブランクおよびその製造方法、ならびに該マスクブランク用の反射層付基板およびその製造方法
CN102798902A (zh) * 2012-07-23 2012-11-28 中国科学院长春光学精密机械与物理研究所 一种提高极紫外光谱纯度的新型多层膜
DE102012222451A1 (de) * 2012-12-06 2014-06-26 Carl Zeiss Smt Gmbh Reflektives optisches Element für die EUV-Lithographie
DE102012222466A1 (de) 2012-12-06 2014-06-12 Carl Zeiss Smt Gmbh Reflektives optisches Element für die EUV-Lithographie
JP2014127630A (ja) 2012-12-27 2014-07-07 Asahi Glass Co Ltd Euvリソグラフィ用反射型マスクブランクおよびその製造方法
CN103091744A (zh) * 2013-01-30 2013-05-08 中国科学院长春光学精密机械与物理研究所 一种提高极紫外光谱纯度及热稳定性的新型多层膜
JP2014229825A (ja) * 2013-05-24 2014-12-08 旭硝子株式会社 Euvリソグラフィ用反射型マスクブランクの製造方法および、該マスクブランク用の反射層付基板の製造方法
US9182659B2 (en) * 2013-09-06 2015-11-10 Taiwan Semiconductor Manufacturing Company, Ltd. Extreme ultraviolet lithography process and mask
WO2015037564A1 (ja) * 2013-09-11 2015-03-19 Hoya株式会社 多層反射膜付き基板、euvリソグラフィー用反射型マスクブランク、euvリソグラフィー用反射型マスク及びその製造方法、並びに半導体装置の製造方法
JP2015109366A (ja) 2013-12-05 2015-06-11 旭硝子株式会社 Euvリソグラフィ用反射型マスクブランク若しくはeuvリソグラフィ用の反射層付基板、およびその製造方法
DE102015204478B4 (de) * 2015-03-12 2019-01-03 Thomas Arnold Verfahren zum Glätten einer Oberfläche und optisches Element
CN104749663A (zh) * 2015-04-21 2015-07-01 中国科学院长春光学精密机械与物理研究所 具有极紫外光谱纯度和抗辐照损伤的多层膜
CN107922257A (zh) 2015-09-02 2018-04-17 康宁股份有限公司 抗微生物‑抗反射制品及其制造方法
JP6140330B2 (ja) * 2016-04-08 2017-05-31 Hoya株式会社 マスクブランクの製造方法、転写用マスク用の製造方法、および半導体デバイスの製造方法
KR20230023066A (ko) * 2016-04-25 2023-02-16 에이에스엠엘 네델란즈 비.브이. Euv 리소그래피를 위한 멤브레인
WO2018013757A2 (en) 2016-07-14 2018-01-18 Corning Incorporated Methods of reducing surface roughness of reflectance coatings for duv mirrors
DE102016224113A1 (de) * 2016-12-05 2018-06-07 Carl Zeiss Smt Gmbh Intensitätsanpassungsfilter für die euv - mikrolithographie und verfahren zur herstellung desselben sowie beleuchtungssystem mit einem entsprechenden filter
WO2019077736A1 (ja) * 2017-10-20 2019-04-25 ギガフォトン株式会社 極端紫外光用ミラー及び極端紫外光生成装置
JP6998181B2 (ja) * 2017-11-14 2022-02-04 アルバック成膜株式会社 マスクブランク、位相シフトマスクおよびその製造方法
US11048158B2 (en) * 2018-04-18 2021-06-29 Taiwan Semiconductor Manufacturing Co., Ltd. Method for extreme ultraviolet lithography mask treatment
US11360384B2 (en) * 2018-09-28 2022-06-14 Taiwan Semiconductor Manufacturing Co., Ltd. Method of fabricating and servicing a photomask
DE102019124781B4 (de) 2018-09-28 2024-06-06 Taiwan Semiconductor Manufacturing Co., Ltd. Verfahren zum herstellen und behandeln einer fotomaske
DE102019212736A1 (de) * 2019-08-26 2021-03-04 Carl Zeiss Smt Gmbh Optisches Element zur Reflexion von EUV-Strahlung und EUV-Lithographiesystem
US11531262B2 (en) * 2019-12-30 2022-12-20 Taiwan Semiconductor Manufacturing Co., Ltd. Mask blanks and methods for depositing layers on mask blank
JP7226389B2 (ja) * 2020-04-28 2023-02-21 信越化学工業株式会社 反射型マスクブランク用膜付き基板及び反射型マスクブランク
CN113253563A (zh) * 2020-05-26 2021-08-13 台湾积体电路制造股份有限公司 Euv光掩模及其制造方法
WO2023074770A1 (ja) 2021-10-28 2023-05-04 Hoya株式会社 多層反射膜付き基板、反射型マスクブランク及び反射型マスク、並びに半導体装置の製造方法
WO2024024513A1 (ja) * 2022-07-25 2024-02-01 Agc株式会社 反射型マスクブランク、反射型マスク、反射型マスクブランクの製造方法、および反射型マスクの製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002122981A (ja) 2000-10-13 2002-04-26 Samsung Electronics Co Ltd 反射型フォトマスク
JP2005268750A (ja) 2004-02-19 2005-09-29 Hoya Corp 反射型マスクブランクス及び反射型マスク並びに半導体装置の製造方法
JP2006332153A (ja) * 2005-05-24 2006-12-07 Hoya Corp 反射型マスクブランク及び反射型マスク並びに半導体装置の製造方法
US20080182183A1 (en) * 2007-01-31 2008-07-31 Asahi Glass Company, Limited Reflective mask blank for euv lithography
JP2009272317A (ja) * 2008-04-30 2009-11-19 Hoya Corp 多層反射膜付基板の製造方法、反射型マスクブランクの製造方法、及び反射型マスクの製造方法
JP2009272347A (ja) * 2008-04-30 2009-11-19 Toshiba Corp 光反射型マスク、露光装置、測定方法、及び半導体装置の製造方法

