KR20080056632A - 부극 및 전지 - Google Patents

부극 및 전지 Download PDF

Info

Publication number
KR20080056632A
KR20080056632A KR1020070116881A KR20070116881A KR20080056632A KR 20080056632 A KR20080056632 A KR 20080056632A KR 1020070116881 A KR1020070116881 A KR 1020070116881A KR 20070116881 A KR20070116881 A KR 20070116881A KR 20080056632 A KR20080056632 A KR 20080056632A
Authority
KR
South Korea
Prior art keywords
negative electrode
active material
electrode active
battery
material layer
Prior art date
Application number
KR1020070116881A
Other languages
English (en)
Other versions
KR101462492B1 (ko
Inventor
타카카주 히로세
마사유키 아이와마
켄이치 카와세
Original Assignee
소니 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 소니 가부시끼가이샤 filed Critical 소니 가부시끼가이샤
Publication of KR20080056632A publication Critical patent/KR20080056632A/ko
Application granted granted Critical
Publication of KR101462492B1 publication Critical patent/KR101462492B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

본 발명은, 사이클 특성을 향상시키는 것이 가능한 전지를 제공하는 것을 과제로 한다. 상기 전지는, 정극 및 부극(22)과 함께 전해액을 구비한다. 부극(22)은 규소를 구성 원소로서 가지는 부극 활물질을 포함하고 있는 부극 활물질층과, 이 부극 활물질층을 피복하고, 3d 전이금속(遷移金屬) 원소(철, 코발트 및 니켈로 이루어지는 군중의 적어도 1종)의 산화물을 함유하는 피복층을 포함한다.
부극 집전체, 부극 활물질층, 전지캔, 절연판, 전지뚜껑, 단자판, 정극 핀, 절연 케이스, 주입구멍, 봉지 부재, 전지 소자, 정극, 정극 집전체, 정극 활물질층, 부극, 권회 전극체, 전해질, 보호 테이프, 외장 부재.