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3268533D1 (en) 1981-07-24 1986-02-27 Fisons Plc Inhalation drugs, methods for their production and pharmaceutical formulations containing them
JPH0468285A (ja) 1990-07-09 1992-03-04 Matsushita Refrig Co Ltd 断熱箱体
US5928817A (en) 1997-12-22 1999-07-27 Intel Corporation Method of protecting an EUV mask from damage and contamination
US6355381B1 (en) 1998-09-25 2002-03-12 Intel Corporation Method to fabricate extreme ultraviolet lithography masks
AU5597000A (en) 1999-06-07 2000-12-28 Regents Of The University Of California, The Coatings on reflective mask substrates
US6596465B1 (en) 1999-10-08 2003-07-22 Motorola, Inc. Method of manufacturing a semiconductor component
US6410193B1 (en) 1999-12-30 2002-06-25 Intel Corporation Method and apparatus for a reflective mask that is inspected at a first wavelength and exposed during semiconductor manufacturing at a second wavelength
US7261957B2 (en) * 2000-03-31 2007-08-28 Carl Zeiss Smt Ag Multilayer system with protecting layer system and production method
US6479195B1 (en) 2000-09-15 2002-11-12 Intel Corporation Mask absorber for extreme ultraviolet lithography
US6645679B1 (en) 2001-03-12 2003-11-11 Advanced Micro Devices, Inc. Attenuated phase shift mask for use in EUV lithography and a method of making such a mask
US6610447B2 (en) 2001-03-30 2003-08-26 Intel Corporation Extreme ultraviolet mask with improved absorber
US6583068B2 (en) 2001-03-30 2003-06-24 Intel Corporation Enhanced inspection of extreme ultraviolet mask
US6593037B1 (en) 2001-05-02 2003-07-15 Advanced Micro Devices, Inc. EUV mask or reticle having reduced reflections
US6830851B2 (en) 2001-06-30 2004-12-14 Intel Corporation Photolithographic mask fabrication
US6593041B2 (en) 2001-07-31 2003-07-15 Intel Corporation Damascene extreme ultraviolet lithography (EUVL) photomask and method of making
US6607862B2 (en) 2001-08-24 2003-08-19 Intel Corporation Damascene extreme ultraviolet lithography alternative phase shift photomask and method of making
US6653053B2 (en) 2001-08-27 2003-11-25 Motorola, Inc. Method of forming a pattern on a semiconductor wafer using an attenuated phase shifting reflective mask
US6818357B2 (en) 2001-10-03 2004-11-16 Intel Corporation Photolithographic mask fabrication
DE10150874A1 (de) 2001-10-04 2003-04-30 Zeiss Carl Optisches Element und Verfahren zu dessen Herstellung sowie ein Lithographiegerät und ein Verfahren zur Herstellung eines Halbleiterbauelements
US6627362B2 (en) 2001-10-30 2003-09-30 Intel Corporation Photolithographic mask fabrication
DE10156366B4 (de) 2001-11-16 2007-01-11 Infineon Technologies Ag Reflexionsmaske und Verfahren zur Herstellung der Reflexionsmaske
JP3939167B2 (ja) 2002-02-28 2007-07-04 Hoya株式会社 露光用反射型マスクブランク、その製造方法及び露光用反射型マスク
KR100455383B1 (ko) 2002-04-18 2004-11-06 삼성전자주식회사 반사 포토마스크, 반사 포토마스크의 제조방법 및 이를이용한 집적회로 제조방법
DE10223113B4 (de) 2002-05-21 2007-09-13 Infineon Technologies Ag Verfahren zur Herstellung einer photolithographischen Maske
US6913706B2 (en) 2002-12-28 2005-07-05 Intel Corporation Double-metal EUV mask absorber
US6905801B2 (en) 2002-12-28 2005-06-14 Intel Corporation High performance EUV mask
US7118832B2 (en) 2003-01-08 2006-10-10 Intel Corporation Reflective mask with high inspection contrast
US6908713B2 (en) 2003-02-05 2005-06-21 Intel Corporation EUV mask blank defect mitigation
US6998202B2 (en) * 2003-07-31 2006-02-14 Intel Corporation Multilayer reflective extreme ultraviolet lithography mask blanks
US7169514B2 (en) 2003-12-31 2007-01-30 Intel Corporation Extreme ultraviolet mask with molybdenum phase shifter
JP4418700B2 (ja) * 2004-03-30 2010-02-17 Hoya株式会社 反射型マスクブランクス及び反射型マスク並びに半導体装置の製造方法
US7300724B2 (en) 2004-06-09 2007-11-27 Intel Corporation Interference multilayer capping design for multilayer reflective mask blanks
JP2006170911A (ja) * 2004-12-17 2006-06-29 Nikon Corp 光学素子及びこれを用いた投影露光装置
JP2006173446A (ja) * 2004-12-17 2006-06-29 Nikon Corp 極端紫外線用の光学素子及びこれを用いた投影露光装置
JP2006170916A (ja) * 2004-12-17 2006-06-29 Nikon Corp 光学素子及びこれを用いた投影露光装置
JP2006171577A (ja) * 2004-12-17 2006-06-29 Nikon Corp 光学素子及びこれを用いた投影露光装置
US7336416B2 (en) * 2005-04-27 2008-02-26 Asml Netherlands B.V. Spectral purity filter for multi-layer mirror, lithographic apparatus including such multi-layer mirror, method for enlarging the ratio of desired radiation and undesired radiation, and device manufacturing method
US7678511B2 (en) * 2006-01-12 2010-03-16 Asahi Glass Company, Limited Reflective-type mask blank for EUV lithography
JP4946296B2 (ja) * 2006-03-30 2012-06-06 凸版印刷株式会社 反射型フォトマスクブランク及びその製造方法、反射型フォトマスク、並びに、半導体装置の製造方法
JP4867695B2 (ja) * 2006-04-21 2012-02-01 旭硝子株式会社 Euvリソグラフィ用反射型マスクブランク
TWI444757B (zh) 2006-04-21 2014-07-11 Asahi Glass Co Ltd 用於極紫外光(euv)微影術之反射性空白光罩
JP4910856B2 (ja) * 2006-06-08 2012-04-04 旭硝子株式会社 Euvリソグラフィ用反射型マスクブランク、および該マスクブランク用の機能膜付基板
TWI417647B (zh) 2006-06-08 2013-12-01 Asahi Glass Co Ltd Euv微影術用之反射性空白遮光罩及用於彼之具有功能性薄膜的基板
EP2139026B1 (en) 2007-04-17 2012-05-30 Asahi Glass Company, Limited Reflective mask blank for euv lithography
KR20090009612A (ko) * 2007-07-20 2009-01-23 엘지디스플레이 주식회사 스퍼터링을 통한 무기절연막 형성방법
EP2256789B1 (en) * 2008-03-18 2012-07-04 Asahi Glass Company, Limited Reflective mask blank for euv lithography
JP2009279371A (ja) 2008-05-22 2009-12-03 Tomoji Yokui 簡易吊り金具
JP4703688B2 (ja) 2008-06-03 2011-06-15 三菱電機株式会社 発話権調整システムおよび発話可能機器
JP2010021944A (ja) 2008-07-14 2010-01-28 Oki Electric Ind Co Ltd 遅延時間推定装置、方法及びプログラム
JP2010067421A (ja) 2008-09-10 2010-03-25 Nihon Kaiheiki Industry Co Ltd ロータリスイッチ
JP2010134822A (ja) 2008-12-08 2010-06-17 Riso Kagaku Corp 半導体メモリ装置
JP5803919B2 (ja) * 2010-07-27 2015-11-04 旭硝子株式会社 Euvリソグラフィ用反射層付基板、およびeuvリソグラフィ用反射型マスクブランク