Description

부극 및 전지{ANODE AND BATTERY}
본 발명은, 그 전체 내용이 본원 명세서에 참고용으로 병합(포함)되어 있는, 2006년 12월 18일자로 일본 특허청에 출원된 일본특허출원 제2006-340301호에 관련된 주제를 포함한다.
본 발명은, 부극 활1물질을 포함하는 부극 활물질층을 가지는 부극 및 그것을 구비한 전지에 관한 것이다.
요즈음(최근), 카메라 일체형(combination camera) VTR(Video Tape Recorder), 휴대 전화 또는 노트북 퍼스널컴퓨터 등의 휴대용 전자기기가 널리 보급되어 있으며, 그의 소형화, 경량화 및 긴 수명화가 강하게 요구되고 있다. 이것에 수반해서, 휴대용 전자기기의 전원으로서 전지, 특히 경량이고 고에너지 밀도가 얻어지는 이차 전지의 개발이 추진(진행)되고 있다.
그 중에서도, 충방전 반응에 리튬의 흡장(吸藏; insertion) 및 방출(放出; extraction)을 이용하는 이차 전지(이른바 리튬 이온 이차 전지)는, 납 전지나 니켈 카드뮴 전지보다도 큰 에너지 밀도가 얻어지기 때문에, 많이(크게) 기대되고 있다.
이 리튬 이온 이차 전지는, 부극 활물질을 포함하는 부극 활물질층이 부극 집전체에 설치된 구성을 가지는 부극을 구비하고 있다. 이 부극 활물질로서는 탄소 재료가 널리 이용되고 있지만, 최근에는, 휴대용 전자기기의 고성능화 및 다기능화에 수반해서 전지 용량의 향상이 더욱더 요구되고 있기 때문에, 탄소 재료 대신에 규소를 이용하는 것이 검토되고 있다. 규소의 이론 용량(4199㎃h/g)은 흑연의 이론 용량(372㎃h/g)보다도 현격히 크기 때문에, 전지 용량의 대폭적인 향상이 기대되기 때문이다.
부극 활물질로서 규소를 이용한 리튬 이온 이차 전지에 대해서는, 이차 전지의 중요 특성인 사이클 특성을 향상시키기 위해서, 이미 몇가지 기술이 제안되어 있다. 구체적으로는, 부극 활물질 입자의 표면에 산화물 피막 또는 폴리머 피막으로 이루어지는 산화 방지막을 설치하는 기술(예를 들면, 일본 공개특허공보(特開) 2004-185810호 참조)이나, 부극 활물질에 리튬과 반응하지 않는 세라믹을 부착(付着; adhere)시키는 기술(예를 들면, 일본 공개특허공보 2000-036323호 참조)이나, 부극 활물질에 금속 산화물을 첨가 또는 혼합하는 기술(예를 들면, 일본 공개특허공보 2000-173585호 참조) 등이 알려져 있다. 그밖에도, 관련 기술로서, 리튬함유 복합 질화물 또는 리튬함유 복합 산화물 입자를 도전성 미분말(微粉末)로 피복하는 기술(예를 들면, 특개 2001-325950호 참조)도 알려져 있다.
최근의 휴대용 전자기기는 점점 소형화, 고성능화 및 다기능화하는 경향에 있기 때문에, 이차 전지의 충방전이 빈번하게 반복되는 것에 의해 방전 용량이 저하하기 쉬운 경향에 있다. 이 때문에, 이차 전지의 사이클 특성에 관해서 한층더 향상이 요망되고 있다.
그렇지만, 종래의 이차 전지에서는, 사이클 특성의 향상에 관해서 아직도(여전히) 개선의 여지가 있다. 구체적으로는, 리튬 이온 이차 전지에 있어서 전지 용량을 향상시키기 위해서 부극 활물질로서 규소를 이용하면, 충방전이 반복되는 것에 의해 부극의 표면에 리튬 산화물이 형성된다. 이 경우에는, 리튬 산화물이 비가역성(非可逆性)의 피막으로서 퇴적하기 때문에, 충방전 반응에 기여하는 리튬(리튬 이온)의 절대수가 감소하는 것에 의해 방전 용량의 저하를 초래해 버린다.
본 발명은 이러한 문제점을 감안해서 이루어진 것이며, 그 목적은, 사이클 특성을 향상시키는 것이 가능한 부극 및 전지를 제공하는 것에 있다.
본 발명의 부극은, 규소를 구성 원소로서 가지는 부극 활물질을 포함하는 부극 활물질층과, 그 부극 활물질층을 피복함과 동시에 3d 전이금속 원소(철, 코발트 및 니켈로 이루어지는 군중의 적어도 1종)의 산화물을 함유하는 피복층을 가지는 것이다. 또, 본 발명의 전지는, 정극 및 부극과 함께 전해액을 구비하고, 부극이, 규소를 구성 원소로서 가지는 부극 활물질을 포함하는 부극 활물질층과, 그 부극 활물질층을 피복함과 동시에 3d 전이금속 원소(철, 코발트 및 니켈로 이루어지는 군중의 적어도 1종)의 산화물을 포함하는 피복층을 가지는 것이다.
본 발명의 부극에 따르면, 규소를 구성 원소로서 가지는 부극 활물질을 포함하는 부극 활물질층과, 그 부극 활물질층을 피복함과 동시에 3d 전이금속 원소(철, 코발트 및 니켈로 이루어지는 군중의 적어도 1종)의 산화물을 함유하는 피복층을 가지므로, 전기화학 디바이스에 이용된 경우에 전극 반응 물질을 포함하는 가역성의 피막이 형성되어, 그 전극 반응 물질의 절대수의 감소가 억제된다. 이것에 의해, 본 발명의 부극을 구비한 전지에서는, 사이클 특성을 향상시킬 수가 있다.
본 발명의 그 밖의 다른 목적, 특징 및 이점은, 이하의 설명으로부터 보다 더 명확하게 될 것이다.
이하, 본 발명의 실시형태에 대해서, 도면을 참조하여 상세하게 설명한다.
도 1은, 본 발명의 1실시형태에 따른 부극의 단면 구성을 도시하고 있다. 이 부극은, 예를 들면 정극과 함께 전지 등의 전기화학 디바이스에 이용되는 것이며, 대향하는 한쌍의 면을 가지는 부극 집전체(1)와, 그 부극 집전체(1)에 의해 지지된 부극 활물질층(2)과, 그 부극 활물질층(2)을 피복하는 피복층(3)을 가지고 있다. 또한, 도 1에서는, 부극 활물질층(2) 및 피복층(3)이 부극 집전체(1)의 한면에 설치되어 있는 경우를 도시하고 있지만, 그들은 양면에 설치되어 있어도 좋다.
부극 집전체(1)는, 양호한 전기화학적 안정성, 전기 전도성 및 기계적 강도 를 가지는 금속 재료에 의해 구성되어 있다. 이 금속 재료로서는, 예를 들면 구리(Cu), 니켈 또는 스텐레스 등을 들 수 있다. 그 중에서도, 금속 재료로서는, 구리가 바람직하다. 높은 전기 전도성이 얻어지기 때문이다.
특히, 부극 집전체(1)를 구성하는 금속 재료로서는, 전극 반응 물질과 금속간 산화물을 형성하지 않는 1종 또는 2종 이상의 금속 원소를 함유하는 것이 바람직하다. 전극 반응 물질과 금속간 산화물을 형성하면, 전기화학 디바이스의 동작시(예를 들면, 전지의 충방전시)에서의 부극 활물질층(2)의 팽창 및 수축에 수반해서 파손되기 때문에, 집전성(集電性)이 저하함과 동시에 부극 활물질층(2)이 박리되기 쉬워지기 때문이다. 이 금속 원소로서는, 예를 들면 구리, 니켈, 티타늄(티탄), 철 또는 크로뮴(크롬) 등을 들 수 있다.
또, 상기한 금속 재료로서는, 부극 활물질층(2)과 합금화하는 1종 또는 2종 이상의 금속 원소를 함유하는 것이 바람직하다. 부극 집전체(1)와 부극 활물질층(2) 사이의 밀착성(contact characteristics)이 향상되기 때문에, 그 부극 활물질층(2)이 부극 집전체(1)로부터 박리하기 어렵게 되기 때문이다. 전극 반응 물질과 금속간 산화물을 형성하지 않고, 게다가 부극 활물질층(2)과 합금화하는 금속 원소로서는, 예를 들면 부극 활물질층(2)의 부극 활물질이 규소를 구성 원소로서 가지는 경우에는, 구리, 니켈 또는 철 등을 들 수 있다. 이들 금속 원소는, 강도 및 도전성의 관점에서도 바람직하다.
또한, 부극 집전체(1)는, 단층 구조를 가지고 있어도 좋고, 다층 구조를 가지고 있어도 좋다. 부극 집전체(1)가 다층 구조를 가지는 경우에는, 예를 들면 부 극 활물질층(2)과 인접하는 층이 그것과 합금화하는 금속 재료에 의해서 구성되는 반면, 인접하지 않는 층이 다른 금속 재료로 구성되는 것이 바람직하다.
이 부극 집전체(1)의 표면은, 조면화(粗面化; roughen)되어 있는 것이 바람직하다. 이른바 앵커 효과에 의해서 부극 집전체(1)와 부극 활물질층(2) 사이의 밀착성이 향상되기 때문이다. 이 경우에는, 적어도 부극 활물질층(2)과 대향하는 부극 집전체(1)의 표면이 조면화되어 있으면 좋다. 조면화의 방법으로서는, 예를 들면 전해 처리에 의해서 미립자를 형성하는 방법 등을 들 수 있다. 이 전해 처리라 함은, 전해조 중(속)에서 전해법에 의해서 부극 집전체(1)의 표면에 미립자를 형성하는 것에 의해 요철(凹凸; irregularity)을 형성하는 방법이다. 이 전해 처리가 실시된 동박은, 일반적으로 「전해 동박」이라고 불리고 있다.
부극 집전체(1)의 표면이 조면화되어 있는 경우에는, 그 표면의 십점 평균 거칠음(十点平均粗; ten point height of roughness profile) Rz가 1.5㎛ 이상 5㎛ 이하의 범위내인 것이 바람직하다. 부극 집전체(1)와 부극 활물질층(2) 사이의 밀착성이 보다 향상되기 때문이다.
부극 활물질층(2)은, 부극 활물질을 포함하고 있으며, 필요에 따라서 결합제나 도전제 등을 포함하고 있어도 좋다. 이 부극 활물질은, 전극 반응 물질을 흡장 및 방출하는 것이 가능한 부극 재료로서, 규소를 구성 원소로서 가지는 부극 재료를 함유하고 있다. 이 부극 재료를 함유하고 있는 것은, 전극 반응 물질을 흡장 및 방출하는 능력이 크기 때문에, 높은 에너지 밀도가 얻어지기 때문이다. 이 부극 재료는, 규소의 단체(單體; simple substance), 합금 또는 화합물이더라도 좋 고, 그들의 1종 또는 2종 이상의 상(相)을 적어도 일부에 가지는 것이더라도 좋다. 이들은 단독으로 이용되어도 좋고, 복수종이 혼합되어 이용되어도 좋다. 또한, 본 발명에서의 합금에는, 2종 이상의 금속 원소로 이루어지는 것에 부가해서, 1종 이상의 금속 원소와 1종 이상의 반금속 원소를 포함하는 것도 포함된다. 물론, 본 발명에서의 합금은, 비금속 원소를 포함하고 있어도 좋다. 그 조직에는, 고용체(固溶體; solid solution), 공정(共晶)(공융(共融) 혼합물), 금속간 화합물 또는 그들의 2종 이상이 공존하는 것도 있다.
규소의 합금으로서는, 예를 들면 규소 이외의 구성 원소로서, 주석(Sn), 니켈, 구리, 철, 코발트, 망간(Mn), 아연(Zn), 인듐(In), 은(Ag), 티타늄, 게르마늄(Ge), 비스무트(Bi), 안티몬(Sb) 및 크로뮴(Cr)으로 이루어지는 군중의 적어도 1종을 가지는 것 등을 들 수 있다.
규소의 화합물로서는, 예를 들면 규소 이외의 구성 원소로서, 산소 및 탄소(C)를 가지는 것 등을 들 수 있다. 또한, 규소의 화합물은, 예를 들면 규소 이외의 구성 원소로서, 규소의 합금에 대해서 설명한 일련의 원소의 1종 또는 2종 이상을 포함하고 있어도 좋다.
특히, 부극 활물질은 산소를 구성 원소로서 더 가지고 있는 것이 바람직하다. 부극 활물질층(2)의 팽창 및 수축이 억제되기 때문이다. 이 부극 활물질층(2)에서는, 적어도 일부의 산소가 일부의 규소와 결합하고 있는 것이 바람직하다. 이 경우에는, 결합 상태가 일산화 규소나 이산화 규소이더라도 좋고, 다른 준안정(準安定; metastable) 상태여도 좋다.
부극 활물질 중에서의 산소의 함유량은, 3원자수%(atomic%) 이상 40원자수% 이하의 범위내인 것이 바람직하다. 보다 높은 효과가 얻어지기 때문이다. 상세하게는, 산소의 함유량이 3원자수%보다도 적으면, 부극 활물질층(2)의 팽창 및 수축이 충분히 억제되지 않고, 한편, 40원자수%보다도 많으면, 저항이 너무(지나치게) 증대한다. 또한, 예를 들면 부극이 전지에 이용된 경우에는, 전해액의 분해에 의해서 형성되는 피막 등은 부극 활물질층(2)에 포함시키지 않기로 한다. 즉, 부극 활물질층(2) 중에서의 산소의 함유량을 산출하는 경우에는, 상기한 피막중의 산소는 포함하지 않는다.
부극 활물질이 산소를 구성 원소로서 가지는 부극 활물질층(2)은, 예를 들면 기상 증착법을 이용하여 부극 활물질을 증착시킬 때에, 챔버내에 연속적으로 산소 가스를 도입하는 것에 의해 형성가능하다. 특히, 산소 가스의 도입만으로 원하는 산소 함유량이 얻어지지 않는 경우에는, 챔버내에 산소의 공급원으로서 액체(예를 들면 수증기 등)를 도입해도 좋다.
또, 부극 활물질은, 철, 코발트, 니켈, 티타늄, 크로뮴 및 몰리브덴으로 이루어지는 군중의 적어도 1종의 금속 원소를 더 가지고 있는 것이 바람직하다. 부극 활물질층(2)의 팽창 및 수축이 억제되기 때문이다.
부극 활물질 중에서의 금속 원소의 함유량은, 3원자수% 이상 30원자수% 이하의 범위내인 것이 바람직하다. 보다 높은 효과가 얻어지기 때문이다. 상세하게는, 금속 원소의 함유량이 3원자수%보다도 적으면 부극 활물질층(2)의 팽창 및 수축이 충분히 억제되지 않고, 한편, 30원자수%보다도 많으면 원하는 전지 용량을 얻 기 위해서 부극 활물질층(2)의 두께가 너무 커지게 되어 실용적이지 않다. 부극 활물질층(2)의 두께가 너무 커지면 실용적이지 않다는 것은, 부극 활물질층(2)이 부극 집전체(1)로부터 벗겨지거나, 깨지기(균열되기) 쉽게 되기 때문이다.
부극 활물질이 금속 원소를 구성 원소로서 가지는 부극 활물질층(2)은, 예를 들면 기상 증착법으로서 증착법을 이용하여 부극 활물질을 증착시킬 때에, 금속 원소를 혼합시킨 증착원(蒸着源)을 이용하거나, 다원계(多元系; multiple)의 증착원을 이용하는 것에 의해 형성가능하다.
이 부극 활물질층(2)은, 예를 들면 도포법(塗布法), 기상 증착법, 액상 증착법, 용사법(溶射法; spraying method) 및 소성법(燒成法; firing method), 또는 그들의 2종 이상의 방법을 이용하여 형성되어 있다. 이 경우에는, 특히 기상 증착법을 이용하여 부극 활물질층(2)이 형성되어 있고, 그 부극 활물질층(2)이 부극 집전체(1)와의 계면의 적어도 일부에서 합금화되어 있는 것이 바람직하다. 구체적으로는, 양자의 계면에서, 부극 집전체(1)의 구성 원소가 부극 활물질층(2)으로 확산하고 있어도 좋고, 부극 활물질층(2)의 구성 원소가 부극 집전체(1)로 확산하고 있어도 좋으며, 양자의 구성 원소가 서로 확산하고 있어도 좋다. 충방전시의 팽창 및 수축에 기인하여 부극 활물질층(2)이 파손하기 어렵게 됨과 동시에, 부극 집전체(1)와 부극 활물질층(2) 사이에서 전자 전도성이 향상되기 때문이다.
또한, 기상 증착법으로서는, 예를 들면 물리 증착법 또는 화학 증착법, 보다 구체적으로는 진공 증기 증착법, 스퍼터링법, 이온 플레이팅법, 레이저 애블레이션법, 열 화학 증기 증착(CVD;Chemical Vapor Deposition)법 또는 플라즈마 화학 증 기 증착법 등을 들 수 있다. 액상 증착법으로서는, 전해 도금(電氣鍍金) 또는 무전해 도금 등의 공지의 수법을 이용하는 것이 가능하다. 소성법이라 함은, 예를 들면 입자형상(粒子狀)의 부극 활물질과 결합제 등을 혼합하여 용제에 분산시키는 것에 의해 도포한 후, 결합제 등의 융점보다도 높은 온도로 열처리 하는 방법이다. 소성법에 관해서도 공지의 수법이 사용가능하고, 예를 들면 분위기 소성법, 반응 소성법 또는 핫프레스 소성법 등을 들 수 있다.
부극 활물질층(2)은, 다수회에 걸쳐서 성막되는 것에 의해 형성된 다층 구조를 가지고 있는 것이 바람직하다. 성막시에 고열을 수반하는 증착법 등을 이용하여 부극 활물질층(2)을 형성하는 경우에, 그 부극 활물질층(2)의 성막 공정을 다수회로 분할하여 행하는(부극 활물질층(2)을 순차 형성해서 적층시키는) 것에 의해, 1회의 성막 공정으로 단층 구조로 되도록 부극 활물질층(2)을 형성하는 경우와 비교해서, 부극 집전체(1)가 고열에 노출되는 시간이 짧아지기 때문에, 그 부극 집전체(1)가 열적 데미지(손상)를 받는 것이 억제되기 때문이다.
특히, 부극 활물질층(2)은, 그의 두께 방향에서, 부극 활물질이 산소를 구성 원소로서 더 가지는 산소 함유층을 가지고, 그 산소 함유층에서의 산소의 함유량이 그 이외(其他; others; 기타)의 층에서의 산소의 함유량보다도 많아지고 있는 것이 바람직하다. 부극 활물질층(2)의 팽창 및 수축이 억제되기 때문이다. 이 산소 함유층 이외의 층은, 산소를 구성 원소로서 가지고 있어도 좋고, 가지고 있지 않아도 좋다. 물론, 산소 함유층 이외의 층도 산소를 구성 원소로서 가지고 있는 경우에, 그 산소의 함유량이 산소 함유층에서의 산소의 함유량보다도 낮게 되어 있는 것은 말할 필요도 없다(물론이다).
이 경우에는, 부극 활물질층(2)의 팽창 및 수축을 보다 억제하기 위해서, 산소 함유층 이외의 층도 산소를 구성 원소로서 가지고 있고, 즉 부극 활물질층(2)이, 제1 산소 함유층(보다 낮은 산소 함유량을 가지는 층)과, 그것보다도 높은 산소 함유량을 가지는 제2 산소 함유층(보다 높은 산소 함유량을 가지는 층)을 포함하고 있는 것이 바람직하다. 특히, 제1 산소 함유층 사이에 제2 산소 함유층이 끼여(협지되어) 있는 것이 바람직하고, 제1 산소 함유층과 제2 산소 함유층이 교대로(번갈아) 반복하여 적층되어 있는 것이 보다 바람직하다. 보다 높은 효과가 얻어지기 때문이다. 제1 산소 함유층에서의 산소의 함유량은, 가능한 한 적은 것이 바람직하며, 제2 산소 함유층에서의 산소의 함유량은, 예를 들면 상기한 부극 활물질이 산소를 구성 원소로서 가지는 경우의 함유량과 마찬가지이다.
제1 산소 함유층 및 제2 산소 함유층을 포함하는 부극 활물질층(2)은, 예를 들면 기상 증착법을 이용하여 부극 활물질을 증착시킬 때에, 챔버내에 단속적(斷續的; intermittent)으로 산소 가스를 도입하는 것에 형성가능하다. 물론, 산소 가스의 도입만으로 원하는 산소 함유량이 얻어지지 않는 경우에는, 챔버내에 액체(예를 들면 수증기 등)를 도입해도 좋다.
또한, 제1 산소 함유층과 제2 산소 함유층 사이에서는, 산소의 함유량이 명확하게 다르게 되어 있어도 좋고, 명확하게 다르게 되어 있지 않아도 좋다. 즉, 상기한 산소 가스의 도입량을 연속적으로 변화시킨 경우에는, 산소의 함유량도 연속적으로 변화하고 있어도 좋다. 이 경우에는, 제1 산소 함유층 및 제2 산소 함유 층이 「층」이라고 하기 보다는 오히려 「층상(層狀; lamellar state)」을 이루고, 부극 활물질층(2) 중에서는 두께 방향에서 산소의 함유량이 고저(高低; up and down)를 반복하면서 분포한다. 특히, 제1 산소 함유층과 제2 산소 함유층 사이에서, 산소의 함유량이 단계적 또는 연속적으로 변화하고 있는 것이 바람직하다. 산소의 함유량이 급격하게 변화하면, 이온의 확산성이 저하하거나, 저항이 증대할 가능성이 있기 때문이다.
또, 부극 활물질층(2)은, 그의 두께 방향에서, 부극 활물질이 또 철, 코발트, 니켈, 티타늄, 크로뮴 및 몰리브덴으로 이루어지는 군중의 적어도 1종의 금속 원소를 구성 원소로서 가지는 금속 원소 함유층을 가지고, 그 금속 원소 함유층에서의 금속 원소의 함유량이 그 이외의 층에서의 금속 원소의 함유량보다도 높게 되어 있는 것이 바람직하다. 부극 활물질층(2)의 팽창 및 수축이 억제되기 때문이다. 이 금속 원소 함유층 이외의 층은, 마찬가지 금속 원소를 구성 원소로서 가지고 있어도 좋고, 가지고 있지 않아도 좋다. 물론, 금속 원소 함유층 이외의 층도 금속 원소를 구성 원소로서 가지고 있는 경우에, 그 금속 원소의 함유량이 금속 원소 함유량에서의 금속 원소의 함유량보다도 낮게 되어 있는 것은 말할 필요도 없다
이 경우에는, 부극 활물질층(2)의 팽창 및 수축을 보다 억제하기 위해서, 금속 원소 함유층 이외의 층도 금속 원소를 구성 원소로서 가지고 있고, 즉 부극 활물질층(2)이, 제1 금속 원소 함유층(보다 낮은 금속 원소 함유량을 가지는 층)과, 그것보다도 높은 금속 원소 함유량을 가지는 제2 금속 원소 함유층(보다 높은 금속 원소 함유량을 가지는 층)을 포함하고 있는 것이 바람직하다. 이 경우에는, 제1 금속 원소 함유층 사이에 제2 금속 원소 함유층이 끼여 있는 것이 바람직하고, 제1 금속 원소 함유층과 제2 금속 원소 함유층이 교대로 반복해서 적층되어 있는 것이 보다 바람직하다. 보다 높은 효과가 얻어지기 때문이다. 제1 금속 원소 함유층에서의 금속 원소의 함유량은, 가능한 한 적은 것이 바람직하고, 제2 금속 원소 함유층에서의 금속 원소의 함유량은, 예를 들면 상기한 부극 활물질이 금속 원소를 구성 원소로서 가지는 경우의 함유량과 마찬가지이다.
제1 금속 원소 함유층 및 제2 금속 원소 함유층을 포함하는 부극 활물질층(2)은, 예를 들면 양자의 층을 개별적으로 형성하는 것이 가능한 2종류의 챔버(증착원)를 준비하고, 그 챔버 내에서 양자의 층을 교대로 형성하여 적층시키는 것에 의해 형성가능하다.
피복층(3)은, 3d 전이금속 원소의 산화물을 함유하고 있다. 이 3d 전이금속 원소라 함은, 철, 코발트 및 니켈로 이루어지는 군중의 적어도 1종이다. 이 산화물은, 예를 들면 MxOy(M은 철, 코발트 또는 니켈을 나타내고, x는 1∼3중의 하나의 정수(整數)를 나타내고, y는 1∼4중의 하나의 정수를 나타낸다)로 나타내어지는 화합물이다. 이 피복층(3)에 의해서 부극 활물질층(2)이 피복되어 있는 것은, 부극이 전기화학 디바이스에 이용된 경우에, 그 부극의 표면에 전극 반응 물질을 포함하는 가역성 피막이 형성되므로, 그 전극 반응 물질의 절대수 감소가 억제되기 때문이다.
이 산화물의 구체예로서는, 이하의 화합물을 들 수 있다. 즉, M이 철인 경 우에는, 산화 제1철(FeO), 산화 제2철(3산화 2철: Fe2O3) 또는 산화 제3 철(4산화 3철: Fe3O4) 등이다. M이 코발트인 경우에는, 산화 제1 코발트(CoO) 또는 산화 제3 코발트(4산화 3코발트:Co3O4) 등이다. M이 니켈인 경우에는, 산화 제1 니켈(NiO) 등이다. 이들은 단독으로 이용되어도 좋고, 복수종이 혼합되어 이용되어도 좋다. 그 중에서도, 산화물로서는, 산화 제1철, 산화 제1 코발트 또는 산화 제1 니켈이 바람직하다. 보다 높은 효과가 얻어지기 때문이다.
피복층(3)의 두께는, 10㎚ 이상 3000㎚ 이하의 범위내인 것이 바람직하다. 보다 높은 효과가 얻어지기 때문이다.
이 부극은, 예를 들면 이하의 수순(手順; procedure)에 의해서 제조된다. 즉, 우선, 부극 집전체(1)를 준비하고, 필요에 따라서 부극 집전체(1)의 표면에 조면화 처리를 실시한 후, 그 부극 집전체(1)의 표면에 기상 증착법 등을 이용하여 규소를 구성 원소로서 가지는 부극 활물질을 증착시키는 것에 의해, 부극 활물질층(2)을 형성한다. 그 후, 부극 활물질층(2)의 표면에 기상 증착법 등을 이용하여 3d 전이금속 원소의 산화물을 퇴적시키는 것에 의해, 피복층(3)을 형성한다.
이 부극에 의하면, 부극 활물질층(2)이 규소를 구성 원소로서 가지는 부극 활물질을 포함하는 경우에, 그 부극 활물질층(2)이 3d 전이금속 원소의 산화물을 함유하는 피복층(3)에 의해서 피복되어 있으므로, 전기화학 디바이스에 이용된 경우에 전극 반응 물질을 포함하는 가역성 피막이 형성된다. 이 경우에는, 전극 반응이 반복되는 것에 의해 피막의 형성 및 분해가 반복적으로 행해지기 때문에, 전 극 반응 물질의 절대수의 감소가 억제된다. 따라서, 부극을 이용한 전기화학 디바이스에서의 사이클 특성의 향상에 기여할 수가 있다. 특히, 피복층(3)을 구성하는 3d 전이금속 원소의 산화물이 산화 제1철, 산화 제1 코발트 또는 산화 제1 니켈이며, 또는 피복층(3)의 두께가 10㎚ 이상 3000㎚ 이하의 범위내이면, 보다 높은 효과를 얻을 수가 있다.
또, 부극 활물질이 산소를 구성 원소로서 더 가지고, 부극 활물질 중에서의 산소의 함유량이 3원자수% 이상 40원자수% 이하의 범위내이면, 보다 높은 효과를 얻을 수가 있다. 이 효과는, 부극 활물질층(2)이 그의 두께 방향에서 산소 함유층(부극 활물질이 산소를 구성 원소로서 더 가지고, 산소의 함유량이 그 이외의 층보다도 높은 층)을 포함하고 있는 경우에 있어서도, 마찬가지로 얻어진다.
또, 부극 활물질이 철, 코발트, 니켈, 티타늄, 크로뮴 및 몰리브덴으로 이루어지는 군중의 적어도 1종의 금속 원소를 구성 원소로서 더 가지고, 부극 활물질중에서의 금속 원소의 함유량이 3원자수% 이상 30원자수% 이하의 범위내이면, 보다 높은 효과가 얻어진다. 이 효과는, 부극 활물질층(2)이 그의 두께 방향에서 금속 원소 함유층(부극 활물질이 상기한 금속 원소를 구성 원소로서 더 가지고, 금속 원소의 함유량이 그 이외의 층보다도 높은 층)을 포함하고 있는 경우에 있어서도, 마찬가지로 얻어진다.
또, 부극 활물질층(2)과 대향하는 부극 집전체(1)의 표면이 전해 처리로 형성된 미립자에 의해서 조면화되어 있으면, 부극 집전체(1)와 부극 활물질층(2) 사이의 밀착성을 높일 수가 있다. 이 경우에는, 부극 집전체(1)의 표면의 십점 평균 거칠음 Rz가 1.5㎛ 이상 5㎛ 이하의 범위내이면, 보다 높은 효과를 얻을 수가 있다.
여기서, 본 발명의 기술적 의의에 대해서 설명해 둔다. 본 발명의 기술적 의의는, 부극 활물질층(2)이 규소를 구성 원소로서 가지는 부극 활물질을 포함하는 경우에, 그 부극 활물질층(2)의 표면에 전극 반응 물질과 가역성의 피막을 형성하는 것이 가능한 3d 전이금속 원소의 산화물을 피복층(3)으로서 설치한 것에 있다. 보다 구체적으로는, 다양한 목적으로 부극 활물질층(2)의 표면에 각종 층을 설치하는 것은 이미 행해지고 있지만, 그 부극 활물질층(2)의 표면에 설치된 많은 층이 전극 반응 물질과 비가역성의 피막을 형성하는데 대해서, 3d 전이금속 원소의 산화물을 함유하는 층만이 전극 반응 물질과 가역성의 피막을 형성한다는 것을 알아낸(발견해 낸) 것이 중요하고, 그것에 의해서 다대(多大; enormous)한 기술적 효과를 가져온다.
다음에, 상기한 부극의 사용예에 대해서 설명한다. 여기서, 전기화학 디바이스의 1예로서 전지를 예로 들면, 부극은 이하와 같이 해서 전지에 이용된다.
(제1 전지)
도 2∼도 4는 제1 전지의 단면 구성을 도시하고 있고, 도 3에서는 도 2에 도시된 Ⅲ-Ⅲ선을 따른 단면을 도시하고, 도 4에서는 도 2 및 도 3에 도시한 부극(22)의 일부를 확대해서 도시하고 있다. 여기서 설명하는 전지는, 예를 들면 부극(22)의 용량이 전극 반응 물질인 리튬의 흡장 및 방출에 의거하는 용량 성분에 의해 나타내어지는 리튬 이온 이차 전지이다.
이 이차 전지는, 전지캔(11)의 내부에, 편평한(flat) 권회(卷回; spirally winding) 구조를 가지는 전지 소자(20)가 수납된 것이다.
전지캔(11)은, 예를 들면 각형(角型; square)의 외장 부재이다. 이 각형의 외장 부재라 함은, 도 3에 도시하는 바와 같이, 긴쪽방향(長手方向; longitudinal direction)에서의 단면이 직사각형(矩形) 형태(型) 또는 대략 직사각형 형태(일부에 곡선을 포함한다)의 형상(形狀)을 가지는 것이고, 직사각형 형상의 각형 전지 뿐만이 아니라 오벌 형상(oval shape)의 각형 전지도 구성하는 것이다. 즉, 각형의 외장 부재라 함은, 직사각형 형상 또는 원호를 직선으로 연결한 대략 직사각형 형상(긴 원형상(長圓形狀; oval shape))의 개구부를 가지는 유저(有底; 바닥부를 가지는) 직사각형 형태 또는 유저 타원 형상 형태의 용기모양(器狀; vassel-like) 부재이다. 도 3에서는, 전지캔(11)이 직사각형 형태의 단면 형상을 가지는 경우를 도시하고 있다. 이 전지캔(11)을 포함하는 전지 구조는, 이른바 각형이라고 불리고 있다.
이 전지캔(11)은, 예를 들면 철, 알루미늄(Al) 또는 그들의 합금을 함유하는 금속 재료에 의해 구성되어 있고, 부극 단자로서의 기능도 가지고 있다. 이 경우에는, 충방전시에 전지캔(11)의 단단함(rigidity)(변형하기 어려운 성질)을 이용하여 이차 전지의 팽창(swollenness)을 억제하기 위해서, 알루미늄보다도 단단한 철이 바람직하다. 전지캔(11)이 철에 의해서 구성되는 경우에는, 예를 들면 니켈(Ni) 등의 도금이 행해져 있어도 좋다.
또, 전지캔(11)은, 일단부 및 타단부가 각각 폐쇄 및 개방된 중공 구조를 가 지고 있으며, 그의 개방 단부에 절연판(12) 및 전지뚜껑(13)이 취부(取付; attach)되는 것에 의해 밀폐되어 있다. 절연판(12)은, 전지 소자(20)와 전지뚜껑(13) 사이에, 그 전지 소자(20)의 권회 둘레면(周面)에 대해서 수직으로 배치되어 있고, 예를 들면 폴리프로필렌 등에 의해 구성되어 있다. 전지뚜껑(13)은, 예를 들면 전지캔(11)과 마찬가지 재료에 의해 구성되어 있고, 그것과 마찬가지로 부극 단자로서의 기능도 가지고 있다.
전지뚜껑(13)의 외측에는, 정극 단자로 되는 단자판(14)이 설치되어 있고, 그 단자판(14)은, 절연 케이스(16)를 거쳐서 전지뚜껑(13)으로부터 전기적으로 절연되어 있다. 이 절연 케이스(16)는, 예를 들면 폴리부틸렌 테레프탈레이트 등에 의해 구성되어 있다. 또, 전지뚜껑(13)의 거의 중앙에는 관통구멍이 설치되어 있고, 그 관통구멍에는, 단자판(14)과 전기적으로 접속됨과 동시에 개스킷(17)을 거쳐서 전지뚜껑(13)으로부터 전기적으로 절연되도록 정극 핀(15)이 삽입되어 있다. 이 개스킷(17)은, 예를 들면 절연 재료에 의해 구성되어 있고, 그 표면에는 아스팔트가 도포되어 있다.
전지뚜껑(13)의 주연(周緣; rim) 부근에는, 개열밸브(開裂弁; cleavage valve)(18) 및 주입구멍(19)이 설치되어 있다. 개열밸브(18)는, 전지뚜껑(13)과 전기적으로 접속되어 있고, 내부 단락(短絡) 또는 외부로부터의 가열 등에 기인해서 전지의 내압(內壓)이 일정 이상으로 된 경우에, 전지뚜껑(13)으로부터 떼어내지는(분리되는) 것에 의해 내압을 개방하도록 되어 있다. 주입구멍(19)은, 예를 들면 코런덤(corundum)으로 이루어지는 봉지(封止; sealing) 부재(19A)에 의해서 막 혀(밀봉되어) 있다.
전지 소자(20)는, 세퍼레이터(23)를 사이에 두고 정극(21) 및 부극(22)이 적층된 후에 소용돌이모양으로 권회된 것이며, 전지캔(11)의 형상에 따라 편평형상으로 되어 있다. 정극(21)의 단부(端部)(예를 들면 내측 종단부)에는 알루미늄 등에 의해 구성된 정극 리드(24)가 취부되어(달려) 있고, 부극(22)의 단부(예를 들면 외측 종단부)에는 니켈 등에 의해 구성된 부극 리드(25)가 취부되어 있다. 정극 리드(24)는, 정극 핀(15)의 일단에 용접되는 것에 의해 단자판(14)과 전기적으로 접속되어 있고, 부극 리드(25)는, 전지캔(11)에 용접되는 것에 의해 전기적으로 접속되어 있다.
정극(21)은, 예를 들면 띠형상(帶狀)의 정극 집전체(21A)의 양면에 정극 활물질층(21B)이 설치된 것이다. 이 정극 집전체(21A)는, 예를 들면 알루미늄, 니켈 또는 스텐레스 등의 금속 재료에 의해 구성되어 있다. 정극 활물질층(21B)은, 정극 활물질을 포함하고 있고, 필요에 따라서 결합제나 도전제 등을 포함하고 있어도 좋다.
정극 활물질은, 전극 반응 물질인 리튬을 흡장 및 방출하는 것이 가능한 정극 재료의 어느것인가 1종 또는 2종 이상을 포함하고 있다. 이 정극 재료로서는, 예를 들면 코발트산 리튬, 니켈산 리튬 또는 그들을 포함하는 고용체(Li(NixCoyMnz)O2; x, y 및 z의 값은 각각 0〈x〈1, 0〈y〈1, 0〈z〈1, x+y+z=1이다)나, 스피넬 구조를 가지는 망간산 리튬(LiMn2O4) 또는 그의 고용체(Li(Mn2- vNiv)O4; v의 값은 v〈2이다) 등의 리튬 복합 산화물을 들 수 있다. 또, 정극 재료로서는, 예를 들면 인산 철 리튬(LiFePO4) 등의 올리빈 구조를 가지는 인산 화합물도 들 수 있다. 높은 에너지 밀도가 얻어지기 때문이다. 또한, 정극 재료는, 상기한 것 이외에, 예를 들면 산화 티탄, 산화 바나듐 또는 이산화 망간 등의 산화물이나, 2황화 철, 2황화 티탄 또는 황화 몰리브덴 등의 2황화물이나, 유황이나, 폴리아닐린 또는 폴리티오펜 등의 도전성 고분자이더라도 좋다.
부극(22)은, 상기한 부극과 마찬가지 구성을 가지고 있고, 예를 들면 띠형상의 부극 집전체(22A)의 양면에 부극 활물질층(22B) 및 피복층(22C)이 설치된 것이다. 부극 집전체(22A), 부극 활물질층(22B) 및 피복층(22C)의 구성은 각각, 상기한 부극에서의 부극 집전체(1), 부극 활물질층(2) 및 피복층(3)의 구성과 마찬가지이다. 또한, 도 3에서는, 피복층(22C)의 도시를 생략하고 있다.
세퍼레이터(23)는, 정극(21)과 부극(22)을 격리하여, 양극의 접촉에 기인하는 전류의 단락을 방지하면서 전극 반응 물질의 이온을 통과시키는 것이다. 이 세퍼레이터(23)는, 예를 들면 폴리 테트라플루오로에틸렌, 폴리프로필렌 또는 폴리에틸렌 등의 합성 수지로 이루어지는 다공질막이나, 세라믹으로 이루어지는 다공질막 등에 의해 구성되어 있고, 이들의 2종 이상의 다공질막이 적층된 것이더라도 좋다.
이 세퍼레이터(23)에는, 액상의 전해질로서 전해액이 함침(含浸)되어 있다. 이 전해액은, 용매와, 그것에 용해된 전해질염을 포함하고 있다.
용매는, 예를 들면 유기 용제 등의 비수(非水) 용매의 1종 또는 2종 이상을 함유하고 있다. 이 비수 용매로서는, 예를 들면 탄산 에틸렌, 탄산 프로필렌, 탄산 부틸렌, 탄산 비닐렌, 탄산 비닐 에틸렌, 탄산 디메틸, 탄산 디에틸, 탄산 에틸 메틸 또는 탄산 메틸 프로필 등의 탄산 에스테르계 용매를 들 수 있다. 우수한 용량 특성, 보존 특성 및 사이클 특성이 얻어지기 때문이다. 이들은 단독으로 이용되어도 좋고, 복수종이 혼합되어 이용되어도 좋다. 그 중에서도, 용매로서는, 탄산 에틸렌 또는 탄산 프로필렌 등의 고점도 용매와, 탄산 디메틸, 탄산 에틸 메틸 또는 탄산 디에틸 등의 저점도 용매를 혼합한 것이 바람직하다. 전해질염의 해리성 및 이온의 이동도가 향상되므로, 보다 높은 효과가 얻어지기 때문이다.
특히, 용매는, 할로겐화 탄산 에스테르를 함유하고 있는 것이 바람직하다. 부극(22)의 표면에 안정한 피막이 형성되는 것에 의해 전해액의 분해 반응이 억제되므로, 사이클 특성이 향상되기 때문이다. 이 할로겐화 탄산 에스테르로서는, 불소화 탄산 에스테르가 바람직하고, 특히 탄산 디플루오로 에틸렌이 바람직하다. 보다 높은 효과가 얻어지기 때문이다. 이 탄산 디플루오로 에틸렌으로서는, 예를 들면 4, 5-디플루오로-1, 3-디옥소란-2-원 등을 들 수가 있다.
또, 용매는, 불포화 결합을 가지는 환상 탄산 에스테르를 함유하고 있는 것이 바람직하다. 사이클 특성이 향상되기 때문이다. 이 불포화 결합을 가지는 환상 탄산 에스테르로서는, 예를 들면 탄산 비닐렌 또는 탄산 비닐 에틸렌 등을 들 수 있다.
또, 용매는, 술톤을 함유하고 있는 것이 바람직하다. 사이클 특성이 향상됨과 동시에, 이차 전지의 팽창이 억제되기 때문이다. 이 술톤으로서는, 예를 들면 1, 3-프로펜술톤 등을 들 수 있다.
전해질염은, 예를 들면 리튬염 등의 경금속염의 1종 또는 2종 이상을 포함하고 있다. 이 리튬염으로서는, 예를 들면 6불화 인산 리튬(LiPF6), 과염소산 리튬(LiClO4) 또는 6불화 비산 리튬(LiAsF6) 등을 들 수 있다. 우수한 용량 특성, 보존 특성 및 사이클 특성이 얻어지기 때문이다. 이들은 단독으로 이용되어도 좋고, 복수종이 혼합되어 이용되어도 좋다. 그 중에서도, 전해질염으로서는, 6불화 인산 리튬이 바람직하다. 내부 저항이 저하하기 때문에, 보다 높은 효과가 얻어지기 때문이다.
특히, 전해질염은, 붕소 및 불소를 구성 원소로서 가지는 화합물을 포함하고 있는 것이 바람직하다. 사이클 특성이 향상되기 때문이다. 이 붕소 및 불소를 구성 원소로서 가지는 화합물로서는, 예를 들면 4불화 붕산 리튬 등을 들 수 있다.
용매 중에서의 전해질염의 함유량은, 예를 들면 0.3㏖/㎏ 이상 3. 0㏖/㎏ 이하의 범위내이다. 우수한 용량 특성이 얻어지기 때문이다.
이 이차 전지는, 예를 들면 이하의 수순에 의해 제조된다.
우선, 정극(21)을 제작한다. 즉, 정극 활물질과, 결합제와, 도전제를 혼합하여 정극 합제로 한 후, 유기 용제에 분산시키는 것에 의해, 페이스트형태의 정극 합제 슬러리로 한다. 계속해서, 닥터 블레이드 또는 바 코터(bar coater) 등을 이용하여 정극 집전체(21A)의 양면에 정극 합제 슬러리를 균일하게 도포해서 건조시킨다. 마지막으로, 필요에 따라서 가열하면서 롤프레스기 등을 이용하여 압축 성 형하는 것에 의해, 정극 활물질층(21B)을 형성한다. 이 경우에는, 압축 성형을 복수회에 걸쳐서 반복해도 좋다.
또, 부극(22)을 제작한다. 즉, 상기한 부극의 제작 수순과 마찬가지 수순에 의해, 부극 집전체(22A)의 양면에 부극 활물질층(22B)을 형성한 후, 그 부극 활물질층(22B)을 피복하도록 피복층(22C)을 형성한다.
다음에, 전지 소자(20)를 제작한다. 즉, 용접 등에 의해 정극 집전체(21A) 및 부극 집전체(22A)에 각각 정극 리드(24) 및 부극 리드(25)를 취부한다. 계속해서, 세퍼레이터(23)를 사이에 두고 정극(21) 및 부극(22)을 적층시킨 후, 긴쪽방향에 있어서 소용돌이모양으로 권회시킨다. 마지막으로, 편평한 형상으로 되도록 성형하는 것에 의해, 전지 소자(20)를 형성한다.
마지막으로, 이차 전지를 조립한다. 즉, 전지캔(11)의 내부에 전지 소자(20)를 수납한 후, 그 전지 소자(20) 위에 절연판(12)을 배치한다. 계속해서, 용접 등에 의해 정극 리드(24) 및 부극 리드(25)를 각각 정극 핀(15) 및 전지캔(11)에 접속시킨 후, 레이저 용접등에 의해 전지캔(11)의 개방 단부에 전지뚜껑(13)을 고정시킨다. 마지막으로, 주입구멍(19)으로부터 전지캔(11)의 내부로 전해액을 주입하여 세퍼레이터(23)에 함침시킨 후, 그 주입구멍(19)을 봉지 부재(19A)로 막는다(밀봉한다). 이것에 의해, 도 2∼도 4에 도시한 이차 전지가 완성된다.
이 이차 전지에서는, 충전을 행하면, 예를 들면 정극(21)으로부터 리튬 이온이 방출되고, 세퍼레이터(23)에 함침된 전해액을 경유하여 부극(22)에 흡장된다. 한편, 방전을 행하면, 예를 들면 부극(22)으로부터 리튬 이온이 방출되고, 세퍼레이터(23)에 함침된 전해액을 경유하여 정극(21)에 흡장된다.
이 각형의 이차 전지에 의하면, 부극 활물질층(22B)이 규소를 구성 원소로서 가지는 부극 활물질을 포함하는 경우에, 그 부극 활물질층(22B)이 3d 전이금속 원소의 산화물을 함유하는 피복층(22C)에 의해서 피복되어 있으므로, 충방전시에 있어서 부극(22)의 표면에 리튬의 산화물로 이루어지는 가역성의 피막이 형성된다. 보다 구체적으로는, 예를 들면 피복층(22C)이 산화 제1 코발트(CoO)에 의해 구성되어 있는 경우에는, 부극(22)의 표면 근방에서 하기의 화학식 1에 나타낸 가역적인 반응이 생기기 때문에, 피막(Li2O)의 형성 및 분해를 반복하면서 정극(21)과 부극(22) 사이에서 리튬 이온이 반복적으로 왕래(往來; travel)한다. 이 화학식 1에서는, 좌변이 방전 상태 및 우변이 충전 상태를 각각 나타내고 있다. 이것에 의해, 전극 반응 물질인 리튬이 부극(22)에 있어서 흡장 및 방출되기 쉬워져, 그 리튬의 절대수의 감소가 억제된다. 따라서, 사이클 특성을 향상시킬 수가 있다. 이 경우에는, 부극 활물질이 고용량화에 유리한 규소를 구성 원소로서 포함하는 경우에 사이클 특성이 향상되기 때문에, 탄소 재료 등의 다른 부극 재료를 포함하는 경우보다도 높은 효과를 얻을 수가 있다.
[화학식 1]
Figure 112007082130016-PAT00001
특히, 전해액의 용매가 불소화 탄산 에스테르를 함유하고, 불포화 결합을 가 지는 환상 탄산 에스테르를 함유하고, 또는 술톤을 함유하면, 보다 높은 효과를 얻을 수가 있다. 이 술톤을 함유하는 경우에는, 팽창 특성을 개선할 수도 있다. 또, 전해액의 전해질 염이 붕소 및 불소를 구성 원소로서 가지는 화합물을 함유하면, 보다 높은 효과를 얻을 수가 있다.
또, 정극(21), 부극(22) 및 전해액이 전지캔(11)의 내부에 수납되어 있으면, 팽창 특성을 보다 개선할 수가 있다. 이 경우에는, 이차 전지의 전지 구조가 각형이면, 충방전시에 팽창이 표면화하기 쉽기 때문에, 현저한 효과를 얻을 수가 있다. 게다가, 전지캔(11)이 알루미늄보다도 단단한 철이나 철합금 등에 의해 구성되어 있으면, 보다 높은 효과를 얻을 수가 있다.
또한, 이차 전지에 관한 다른 효과는, 상기한 부극과 마찬가지이다.
(제2 전지)
도 5 및 도 6은 제2 전지의 단면 구성을 도시하고 있고, 도 6은 도 5에 도시한 권회 전극체(40)의 일부를 확대해서 도시하고 있다. 이 전지는, 예를 들면 상기한 제1 전지와 마찬가지로 리튬 이온 이차 전지이며, 거의 중공 원주형상의 전지캔(31)의 내부에, 정극(41) 및 부극(42)이 세퍼레이터(43)를 사이에 두고 권회된 권회 전극체(40)와, 한쌍의 절연판(32, 33)이 수납된 것이다. 이 전지캔(31)을 포함하는 전지 구조는, 이른바 원통형 이차 전지라고 불리고 있다.
전지캔(31)은, 예를 들면 상기한 제1 전지에서의 전지캔(11)과 마찬가지 금속 재료에 의해 구성되어 있고, 그의 일단부 및 타단부는 각각 폐쇄 및 개방되어 있다. 한쌍의 절연판(32, 33)은, 권회 전극체(40)를 사이에 두고, 그의 권회 둘레 면에 대해서 수직으로 연장하도록 배치되어 있다.
전지캔(31)의 개방 단부에는, 전지뚜껑(34)과, 그의 내측에 설치된 안전밸브 기구(35) 및 열감 저항 소자(Positive Temperature Coefficient: PTC 소자)(36)가 개스킷(37)을 거쳐서 코킹되는 것에 의해 취부되어 있다. 이것에 의해, 전지캔(31)의 내부는 밀폐되어 있다. 전지뚜껑(34)은, 예를 들면 전지캔(31)과 마찬가지 재료에 의해 구성되어 있다. 안전밸브 기구(35)는, 열감 저항 소자(36)를 거쳐서 전지뚜껑(34)과 전기적으로 접속되어 있다. 이 안전밸브 기구(35)에서는, 내부 단락 또는 외부로부터의 가열 등에 기인해서 내압이 일정 이상으로 된 경우에, 디스크판(35A)이 반전하는 것에 의해 전지뚜껑(34)과 권회 전극체(40) 사이의 전기적 접속이 절단되도록 되어 있다. 열감 저항 소자(36)는, 온도 상승에 따라 저항이 증대하는 것에 의해 전류를 제한하고, 큰 전류에 기인하는 비정상적인(이상한) 발열을 방지하는 것이다. 개스킷(37)은, 예를 들면 절연 재료에 의해 구성되어 있고, 그의 표면에는 아스팔트가 도포되어 있다.
권회 전극체(40)의 중심에는, 예를 들면 센터 핀(44)이 삽입되어 있다. 이 권회 전극체(40)에서는, 알루미늄 등에 의해 구성된 정극 리드(45)가 정극(41)에 접속되어 있고, 니켈 등에 의해 구성된 부극 리드(46)가 부극(42)에 접속되어 있다. 정극 리드(45)는, 안전밸브 기구(35)에 용접되는 것에 의해 전지뚜껑(34)과 전기적으로 접속되어 있고, 부극 리드(46)는, 전지캔(31)에 용접되는 것에 의해 전기적으로 접속되어 있다.
정극(41)은, 예를 들면 띠형상의 정극 집전체(41A)의 양면에 정극 활물질 층(41B)이 설치되는 것이다. 부극(42)은, 상기한 부극과 마찬가지 구성을 가지고 있고, 예를 들면 띠형상의 부극 집전체(42A)의 양면에 부극 활물질층(42B) 및 피복층(42C)이 설치된 것이다. 정극 집전체(41A), 정극 활물질층(41B), 부극 집전체(42A), 부극 활물질층(42B), 피복층(42C), 세퍼레이터(43)의 구성 및 전해액의 조성은, 각각 상기한 제1 전지에서의 정극 집전체(21A), 정극 활물질층(21B), 부극 집전체(22A), 부극 활물질층(22B), 피복층(22C), 세퍼레이터(23)의 구성 및 전해액의 조성과 마찬가지이다.
이 이차 전지는, 예를 들면 이하와 같이 해서 제조된다.
우선, 예를 들면 상기한 제1 전지에서의 정극(21) 및 부극(22)의 제작 수순과 마찬가지 수순에 의해, 정극 집전체(41A)의 양면에 정극 활물질층(41B)이 설치된 정극(41)을 제작함과 동시에, 부극 집전체(42A)의 양면에 부극 활물질층(42B) 및 피복층(42C)이 설치된 부극(42)을 제작한다. 계속해서, 정극(41)에 정극 리드(45)를 취부함과 동시에, 부극(42)에 부극 리드(46)를 취부한다. 계속해서, 정극(41) 및 부극(42)을 세퍼레이터(43)를 사이에 두고 권회시키는 것에 의해 권회 전극체(40)를 형성하고, 정극 리드(45)의 선단부를 안전밸브 기구(35)에 용접함과 동시에 부극 리드(46)의 선단부를 전지캔(31)에 용접한 후, 권회 전극체(40)를 한쌍의 절연판(32, 33) 사이에 끼우면서 전지캔(31)의 내부에 수납한다. 계속해서, 전지캔(31)의 내부에 전해액을 주입해서 세퍼레이터(43)에 함침시킨다. 마지막으로, 전지캔(31)의 개구 단부에 전지뚜껑(34), 안전밸브 기구(35) 및 열감 저항 소자(36)를 개스킷(37)을 거쳐서 코킹하는 것에 의해 고정시킨다. 이것에 의해, 도 5 및 도 6에 도시한 이차 전지가 완성된다.
이 이차 전지에서는, 충전을 행하면, 예를 들면 정극(41)으로부터 리튬 이온이 방출되고, 전해액을 거쳐서 부극(42)에 흡장된다. 한편, 방전을 행하면, 예를 들면 부극(42)으로부터 리튬 이온이 방출되고, 전해액을 거쳐서 정극(41)에 흡장된다.
이 원통형의 이차 전지에 의하면, 부극 활물질층(42B)이 규소를 구성 원소로서 가지는 부극 활물질을 포함하는 경우에, 그 부극 활물질층(42B)이 3d 전이금속 원소의 산화물을 함유하는 피복층(42C)에 의해서 피복되어 있으므로, 사이클 특성을 향상시킬 수가 있다. 이 이차 전지에 관한 상기 이외의 효과는, 제1 전지와 마찬가지이다.
(제3 전지)
도 7은 제3 전지의 분해 사시 구성을 도시하고 있고, 도 8은 도 7에 도시한 Ⅷ-Ⅷ선을 따른 단면을 확대해서 도시하고, 도 9는 도 8에 도시한 부극(54)의 분해도를 도시하고 있다. 이 전지는, 정극 리드(51) 및 부극 리드(52)가 부착된 권회 전극체(50)가 필름형상의 외장 부재(60)의 내부에 수납된 것이다. 이 외장 부재(60)를 포함하는 전지 구조는, 이른바 라미네이트 필름형이라고 불리고 있다.
정극 리드(51) 및 부극 리드(52)는, 예를 들면 어느것이나 외장 부재(60)의 내부에서 외부로 향해 동일 방향으로 도출되어 있다. 정극 리드(51)는, 예를 들면 알루미늄 등의 금속 재료에 의해 구성되어 있고, 부극 리드(52)는, 예를 들면 구리, 니켈 또는 스텐레스 등의 금속 재료에 의해 구성되어 있다. 이들은, 예를 들 면 박판형상 또는 그물코형상의 구조를 가지고 있다.
외장 부재(60)는, 예를 들면 나일론 필름, 알루미늄박 및 폴리에틸렌필름이 이 순으로 서로 접합(貼合)된 알루미늄 라미네이트 필름에 의해 구성되어 있다. 이 외장 부재(60)은, 예를 들면 폴리에틸렌 필름이 권회 전극체(50)와 대향하도록, 2장의 직사각형 형태의 알루미늄 라미네이트 필름의 외주연부(外周緣部; outer edges) 끼리가 융착(融着; fusion bonding) 또는 접착제에 의해서 서로 접착(接着; bond)된 구조를 가지고 있다.
외장 부재(60)와 정극 리드(51) 및 부극 리드(52) 사이에는, 외기의 침입을 방지하기 위해서 밀착 필름(adhesive film)(61)이 삽입되어 있다. 이 밀착 필름(61)은, 정극 리드(51) 및 부극 리드(52)에 대해서 밀착성을 가지는 재료에 의해 구성되어 있다. 이런 종류의 재료로서는, 예를 들면 폴리에틸렌, 폴리프로필렌, 변성 폴리에틸렌 또는 변성 폴리프로필렌 등의 폴리올레핀 수지를 들 수 있다.
또한, 외장 부재(60)는, 상기한 알루미늄 라미네이트 필름 대신에, 다른 적층 구조를 가지는 라미네이트 필름에 의해 구성되어 있어도 좋고, 폴리프로필렌 등의 고분자 필름 또는 금속 필름에 의해 구성되어 있어도 좋다.
권회 전극체(50)는, 정극(53) 및 부극(54)이 세퍼레이터(55) 및 전해질(56)을 사이에 두고 적층된 후에 권회된 것이며, 그의 최외주부(最外周部; the outermost periphery)는 보호 테이프(57)에 의해 보호되어 있다.
정극(53)은, 예를 들면 대향하는 한쌍의 면을 가지는 정극 집전체(53A)의 양면에 정극 활물질층(53B)이 설치된 것이다. 부극(54)은, 상기한 부극과 마찬가지 구성을 가지고 있으며, 예를 들면 띠형상의 부극 집전체(54A)의 양면에 부극 활물질층(54B) 및 피복층(54C)이 설치된 것이다. 정극 집전체(53A), 정극 활물질층(53B), 부극 집전체(54A), 부극 활물질층(54B), 피복층(54C) 및 세퍼레이터(55)의 구성은, 각각 상기한 제1 전지에서의 정극 집전체(21A), 정극 활물질층(21B), 부극 집전체(22A), 부극 활물질층(22B), 피복층(22C) 및 세퍼레이터(23)의 구성과 마찬가지이다. 또한, 도 8에서는, 피복층(54C)의 도시를 생략하고 있다.
전해질(56)은, 전해액과, 그것을 보존유지(保持; hold)하는 고분자 화합물을 포함하고 있고, 이른바 겔상의 전해질이다. 겔상의 전해질은, 높은 이온 전도도(예를 들면 실온에서 1mS/㎝ 이상)이 얻어짐과 동시에 누액(漏液)이 방지되므로 바람직하다. 이 전해질(56)은, 예를 들면 정극(53)과 세퍼레이터(55) 사이 및 부극(54)과 세퍼레이터(55) 사이에 설치되어 있다.
고분자 화합물로서는, 예를 들면 폴리아크릴로니트릴, 폴리불화 비닐리덴, 폴리불화 비닐리덴과 폴리헥사플루오로프로필렌과의 공중합체, 폴리테트라플루오로에틸렌, 폴리헥사플루오로프로필렌, 폴리에틸렌 옥사이드, 폴리프로필렌 옥사이드, 폴리포스파젠, 폴리실록산, 폴리초산 비닐, 폴리비닐 알콜, 폴리메타크릴산 메틸, 폴리아크릴산, 폴리메타크릴산, 스티렌-부타디엔 고무, 니트릴-부타디엔 고무, 폴리스티렌 또는 폴리카보네이트 등을 들 수 있다. 이들은 단독으로 이용되어도 좋고, 복수종이 혼합되어 이용되어도 좋다. 그 중에서도, 고분자 화합물로서는, 폴리아크릴로니트릴, 폴리불화 비닐리덴, 폴리헥사플루오로프로필렌 또는 폴리에틸렌 옥사이드가 바람직하다. 전기화학적으로 안정화하기 때문이다.
전해액의 조성은, 제1 전지에서의 전해액의 조성과 마찬가지이다. 단, 이 경우의 용매라 함은, 액상 용매 뿐만이 아니라, 전해질염을 해리시키는 것이 가능한 이온 전도성을 가지는 것까지 포함하는 넓은 개념이다. 따라서, 이온 전도성을 가지는 고분자 화합물을 이용하는 경우에는, 그 고분자 화합물도 용매에 포함된다.
또한, 전해액을 고분자 화합물에 보존유지시킨 전해질(56) 대신에, 전해액이 그대로 이용되어도 좋다. 이 경우에는, 전해액이 세퍼레이터(55)에 함침된다.
이 겔상의 전해질(56)을 구비한 전지는, 예를 들면 이하와 같이 해서 제조된다.
우선, 상기한 제1 전지에서의 정극(21) 및 부극(22)의 제작 수순과 마찬가지 수순에 의해, 정극 집전체(53A)의 양면에 정극 활물질층(53B)이 설치된 정극(53)을 제작함과 동시에, 부극 집전체(54A)의 양면에 부극 활물질층(54B) 및 피복층(54C)이 설치된 부극(54)을 제작한다. 계속해서, 전해액과, 고분자 화합물과, 용제를 포함하는 전구(前驅; precursor) 용액을 조제하고, 정극(53) 및 부극(54)의 각각에 도포한 후 용제를 휘발시키는 것에 의해, 겔상의 전해질(56)을 형성한다. 계속해서, 정극 집전체(53A)에 정극 리드(51)를 취부함과 동시에, 부극 집전체(54A)에 부극 리드(52)를 취부한다. 계속해서, 전해질(56)이 형성된 정극(53) 및 부극(54)을 세퍼레이터(55)를 사이에 두고 적층시킨 후, 긴쪽방향으로 권회시킴과 동시에 최외주부에 보호 테이프(57)를 접착시키는 것에 의해, 권회 전극체(50)를 형성한다. 계속해서, 예를 들면 외장 부재(60) 사이에 권회 전극체(50)를 끼워넣고, 그 외장 부재(60)의 외주연부 끼리를 열융착 등으로 밀착시키는 것에 의해 권회 전극체(50) 를 봉입한다. 그 때, 정극 리드(51) 및 부극 리드(52)와 외장 부재(60) 사이에, 밀착 필름(61)을 삽입한다. 이것에 의해, 도 7∼도 9에 도시한 이차 전지가 완성된다.
또한, 상기한 전지는, 이하와 같이 해서 제조되어도 좋다. 우선, 정극(53) 및 부극(54)에 각각 정극 리드(51) 및 부극 리드(52)를 취부한 후, 그들 정극(53) 및 부극(54)을 세퍼레이터(55)를 사이에 두고 적층 및 권회시킴과 동시에 최외주부에 보호 테이프(57)를 접착시키는 것에 의해, 권회 전극체(50)의 전구체인 권회체를 형성한다. 계속해서, 외장 부재(60) 사이에 권회체를 끼워넣고, 1변의 외주연부를 제외한 나머지 외주연부를 열융착 등으로 밀착시키는 것에 의해, 주머니모양 외장 부재(60)의 내부에 수납한다. 계속해서, 전해액과, 고분자 화합물의 원료인 모노머와, 중합 개시제와, 필요에 따라서 중합 억제제 등의 다른 재료를 포함하는 전해질용 조성물을 조제하고, 주머니모양 외장 부재(60)의 내부에 주입한 후, 외장 부재(60)의 개구부를 열융착 등으로 밀봉한다. 마지막으로, 모노머를 열중합시켜서 고분자 화합물로 하는 것에 의해, 겔상의 전해질(56)을 형성한다. 이것에 의해, 도 7∼도 9에 도시한 이차 전지가 완성된다.
이 라미네이트 필름형의 이차 전지에 의하면, 부극 활물질층(54B)이 규소를 구성 원소로서 가지는 부극 활물질을 포함하는 경우에, 그 부극 활물질층(54B)이 3d 전이금속 원소의 산화물을 함유하는 피복층(54C)에 의해서 피복되어 있으므로, 사이클 특성을 향상시킬 수가 있다. 이 이차 전지에 관한 상기 이외의 효과는, 제1 전지와 마찬가지이다.
본 발명의 실시예에 대해서 상세하게 설명한다.
(실시예 1-1)
이하의 수순에 의해, 도 7∼도 9에 도시한 라미네이트 필름형의 이차 전지를 제조했다. 이 때, 부극(54)의 용량이 리튬의 흡장 및 방출에 의거하는 용량 성분에 의해 나타내어지는 리튬 이온 이차 전지로 되도록 했다.
우선, 정극(53)을 제작했다. 즉, 탄산 리튬(Li2CO3)과 탄산 코발트(CoCO3)를 0.5:1의 몰비로 혼합한 후, 공기중에서 900℃로 5시간 소성하는 것에 의해, 리튬·코발트 복합 산화물(LiCoO2)을 얻었다. 계속해서, 정극 활물질로서 리튬·코발트 복합 산화물 91질량부와, 도전제로서 그래파이트 6질량부와, 결합제로서 폴리불화 비닐리덴 3질량부를 혼합하여 정극 합제로 한 후, N-메틸-2-피롤리돈에 분산시키는 것에 의해, 페이스트형태의 정극 합제슬러리로 했다. 마지막으로, 띠형상의 알루미늄박(두께=12㎛)으로 이루어지는 정극 집전체(53A)의 양면에 정극 합제 슬러리를 균일하게 도포하여 건조시킨 후, 롤프레스기로 압축 성형하는 것에 의해, 정극 활물질층(53B)을 형성했다. 그 후, 정극 집전체(53A)의 일단에, 알루미늄제의 정극 리드(51)를 용접해서 취부했다(달았다).
다음에, 부극(54)을 제작했다. 즉, 전해 동박으로 이루어지는 부극 집전체(54A)(십점 평균 거칠음 Rz=3. 5㎛)를 준비한 후, 챔버내에 연속적으로 산소 가스 및 필요에 따라서 수증기를 도입하면서 편향식 전자빔 증착원을 이용한 전자빔 증착법에 의해서 부극 집전체(54A)의 양면에 부극 활물질로서 규소를 증착시키는 것에 의해, 부극 활물질층(54B)을 형성했다. 이 때, 증착원으로서 순도 99%의 규소를 이용하고, 증착 속도를 100㎚/초 및 부극 활물질 중에서의 산소 함유량을 3원자수%로 했다. 계속해서, 마찬가지 전자 빔 증착법에 의해서 부극 활물질층(54B)의 표면에 산화 제1 코발트(CoO)를 증착시키는 것에 의해, 피복층(54C)을 형성했다. 이 때, 증착원으로서 순도 99.9%의 산화 제1 코발트를 이용하고, 증착 속도를 20㎚/초 및 피복층(54C)의 두께를 5㎚로 했다. 완성된 부극(54)에 대해서, FIB(Focused Ion Beam etching)에 의해서 단면을 노출시킨 후, 오제 전자 분광법(auger electron spectrometer: AES)에 의해서 국소(局所) 원소 분석을 행한 결과, 부극 집전체(54A)와 부극 활물질층(54B)과의 계면에서 양자의 구성 원소가 서로 확산되어 있고, 즉 합금화되어 있는 것이 확인되었다. 그 후, 부극 집전체(54A)의 일단에, 니켈제의 부극 리드(52)를 용접해서 취부했다.
다음에, 정극(53)과, 다공성의 폴리프로필렌을 주성분으로 하는 필름 사이에 다공성 폴리에틸렌을 주성분으로 하는 필름이 끼워넣어진 3층 구조의 폴리머 세퍼레이터(55)(두께=23㎛)와, 부극(54)을 이 순으로 적층하고, 긴쪽방향에 있어서 소용돌이모양으로 다수회 권회시킨 후, 점착(粘着) 테이프로 이루어지는 보호 테이프(57)로 권회체의 끝부분(卷終部分)을 고정시키는 것에 의해, 권회 전극체(50)의 전구체인 권회체를 형성했다. 계속해서, 외측으로부터, 나일론(두께=30㎛)과, 알루미늄(두께=40㎛)과, 무연신(無延伸; non-stretched) 폴리프로필렌(두께=30㎛)이 적층된 3층 구조의 라미네이트 필름(총두께=100㎛)으로 이루어지는 외장 부재(60) 사이에 권회체를 끼워넣은 후, 1변을 제외한 외주연부 끼리를 열융착하는 것에 의해, 주머니모양의 외장 부재(60)의 내부에 권회체를 수납했다. 계속해서, 외장 부재(60)의 개구부로부터 전해액을 주입하여 세퍼레이터(55)에 함침시키는 것에 의해, 권회 전극체(50)를 형성했다.
이 전해액을 조제할 때에는, 용매로서 탄산 에틸렌(EC)과 탄산 디에틸(DEC)을 혼합한 혼합 용매를 이용하고, 전해질염으로서 6불화 인산 리튬(LiPF6)을 이용했다. 이 때, 혼합 용매의 조성(EC:DEC)을 중량비로 50:50으로 하고, 전해질염의 농도를 1㏖/㎏로 했다.
마지막으로, 진공 분위기 중에서 외장 부재(60)의 개구부를 열융착하여 봉지하는 것에 의해, 라미네이트 필름형의 이차 전지가 완성되었다.
(실시예 1-2∼1-8)
피복층(54C)의 두께를 5㎚ 대신에, 10㎚(실시예 1-2), 50㎚(실시예1-3), 100㎚(실시예 1-4), 1000㎚(실시예 1-5), 2000㎚(실시예 1-6), 3000㎚(실시예 1-7) 또는 4000㎚(실시예 1-8)로 한 것을 제외하고는, 실시예 1-1과 마찬가지 수순을 거쳤다.
(실시예 1-9∼1-12)
피복층(54C)의 형성 재료로서 산화 제1 코발트 대신에, 산화 제3 코발트(Co3O4)를 이용하고, 그 피복층(54C)의 두께를 5㎚ 대신에, 10㎚(실시예 1-9), 100㎚(실시예 1-10), 1000㎚(실시예 1-11) 또는 2000㎚(실시예 1-12)로 한 것을 제외하고는, 실시예 1-1과 마찬가지 수순을 거쳤다.
(실시예 1-13∼1-16)
피복층(54C)의 형성 재료로서 산화 제1 코발트 대신에, 산화 제1철(FeO)을 이용하고, 그 피복층(54C)의 두께를 5㎚ 대신에, 10㎚(실시예 1-13), 100㎚(실시예 1-14), 1000㎚(실시예 1-15) 또는 2000㎚(실시예1-16)로 한 것을 제외하고는, 실시예 1-1과 마찬가지 수순을 거쳤다.
(실시예 1-17, 1-18)
피복층(54C)의 형성 재료로서 산화 제1 코발트 대신에, 산화 제2철(Fe2O3)을 이용하고, 그 피복층(54C)의 두께를 5㎚ 대신에, 10㎚(실시예 1-17) 또는 1000㎚(실시예 1-18)로 한 것을 제외하고는, 실시예 1-1과 마찬가지 수순을 거쳤다.
(실시예 1-19, 1-20)
피복층(54C)의 형성 재료로서 산화 제1 코발트 대신에, 산화 제3철(Fe3O4)을 이용하고, 그 피복층(54C)의 두께를 5㎚ 대신에, 10㎚(실시예 1-19) 또는 1000㎚(실시예 1-20)로 한 것을 제외하고는, 실시예 1-1과 마찬가지 수순을 거쳤다.
(실시예 1-21, 1-22)
피복층(54C)의 형성 재료로서 산화 제1 코발트 대신에, 산화 제1 니켈(NiO)을 이용하고, 그 피복층(54C)의 두께를 5㎚ 대신에, 10㎚(실시예 1-21) 또는 1000㎚(실시예 1-22)로 한 것을 제외하고는, 실시예 1-1과 마찬가지 수순을 거쳤다.
(비교예 1)
부극 활물질층(54B)의 표면에 피복층(54C)을 형성하지 않은 것을 제외하고 는, 실시예 1-1과 마찬가지 수순을 거쳤다.
이들 실시예 1-1∼1-22 및 비교예 1의 이차 전지에 대해서 사이클 특성을 조사한 결과, 표 1에 나타낸 결과가 얻어졌다.
사이클 특성을 조사할 때에는, 이하의 수순에 의해서 이차 전지를 충방전시키는 것에 의해, 방전 용량 유지율을 구했다. 우선, 전지 상태를 안정화시키기 위해서 23℃의 분위기 중에서 1사이클 충방전시킨 후, 다시 충방전시키는 것에 의해, 2사이클째의 방전 용량을 측정했다. 계속해서, 동일한 분위기 중에서 99사이클 충방전시키는 것에 의해, 101사이클째의 방전 용량을 측정했다. 마지막으로, 방전 용량 유지율(%)=(101사이클째의 방전 용량/2사이클째의 방전 용량)×100을 산출했다. 이 때, 충전 조건으로서는, 3㎃/㎠의 정전류 밀도로 전지 전압이 4.2V에 도달할 때까지 충전한 후, 계속해서 4.2V의 정전압으로 전지 밀도가 0.3㎃/㎠에 도달할 때까지 충전했다. 또, 방전 조건으로서는, 3㎃/㎠의 정전류 밀도로 전지 전압이 2.5V에 도달할 때까지 방전했다.
또한, 사이클 특성을 조사할 때의 수순 및 조건 등은, 이후의 일련의 실시예 및 비교예에 관한 같은 특성의 평가에 대해서도 마찬가지이다.
Figure 112007082130016-PAT00002
표 1에 나타낸 바와 같이, 피복층(54C)을 형성한 실시예 1-1∼1-22에서는, 그 피복층(54C)을 구성하는 산화물(MxOy)의 종류에 의존하지 않고, 피복층(54C)을 형성하지 않은 비교예 1보다도 방전 용량 유지율이 높아졌다. 따라서(이것으로부터), 부극 활물질층(54B)을 구비한 이차 전지에서는, 그 부극 활물질층(54B)의 표면에 3d 전이금속 원소의 산화물을 함유하는 피복층(54C)을 설치하는 것에 의해, 사이클 특성이 향상된다는 것이 확인되었다.
특히, 실시예 1-1∼1-22에서는, 3d 전이금속 원소(M)의 종류마다 방전 용량 유지율을 비교하면, 그 3d 전이금속 원소가 코발트인 경우에는 산화 제1 코발트를 이용한 실시예 1-2, 1-4∼1-6에 있어서 산화 제3 코발트를 이용한 실시예 1-9∼1-12보다도 높아지고, 철인 경우에는 산화 제1철을 이용한 실시예 1-14, 1-15에 있어서 산화 제2철 또는 산화 제3철을 이용한 실시예 1-17∼1-20보다도 높아졌다. 따라서, 상기한 이차 전지에서는, 피복층(54C)을 구성하는 산화물(MxOy)이 x=1 및 y=1인 화합물이며, 즉 산화 제1 코발트, 산화 제1철 또는 산화 제1 니켈이면, 보다 높은 효과가 얻어진다는 것이 확인되었다.
또, 실시예 1-1∼1-8에서는, 피복층(54C)의 두께가 커짐에 따라서, 방전 용량 유지율이 증가한 후에 감소하는 경향을 나타냈다. 이 경우에는, 두께가 10㎚보다도 작아지거나, 또는 3000㎚보다도 커지면, 방전 용량 유지율이 대폭 감소했다. 따라서, 상기한 이차 전지에서는, 피복층(54C)의 두께가 10㎚ 이상 3000㎚ 이하의 범위내이면, 보다 높은 효과가 얻어진다는 것이 확인되었다.
여기서, 실시예 1-1∼1-22를 대표해서, 피복층(54C)이 산화 제1 코발트에 의해 구성되어 있는 실시예 1-5의 이차 전지에서의 부극(54)의 표면을 X선 광전자 분광법(electron spectroscopy for chemical analysis: ESCA)으로 분석한 결과, 도 10에 도시한 결과가 얻어졌다. 도 10은 ESCA의 깊이 분석 결과(횡축: 깊이(에칭 시간), 종축: 원자수(원자수%))이며, 도 10의 (a)는 방전 상태 및 도 10의 (b)는 충전 상태를 도시하고 있다. 도 10의 (a), (b 중의 실선은 리튬, 일점 쇄선은 코발트, 파선은 산소를 각각 나타내고 있다.
실시예 1-5의 이차 전지에서는, 우선, 방전 상태에 있어서, 도 10의 (a)에 도시한 바와 같이, 코발트 및 산소의 원자수가 리튬의 원자수보다도 많아지고, 그 리튬의 원자수는 거의 0(제로)에 가까웠다. 이 결과는, 상기한 화학식 1의 좌변에 나타낸 바와 같이, 부극(54)의 표면에 산화 제1 코발트로 이루어지는 피복층(54C)이 존재하고 있고, 그 부극(54)에 리튬이 거의 흡장되고 있지 않은 것을 나타내고 있다. 계속해서, 방전 상태로부터 충전 상태로 이행하면, 도 10의 (b)에 도시한 바와 같이, 코발트의 대부분이 리튬으로 치환되는 것에 의해, 리튬 및 산소의 원자수가 코발트의 원자수보다도 많아졌다. 이 결과는, 상기한 화학식 1의 우변에 나타낸 바와 같이, 부극(54)의 표면에 산화 리튬으로 이루어지는 피막이 형성된 것을 나타내고 있다. 그 후, 충전 상태로부터 방전 상태로 되돌아오면(복귀하면), 다시 도 10의 (a)에 나타낸 결과가 얻어졌다. 이 결과는, 충전 상태에 있어서 부극(54)의 표면에 형성된 산화 리튬으로 이루어지는 피막이 가역성인 것을 나타내고 있다. 또한, 여기에서는 피복층(54C)의 형성 재료로서 산화 제1 코발트를 이용한 경우에 대해서만 ESCA의 깊이 분석 결과를 나타내고 있지만, 산화 제3철 등의 다른 코발트의 산화물이나, 산화 제1철 또는 산화 제1 니켈 등의 다른 3d 전이금속 원소의 산화물을 이용한 경우에 대해서도 ESCA의 깊이 분석을 행한 결과, 마찬가지 결과가 얻어졌다. 따라서, 3d 전이금속 원소의 산화물을 이용하여 피복층(54C)을 형성하는 것에 의해, 충방전시에 부극(54)의 표면에 산화 리튬으로 이루어지는 가역성의 피막이 형성되기 때문에, 정극(53)과 부극(54) 사이에서 리튬이 반복적으로 왕래하는 것이 확인되었다.
(실시예 2-1∼2-7)
부극 활물질 중에서의 산소 함유량을 3원자수% 대신에, 1.5원자수%(실시예 2-1), 5원자수%(실시예 2-2), 10원자수%(실시예 2-3), 20원자수%(실시예 2-4), 30원자수%(실시예 2-5), 40원자수%(실시예 2-6) 또는 50원자수%(실시예 2-7)로 한 것을 제외하고는, 실시예 1-5와 마찬가지 수순을 거쳤다.
이들 실시예 2-1∼2-7의 이차 전지에 대해서 사이클 특성을 조사한 결과, 표 2에 나타낸 결과가 얻어졌다. 또한, 표 2에는, 실시예 1-5 및 비교예 1의 결과도 아울러 나타내었다.
Figure 112007082130016-PAT00003
표 2에 나타낸 바와 같이, 부극 활물질 중에서의 산소의 함유량이 다른 실시예 2-1∼2-7에서도, 실시예 1-5와 마찬가지로, 비교예 1보다도 방전 용량 유지율이 높아졌다. 따라서, 부극 활물질층(54B)에 피복층(54C)이 설치된 이차 전지에서는, 부극 활물질 중에서의 산소의 함유량을 변경한 경우에 있어서도, 사이클 특성이 향상된다는 것이 확인되었다.
특히, 실시예 1-5, 2-1∼2-7에서는, 산소 함유량이 많아짐에 따라서, 방전 용량 유지율이 증가한 후에 감소하는 경향을 나타냈다. 이 경우에는, 함유량이 3원자수%보다도 적어지거나, 또는 40원자수%보다도 많아지면, 방전 용량 유지율이 대폭 감소했다. 따라서, 상기한 이차 전지에서는, 부극 활물질 중에서의 산소 함유량이 3원자수% 이상 40원자수% 이하의 범위내이면, 보다 높은 효과가 얻어진다는 것이 확인되었다
(실시예 3-1∼3-4)
챔버내에 연속적으로 산소 가스 등을 도입하면서 규소를 증착시키는 것에 의해 부극 활물질에 산소를 함유시키는 대신에, 챔버내에 단속적으로 산소 가스 등을 도입하면서 규소를 증착시키는 것에 의해, 제1 산소 함유층과 그것보다도 산소 함유량이 많은 제2 산소 함유층이 교대로 적층되도록 부극 활물질층(54B)을 형성한 것을 제외하고는, 실시예 1-5와 마찬가지 수순을 거쳤다. 이 때, 제2 산소 함유층 중에서의 산소 함유량을 3원자수%로 함과 동시에, 그 층수를 1층(실시예 3-1), 2층(실시예 3-2), 3층(실시예 3-3) 또는 4층(실시예 3-4)으로 했다.
이들 실시예 3-1∼3-4의 이차 전지에 대해서 사이클 특성을 조사한 결과, 표 3에 나타낸 결과가 얻어졌다. 또한, 표 3에는, 실시예 1-5 및 비교예 1의 결과도 아울러 나타내었다.
Figure 112007082130016-PAT00004
표 3에 나타낸 바와 같이, 부극 활물질층(54B)이 제1 및 제2 산소 함유층을 가지는 실시예 3-1∼3-4에서도, 실시예 1-5와 마찬가지로, 비교예 1보다도 방전 용량 유지율이 높아졌다. 따라서, 부극 활물질층(54B)에 피복층(54C)이 설치된 이차 전지에서는, 제1 및 제2 산소 함유층을 가지도록 부극 활물질층(54B)을 구성한 경우에 있어서도, 사이클 특성이 향상된다는 것이 확인되었다.
특히, 실시예 3-1∼3-4에서는, 실시예 1-5보다도 방전 용량 유지율이 높아졌다. 또, 이 경우에는, 제2 산소 함유층의 층수가 1층인 실시예 3-1, 2층인 실시예 3-2, 3층인 실시예 3-3, 4층인 실시예 3-4의 순으로, 방전 용량 유지율이 높아지는 경향을 나타냈다. 따라서, 상기한 이차 전지에서는, 제1 및 제2 산소 함유층을 가지도록 부극 활물질층(54B)을 구성하는 것에 의해, 보다 높은 효과가 얻어짐과 동시에, 제2 산소 함유층의 층수를 늘리면, 더욱 높은 효과를가 얻어진다는 것이 확인되었다.
(실시예 4-1∼4-5)
증착원으로서 순도 99%의 규소 대신에, 규소와 금속 원소를 포함하는 혼합물을 이용하는 것에 의해, 그들을 구성 원소로서 가지는 부극 활물질을 포함하는 부극 활물질층(54B)을 형성한 것을 제외하고는, 실시예 1-5와 마찬가지 수순을 거쳤다. 이 때, 금속 원소로서 철을 이용하고, 부극 활물질 중에서의 금속 원소의 함유량을 3원자수%(실시예 4-1), 10원자수%(실시예 4-2), 20원자수%(실시예 4-3), 30원자수%(실시예 4-4) 또는 40원자수%(실시예 4-5)로 했다.
(실시예 4-6∼4-9)
금속 원소로서 철 대신에, 코발트(실시예 4-6), 니켈(실시예 4-7), 티타늄(실시예 4-8) 또는 크로뮴(실시예 4-9)을 이용한 것을 제외하고는, 실시예 4-2와 마찬가지 수순을 거쳤다.
이들 실시예 4-1∼4-9의 이차 전지에 대해서 사이클 특성을 조사한 결과, 표 4에 나타낸 결과가 얻어졌다. 또한, 표 4에는, 실시예 1-5 및 비교예 1의 결과도 아울러 나타냈다.
Figure 112007082130016-PAT00005
표 4에 나타낸 바와 같이, 부극 활물질이 규소와 함께 금속 원소를 구성 원소로서 가지는 실시예 4-1∼4-9에서도, 실시예 1-5와 마찬가지로, 비교예 1보다도 방전 용량 유지율이 높아졌다. 따라서, 부극 활물질층(54B)에 피복층(54C)이 설치된 이차 전지에서는, 부극 활물질에 금속 원소를 함유시킨 경우에 있어서도, 사이클 특성이 향상된다는 것이 확인되었다. 또한, 여기에서는 금속 원소로서 몰리브덴을 이용한 경우에 대해서 실시예를 개시하고 있지 않지만, 그 몰리브덴을 이용한 경우에 대해서도 이와 같이 사이클 특성을 조사한 결과, 역시 사이클 특성이 향상된다는 것이 확인되었다.
특히, 실시예 4-1∼4-5에서는, 실시예 1-5보다도 방전 용량 유지율이 높아졌다. 이 경우에는, 금속 원소의 함유량이 많아짐에 따라서 방전 용량 유지율이 증가한 후에 감소하는 경향을 나타내고, 그 함유량의 하한 및 상한이 각각이 3원자수% 및 40원자수%인 경우에 있어서, 실시예 1-5보다도 방전 용량 유지율이 높아졌다. 그렇지만, 실시예 4-1∼4-5에서는, 부극 활물질에 금속 원소를 함유시킨 경우에 있어서도 일정한 전지 용량을 확보하기 위해서, 금속 원소의 함유량의 증가에 따라 부극 활물질층(54B)의 두께를 증가시킨 결과, 실시예 4-5에서는 부극 활물질층(54B)의 두께가 너무 두꺼워져서 실용적이지 않았다. 따라서, 상기한 이차 전지에서는, 제1 및 제2 금속 원소 함유층을 가지도록 부극 활물질층(54B)을 구성하는 것에 의해, 보다 높은 효과가 얻어짐과 동시에, 부극 활물질 중에서의 금속 원소의 함유량이 3원자수% 이상 40원자수% 이하의 범위내, 바람직하게는 3원자수% 이상 30원자수% 이하의 범위내이면, 더욱더 높은 효과가 얻어진다는 것이 확인되었다.
(실시예 5-1∼5-4)
전자빔 증착법을 이용한 규소의 증착 공정과 스퍼터링법을 이용한 금속 원소의 증착 공정을 교대로 반복하는 것에 의해, 제1 금속 원소 함유층과 그것보다도 금속 원소 함유량이 높은 제2 금속 원소 함유층이 교대로 적층되도록 부극 활물질층(54B)을 형성한 것을 제외하고는, 실시예 1-5와 마찬가지 수순을 거쳤다. 이 스퍼터링법을 이용한 금속 원소의 증착 공정에서는, 아르곤(Ar) 가스중에서 플라즈마를 발생시킴과 동시에, 증착 속도를 0.8㎚/초로 했다. 이 때, 금속 원소로서 철을 이용하고, 제2 금속 원소 함유층의 층수를 1층(실시예 5-1), 2층(실시예 5-2), 3층(실시예 5-3) 또는 4층(실시예 5-4)으로 했다.
이들 실시예 5-1∼5-4의 이차 전지에 대해서 사이클 특성을 조사한 결과, 표 5에 나타낸 결과가 얻어졌다. 또한, 표 5에는, 실시예 1-5 및 비교예 1의 결과도 아울러 나타냈다.
Figure 112007082130016-PAT00006
표 5에 도시한 바와 같이, 부극 활물질층(54B)이 제1 및 제2 금속 원소 함유층을 가지는 실시예 5-1∼5-4에서도, 실시예 1-5와 마찬가지로, 비교예 1보다도 방전 용량 유지율이 높아졌다. 따라서, 부극 활물질층(54B)에 피복층(54C)이 설치된 이차 전지에서는, 제1 및 제2 금속 원소 함유층을 가지도록 부극 활물질층(54B)을 구성한 경우에 있어서도, 사이클 특성이 향상된다는 것이 확인되었다. 또한, 여기에서는 금속 원소로서 몰리브덴을 이용한 경우에 대해서 실시예를 개시하고 있지 않지만, 그 몰리브덴을 이용한 경우에 대해서도 마찬가지로 사이클 특성을 조사한 결과, 역시 사이클 특성이 향상된다는 것이 확인되었다.
특히, 실시예 5-1∼5-4에서는, 실시예 1-5보다도 방전 용량 유지율이 높아졌다. 게다가, 이 경우에는, 제2 금속 원소 함유층의 층수가 1층인 실시예 5-1, 2층인 실시예 5-2, 3층인 실시예 5-3, 4층인 실시예 5-4의 순으로, 방전 용량 유지율이 높아지는 경향을 나타냈다. 따라서, 상기한 이차 전지에서는, 제1 및 제2 금속 원소 함유층을 가지도록 부극 활물질층(54B)을 구성하는 것에 의해, 보다 높은 효과가 얻어짐과 동시에, 제2 금속 원소 함유층의 층수를 늘리면, 더욱더 높은 효과가 얻어진다는 것이 확인되었다.
(실시예 6-1∼6-6)
부극 집전체(54A)의 표면의 십점 평균 거칠음 Rz를 3.5㎛ 대신에, 1㎛(실시예 6-1), 1.5㎛(실시예 6-2), 2. 5㎛(실시예 6-3), 4. 5㎛(실시예 6-4), 5㎛(실시예 6-5) 또는 5. 5㎛(실시예 6-6)로 한 것을 제외하고는, 실시예 1-5와 마찬가지 수순을 거쳤다.
이들 실시예 6-1∼6-6의 이차 전지에 대해서 사이클 특성을 조사한 결과, 표 6에 나타낸 결과가 얻어졌다. 또한, 표 6에는, 실시예 1-5 및 비교예 1의 결과도 아울러 나타냈다.
Figure 112007082130016-PAT00007
표 6에 나타낸 바와 같이, 십점 평균 거칠음 Rz가 다른 실시예 6-1∼6-6에서도, 실시예 1-5와 마찬가지로, 비교예 1보다도 방전 용량 유지율이 높아졌다. 따라서, 부극 활물질층(54B)에 피복층(54C)이 설치된 이차 전지에서는, 그 부극 집전체(54A)의 표면의 십점 평균 거칠음 Rz를 변경한 경우에 있어서도, 사이클 특성이 향상된다는 것이 확인되었다.
특히, 실시예 1-5, 6-1∼6-6에서는, 십점 평균 거칠음 Rz가 커짐에 따라서, 방전 용량 유지율이 증가한 후에 감소하는 경향을 나타냈다. 이 경우에는, 십점 평균 거칠음 Rz가 1.5㎛보다도 작아지거나, 또는 5㎛보다도 커지면, 방전 용량 유지율이 대폭 감소했다. 따라서, 상기한 이차 전지에서는, 십점 평균 거칠음 Rz가 1.5㎛ 이상 5㎛ 이하의 범위내이면, 보다 높은 효과가 얻어진다는 것이 확인되었다.
(실시예 7-1, 7-2)
다수회에 걸쳐서 성막 공정을 반복하는 것에 의해 부극 활물질층(54B)을 형성한 것을 제외하고는, 실시예 1-5와 마찬가지 수순을 거쳤다. 이 때, 부극 활물질층(54B)의 층수를 3층(실시예 7-1) 또는 5층(실시예 7-2)으로 했다.
이들 실시예 7-1, 7-2의 이차 전지에 대해서 사이클 특성을 조사한 결과, 표 7에 나타낸 결과가 얻어졌다. 또한, 표 7에는, 실시예 1-5 및 비교예 1의 결과도 아울러 나타냈다.
Figure 112007082130016-PAT00008
표 7에 나타낸 바와 같이, 부극 활물질층(54B)의 층수가 다른 실시예 7-1, 7-2에서도, 실시예 1-5와 마찬가지로, 비교예 1보다도 방전 용량 유지율이 높아졌다. 따라서, 부극 활물질층(54B)에 피복층(54C)이 설치된 이차 전지에서는, 그 부극 집전체(54A)의 층수를 변화시킬 수 있었던 경우에 있어서도, 사이클 특성이 향상된다는 것이 확인되었다.
특히, 실시예 7-1, 7-2에서는, 실시예 1-5보다도 방전 용량 유지율이 높아졌다. 또, 이 경우에는, 부극 활물질층(54B)의 층수가 1층인 실시예 7-1, 2층인 실시예 7-2의 순으로, 방전 용량 유지율이 높아지는 경향을 나타냈다. 따라서, 상기한 이차 전지에서는, 부극 활물질층(54B)을 다층 구조로 하는 것에 의해, 보다 높은 효과가 얻어짐과 동시에, 그 층수를 늘리면, 더욱더 높은 효과가 얻어진다는 것이 확인되었다.
(실시예 8-1)
용매로서 EC 대신에, 불소화 탄산 에스테르(탄산 모노플루오로 에틸렌)인 4-플루오로-1, 3-디옥소란-2-원(FEC)을 이용한 것을 제외하고는, 실시예 1-5와 마찬가지 수순을 거쳤다.
(실시예 8-2)
용매로서 불소화 탄산 에스테르(탄산 디플루오로 에틸렌)인 4, 5-디플루오로-1, 3-디옥소란-2-원(DFEC)을 첨가하고, 혼합 용매의 조성(EC:DFEC:DEC)을 중량비로 25:5:70으로 한 것을 제외하고는, 실시예 1-5와 마찬가지 수순을 거쳤다.
(실시예 8-3)
전해액에 용매로서 불포화 결합을 가지는 환상 탄산 에스테르인 탄산 비닐렌(VC)을 첨가한 것을 제외하고는, 실시예 8-1과 마찬가지 수순을 거쳤다. 이 때, 전해액 중에서의 VC의 함유량을 10wt%(重量%)로 했다.
(실시예 8-4)
전해액에 용매로서 불포화 결합을 가지는 환상 탄산 에스테르인 탄산 비닐 에틸렌(VEC)을 첨가한 것을 제외하고는, 실시예 8-1과 마찬가지 수순을 거쳤다. 이 때, 전해액 중에서의 VEC의 함유량을 10wt%로 했다.
(실시예 8-5)
전해액에 용매로서 술톤인 1, 3-프로펜술톤(PRS)을 첨가한 것을 제외하고는, 실시예 1-5와 마찬가지 수순을 거쳤다. 이 때, 전해액 중에서의 PRS의 함유량을 1wt%로 했다.
(실시예 8-6)
전해액에 전해질염으로서 4불화 붕산 리튬(LiBF4)을 첨가한 것을 제외하고는, 실시예 1-5와 마찬가지 수순을 거쳤다. 이 때, 전해액 중에서의 LiBF4의 농도를 0.1㏖/㎏로 했다.
이들 실시예 8-1∼8-6의 이차 전지에 대해서 사이클 특성을 조사한 결과, 표 8에 나타낸 결과가 얻어졌다. 또한, 표 8에는, 실시예 1-5 및 비교예 1의 결과도 아울러 나타냈다.
이 때, 실시예 1-5, 8-5의 이차 전지에 대해서는, 사이클 특성 뿐만 아니라 팽창 특성도 조사했다. 이 팽창 특성을 조사할 때에는, 이하의 수순에 의해서 이차 전지를 충전시키는 것에 의해, 팽창 비율을 구했다. 우선, 전지 상태를 안정화시키기 위해서 23℃의 분위기 중에서 1사이클 충방전시킨 후, 2사이클째의 충전전의 두께를 측정했다. 계속해서, 같은 분위기 중에서 다시 충전시킨 후, 2사이클째의 충전후의 두께를 측정했다. 마지막으로, 팽창율(%)=[(2사이클째의 충전후의 두께-2사이클째의 충전전의 두께)/충전전의 두께]×100을 산출했다. 이 때, 충전 조건으로서는, 사이클 특성을 조사한 경우와 마찬가지로 했다.
Figure 112007082130016-PAT00009
표 8에 나타낸 바와 같이, 용매의 조성 및 전해질염의 종류가 다른 실시예 8-1∼8-6에서도, 실시예 1-5와 마찬가지로, 비교예 1보다도 방전 용량 유지율이 높아졌다. 따라서, 부극 활물질층(54B)에 피복층(54C)이 설치된 이차 전지에서는, 용매의 조성이나 전해질염의 종류를 변경한 경우에 있어서도, 사이클 특성이 향상된다는 것이 확인되었다.
특히, 실시예 8-1, 8-2에서는, 실시예 1-5보다도 방전 용량 유지율이 높아졌다. 게다가, 이 경우에는, 용매가 DFEC를 포함하는 실시예 8-2에 있어서 FEC를 포함하는 실시예 8-1보다도 방전 용량 유지율이 높아지는 경향을 나타냈다. 따라서, 상기한 이차 전지에서는, 용매가 불소화 탄산 에스테르를 포함하는 것에 의해, 보다 높은 효과가 얻어짐과 동시에 불소화 탄산 에스테르로서 탄산 모노플루오로에틸렌보다도 탄산 디플루오로에틸렌을 포함하면, 더욱더 높은 효과가 얻어진다는 것이 확인되었다.
또, 실시예 8-3∼8-6에서는, 실시예 1-5보다도 방전 용량 유지율이 높아졌다. 게다가, 이 경우에는, 용매가 VC 및 VEC를 각각 포함하는 실시예 8-3, 8-4에 있어서 PRS 및 LiBF4를 각각 포함하는 실시예 8-5, 8-6보다도 방전 용량 유지율이 높아지는 경향을 나타냈다. 따라서, 상기한 이차 전지에서는, 용매가 불포화 결합을 가지는 환상 탄산 에스테르, 술톤 또는 붕소 및 불소를 구성 원소로서 가지는 전해질염을 포함하는 것에 의해, 보다 높은 효과가 얻어짐과 동시에, 불포화 결합을 가지는 환상 탄산 에스테르를 포함하면, 더욱더 높은 효과가 얻어진다는 것이 확인되었다.
또한, 용매가 PRS를 포함하는 실시예 8-5에서는, 그것을 포함하지 않는 실시예 1-5와 비교해서, 팽창율이 대폭 작아졌다. 따라서, 상기한 이차 전지에서는, 용매가 술톤을 포함하는 것에 의해, 팽창 특성이 향상된다는 것이 확인되었다.
(실시예 9-1)
이하의 수순에 의해, 라미네이트 필름형의 이차 전지 대신에, 도 2∼도 4에 도시한 각형의 이차 전지를 제조한 것을 제외하고는, 실시예 1-5와 마찬가지 수순을 거쳤다.
우선, 정극(21) 및 부극(22)을 제작한 후, 정극 집전체(21A) 및 부극 집전체(22A)에 각각 알루미늄제의 정극 리드(24) 및 니켈제의 부극 리드(25)를 용접했다. 계속해서, 정극(21)과, 세퍼레이터(23)와, 부극(22)을 이 순으로 적층하고, 긴쪽방향에 있어서 소용돌이모양으로 다수회에 걸쳐서 권회시킨 후, 편평형상으로 성형하는 것에 의해, 전지 소자(20)를 제작했다. 계속해서, 알루미늄제의 전지캔(11)의 내부에 전지 소자(20)를 수납한 후, 그 전지 소자(20) 위에 절연판(12)을 배치했다. 계속해서, 정극 리드(24) 및 부극 리드(25)를 각각 정극 핀(15) 및 전지캔(11)에 용접한 후, 전지캔(11)의 개방 단부에 전지뚜껑(13)을 레이저 용접해서 고정시켰다. 마지막으로, 주입구멍(19)을 통해서 전지캔(11)의 내부에 전해액을 주입한 후, 그 주입구멍(19)을 봉지 부재(19A)로 막는(밀봉하는) 것에 의해, 각형 전지가 완성되었다.
(실시예 9-2)
알루미늄제의 전지캔(11) 대신에, 철제의 전지캔(11)을 이용한 것을 제외하고는, 실시예 9-1과 마찬가지 수순을 거쳤다.
이들 실시예 9-1, 9-2의 이차 전지에 대해서 사이클 특성을 조사한 결과, 표 9에 나타낸 결과가 얻어졌다. 또한, 표 9에는, 실시예 1-5 및 비교예 1의 결과도 아울러 나타냈다.
Figure 112007082130016-PAT00010
표 9에 나타낸 바와 같이, 전지 구조가 다른 실시예 9-1, 9-2에서도, 실시예 1-5와 마찬가지로, 비교예 1보다도 방전 용량 유지율이 증가했다. 따라서, 부극 활물질층(54B)에 피복층(54C)이 설치된 이차 전지에서는, 전지 구조를 변경한 경우에 있어서도, 사이클 특성이 향상된다는 것이 확인되었다.
특히, 실시예 9-1, 9-2에서는, 실시예 1-5보다도 방전 용량 유지율이 높아졌다. 게다가, 이 경우에는, 전지캔(11)이 철제인 실시예 9-2에 있어서 알루미늄제인 실시예 9-1보다도 방전 용량 유지율이 높아졌다. 따라서, 상기한 이차 전지에서는, 전지 구조를 각형으로 하는 것에 의해, 보다 높은 효과가 얻어짐과 동시에, 철제의 전지캔(11)을 이용하면, 더욱더 높은 효과가 얻어진다는 것이 확인되었다. 또한, 여기에서는 구체적인 실시예를 들어 설명하지 않지만, 외장 부재가 금속 재료로 이루어지는 각형의 이차 전지에 있어서 라미네이트 필름형의 이차 전지보다도 사이클 특성이 향상했기 때문에, 외장 부재가 금속 재료로 이루어지는 원통형의 이차 전지에 있어서도 마찬가지 결과가 얻어진다는 것은 명확하다.
(실시예 10-1∼10-8)
전자빔 증착법 대신에, 소결법을 이용하여 부극 활물질층(54B)을 형성한 것을 제외하고는, 실시예 1-1∼1-8과 마찬가지 수순을 거쳤다. 이 부극 활물질층(54B)을 형성하는 경우에는, 부극 활물질로서 규소 분말(평균 입경(粒徑)=1㎛) 90질량부와, 결합제로서 폴리이미드 10질량부를 혼합하여 부극 합제로 한 후, N-메틸-2-피롤리돈에 분산시키는 것에 의해, 페이스트형태의 부극 합제 슬러리로 했다. 그리고, 부극 집전체(54A)의 양면에 부극 합제 슬러리를 균일하게 도포하여 건조시킨 후, 진공 분위기 중에서 220℃로 12시간에 걸쳐서 가열했다.
(비교예 10)
실시예 10-1∼10-8과 마찬가지 수순에 의해서 부극 활물질층(54B)을 형성한 것을 제외하고는, 비교예 1과 마찬가지 수순을 거쳤다.
이들 실시예 10-1∼10-8 및 비교예 10의 이차 전지에 대해서 사이클 특성을 조사한 결과, 표 10에 나타낸 결과가 얻어졌다.
Figure 112007082130016-PAT00011
표 10에 나타낸 바와 같이, 피복층(54C)을 형성한 실시예 10-1∼10-8에서는, 그것을 형성하지 않은 비교예 10보다도 방전 용량 유지율이 높아졌다. 따라서, 소결법에 의해 형성된 부극 활물질층(54B)을 구비한 이차 전지에서도, 그 부극 활물질층(54B)의 표면에 3d 전이금속 원소의 산화물을 함유하는 피복층(54C)을 설치하는 것에 의해, 사이클 특성이 향상된다는 것이 확인되었다.
특히, 실시예 10-1∼10-8에서는, 피복층(54C)의 두께가 커짐에 따라서, 방전 용량 유지율이 증가한 후에 감소하는 경향을 나타내고, 그 두께가 10㎚보다도 작아지거나, 또는 3000㎚보다도 커지면, 방전 용량 유지율이 대폭 감소했다. 따라서, 상기한 이차 전지에서는, 피복층(54C)의 두께가 10㎚ 이상 3000㎚ 이하의 범위내이면, 보다 높은 효과가 얻어진다는 것이 확인되었다.
상기한 표 1∼표 10의 결과로부터 명확한 바와 같이, 부극 활물질층(54B)의 형성 방법에 관계없이, 부극 활물질층(54B)이 규소를 구성 원소로서 가지는 부극 활물질을 포함하는 경우에, 그 부극 활물질층(54B)의 표면에 3d 전이금속 원소의 산화물을 함유하는 피복층(54C)을 설치하는 것에 의해, 사이클 특성이 향상된다는 것이 확인되었다.
이상, 실시형태 및 실시예를 들어 본 발명을 설명했지만, 본 발명은 상기한 실시형태 및 실시예에서 설명한 형태에 한정되지 않고, 여러가지 변형이 가능하다. 예를 들면, 상기한 실시형태 및 실시예에서는, 전지의 종류로서, 부극의 용량이 리튬의 흡장 및 방출에 의거하는 용량 성분에 의해 나타내어지는 리튬 이온 이차 전지에 대해서 설명했지만, 반드시 이것에 한정되는 것은 아니다. 본 발명의 전지는, 리튬을 흡장 및 방출하는 것이 가능한 부극 재료의 충전 용량을 정극의 충전 용량보다도 작게 하는 것에 의해, 부극의 용량이 리튬의 흡장 및 방출에 의거하는 용량 성분과 리튬의 석출 및 용해에 의거하는 용량 성분을 포함하고, 또한 그들 용량 성분의 합에 의해 나타내어지는 이차 전지에 대해서도 마찬가지로 적용가능하다.
또, 상기한 실시형태 또는 실시예에서는, 전지 구조가 각형, 원통형 및 라미네이트 필름형인 경우와, 전지 소자가 권회 구조를 가지는 경우를 예로 들어 설명했지만, 본 발명의 전지는, 코인형 또는 버튼형 등의 다른 전지 구조를 가지는 경우나, 전지 소자가 적층 구조 등의 다른 구조를 가지는 경우에 대해서도 마찬가지로 적용가능하다. 또, 본 발명의 전지는, 이차 전지에 한정되지 않고, 일차 전지 등의 다른 종류의 전지에 대해서도 마찬가지로 적용가능하다.
또, 상기한 실시형태 및 실시예에서는, 전극 반응 물질로서 리튬을 이용하는 경우에 대해서 설명했지만, 나트륨(Na) 또는 칼륨(K) 등의 다른 1A족 원소나, 마그네슘(Mg) 또는 칼슘(Ca) 등의 2A족 원소나, 알루미늄 등의 다른 경금속을 이용해도 좋다. 이들의 경우에 있어서도, 부극 활물질로서, 상기한 실시형태에서 설명한 부극 재료를 이용하는 것이 가능하다.
또, 상기한 실시형태 및 실시예에서는, 본 발명의 부극 및 전지에서의 피복층의 두께에 대해서, 실시예의 결과로부터 도출된 수치 범위를 적정 범위로서 설명하고 있지만, 그 설명은, 두께가 상기한 범위외로 될 가능성을 완전히 부정하는 것은 아니다. 즉, 상기한 적정 범위는, 어디까지나 본 발명의 효과를 얻는데 있어서 특히 바람직한 범위이며, 본 발명의 효과를 얻을 수 있다면, 두께가 상기한 범위에서 다소 벗어나도 좋다. 이것은, 상기한 피복층의 두께에 한정되지 않고, 부극 활물질 중에서의 산소의 함유량, 부극 활물질 중에서의 금속 원소의 함유량 및, 부극 집전체의 표면의 십점 평균 거칠음 Rz에 대해서도 마찬가지이다.
본 발명은 첨부하는 특허청구범위 또는 그 균등물의 범위내에서, 설계 요구조건 및 그 밖의 요인에 의거하여 각종 변형, 조합, 수정 및 변경 등을 행할 수 있다는 것은 당업자라면 당연히 이해할 수 있을 것이다.
도 1은 본 발명의 1실시형태에 따른 부극의 구성을 도시하는 단면도,
도 2는 본 발명의 1실시형태에 따른 부극을 구비한 제1 전지의 구성을 도시하는 단면도,
도 3은 도 2에 도시한 제1 전지의 Ⅲ-Ⅲ선을 따른 단면도,
도 4는 도 2 및 도 3에 도시한 부극의 일부를 확대하여 도시하는 단면도,
도 5는 본 발명의 1실시형태에 따른 부극을 구비한 제2 전지의 구성을 도시하는 단면도,
도 6은 도 5에 도시한 권회 전극체의 일부를 확대하여 도시하는 단면도,
도 7은 본 발명의 1실시형태에 따른 부극을 구비한 제3 전지의 구성을 도시하는 단면도,
도 8은 도 7에 도시한 권회 전극체의 Ⅷ-Ⅷ선을 따른 단면도,
도 9는 도 8에 도시한 부극의 일부를 확대하여 도시하는 단면도
도 10은 ESCA의 깊이 분석 결과를 도시하는 도면.
[도면의 주요부분에 대한 부호의 설명]
1, 22A, 42A, 54A…부극 집전체, 2, 22B, 42B, 54B…부극 활물질층, 11, 31…전지캔, 12, 32…절연판, 13, 34…전지뚜껑, 14…단자판, 15…정극 핀, 16…절연 케이스, 17, 37…개스킷, 18…개렬판, 19…주입 구멍, 19A…봉지 부재, 20…전지 소자, 21, 41, 53…정극, 21A, 41A, 53A…정극 집전체, 21B, 41B, 53B…정극 활물질층, 22, 42, 54…부극, 23, 43, 55…세퍼레이트, 24, 45, 51…정극 리드, 25, 46, 52…부극 리드, 35…안전밸브 기구, 36…열감 저항 소자, 40, 50…권회 전극체, 44…센터핀, 56…전해질, 57…보호 테이프, 60…외장 부재.

Claims (36)

  1. 규소(Si)를 구성 원소로서 가지는 부극 활물질을 포함하는 부극 활물질층과,
    그 부극 활물질층을 피복함과 동시에 3d 전이금속 원소(철(Fe), 코발트(Co) 및 니켈(Ni)로 이루어지는 군중의 적어도 1종)의 산화물을 함유하는 피복층
    을 포함하는, 부극.
  2. 제1항에 있어서,
    상기 산화물은, MxOy(M은 철, 코발트 또는 니켈을 나타내고, x는 1∼3중의 하나의 정수(整數)를 나타내고, y는 1∼4중의 하나의 정수를 나타낸다)로 나타내어지는 화합물인, 부극.
  3. 제1항에 있어서,
    상기 산화물은, 산화 제1철(FeO), 산화 제1 코발트(CoO) 또는 산화 제1 니켈(NiO)인, 부극.
  4. 제1항에 있어서,
    상기 피복층의 두께는, 10㎚ 이상 3000㎚ 이하의 범위내인, 부극.
  5. 제1항에 있어서,
    상기 부극 활물질층은, 다수회에 걸쳐서 성막되는 것에 의해 형성된 다층 구조를 가지는, 부극.
  6. 제1항에 있어서,
    상기 부극 활물질은, 산소(O)를 구성 원소로서 더 가지고,
    상기 부극 활물질 중에서의 산소의 함유량은, 3원자수% 이상 40원자수% 이하의 범위내인, 부극.
  7. 제1항에 있어서,
    상기 부극 활물질층은, 그의 두께 방향에 있어서, 상기 부극 활물질이 산소를 구성 원소로서 더 가지는 산소 함유층을 가지고,
    상기 산소 함유층에서의 산소의 함유량은, 그 이외의 층에서의 산소의 함유량보다도 높은, 부극.
  8. 제1항에 있어서,
    상기 부극 활물질은, 철, 코발트, 니켈, 티타늄(Ti), 크로뮴(Cr) 및 몰리브덴(Mo)으로 이루어지는 군중의 적어도 1종의 금속 원소를 구성 원소로서 더 가지는, 부극.
  9. 제8항에 있어서,
    상기 부극 활물질 중에서의 금속 원소의 함유량은, 3원자수% 이상 30원자수% 이하의 범위내인, 부극.
  10. 제1항에 있어서,
    상기 부극 활물질층은, 그의 두께 방향에 있어서, 상기 부극 활물질이 철, 코발트, 니켈, 티타늄, 크로뮴 및 몰리브덴으로 이루어지는 군중의 적어도 1종의 금속 원소를 구성 원소로서 가지는 금속 원소 함유층을 가지고,
    상기 금속 원소 함유층에서의 금속 원소의 함유량은, 그 이외의 층에서의 금속 원소의 함유량보다도 많은, 부극.
  11. 제1항에 있어서,
    상기 부극 활물질층은, 기상 증착법에 의해 형성되어 있는, 부극.
  12. 제1항에 있어서,
    상기 부극 활물질층을 지지하는 부극 집전체를 더 포함하고,
    상기 부극 활물질층과 대향하는 상기 부극 집전체의 표면은, 전해 처리로 형성된 미립자에 의해서 조면화(粗面化; roughen)되어 있는, 부극.
  13. 제12항에 있어서,
    상기 부극 집전체의 표면의 십점 평균 거칠음(ten point height of roughness) Rz는, 1.5㎛ 이상 5㎛ 이하의 범위내인, 부극.
  14. 정극 및 부극과 함께 전해액을 구비한 전지로서,
    상기 부극은,
    규소를 구성 원소로서 가지는 부극 활물질을 포함하는 부극 활물질층과,
    그 부극 활물질층을 피복함과 동시에 3d 전이금속 원소(철, 코발트 및 니켈로 이루어지는 군중의 적어도 1종)의 산화물을 함유하는 피복층
    을 가지는, 전지.
  15. 제14항에 있어서,
    상기 산화물은, MxOy(M은 철, 코발트 또는 니켈을 나타내고, x는 1∼3중의 하나의 정수를 나타내고, y는 1∼4중의 하나의 정수를 나타낸다)로 나타내어지는 화합물인, 전지.
  16. 제14항에 있어서,
    상기 산화물은, 산화 제1철, 산화 제1 코발트 또는 산화 제1 니켈인, 전지.
  17. 제14항에 있어서,
    상기 피복층의 두께는, 10㎚ 이상 3000㎚ 이하의 범위내인, 전지.
  18. 제14항에 있어서,
    상기 부극 활물질층은, 다수회에 걸쳐서 성막되는 것에 의해 형성된 다층 구조를 가지는, 전지.
  19. 제14항에 있어서,
    상기 부극 활물질은, 산소를 구성 원소로서 더 가지고,
    상기 부극 활물질 중에서의 산소의 함유량은, 3원자수% 이상 40원자수% 이하의 범위내인, 전지.
  20. 제14항에 있어서,
    상기 부극 활물질층은, 그의 두께 방향에서, 상기 부극 활물질이 산소를 구성 원소로서 더 가지는 산소 함유층을 가지고,
    상기 산소 함유층에서의 산소의 함유량은, 그 이외의 층에서의 산소의 함유량보다도 높은, 전지.
  21. 제14항에 있어서,
    상기 부극 활물질은, 철, 코발트, 니켈, 티타늄, 크로뮴 및 몰리브덴으로 이루어지는 군중의 적어도 1종의 금속 원소를 구성 원소로서 더 가지는, 전지.
  22. 제21항에 있어서,
    상기 부극 활물질 중에서의 금속 원소의 함유량은, 3원자수% 이상 30원자수% 이하의 범위내인, 전지.
  23. 제14항에 있어서,
    상기 부극 활물질층은, 그의 두께 방향에 있어서, 상기 부극 활물질이 철, 코발트, 니켈, 티타늄, 크로뮴 및 몰리브덴으로 이루어지는 군중의 적어도 1종의 금속 원소를 구성 원소로서 더 가지는 금속 원소 함유층을 가지고,
    상기 금속 원소 함유층에서의 금속 원소의 함유량은, 그 이외의 층에서의 금속 원소의 함유량보다도 많은, 전지.
  24. 제14항에 있어서,
    상기 부극 활물질층은, 기상 증착법에 의해 형성되어 있는, 전지.
  25. 제14항에 있어서,
    상기 부극은, 상기 부극 활물질층을 지지하는 부극 집전체를 더 포함하고,
    상기 부극 활물질층과 대향하는 상기 부극 집전체의 표면은, 전해 처리로 형성된 미립자에 의해서 조면화되어 있는, 전지.
  26. 제25항에 있어서,
    상기 부극 집전체의 표면의 십점 평균 거칠음 Rz는, 1.5㎛ 이상 5㎛ 이하의 범위내인, 전지.
  27. 제14항에 있어서,
    상기 전해액은, 술톤을 함유하는 용매를 포함하는, 전지.
  28. 제27항에 있어서,
    상기 술톤은, 1, 3-프로펜술톤인, 전지.
  29. 제14항에 있어서,
    상기 전해액은, 불포화 결합을 가지는 환상 탄산 에스테르를 함유하는 용매를 포함하는, 전지.
  30. 제29항에 있어서,
    상기 불포화 결합을 가지는 환상 탄산 에스테르는, 탄산 비닐렌 또는 탄산 비닐에틸렌인, 전지.
  31. 제14항에 있어서,
    상기 전해액은, 불소화 탄산 에스테르를 함유하는 용매를 포함하는, 전지.
  32. 제31항에 있어서,
    상기 불소화 탄산 에스테르는, 탄산 디플루오로에틸렌인, 전지.
  33. 제14항에 있어서,
    상기 전해액은, 붕소(B) 및 불소(F)를 구성 원소로서 가지는 전해질염을 포함하는, 전지.
  34. 제33항에 있어서,
    상기 전해질염은, 4불화 붕산 리튬(LiBF4)인, 전지.
  35. 제14항에 있어서,
    상기 정극, 상기 부극 및 상기 전해액은, 원통형 또는 각형(角型; square)의 외장 부재의 내부에 수납되어 있는, 전지.
  36. 제35항에 있어서,
    상기 외장 부재는, 철 또는 철합금을 함유하는, 전지.
KR1020070116881A 2006-12-18 2007-11-15 부극 및 전지 KR101462492B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006340301A JP4321584B2 (ja) 2006-12-18 2006-12-18 二次電池用負極および二次電池
JPJP-P-2006-00340301 2006-12-18

Publications (2)

Publication Number Publication Date
KR20080056632A true KR20080056632A (ko) 2008-06-23
KR101462492B1 KR101462492B1 (ko) 2014-11-17

Family

ID=39527722

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070116881A KR101462492B1 (ko) 2006-12-18 2007-11-15 부극 및 전지

Country Status (4)

Country Link
US (2) US10141562B2 (ko)
JP (1) JP4321584B2 (ko)
KR (1) KR101462492B1 (ko)
CN (1) CN101207191B (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9537154B2 (en) 2013-11-27 2017-01-03 Lg Chem, Ltd. Anode for secondary battery and secondary battery having the same

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2395059B (en) 2002-11-05 2005-03-16 Imp College Innovations Ltd Structured silicon anode
WO2007043624A1 (ja) * 2005-10-12 2007-04-19 Mitsui Chemicals, Inc. 非水電解液、それを用いたリチウム二次電池
GB0601318D0 (en) 2006-01-23 2006-03-01 Imp Innovations Ltd Method of etching a silicon-based material
GB0601319D0 (en) 2006-01-23 2006-03-01 Imp Innovations Ltd A method of fabricating pillars composed of silicon-based material
EP2107676A4 (en) * 2007-01-12 2014-06-25 Meidensha Electric Mfg Co Ltd CONTROL DEVICE AND CONTROL METHOD FOR ENERGY CONVERSION SYSTEM WITH IMMEDIATE COMPENSATION FOR VOLTAGE LOSS AND OPERATION INTERRUPTION
GB0709165D0 (en) 2007-05-11 2007-06-20 Nexeon Ltd A silicon anode for a rechargeable battery
GB0713896D0 (en) * 2007-07-17 2007-08-29 Nexeon Ltd Method
GB0713895D0 (en) * 2007-07-17 2007-08-29 Nexeon Ltd Production
GB0713898D0 (en) * 2007-07-17 2007-08-29 Nexeon Ltd A method of fabricating structured particles composed of silcon or a silicon-based material and their use in lithium rechargeable batteries
US9882241B2 (en) 2008-08-01 2018-01-30 Seeo, Inc. High capacity cathode
WO2010014966A1 (en) 2008-08-01 2010-02-04 Seeo, Inc High capacity anodes
EP2320501B1 (en) * 2008-08-06 2015-09-30 Mitsui Chemicals, Inc. Nonaqueous electrolyte solution and lithium secondary battery
GB2464157B (en) 2008-10-10 2010-09-01 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material
GB2464158B (en) 2008-10-10 2011-04-20 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
GB2470056B (en) 2009-05-07 2013-09-11 Nexeon Ltd A method of making silicon anode material for rechargeable cells
US9853292B2 (en) 2009-05-11 2017-12-26 Nexeon Limited Electrode composition for a secondary battery cell
GB2470190B (en) 2009-05-11 2011-07-13 Nexeon Ltd A binder for lithium ion rechargeable battery cells
JP5711565B2 (ja) * 2010-02-26 2015-05-07 株式会社半導体エネルギー研究所 蓄電装置
GB201005979D0 (en) 2010-04-09 2010-05-26 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
GB201009519D0 (en) 2010-06-07 2010-07-21 Nexeon Ltd An additive for lithium ion rechargeable battery cells
GB201014706D0 (en) 2010-09-03 2010-10-20 Nexeon Ltd Porous electroactive material
GB201014707D0 (en) 2010-09-03 2010-10-20 Nexeon Ltd Electroactive material
US9786947B2 (en) * 2011-02-07 2017-10-10 Sila Nanotechnologies Inc. Stabilization of Li-ion battery anodes
US9394165B2 (en) * 2011-06-15 2016-07-19 Georgia Tech Research Corporation Carbon nanotube array bonding
GB2492167C (en) 2011-06-24 2018-12-05 Nexeon Ltd Structured particles
WO2015025887A1 (ja) 2013-08-23 2015-02-26 日本電気株式会社 リチウムイオン二次電池用負極およびリチウムイオン二次電池
KR101567203B1 (ko) 2014-04-09 2015-11-09 (주)오렌지파워 이차 전지용 음극 활물질 및 이의 방법
KR101550781B1 (ko) 2014-07-23 2015-09-08 (주)오렌지파워 2 차 전지용 실리콘계 활물질 입자의 제조 방법
GB2533161C (en) 2014-12-12 2019-07-24 Nexeon Ltd Electrodes for metal-ion batteries
KR101614016B1 (ko) 2014-12-31 2016-04-20 (주)오렌지파워 실리콘계 음극 활물질 및 이의 제조 방법
JP6854100B2 (ja) * 2016-08-31 2021-04-07 株式会社日本マイクロニクス 二次電池
JP7272851B2 (ja) * 2019-04-12 2023-05-12 株式会社Soken 非水電解質二次電池
CN111477841A (zh) * 2020-05-26 2020-07-31 苏州凌威新能源科技有限公司 锂电池极片及其制备方法
US20220069280A1 (en) * 2020-08-28 2022-03-03 GM Global Technology Operations LLC Composite electrode materials and methods of making the same
CN113488658B (zh) * 2021-06-30 2022-07-08 浙江锋锂新能源科技有限公司 一种锂电池正极集流体及其制备方法与锂电池及其正极
WO2024024302A1 (ja) * 2022-07-28 2024-02-01 株式会社村田製作所 負極及び二次電池

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07249410A (ja) * 1994-03-10 1995-09-26 Mitsubishi Cable Ind Ltd 負極及びLi二次電池
ATE310321T1 (de) * 1995-06-28 2005-12-15 Ube Industries Nichtwässrige sekundärbatterie
JPH09180721A (ja) * 1995-12-28 1997-07-11 Mitsui Petrochem Ind Ltd リチウム電池用電極とその製造方法及び電気化学装置とその製造方法
US5744258A (en) * 1996-12-23 1998-04-28 Motorola,Inc. High power, high energy, hybrid electrode and electrical energy storage device made therefrom
JP4055241B2 (ja) 1997-04-24 2008-03-05 松下電器産業株式会社 非水電解質二次電池
US6235427B1 (en) 1998-05-13 2001-05-22 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery containing silicic material
JP3941235B2 (ja) * 1998-05-13 2007-07-04 宇部興産株式会社 非水二次電池
EP1052712B1 (en) 1998-12-02 2010-02-24 Panasonic Corporation Non-aqueous electrolyte secondary cell
JP2000173585A (ja) 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP3733071B2 (ja) * 1999-10-22 2006-01-11 三洋電機株式会社 リチウム電池用電極及びリチウム二次電池
WO2001031723A1 (fr) 1999-10-22 2001-05-03 Sanyo Electric Co., Ltd. Electrode pour accumulateur au lithium et accumulateur au lithium
WO2001039303A1 (en) * 1999-11-23 2001-05-31 Moltech Corporation Lithium anodes for electrochemical cells
JP2001325950A (ja) 2000-05-15 2001-11-22 Matsushita Electric Ind Co Ltd 非水電解質二次電池とその負極
JP4190162B2 (ja) * 2001-03-01 2008-12-03 三井化学株式会社 非水電解液、それを用いた二次電池、および電解液用添加剤
JP2002319408A (ja) * 2001-04-23 2002-10-31 Sanyo Electric Co Ltd リチウム二次電池用電極及びリチウム二次電池
EP1313158A3 (en) 2001-11-20 2004-09-08 Canon Kabushiki Kaisha Electrode material for rechargeable lithium battery, electrode comprising said electrode material, rechargeable lithium battery having said electrode , and process for the production thereof
TWI278429B (en) * 2002-05-17 2007-04-11 Shinetsu Chemical Co Conductive silicon composite, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell
US7455933B2 (en) * 2002-11-06 2008-11-25 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery
US7491467B2 (en) * 2002-12-17 2009-02-17 Mitsubishi Chemical Corporation Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP4686974B2 (ja) * 2002-12-17 2011-05-25 三菱化学株式会社 非水系電解液二次電池用負極およびそれを用いた非水系電解液二次電池
JP4329357B2 (ja) * 2003-02-24 2009-09-09 住友電気工業株式会社 リチウム二次電池負極部材、及びその製造方法
JP4535722B2 (ja) * 2003-12-24 2010-09-01 三洋電機株式会社 非水電解質二次電池
JP4022889B2 (ja) * 2004-02-12 2007-12-19 ソニー株式会社 電解液および電池
JP4780923B2 (ja) * 2004-03-30 2011-09-28 三洋電機株式会社 リチウム二次電池
JP4519592B2 (ja) * 2004-09-24 2010-08-04 株式会社東芝 非水電解質二次電池用負極活物質及び非水電解質二次電池
CN100454613C (zh) * 2004-10-21 2009-01-21 松下电器产业株式会社 电池用负极及使用该负极的电池
TWI311384B (en) * 2004-11-25 2009-06-21 Sony Corporatio Battery and method of manufacturing the same
US20080038631A1 (en) * 2004-12-13 2008-02-14 Kensuke Nakura Lithium Ion Secondary Battery
JP4794893B2 (ja) * 2005-04-12 2011-10-19 パナソニック株式会社 非水電解液二次電池
JP4666155B2 (ja) * 2005-11-18 2011-04-06 ソニー株式会社 リチウムイオン二次電池
CN102479949B (zh) * 2010-11-30 2015-05-27 比亚迪股份有限公司 一种锂离子电池的负极活性材料及其制备方法以及一种锂离子电池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9537154B2 (en) 2013-11-27 2017-01-03 Lg Chem, Ltd. Anode for secondary battery and secondary battery having the same

Also Published As

Publication number Publication date
CN101207191B (zh) 2012-11-14
US20080145752A1 (en) 2008-06-19
US20190067679A1 (en) 2019-02-28
CN101207191A (zh) 2008-06-25
JP4321584B2 (ja) 2009-08-26
JP2008153078A (ja) 2008-07-03
KR101462492B1 (ko) 2014-11-17
US10141562B2 (en) 2018-11-27
US10476070B2 (en) 2019-11-12

Similar Documents

Publication Publication Date Title
US10476070B2 (en) Anode and battery
JP5338041B2 (ja) 二次電池用負極および二次電池
JP5374851B2 (ja) リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP4501963B2 (ja) リチウムイオン二次電池用負極およびリチウムイオン二次電池
KR101295395B1 (ko) 전지
JP5321788B2 (ja) 二次電池用集電体、二次電池用負極、二次電池および電子機器
KR101195672B1 (ko) 리튬 이차 전지
KR101502166B1 (ko) 부극 및 전지
KR20160004236A (ko) 부극 및 2차 전지
KR20090045113A (ko) 부극 및 전지
JP2008135273A (ja) 電解液および電池
JP5245425B2 (ja) 負極および二次電池
JP2007042387A (ja) 電解液,電極および電池
JP2007250191A (ja) 電解質および電池
JP5499446B2 (ja) 負極集電体、負極および二次電池
JP2008153015A (ja) 負極および電池
JP2008305573A (ja) 負極および電池
CN112447941A (zh) 非水电解质二次电池
JP2007128724A (ja) 負極および電池
CN110808419B (zh) 台阶式电池的台阶电芯和主电芯之间的共用电极区段
JP2011086468A (ja) 非水電解質電池
JP2014096382A (ja) 負極集電体、負極および二次電池
JP2013127991A (ja) リチウムイオン二次電池用負極およびリチウムイオン二次電池

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20171103

Year of fee payment: 4