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002122981A (ja) 2000-10-13 2002-04-26 Samsung Electronics Co Ltd 反射型フォトマスク
JP2005268750A (ja) 2004-02-19 2005-09-29 Hoya Corp 反射型マスクブランクス及び反射型マスク並びに半導体装置の製造方法
JP2006332153A (ja) * 2005-05-24 2006-12-07 Hoya Corp 反射型マスクブランク及び反射型マスク並びに半導体装置の製造方法
US20080182183A1 (en) * 2007-01-31 2008-07-31 Asahi Glass Company, Limited Reflective mask blank for euv lithography
JP2009272317A (ja) * 2008-04-30 2009-11-19 Hoya Corp 多層反射膜付基板の製造方法、反射型マスクブランクの製造方法、及び反射型マスクの製造方法
JP2009272347A (ja) * 2008-04-30 2009-11-19 Toshiba Corp 光反射型マスク、露光装置、測定方法、及び半導体装置の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160034315A (ko) * 2013-07-22 2016-03-29 호야 가부시키가이샤 다층 반사막을 구비한 기판, euv 리소그래피용 반사형 마스크 블랭크, euv 리소그래피용 반사형 마스크 및 그 제조 방법과 반도체 장치의 제조 방법
KR20210059007A (ko) * 2013-09-27 2021-05-24 호야 가부시키가이샤 마스크 블랭크용 기판, 다층 반사막 부착 기판, 반사형 마스크 블랭크, 반사형 마스크 및 반도체 장치의 제조방법
KR20190075339A (ko) * 2017-12-21 2019-07-01 삼성전자주식회사 극자외선 마스크 블랭크, 극자외선 마스크 블랭크를 이용하여 제조된 포토마스크, 포토마스크를 이용한 리소그래피 장치 및 포토마스크를 이용한 반도체 장치 제조 방법

Also Published As

Publication number Publication date
WO2011071123A1 (ja) 2011-06-16
US20120231378A1 (en) 2012-09-13
JP5673555B2 (ja) 2015-02-18
JPWO2011071126A1 (ja) 2013-04-22
CN102687071A (zh) 2012-09-19
US8580465B2 (en) 2013-11-12
EP2511945A1 (en) 2012-10-17
CN102687071B (zh) 2013-12-11
US20120196208A1 (en) 2012-08-02
KR101699574B1 (ko) 2017-01-24
EP2511944A1 (en) 2012-10-17
TWI464529B (zh) 2014-12-11
JP5699938B2 (ja) 2015-04-15
JPWO2011071123A1 (ja) 2013-04-22
WO2011071126A1 (ja) 2011-06-16
US8993201B2 (en) 2015-03-31
EP2511945A4 (en) 2014-09-03
TW201131285A (en) 2011-09-16
EP2511944A4 (en) 2014-09-03
TW201131615A (en) 2011-09-16

Similar Documents

Publication Publication Date Title
KR20120106735A (ko) Euv 리소그래피용 반사층이 형성된 기판, euv 리소그래피용 반사형 마스크 블랭크, euv 리소그래피용 반사형 마스크, 및 그 반사층이 형성된 기판의 제조 방법
JP5696666B2 (ja) Euvリソグラフィ用光学部材およびeuvリソグラフィ用反射層付基板の製造方法
JP5803919B2 (ja) Euvリソグラフィ用反射層付基板、およびeuvリソグラフィ用反射型マスクブランク
US9207529B2 (en) Reflective mask blank for EUV lithography, and process for its production
JP5590044B2 (ja) Euvリソグラフィ用光学部材
JP5348140B2 (ja) Euvリソグラフィ用反射型マスクブランク
JP2015109366A (ja) Euvリソグラフィ用反射型マスクブランク若しくはeuvリソグラフィ用の反射層付基板、およびその製造方法
JP6186996B2 (ja) Euvリソグラフィ用反射型マスクブランク、および、euvリソグラフィ用反射型マスク
WO2022118762A1 (ja) Euvリソグラフィ用反射型マスクブランク、euvリソグラフィ用反射型マスク、およびそれらの製造方法
JP5494164B2 (ja) Euvリソグラフィ用反射型マスクブランク、および該マスクブランク用の機能膜付基板
JP6451884B2 (ja) Euvリソグラフィ用反射型マスクブランク、および、euvリソグラフィ用反射型マスク
JP2017102475A (ja) Euvリソグラフィ用反射型マスクブランク、および、euvリソグラフィ用反射型マスク

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant