KR20060131849A - 가상 레이저 마킹 시스템 및 방법 - Google Patents

가상 레이저 마킹 시스템 및 방법 Download PDF

Info

Publication number
KR20060131849A
KR20060131849A KR1020067016920A KR20067016920A KR20060131849A KR 20060131849 A KR20060131849 A KR 20060131849A KR 1020067016920 A KR1020067016920 A KR 1020067016920A KR 20067016920 A KR20067016920 A KR 20067016920A KR 20060131849 A KR20060131849 A KR 20060131849A
Authority
KR
South Korea
Prior art keywords
virtual
marking
laser
marking system
optical element
Prior art date
Application number
KR1020067016920A
Other languages
English (en)
Inventor
유홍 후앙
Original Assignee
지에스아이 그룹 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 지에스아이 그룹 코포레이션 filed Critical 지에스아이 그룹 코포레이션
Publication of KR20060131849A publication Critical patent/KR20060131849A/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/18Working by laser beam, e.g. welding, cutting or boring using absorbing layers on the workpiece, e.g. for marking or protecting purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/042Automatically aligning the laser beam
    • B23K26/043Automatically aligning the laser beam along the beam path, i.e. alignment of laser beam axis relative to laser beam apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/343Testing dynamo-electric machines in operation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • G05B11/36Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
    • G05B11/42Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential for obtaining a characteristic which is both proportional and time-dependent, e.g. P. I., P. I. D.
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Control Of Electric Motors In General (AREA)
  • Laser Beam Processing (AREA)
  • Feedback Control In General (AREA)
  • Manufacturing Optical Record Carriers (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

가상 마킹 시스템(30)이 한계 회전 모터 시스템의 성능을 시뮬레이팅하기 위해 개시된다. 상기 가상 마킹 시스템은 명령 발생 유닛(32), 한계 회전 모터 시스템 유닛(34), 및 광학적-기계적 모델링 유닛(36)을 포함한다. 명령 발생 유닛은 마크된 패턴(40)(pattern)에 대한 데이터 표현(data representative)을 수용하고, 마크된 패턴을 마킹하기 위한 일련의 명령을 제공하기 위한 것이다. 한계 회전 모터 시스템 유닛(34)은 마크된 패턴을 마킹하기 위한 일련의 명령을 수용하고 광학 소자(optical element)의 가상 위치를 나타내는 광학 소자 응답 신호(optical element response signals)를 제공하기 위한 것이다. 광학적-기계적 모델링 유닛(36)은 광학 소자 응답 신호를 수용하고 마크된 패턴의 가상 상(virtual image)을 제공하기 위한 것이다.
가상 마킹 시스템, 한계 회전 모터 시스템, 명령 발생 유닛, 광학적-기계적 모델링 유닛

Description

가상 레이저 마킹 시스템 및 방법{SYSTEM AND METHOD FOR VIRTUAL LASER MARKING}
본 발명은 일반적으로 한계 회전 모터 시스템(limited rotation motor systems)에 관계하고, 더 상세하게는 한계 회전 모터 시스템을 설계하기 위한 시스템에 관한 것이다.
한계 회전 모터는 단계적 모터(stepper motors) 및 등속 모터(constant velocity motors)를 포함한다. 어떤 단계적 모터는 큰 주사각(scan angles)에서 높은 속도 및 높은 의무주기 톱니 스캐닝(duty cycle sawtooth scanning)을 요구하는 응용들에 적합하다. 예를 들면, 미국 특허 제 6,275, 319는 래스터 스캐닝 응용들(raster scanning applications)을 위한 광학 스캐닝 장치(optical scanning device)를 개시한다.
그러나, 어떤 응용분야에서의 한계 회전 모터는 톱니 방식에서의 단계적 및 침강 형태로 감소하는 속도보다 정확하고 일정한 속도로 두 위치들 사이에서 이동하도록 하는 로터(rotor)를 요구한다. 이러한 응용분야는 등속에 도달하기 위해 필요한 시간이 가능한 짧아야 하고 도달된 속도에서 오차가 가능한 작아야 한다. 등속 모터는 일반적으로 높은 토크 상수(torque constant)를 제공하고 전형적으로 위치 변환기(position transducer), 예를 들면, 타코메터(tachometer) 또는 위치 센서(position sensor) 뿐만 아니라 로터 및 로터를 중축 둘레로 회전시키기 위한 구동 서키트리(driven circuitry), 및 로터를 입력 및 출력 신호에 응답하여 구동 서키트리에 의해 구동되도록 하는 변환기에 결합된 피드백 회로(feedback circuit)를 포함한다. 예를 들면, 미국 특허 제 5,424,632는 종래의 2극 한계 회전 모터(two-pole limited rotation motor)를 개시한다.
어떤 응용분야에서 원하는 한계 회전 모터는 스캐너의 각 운동 범위 내에서 각 A와 B의 두 각 모두를 포함하고, 임의의 작은 오차 내에 원하는 속도의 선형성을 유지하면서 임의로 짧은 시간 내에, 두 각 모두 임의로 정확하게 한정하면서, 거울(mirror)처럼 로드 각 위치(angular position of load)를 각 A에서 각 B로 변경시킬 수 있는 시스템을 요구한다.
이 시스템 응답의 최소 시간 및 최소 속도 오차 모두는 이 시스템의 효과적인 대역폭(bandwidth)에 의해 억제된다. 그러나 이 시스템의 효과적인 대역폭은 이 시스템의 개방 루프 이득(open loop gain)을 포함한 많은 인자에 의해 결정된다.
한계 회전 토크 모터(limited rotation torque motor)는 몇 가지 가요 모드(flexible modes) 및 저주파수 비선형 효과(low frequency non-linear effects)가 추가된 이중 적분 모델(double- integrator model) 의해 표현 및 설계된다. 검류계(galvanometer)용 전형적인 닫힌 루프 서보 시스템(closed-loop servo system)은 저주파수 불확실성에 대한 적분동작(integral actions) 및 고주파수 공명 모드를 위한 노치 필터(notch filter)를 포함한다. 시스템이 단단한 몸체에 의해 잘 만들어진 이런 영역에서 시스템 동작이 중저파수 범위에서 선택된다. 이중 적분기의 견고한 몸체 모델에 있어서, 주파수 응답 플롯(frequency response plot) 상의 개방 루프 이득과 교차 주파수 사이에는 직접적인 관련이 있다. 예를 들면, 서보라이터 헤더 위치 시스템(servowriter head positioning system)용 자동 전환 시스템(automatic tuning system)이 최소 위치 오차를 구비한 서보라이터 헤더 위치 시스템의 자동전환-Y. H. Huang, S. Weerasooriya and T. S. Low, J. Applied Physics, v. 79 pp. 5674-5676 (1996)-에 개시되어 있다.
도 1은 레이저 소스(laser source)(18)에 의해 상 렌즈(imaging lens)(20)를 관통하여 상 표면(imaging surface)(22)을 향하도록 레이저 빔(16)을 안내하기 위해 거울 13 및 15에 각각 결합하는 두 개의 한계 회전 모터 12, 14를 사용한 마킹 시스템(marking system)(10)을 도시한다. 레이저 소스(18)를 온(on) 및 오프(off)하는 것뿐 아니라 x 스캔 방향 모터(x scan direction motor)(12) 및 y 스캔 방향 모터(y scan direction motor)(14)의 통제가 컨트롤러(controller)(22)에 의해 제공된다. 콘트롤러(24)는 상 표면상에 만들어는 마크(mark)에 대한 입력 명령(26)을 수용한다. 이어서, 콘트롤러(24)는 x 스캐너(14) 및 y 스캐너(12)를 적절히 이동하도록 하고, 입력 명령 및 목표 평면(target plane)에서 상 표면의 이동에 응답하여 레이저 소스(예를 들면, 저· 고 사이 또는 마킹 한계 값(marking threshold value) 초과시 전환)의 온 및 오프를 행하도록 명령한다. 이 시스템 은 각각의 모터 12 및 14 내에 각각 컨트롤러(24)로 역송하는 위치 검출 신호(position detection signals)를 제공하는 위치 검출기(position detector)를 포함할 수 있다.
예를 들면, 이러한 한계 회전 모터는 고속 표면 도량형(high speed surface metrology)과 같은 다양한 레이저 스캐닝 응용에 사용될 수 있다. 레이저 가공 응용분야는 레이저 용접(laser welding)(예를 들면,고속 스팟 용접), 표면 처리, 커팅, 천공, 마킹, 트리밍(trimming), 레이저 수리(laser repair), 빠른 프로토타이핑(prototyping), 마이크로구조의 형성 또는 다양한 물질에서 나노구조의 밀집 배열을 형성하는 것을 포함한다.
이러한 시스템의 처리 속도는 거울 속도(mirror speed), X-Y 상 속도(X-Y stage speed), 물질 상호작용 및 물질 열 시간 상수(material thermal time constants), 처리되는 목표 물질 및 영역의 레이아웃 및 소프트웨어 성능 중 하나 이상에 의해 전형적으로 제한된다. 일반적으로, 거울 속도, 위치 정확성 및 정착시간(settling time) 중 하나 이상이 성능 제한 인자가 되는 그러한 응용분야에 있어서, 스캐닝 시스템에서 개방 루프 이득의 임의의 상당한 개선은 바로 처리량 개선으로 전환될 수 있다.
한계 회전 모터 작동기(limited rotation motor actuator)에서, 개방 루프 이득은 모터의 토크 상수, 거울 및 로터 구조의 관성(inertia of the mirror and rotor structure) 및 전력 증폭기(power amplifier)의 이득 특성에 의해 결정된다. 어떤 크기에서 다른 크기로의 헤더(head) 변화와 같이 시스템 설계에서 변화는 전 체 관성 및 그 결과로서 개방 루프 이득에서의 큰 변화를 야기할 수 있다. 그러나 이러한 시스템은 전형적으로 완전히 이들의 성능을 평가하기 위해 설계되고 만들어져야 한다.
따라서, 설계 및 한계 회전 모터 시스템을 평가하기 위한 개선된 방법에 대한 요구가 있으며, 더욱 상세하게는, 특정 응용분야에서 최대 성능을 제공하는 한계 회전 모터 시스템의 효율적이고 경제적인 생산에 대한 요구가 있다.
[요약]
본 발명은 구현예에 부합한 한계 회전 모터 시스템의 성능을 시뮬레이션하기 위한 가상 마킹 시스템(virtual marking system)을 제공한다. 가상 마킹 시스템은 명령 발생 유닛(command generation unit), 한계회전 모터 시스템 유닛(limited rotation motor system unit), 및 광학적-기계적 모델링 유닛( optical-mechanical modeling unit)을 포함한다. 명령 발생 유닛은 마크된 패턴(pattern)에 대한 데이터 표현(data representative)을 수용하고, 마크된 패턴을 마킹하기 위한 일련의 명령을 제공하기 위한 것이다. 한계 회전 모터 시스템 유닛은 마크된 패턴을 마킹하기 위한 일련의 명령을 수용하고 광학 소자(optical element)의 가상 위치를 나타내는 광학 소자 응답 신호(optical element response signals)를 제공하기 위한 것이다. 광학적-기계적 모델링 유닛은 광학 소자 응답 신호를 수용하고 마크된 패턴의 가상 상(virtual image)을 제공하기 위한 것이다.
첨부된 도면을 참고하여 본 발명을 더 상세히 설명한다.
도 1은 종래 기술의 스캐닝 또는 마킹 시스템를 설명하는 도식도( diagrammatic view)이다.
도 2는 본 발명의 구현예에 부합한 가상 레이저 마킹 시스템에 대한 도식도이다.
도 3a는 마크된 패턴의 도식도를 나타내고, 도 3b는 도 3a에 도시된 패턴을 마크하기 위해 사용될 수 있는 실시간 흐름(real timr current)을 도시한다.
도 4는 만들어지기를 원하는 마크의 각 위치(angular position) 및 시간을 나타내는 그래프이다.
도 5는 만들어지는 실제 마크(actual mark)뿐만 아니라 만들어지기를 원하는 마크의 각 위치(angular position) 및 시간을 나타내는 그래프이다.
도 6은 마킹 작동에 대한 명령 및 위치 콘트롤 순서를 나타내는 도식도이다.
도 7A-7C는 본 발명의 구현예에 부합하는 원하는 마킹 패턴 및 가상 마킹 패턴에 대한 X 위치, Y 위치, 레이저-온(Laser-On) 및 레이저 오프(Laser-Off) 의 시간 차트(timing charts)를 나타내는 도식도이다.
도 8은 본 발명의 구현예와 부합하는 한계 회전 모터 시스템에 대한 수학 모델을 나타내는 도식도이다.
도 9는 본 발명의 구현예와 부합하는 광학적-기계적 모델링 시스템(modeling system)을 나타내는 도식도이다.
상기의 도면은 오직 본 발명의 설명을 위해 제시된다.
부합되는 구현예에서 본 발명은 가상 한계 회전 모터 콘트롤러(virtual limited rotation motor controller)에 입력 명령이 제공되고, 가상 한계 회전 모터 콘트롤러는 가상 모터, 출력 축(output shaft) 및 거울 시스템에 출력 명령을 제공하는 것을 규정한다. 위치 검출 시스템(position detection system)은 레이저가 작동 상태에 있는 시간에서 위치 검출 신호(position detection signals)를 기록하고, 이것에 의해 가상 레이저 마킹 상(virtual laser marking image)을 결정한다.
그러므로, 컴퓨터 모델은 레이저 마킹 시스템을 시뮬레이트(simulate)한다. 가상 광학 마커(virtual optical marker)는 특정 패턴을 주어진 패턴을 마킹하는 다양한 마커(marker)의 실시간 신호와 함께 마크된 패턴의 상(image)으로 표시되도록 전환한다. 도 2는 본 발명의 구현예에 부합하는 시스템의 기능적인 블록 다이아그램을 나타낸다. 시스템(30)은 주어진 다-차원 상(multi-dimensional image)을 레이저 콘트롤 명령과 함께 순차로 거울 위치 명령(mirror position commands)으로 전환하기 위해 패턴 발생(pattern generation)및 레이저 콘트롤을 제공하는 명령 발생 및 레이저 콘트롤 유닛(command generation and laser control unit)(32)을 포함한다. 명령 발생 및 레이저 콘트롤 유닛(32)은 도 2의 33에서처럼 명령 기록(command history) 및 레이저 콘트롤 신호(laser control signal)을 발생한다. 마킹 상(image of the marking)은 레이저 콘트롤 신호(laser control signal), 빔 궤적(beam trajectory), 레이저 타입(laser type) 및 마크된 물질을 결합함으로써 얻어진다.
시스템(30)은 거울 각(mirror angle)을 목표 표면상의 빔 궤적(beam trajectories)으로 전환하기 위해 사용하는 공학적-기계적 모델 또는 구성요소(optical-mechanical models or components)(36) 뿐만 아니라 모터에 의해 구동되는 빔-편향 표면(beam-deflecting surfaces)의 동적 운동을 시뮬레이트 하는 닫힌 루프 구동 시스템(closed loop actuator system)(34)을 또한 포함한다. 레이저 마킹 시스템은 변수 입력 유닛(parameter input unit)(38)를 경유한 고객 가변 스캐닝 변수(customer adjustable scanning parameters) 및 패턴 입력 (40)을 경유하여 마크된 패턴을 수용한다. 닫힌 루프 구동 시스템(closed-loop actuator system)(34)은 42에 표시된 바와 같이 모터 전류, 전원 및 각 위치 궤적(angular position trajectory)을 제공한다.
광학적-기계적 구성요소는 43에 도시된 바와 같이 레이저 빔 궤적을 거울, 렌즈 및 목표(targets) 상에 제공한다. 시스템(30)은 레이저 시스템(44)를 포함할 수 있고, 48에 도시된 바와 같이 마크된 패턴들의 상을 제공한다. 예를 들면, 도 3a는 마크된(52) 패턴의 도식도를 나타내고, 도 3b는 도 3a에 도시된 패턴을 마크하기 위해 사용될 수 있는 실시간 전류(real time current)(54)를 나타낸다.
도 4는 마크를 만들기 위해 이동 주기(move period)(60), 뒤이은 대기 주기(wait period)(62) 동안 각 위치(angular position) 대 시간을 나타낸다. 단독 레이저 콘트롤 신호(independent laser control signal)가 마킹 공정 동안 주어진 시간에서 레이저의 온 및 오프 상태를 나타내는 기록된 데이터 순서로 유도된다. 모터 시스템 모델은 위에서 발생한 입력 명령에 따라 X 및 Y 모터 시스템의 시간 응답을 시뮬레이트 한다. 모터 시스템 모델의 제 1 출력은 각 위치 데이터(angular position data)의 배열 및 이에 대응하는 시간 값들에 의해 표현되는 X 및 Y 거울의 각 배치(angular displacement)이다. 모터 시스템으로부터 추가 출력은 실시간 모터 전류(real time motor current) 및 모터 시스템의 전력 손실(power dissipation)을 포함한다. 도 5는 실제 각 위치(66) 뿐 아니라 도 4에서 도시된 마킹 명령에 응답하는 원하는 각 위치(64)를 나타낸다.
레이저 빔의 광학 경로가 주어진 직경의 레이저 빔, 한정된 특성(defined characteristics)을 구비한 광학 렌즈 및 거울, 렌즈 및 목표 표면 중에서 상대적인 위치를 포함하여 도 1에서처럼 도시될 수 있다. 거울, 렌즈 및 목표 표면상의 광도 분포(light intensity distributions)는 공지되어 있다. 레이저 빔은 가우스 세기 패턴(Gaussian intensity pattern)에 의해 모델링 되고, 빔의 경로를 따라 전파된다.
레이저 콘트롤 신호 및 거울 위치 궤적을 결합함으로써, 거울, 렌즈 및 목표 표면상의 레이저 광도 윤곽 궤적(laser light intensity profile trajectories)이 수학적으로 만들어질 수 있다. 이어서, 마크된 상(marked image)은 마킹 공정 동안 표면 물질과 레이저 세기 변화(laser intensity changes) 사이의 상호 작용 결과로서 목표 표면상에 형상 및/또는 물질 특성 변화에 의해 얻어진다.
고객 가변 스캐닝 변수는 마킹 동안 레퍼런스 빔(reference beam)의 속도인 마크 속도(mark speed)(MS), 각 마킹의 종료점(end of each marking)에서 대기 기간인 마크 지연(mark delay)(MD), 점프 동안 레퍼런스 빔의 속도인 점프 속도(jump speed)(JS),각 점프의 종료점(end of each jump)에서 대기 기간인 점프 지연(jump delay)(JD), 레퍼런스 마킹의 시작 및 레이저 빔의 작동 사이의 시간 차인 레이저-온 지연(laser-on delay)(L-ON), 및 레퍼런스 마킹의 종료점 및 레이저 빔의 작동 중단 사이의 시간 차인 레이저-오프 지연(laser-off delay)(L-OFF)을 포함한다.
작동 동안, 마크된 특정패턴은 먼저 레이저 빔의 위치(laser beam positions) 순서로 전환된다. 다음으로, 마킹 속도, 마크 지연, 점프 속도 및 점프 지연을 포함한 사용자의 특정 마킹 변수를 사용하여 원하는 레이저 빔 위치를 X 및 Y 축 거울(X and Y axis mirror)의 각 위치들로 전환시킨다. 원하는 거울 각 위치 명령(mirror angular position commands)은 위치 값(position values)의 배열과 이에 대응하는 시간(time values)과 함께 표현된다. 예를 들면, 도 6은 시작점에서 레이저가 출발하고, 이어서 x 축 상만을 따라 마크하고(2), 이어서, x축을 따라 반대방향으로 및 y축의 위로 마크하고(3), 및 이어서 시작점으로 돌아오는(4) 마킹 표면상에 만들어지는 삼각형(68)의 마크를 나타내는 도식도이다.
마크된 패턴이 원하는 거울 위치의 궤적과 함께 이에 대응하는 마크 및 점프 통제로 한정될 수 있다. 예를 들면, 아래 표 1에 도시된 패턴 데이터는 도 6에 도시된 것처럼 점프를 상기 필드의 시작점으로 나타내고 뒤이어 삼각형(68)의 마킹이 표시된다.
표 1
X 위치 Y 위치 통제(control)
0 0 점프(Jump)
2 0 마크(Mark)
1 2 마크
0 0 마크
명령 발생 및 레이저 콘트롤 유닛(command generation and laser control unit)(32)은 패턴을 사용자의 한정된 스캐닝 변수 즉, MS, MD, JS, JD, 레이저-온 및 레이저-오프를 사용하여 스캔 헤드(scan head)에 대해 위치명령으로 전환한다.
이들 명령은 X축 Y축 양쪽의 레퍼런스 거울 위치의 찍혀진 시간 순서(time-stamped sequence)에 의해 표현된다. 레이저 온/오프 콘트롤의 순서는 또한 레이저-온 및 레이저-오프 콘트롤 변수를 사용하여 발생된다. 상기 변수들 사이에 존재하는 다음의 관계를 주목하여야 한다 :
MS*MS=MSx*MSx + MSy*MSy 및 JS*JS=JSx*JSx + JSy*JSy.
명령 및 레이저 콘트롤 신호에 대한 대응하는 수학식은 아래와 같이 유도된다. 마킹 작업은 일련의 마크 및 점프 명령을 포함한다. 마킹 표면상의 점 A(xl, yl)에서 점 B(x2, y2)로의 t0에서 점프에 대해서, 작동기간은 T이고, 여기서 T=L/JS + JD 이고, 여기서 L은 A와 B사이의 거리이고 다음과 같이 정의된다.
Figure 112006060075378-PCT00001
x 축 및 y 축에 대한 명령(command)이 시간의 함수 X(t) 및 Y(t)로서 정의된다.
Figure 112006060075378-PCT00002
x 명령의 속도 JSx(the speed of x command JSx) 및 y 명령의 속도 JSy(the speed of y command JSy)가 아래 식의 해(solution)이다.
JSx2 + JSy2 = JS2
및 │x2 - x1│/JSx = │y2 - y1│/JSy
레이저 콘트롤 신호(laser control signal) LASER(t)는 다음과 같이 주어진다.
Figure 112006060075378-PCT00003
여기서 LaserON 및 LaserOFF는 각각 레이저-온 및 레이저-오프의 주기이다.
유사하게, 마킹 표면상의 점 A(xl, yl)에서 점 B(x2, y2)로의 t0에서 마크(mark)에 대해서, 작동기간은 T이고, 여기서 T=L/MS + MD 이고, 여기서 L은 A와 B사이의 거리이고 다음과 같이 정의된다.
Figure 112006060075378-PCT00004
x 축 및 y 축에 대한 명령(command)이 시간의 함수 X(t) 및 Y(t)로서 정의된다.
Figure 112006060075378-PCT00005
x 명령의 속도 MSx(the speed of x command MSx) 및 y 명령의 속도 MSy(the speed of y command MSy)가 아래 식의 해(solution)이다.
MSx2 + MSy2 = MS2
및 │x2 - x1│/MSx = │y2 - y1│/MSy
레이저 콘트롤 신호(laser control signal) LASER(t)는 다음과 같이 주어진다.
Figure 112006060075378-PCT00006
도 7a-7c는 도 6에 도시된 마크를 형성하기 위해 사용된 명령을 나타낸다. 도 7a는 x축을 따르고 마킹 시간 주기(marking time period)를 넘어서는 명령 70을 나타내고, 도 7b는 y축을 따르고 마킹 시간 주기를 넘어서는 명령 72를 나타내고, 도 7c는 마킹 시간 주기를 따르는 명령 74, 레이저-온(Laser-On) 및 레이저-오프(Laser-Off)를 나타낸다.
X 및 Y 거울의 위치는 모터 시스템의 닫힌 루프시스템 모델을 사용하여 생성된다. 광학 스캐너의 시간 응답을 시뮬레이팅 하기 위한 목적으로 이 시스템 모델을 표현하는 다른 방법들이 있다. 이들은 일련의 미분/차분 방정식, 전달함수(transfer functions), 상태 공간 매트릭스(state space matrices), 주파수 응답 데이터(frequency response data), 및 아래에 논의되는 모델과 같이 그래픽 시스템 모델(graphical system models)을 포함한다.
특히, 7a에 도시된 바와 같이, x축을 따르는 레이저 명령 순서(laser command sequence)는 초기에 제로로 점프(jump)하고(72에 도시된 것처럼) 이어서 점프 지연(74) 동안 대기한다. 이어서 이 시스템은 마크 속도(mark speed)로 x 방향으로 마킹을 요구한다(76에 도시된 것처럼). 이어서 마크 지연(78)이 발생하고, 뒤이어 x 축을 따라 역방향으로 마킹(80)이 일어난다. 또 다른 마크 지연(82)이 발생하고, 뒤이어 마킹 속도로 x 축으로 마킹(84)이 계속된다.
7b에 도시된 바와 같이, y축을 따르는 레이저 명령 순서(laser command sequence)는 초기에 제로로 점프하고(92에 도시된 것처럼) 이어서 점프 지연(94) 동안 대기한다. 이어서 이 시스템은 마크 속도로 y 방향으로 마킹을 요구한다(96에 도시된 것처험). 이어서 마크 지연(98)이 발생하고, 뒤이어 y 축을 따라 반대방향으로 마킹(100)이 일어난다. 또 다른 마크 지연(102)이 발생하고, 뒤이어 마킹 속도로 y 축으로 마킹(104)이 이어진다. 도 7c에서 112에 도시된 바와 같이, 레이저-온 신호가 있은 후에 짧은 지연이 발생하고, 도 7c에서 114에 도시된 바와 같이, 레이저-오프 신호가 있은 후에 짧은 지연이 발생한다.
도 7a는 70 및 90에 도시된 x축 및 y축 명령에 대해 응답하는 시뮬레이트된 특정 한계 회전 모터 시스템의 시간 응답을 나타낸다. x축에 대한 시뮬레이트된 시간 응답이 120에 도시되고 y축에 대한 시뮬레이트된 시간 응답이 122에 도시된다.
닫힌 루프 모터 시스템(34)의 수학적 모델은 물리법칙으로 유도될 수 있거나 실제 시스템 측정(real system measurements)으로 확인되거나, 또는 이들 의 결합으로도 형성될 수 있다. 이 모델의 목적은 명령 발생 및 레이저 콘트롤 시스템(32)에 의해 생성된 명령 신호로 명령을 받게 될 때 모터 시스템의 동적 응답을 시뮬레이트 하기 위한 것이다. 예를 들면, 도 8은 본 발명의 구현예에 부합하는 한계 회전 모터 시스템의 수학적 모델(120)의 도식도를 나타낸다. 모델(120)은 콘트롤러(controller)(122)의 표현(representation), 및 모터(124)의 표현을 포함한다. 컨트롤러(122)는 비례 유닛(proportional unit)(126), 적분 유닛(integral unit)(128), 미분 유닛(derivative unit)(130)을 포함한다. 콘트롤러(122)는 피드백 신호뿐만 아니라 입력 명령 신호를 수신한다. 모터(124)는 콘트롤러의 출력을 수신하고, 거울 위치를 제공한다. 도시된 것처럼,위치 변환기(position transducer)가 모터(124)에 사용되어 위치 피드백을 콘트롤러(122)의 입력부로 제공한다.
예를 들면, 한계 회전 모터는 아래의 미분 방정식으로 표현될 수 있다.
Figure 112006060075378-PCT00007
여기서, x는 거울의 각 변위(angular displacement), i는 구동 전류, k는 모터의 토크 상수이다. 이에 대응하는 전달함수는
X(s)/I(s)=k/s2
여기서 X 및 I는 각각 위치 x 및 i의 라플라스 변환이다.
광학적-기계적 구성요소(36)는 주어진 거울 위치를 마킹 표면상의 레이저 빔의 위치로 전환한다. 이것은 레이저 빔을 공간상에서 레이저 소스로부터 일련의 평행선으로 레이저 빔을 모델링 함으로써 행해진다. 이어서 거울은 공간에서 평면으로서 모델링 된다. 첫째, 촛점 렌즈로 도달하는 빔(beam)은 x 및 y거울 위치에 의해 한정된 두 평면에 의해 반사된 선(lines)으로서 계산된다. 다음에, 마킹 표면상의 빔 위치 및 형상은 사용된 렌즈를 결정하는 광학 방정식을 사용하여 계산될 수 있다. 예를 들면, 표준 렌즈이면, 입력 및 출력 빔은 코사인 룰(rule)을 따르고, F-세타 렌즈(F-theta lenses)이면, 출력 빔 각(out beam angle)은 입력 빔(in beam)의 각에 비례한다. 레이저 콘트롤은 빔 스팟(beam spot)이 마킹 표면상에 형성되는지를 결정하는 데 사용된다.
빔 위치가 어떻게 결정되는지에 대한 예로서, 아래의 두 개의 거울, M1 와 M2, 및 입력 빔 L1과 출력 빔 L3의 경우를 고려하도록 한다. 첫째, 공간상에서 거울을 평면 M1 및 M2로서 표현하고, 입력 빔 L1을 공간상에서 직선으로 표현한다. 주어진 거울 위치로 출력 빔 L3의 빔 위치를 찾는 문제는 선 L3의 직선 방정식을 유도한다. 거울 평면 M1의 식을
Figure 112006060075378-PCT00008
두고, 여기서 (x1, yl, zl), (x2, y2, z2), 및 (x3, y3, z3)는 평면 M1이 지나가는 공간상의 알려진 점이다. 입력 빔(incoming beam) LI의 식은
Figure 112006060075378-PCT00009
가 되고, 여기서 (x4,y4,z4) 및 (x5, y5, z5)는 직선 L1이 지나가는 알려진 두 점이다.
도 9의 140에 도시된 것처럼, 평면 M1 및 선 L1사이에서 아래의 방정식을 풀어서 빔 L1이 교차하는 거울 M1상의 지점인 교차점 B를 결정하게 된다.
Figure 112006060075378-PCT00010
여기서
Figure 112006060075378-PCT00011
M1 상의 A의 반사점, A'는
Figure 112006060075378-PCT00012
에 의해 계산된다. 여기서, D는 점 A와 평면M1 사이의 거리이고, n은 평면 M1의 방향 벡터(directional vector)이고, 이것은 M1의 식으로부터 직접 유도될 수 있다.
만약, 점 B 및 A'가 계산된다면, 반사 선(reflecting line) L2는 도 9의 142에서 도시된 B 및 A'의 좌표에 의해 규정된다. 유사하게, 도 9에서 도시된 것처럼, 144에서 도시된 빔 L3이 점 C 및 B'에 의해 계산될 수 있다.
이어서, 마킹 표면상의 레이저 스팟의 궤적은 마킹 상을 형성하기 위해 사용된다. 이것은 마킹의 전체 과정 동안 마킹 표면의 주어진 영역에 도달하는 모든 빔의 빔 스팟의 선형 중첩(linear superposition)에 의해 행해진다. 수학적으로, 다차원 합성변환(multidimensional convolution)으로 얻어진다. 예를 들면, 2D의 경우, 우리는 각 소자의 인덱스에 대응하는 지점에서 빔의 세기를 표현하는 소자를 가진 행렬에 의해 빔의 세기 분포를 나타낼 수 있다.
Figure 112006060075378-PCT00013
빔 중심에서 주어진 궤적에 대해,
Figure 112006060075378-PCT00014
레이저 빔 세기에 대한 궤적은
Figure 112006060075378-PCT00015
로 계산될 수 있다.
상기의 가상 마킹 시스템은 예를 들면, 레이저 마킹과 같은 특정한 응용분야에서 사용될 때, 한계 회전 모터 시스템의 계속중인 성능을 평가하기 위해 사용될 수 있다.
당해 기술분야에서 통상의 지식을 가진자는 본 발명의 기술적 사상 및 범위를 벗어남이 없이 수많은 변경 및 수정이 본원에서 개시된 구현예에 의해 만들어질 수 있음을 이해하여야 한다.

Claims (21)

  1. 한계 회전 모터 시스템(limited rotation motor system)의 성능을 시뮬레이팅하기 위한 가상 마킹 시스템(virtual marking system)에 있어서,
    마크된 패턴의 데이터 표현을 수용하고 마크된 패턴을 마킹하기 위한 일련의 명령을 제공하는 명령 발생 수단(command generation means) ;
    마크된 패턴을 마킹하기 위한 일련의 명령을 수용하고 광학 소자(optical element)의 가상 위치를 나타내는 광학 소자 응답 신호(optical element response signals)를 제공하는 한계 회전 모터 시스템 수단(limited rotation motor system means) ; 및
    광학 소자 응답 신호를 수용하고 마크된 패턴의 가상 상(virtual image)을 제공하는 광학적-기계적 모델링 수단(optical-mechanical modeling means)
    을 포함하는 가상 마킹 시스템.
  2. 제 1항에 있어서, 상기 명령 발생 수단은 가상 마킹 시스템에 관한 일련의 가변 변수(adjustable parameters)를 수용하는 것을 특징으로 하는 가상 마킹 시스템.
  3. 제 2항에 있어서, 상기 변수는 마크 속도(mark speed), 마크 지연(mark delay), 점프 속도(jump speed), 점프 지연(jump delay), 레이저-온 지연(laser-on delay), 및 레이저-오프 지연(laser-off delay)을 표현하는 데이터를 포함하는 것을 특징으로 하는 가상 마킹 시스템.
  4. 제 1항에 있어서, 상기 한계 회전 모터 시스템은 모터 전류의 데이터 표현을 제공하는 것을 특징으로 하는 가상 마킹 시스템.
  5. 제 1항에 있어서, 상기 한계 회전 모터 시스템은 모터 전원의 데이터 표현을 제공하는 것을 특징으로 하는 가상 마킹 시스템.
  6. 제 1항에 있어서, 상기 한계 회전 모터 시스템은 각 위치(angular position)의 데이터 표현을 제공하는 것을 특징으로 하는 가상 마킹 시스템.
  7. 제 1항에 있어서, 상기 한계 회전 모터 시스템은 궤적(trajectory)의 데이터 표현을 제공하는 것을 특징으로 하는 가상 마킹 시스템.
  8. 제 1항에 있어서, 상기 광학적-기계적 모델링 수단은 마크된 패턴의 가상 상(virtual image)의 그래픽 표현(graphic representation)을 제공하는 것을 특징으로 하는 가상 마킹 시스템.
  9. 제 1항에 있어서, 상기 한계 회전 모터 시스템은 X 스캐너 모터(X scanner motor) 및 Y 스캐너 모터(Y scanner motor)에 대한 수학적 모델링을 포함하는 것을 특징으로 하는 가상 마킹 시스템.
  10. 제 1항에 있어서, 상기 가상 마킹 시스템이 한계 회전 모터 시스템에 사용되는 것을 특징으로 하는 가상 마킹 시스템.
  11. 제 10항에 있어서, 상기 한계 회전 모터 시스템이 실제 레이저 마킹(actual laser marking)용으로 사용되는 것을 특징으로 하는 가상 마킹 시스템.
  12. X-Y 한계 회전 모터 시스템(X-Y limited rotation motor system)의 성능을 시뮬레이팅하기 위한 가상 마킹 시스템에 있어서,
    2차원 상에서 마크된 패턴의 데이터 표현을 수용하고 마크된 패턴을 마킹하기 위한 일련의 명령을 제공하는 명령 발생 수단(command generation means) ;
    마크된 패턴을 마킹하기 위한 일련의 x 방향 명령(x direction commands)을 수용하고 광학 소자(optical element)의 가상 위치를 나타내는 x-방향 광학 소자 응답 신호(x-direction optical element response signals)를 제공하는 X-한계 회전 모터 시스템 수단(X-limited rotation motor system means) ;
    마크된 패턴을 마킹하기 위한 일련의 y 방향 명령(y direction commands)을 수용하고 광학 소자(optical element)의 가상 위치를 나타내는 y-방향 광학 소자 응답 신호(y-direction optical element response signals)를 제공하는 Y-한계 회 전 모터 시스템 수단(Y-limited rotation motor system means) ;
    x-방향 광학 소자 응답 신호 및 y-방향 광학 소자 응답 신호를 수용하고, 마크된 패턴의 가상 상(virtual image)을 제공하는 광학적-기계적 모델링 수단(optical-mechanical modeling means)
    을 포함하는 가상 마킹 시스팀.
  13. 제 12항에 있어서, 상기 명령 발생 수단은 가상 마킹 시스템에 관한 일련의 가변 변수를 수용하는 것을 특징으로 하는 가상 마킹 시스템.
  14. 제 13항에 있어서, 상기 변수는 마크 속도(mark speed), 마크 지연(mark delay), 점프 속도(jump speed), 점프 지연(jump delay), 레이저-온 지연(laser-on delay), 및 레이저-오프 지연(laser-off delay)을 표현하는 데이터를 포함하는 것을 특징으로 하는 가상 마킹 시스템.
  15. 제 12항에 있어서, 상기 한계 회전 모터 시스템은 모터 전류의 데이터 표현을 제공하는 것을 특징으로 하는 가상 마킹 시스템.
  16. 제 12항에 있어서, 상기 한계 회전 모터 시스템은 모터 전원의 데이터 표현을 제공하는 것을 특징으로 하는 가상 마킹 시스템.
  17. 제 12항에 있어서, 상기 한계 회전 모터 시스템은 각 위치(angular position)의 데이터 표현을 제공하는 것을 특징으로 하는 가상 마킹 시스템.
  18. 제 12항에 있어서, 상기 한계 회전 모터 시스템은 궤적(trajectory)의 데이터 표현을 제공하는 것을 특징으로 하는 가상 마킹 시스템.
  19. 제 12항에 있어서, 상기 광학적-기계적 모델링 수단은 마크된 패턴의 가상 상(virtual image)의 그래픽 표현(graphic representation)을 제공하는 것을 특징으로 하는 가상 마킹 시스템.
  20. 제 12항에 있어서, 상기 한계 회전 모터 시스템은 X 스캐너 모터(X scanner motor) 및 Y 스캐너 모터(Y scanner motor)에 대한 수학적 모델링을 포함하는 것을 특징으로 하는 가상 마킹 시스템.
  21. 한계 회전 모터 시스템의 성능을 시뮬레이팅하는 방법에 있어서, 상기 방법은 다음을 포함한다.
    마크된 패턴의 데이터 표현을 수용하는 단계 ;
    마크된 패턴을 마킹하기 위한 일련의 명령을 제공하는 단계 ;
    마크된 패턴을 마킹하기 위한 일련의 명령을 수용하는 단계 ;
    광학 소자의 가상 위치를 표현하는 광학 소자 응답 신호(optical element response signals)를 제공하는 단계 ;
    광학 소자 응답 신호를 제공하는 단계 ; 및
    마크된 패턴의 가상 상(virtual image)을 제공하는 단계.
KR1020067016920A 2004-01-23 2005-01-21 가상 레이저 마킹 시스템 및 방법 KR20060131849A (ko)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US53884204P 2004-01-23 2004-01-23
US60/538,842 2004-01-23
US57525504P 2004-05-28 2004-05-28
US60/575,255 2004-05-28
US61396204P 2004-09-28 2004-09-28
US60/613,962 2004-09-28

Publications (1)

Publication Number Publication Date
KR20060131849A true KR20060131849A (ko) 2006-12-20

Family

ID=34831198

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020067016920A KR20060131849A (ko) 2004-01-23 2005-01-21 가상 레이저 마킹 시스템 및 방법

Country Status (7)

Country Link
US (6) US7170251B2 (ko)
EP (3) EP1706775B1 (ko)
JP (1) JP2007519122A (ko)
KR (1) KR20060131849A (ko)
AT (1) ATE415643T1 (ko)
DE (1) DE602005011248D1 (ko)
WO (4) WO2005073819A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101402064B1 (ko) * 2010-06-03 2014-06-03 캐논 가부시끼가이샤 미러 각도-위치 결정 장치 및 처리 장치

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100873237B1 (ko) * 2000-09-21 2008-12-10 지에스아이 루모닉스 코포레이션 디지털 제어 서보 시스템
GB0313887D0 (en) * 2003-06-16 2003-07-23 Gsi Lumonics Ltd Monitoring and controlling of laser operation
US7170251B2 (en) * 2004-01-23 2007-01-30 Gsi Group Corporation System and method for diagnosing a controller in a limited rotation motor system
DE102005004862A1 (de) * 2005-02-02 2006-08-10 Siemens Ag Verfahren zur Überwachung der Temperatur zumindest eines Lagers einer elektrischen Maschine, eine hiermit korrespondierende Überwachungseinrichtung sowie elektrische Maschine mit einer derartigen Überwachungseinrichtung
DE102005047217A1 (de) * 2005-10-01 2007-04-05 Carl Zeiss Jena Gmbh Verfahren zur Steuerung eines optischen Scanners und Steuereinrichtung für einen optischen Scanner
US7659683B2 (en) * 2007-01-30 2010-02-09 Rockwell Automation Technologies, Inc. Resonant frequency identification
US8295983B2 (en) * 2008-11-10 2012-10-23 Silent Printer Holdings, Llc Apparatus and method for characterization and control of usage disturbances in a usage environment of printers and other dynamic systems
HU0800688D0 (en) * 2008-11-17 2009-01-28 Femtonics Kft Multiple free line-scan mode of scanning
US20110022542A1 (en) * 2009-07-21 2011-01-27 Lutnick Howard W Method and related apparatus for exchanging fractional interests in a collection of assets
US8214063B2 (en) * 2009-09-29 2012-07-03 Kollmorgen Corporation Auto-tune of a control system based on frequency response
DE102009045822A1 (de) * 2009-10-20 2011-04-28 Robert Bosch Gmbh Elektronisch kommutierter Elektromotor mit kalibrierter Motormomentkonstante
US20120056572A1 (en) * 2010-03-08 2012-03-08 Animatics Corporation Apparatus and methods for synchronized distributed controllers
ES2380480B8 (es) * 2010-04-21 2013-11-14 Macsa Id, S.A. Dispositivo y procedimiento para marcar mediante laser un objeto en movimiento.
JP5170175B2 (ja) * 2010-06-30 2013-03-27 株式会社安川電機 ロボットシステム
US8538597B2 (en) * 2010-07-27 2013-09-17 General Electric Company System and method for regulating temperature in a hot water heater
WO2012108246A1 (ja) * 2011-02-10 2012-08-16 株式会社マキタ モータに関連する状態量を推定する装置および電動工具
US20120274646A1 (en) * 2011-04-29 2012-11-01 Randy Johnson Laser particle projection system
ES2444504T3 (es) 2011-09-05 2014-02-25 ALLTEC Angewandte Laserlicht Technologie Gesellschaft mit beschränkter Haftung Dispositivo láser con una unidad láser, y un recipiente de fluido para medios de refrigeración de dicha unidad láser
ES2530069T3 (es) * 2011-09-05 2015-02-26 ALLTEC Angewandte Laserlicht Technologie Gesellschaft mit beschränkter Haftung Aparato de marcado con una pluralidad de láseres y un dispositivo de desviación de combinación
DK2565673T3 (da) 2011-09-05 2014-01-06 Alltec Angewandte Laserlicht Technologie Gmbh Indretning og fremgangsmåde til markering af et objekt ved hjælp af en laserstråle
ES2530070T3 (es) * 2011-09-05 2015-02-26 ALLTEC Angewandte Laserlicht Technologie Gesellschaft mit beschränkter Haftung Aparato de marcado con una pluralidad de láseres y conjuntos ajustables individualmente de medios de desviación
ES2452529T3 (es) 2011-09-05 2014-04-01 ALLTEC Angewandte Laserlicht Technologie Gesellschaft mit beschränkter Haftung Dispositivo láser y procedimiento para marcar un objeto
ES2544034T3 (es) 2011-09-05 2015-08-27 ALLTEC Angewandte Laserlicht Technologie Gesellschaft mit beschränkter Haftung Aparato de marcado con al menos un láser de gas y un termodisipador
EP2564972B1 (en) * 2011-09-05 2015-08-26 ALLTEC Angewandte Laserlicht Technologie Gesellschaft mit beschränkter Haftung Marking apparatus with a plurality of lasers, deflection means and telescopic means for each laser beam
ES2544269T3 (es) * 2011-09-05 2015-08-28 ALLTEC Angewandte Laserlicht Technologie Gesellschaft mit beschränkter Haftung Aparato de marcado con una pluralidad de láseres de gas con tubos de resonancia y medios de deflexión ajustables individualmente
GB2494416A (en) * 2011-09-07 2013-03-13 Rolls Royce Plc Asset Condition Monitoring Using Internal Signals Of The Controller
CN102520713B (zh) * 2011-12-09 2013-07-03 中国科学院长春光学精密机械与物理研究所 一种步进电机控制及驱动电路的闭环测试装置
CN102621890A (zh) * 2012-03-30 2012-08-01 中国科学院光电技术研究所 一种运动载体光电跟踪稳定平台的控制方法
US9494333B2 (en) 2013-11-08 2016-11-15 Emerson Electric Co. Driving controls and diagnostic methods for communicating motors
US9372219B2 (en) 2014-01-31 2016-06-21 Emerson Electric Co. Bad ground and reverse polarity detection for HVAC controls
US9698683B2 (en) * 2014-07-11 2017-07-04 Infineon Technologies Austria Ag Method and apparatus for controller optimization of a switching voltage regulator
CN104215371B (zh) * 2014-08-27 2017-02-15 湖北开特汽车电子电器系统股份有限公司 一种汽车空调步进电机力矩输出特性的测量系统
CN104460655B (zh) * 2014-11-07 2017-07-28 南京英纳瑞电气有限公司 发电机励磁控制系统的频响检测和参数优化分析方法及系统
JP6466165B2 (ja) * 2014-12-19 2019-02-06 株式会社鷺宮製作所 Pid制御装置、および、pid制御方法、ならびに、pid制御装置を備えた試験装置
US10913071B2 (en) 2016-03-09 2021-02-09 Pearson Incorporated Scalper apparatus and processing system
US10322487B1 (en) 2016-07-15 2019-06-18 Pearson Incorporated Roller mill grinding apparatus with regenerative capability
CN106514002B (zh) * 2016-08-31 2018-06-19 广州创乐激光设备有限公司 一种应用于打标物边界的3d激光打标方法
US20180187608A1 (en) * 2017-01-04 2018-07-05 General Electric Company Method for loop gain sizing of gas turbines
US10704427B2 (en) 2017-01-04 2020-07-07 General Electric Company Method to diagnose power plant degradation using efficiency models
TWI626590B (zh) * 2017-01-16 2018-06-11 建準電機工業股份有限公司 馬達控制器內儲程式之識別方法及具有內儲程式之馬達控制器的電路板
CN106909073B (zh) * 2017-05-03 2019-09-13 北京合康新能变频技术有限公司 一种数字调节器的参数调整方法
US10807098B1 (en) 2017-07-26 2020-10-20 Pearson Incorporated Systems and methods for step grinding
US11165372B2 (en) 2017-09-13 2021-11-02 Rockwell Automation Technologies, Inc. Method and apparatus to characterize loads in a linear synchronous motor system
US10310473B1 (en) 2017-11-30 2019-06-04 Mitsubishi Electric Corporation Systems and methods for path command generation
DE102018109055A1 (de) * 2018-04-17 2019-10-17 Carl Zeiss Microscopy Gmbh Geregelte Steuerung eines Scanners mit Frequenzraumanalyse einer Regelabweichung
US11325133B1 (en) 2018-07-26 2022-05-10 Pearson Incorporated Systems and methods for monitoring the roll diameter and shock loads in a milling apparatus
US10751722B1 (en) 2018-10-24 2020-08-25 Pearson Incorporated System for processing cannabis crop materials
DE102018221272B4 (de) * 2018-12-07 2020-07-30 Lenze Automation Gmbh Verfahren zum Bestimmen von Eigenschaften eines elektrischen Antriebssystems und ein elektrisches Antriebssystem
US10785906B2 (en) 2019-02-19 2020-09-29 Pearson Incorporated Plant processing system
CN109849102B (zh) * 2019-03-12 2020-12-18 深圳市强华科技发展有限公司 一种pcb数控钻孔控制系统及其控制方法
US10757860B1 (en) 2019-10-31 2020-09-01 Hemp Processing Solutions, LLC Stripper apparatus crop harvesting system
CN114787734A (zh) * 2019-11-12 2022-07-22 阿韦瓦软件有限责任公司 操作异常反馈环系统和方法
US10933424B1 (en) 2019-12-11 2021-03-02 Pearson Incorporated Grinding roll improvements
CN112986605B (zh) * 2021-02-22 2022-12-16 宏晶微电子科技股份有限公司 一种电机测速方法及装置
DE102022108043A1 (de) 2022-04-04 2023-10-05 Precitec Gmbh & Co. Kg Verfahren zum Bestimmen einer Totzeit für eine Laserparameter-Änderung und Verfahren zum Synchronisieren einer Scansteuerung und einer Bearbeitungslasersteuerung

Family Cites Families (155)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US275041A (en) * 1883-04-03 Apparatus for boiling acids and chemicals
US3932794A (en) * 1973-06-12 1976-01-13 Funken Co., Ltd. Revolution speed controller using both analog and digital control
US3999043A (en) 1975-06-02 1976-12-21 Servo Corporation Of America Pulse width detection circuit for electro-optical label reading system
DE2629473C2 (de) 1976-06-30 1982-10-28 Siemens AG, 1000 Berlin und 8000 München Schaltungsanordnung zum Versetzen der Datenköpfe eines Plattenspeichers um einen definierten Betrag aus der Datenzylindermitte
US4282468A (en) * 1979-04-16 1981-08-04 Hyper-Loop, Inc. High speed position feedback and comparator system
US4398241A (en) * 1980-08-07 1983-08-09 The Singer Company Digital control circuit for an analog servo
US4514671A (en) * 1982-04-02 1985-04-30 Ampex Corporation Head scanning servo system in a recording and/or reproducing apparatus
US4536806A (en) 1982-04-02 1985-08-20 Ampex Corporation Microprocessor controlled multiple servo system for a recording and/or reproducing apparatus
US4536906A (en) 1982-06-08 1985-08-27 Thomas Jourdan Plc Mattress with apertured insert
JPS59177186A (ja) 1983-03-26 1984-10-06 株式会社 サタケ 色彩選別機の自動制御装置
US4532402A (en) * 1983-09-02 1985-07-30 Xrl, Inc. Method and apparatus for positioning a focused beam on an integrated circuit
JPS60173767A (ja) 1984-02-20 1985-09-07 Sony Corp 光学式ディスク装置
US4631605A (en) 1984-09-20 1986-12-23 Ampex Corporation Multiple speed scanner servo system for protecting the heads and tape of helical recorders
DE3503983A1 (de) 1985-02-06 1986-08-07 Deutsche Thomson-Brandt Gmbh, 7730 Villingen-Schwenningen Fokus-regelung fuer ein geraet fuer plattenfoermige, rotierende informationstraeger
DE3520189A1 (de) * 1985-06-05 1986-12-11 Deutsche Thomson-Brandt Gmbh, 7730 Villingen-Schwenningen Verfahren fuer das spurspringen bei spursuchvorgaengen und schaltungsanordnung zur durchfuehrung des verfahrens
US4630187A (en) * 1985-09-09 1986-12-16 Sperry Corporation Power converter with duty ratio quantization
US4670653A (en) 1985-10-10 1987-06-02 Rockwell International Corporation Infrared detector and imaging system
JPS62210503A (ja) 1986-03-11 1987-09-16 Yamatake Honeywell Co Ltd プロセス制御の不安定化判別およびチユ−ニング方式
US4870631A (en) 1986-05-30 1989-09-26 Finial Technology, Inc. Optical turntable system with reflected spot position detection
US4972344A (en) 1986-05-30 1990-11-20 Finial Technology, Inc. Dual beam optical turntable
FR2600789B1 (fr) * 1986-06-26 1988-11-25 Shell Int Research Procede pour realiser le reglage d'accord d'un regulateur
US4965513A (en) * 1986-09-30 1990-10-23 Martin Marietta Energy Systems, Inc. Motor current signature analysis method for diagnosing motor operated devices
DE3736790A1 (de) * 1987-10-30 1989-05-11 Broadcast Television Syst Verfahren zur automatischen korrektur von bildstandsfehlern bei der filmabtastung
US4961117A (en) 1987-11-13 1990-10-02 New Dest Corporation Document scanner
JP2942804B2 (ja) * 1988-03-03 1999-08-30 株式会社ニコン レーザ加工装置及びレーザ加工装置のレーザビーム制御方法
US4941082A (en) * 1988-04-25 1990-07-10 Electro Scientific Industries, Inc. Light beam positioning system
US4908493A (en) * 1988-05-31 1990-03-13 Midwest Research Institute Method and apparatus for optimizing the efficiency and quality of laser material processing
JPH01308185A (ja) * 1988-06-02 1989-12-12 Fanuc Ltd モータ制御装置
US4864295A (en) 1988-06-30 1989-09-05 Cambridge Technology, Inc. Capacitance sensing system using multiple capacitances to sense rotary motion
US4956831A (en) * 1988-09-14 1990-09-11 Miniscribe Corporation Low acoustic noise head actuator
US4978909A (en) 1988-11-14 1990-12-18 Martin Marietta Energy Systems, Inc. Demodulation circuit for AC motor current spectral analysis
US4893068A (en) * 1988-11-15 1990-01-09 Hughes Aircraft Company Digital servo employing switch mode lead/lag integrator
US4930027A (en) * 1988-11-23 1990-05-29 Ampex Corporation Method and apparatus for tape speed override operation when recovering helical audio
US5157597A (en) * 1988-12-23 1992-10-20 Fanuc Ltd. Method of detecting oscillation of a servo system and automatically adjusting speed loop gain thereof
JP2882586B2 (ja) * 1989-01-13 1999-04-12 株式会社東芝 適応制御装置
US5245528A (en) 1989-03-20 1993-09-14 Hitachi, Ltd. Process control apparatus and method for adjustment of operating parameters of controller of the process control apparatus
US5187364A (en) * 1989-03-22 1993-02-16 National Research Council Of Canada/Conseil National De Recherches Du Canada Scanning device with waveform generator optimizer
US5185676A (en) 1989-09-27 1993-02-09 Canon Kabushiki Kaisha Beam scanning apparatus and apparatus for writing image information
US5122720A (en) * 1989-12-01 1992-06-16 Martinsound Technologies, Inc. Automated fader system
US5075875A (en) 1990-04-20 1991-12-24 Acuprint, Inc. Printer control system
US5233512A (en) * 1990-06-21 1993-08-03 General Electric Company Method and apparatus for actuator fault detection
US5119213A (en) * 1990-07-27 1992-06-02 Xerox Corporation Scanner document absence code system
DE4023998A1 (de) * 1990-07-28 1992-01-30 Alfill Getraenketechnik Verfahren und vorrichtung zum abfuellen einer fluessigkeit in portionsbehaelter
JP3164580B2 (ja) 1990-09-27 2001-05-08 豊田工機株式会社 ディジタルサーボ制御装置
PL169904B1 (pl) 1991-01-17 1996-09-30 United Distillers Plc Sposób i urzadzenie do znakowania poruszajacych sie wyrobów PL PL PL
US5225770A (en) 1991-02-25 1993-07-06 General Scanning, Inc. Moving magnet galvanometers having a varied density winding distribution coil for a desired performance characteristic
JP2745850B2 (ja) 1991-03-29 1998-04-28 三菱電機株式会社 数値制御装置、数値制御システム、制御パラメータの自動調整方法、特徴量判定基準変更方法および複数の調整条件総合判定方法
US5280377A (en) 1991-06-28 1994-01-18 Eastman Kodak Company Beam scanning galvanometer with spring supported mirror
US5257041A (en) 1991-06-28 1993-10-26 Eastman Kodak Company Method and circuit for driving an electromechanical device rapidly with great precision
JPH0536851A (ja) * 1991-07-31 1993-02-12 Nec Yamaguchi Ltd レーザマーカ装置
US5167002A (en) * 1991-08-14 1992-11-24 Fridhandler Robert M Electric motor driver control
US6453923B2 (en) * 1991-09-24 2002-09-24 Patent Category Corp. Collapsible structures
US5229574A (en) * 1991-10-15 1993-07-20 Videojet Systems International, Inc. Print quality laser marker apparatus
US5850089A (en) 1992-03-13 1998-12-15 American Research Corporation Of Virginia Modulated-structure of PZT/PT ferroelectric thin films for non-volatile random access memories
DE4221619C2 (de) 1992-07-01 1997-01-09 Hell Ag Linotype Vorrichtung zur Drehzahlstabilisierung
US5406496A (en) * 1992-07-20 1995-04-11 Recon/Optical, Inc. Adaptive digital controller with automatic plant tuning
US5275041A (en) 1992-09-11 1994-01-04 Halliburton Company Equilibrium fracture test and analysis
US5223778A (en) * 1992-09-16 1993-06-29 Allen-Bradley Company, Inc. Automatic tuning apparatus for PID controllers
US5568377A (en) 1992-10-29 1996-10-22 Johnson Service Company Fast automatic tuning of a feedback controller
US5331264A (en) * 1993-04-15 1994-07-19 Fanuc Robotics North America, Inc. Method and device for generating an input command for a motion control system
US5537109A (en) 1993-05-28 1996-07-16 General Scanning, Inc. Capacitive transducing with feedback
US5452285A (en) 1993-09-30 1995-09-19 Polaroid Corporation Uniformly distributed servo data for optical information storage medium
US5424526A (en) 1993-12-17 1995-06-13 Storage Technology Corporation High data density label and system using same
JP3486876B2 (ja) * 1994-01-28 2004-01-13 ソニー株式会社 手書き入力装置および方法
US5453618A (en) 1994-01-31 1995-09-26 Litton Systems, Inc. Miniature infrared line-scanning imager
US5610487A (en) 1994-05-19 1997-03-11 Maxtor Corporation Servo system with once per revolution rejection
US5629870A (en) 1994-05-31 1997-05-13 Siemens Energy & Automation, Inc. Method and apparatus for predicting electric induction machine failure during operation
US5523701A (en) 1994-06-21 1996-06-04 Martin Marietta Energy Systems, Inc. Method and apparatus for monitoring machine performance
US5585976A (en) 1994-06-22 1996-12-17 Seagate Technology, Inc. Digital sector servo incorporating repeatable run out tracking
US5604516A (en) 1994-06-30 1997-02-18 Symbol Technologies, Inc. Graphical user interface control for providing both automatic and manual data input
US5576632A (en) 1994-06-30 1996-11-19 Siemens Corporate Research, Inc. Neural network auto-associator and method for induction motor monitoring
US5646765A (en) 1994-10-05 1997-07-08 Synrad, Inc. Laser scanner
US5541486A (en) 1994-10-21 1996-07-30 Elsag International N.V. Automatic tuning of a position control circuit for a servo device
US5589870A (en) * 1994-10-31 1996-12-31 Xerox Corporation Spot profile control using fractional interlace factors in a polygon ROS
US5912541C1 (en) * 1994-11-30 2002-06-11 Animatics Corp Integrated servo motor and controller
JPH08190600A (ja) 1995-01-11 1996-07-23 Olympus Optical Co Ltd 情報再生システム
US5699494A (en) 1995-02-24 1997-12-16 Lexmark International, Inc. Remote replication of printer operator panel
WO1996028837A1 (en) 1995-03-10 1996-09-19 Molecular Imaging Corporation Hybrid control system for scanning probe microscopes
US5600121A (en) 1995-03-20 1997-02-04 Symbol Technologies, Inc. Optical reader with independent triggering and graphical user interface
US5656908A (en) * 1995-05-30 1997-08-12 Allen-Bradley Company, Inc. Negative coefficient filter for use with AC motors
US5726905A (en) 1995-09-27 1998-03-10 General Electric Company Adaptive, on line, statistical method and apparatus for motor bearing fault detection by passive motor current monitoring
JP3078484B2 (ja) 1995-10-03 2000-08-21 オリンパス光学工業株式会社 コード読取装置
US5726883A (en) 1995-10-10 1998-03-10 Xerox Corporation Method of customizing control interfaces for devices on a network
US5932119A (en) 1996-01-05 1999-08-03 Lazare Kaplan International, Inc. Laser marking system
US5869945A (en) 1996-02-06 1999-02-09 Raytheon Ti Systems, Inc. Infrared scanner
ES2140223T3 (es) 1996-02-09 2000-02-16 Siemens Ag Procedimiento para la generacion de parametros de regulacion a partir de una señal de respuesta de un tramo de regulacion por medio de un ordenador.
GB2310504A (en) 1996-02-23 1997-08-27 Spectrum Tech Ltd Laser marking apparatus and methods
US5742503A (en) 1996-03-25 1998-04-21 National Science Council Use of saturation relay feedback in PID controller tuning
JPH09269804A (ja) 1996-03-29 1997-10-14 Aisin Seiki Co Ltd 自動制御系の安定制御装置
US5742522A (en) 1996-04-01 1998-04-21 General Electric Company Adaptive, on line, statistical method and apparatus for detection of broken bars in motors by passive motor current monitoring and digital torque estimation
KR100194377B1 (ko) * 1996-04-08 1999-06-15 윤종용 유전 이론을 이용한 피드 제어기의 이득 결정 장치및방법
US6243350B1 (en) * 1996-05-01 2001-06-05 Terastor Corporation Optical storage systems with flying optical heads for near-field recording and reading
EP0816860B1 (en) 1996-06-28 2003-01-29 Siemens Corporate Research, Inc. Detecting anomalies in electrical equipment operation
DE19638879A1 (de) 1996-09-23 1998-03-26 Thomson Brandt Gmbh Verfahren zum Verarbeiten der Ausgangssignale eines optoelektronischen Abtasters in einem Wiedergabe- oder Aufzeichnungsgerät und entsprechendes Gerät
ID19364A (id) 1996-09-25 1998-07-02 Thomson Brandt Gmbh Mereproduksi atau alat perekaman untuk mereproduksi, atau perekam, suatu medium perekam optikal
US5808725A (en) 1996-09-27 1998-09-15 Eastman Kodak Company Illumination control system for a film scanner
JPH10124131A (ja) * 1996-10-22 1998-05-15 Fanuc Ltd 制御装置に接続される機器の管理方法
US6041287A (en) 1996-11-07 2000-03-21 Reliance Electric Industrial Company System architecture for on-line machine diagnostics
US5917428A (en) 1996-11-07 1999-06-29 Reliance Electric Industrial Company Integrated motor and diagnostic apparatus and method of operating same
US5886422A (en) 1997-07-30 1999-03-23 Spartec International Corporation Universal electric power controller
EP0896265B1 (de) 1997-08-08 2004-02-04 Bosch Rexroth AG Antriebseinrichtung
US6072653A (en) 1997-10-01 2000-06-06 Seagate Technology, Inc. Methods and apparatus for calibration of a rotating scanner to a track recorded on a tape
US6081751A (en) 1997-12-19 2000-06-27 National Instruments Corporation System and method for closed loop autotuning of PID controllers
JP3511359B2 (ja) * 1998-02-27 2004-03-29 三菱電機株式会社 レーザ加工装置
US6199018B1 (en) 1998-03-04 2001-03-06 Emerson Electric Co. Distributed diagnostic system
US6453722B1 (en) 1998-06-11 2002-09-24 Seagate Technology Llc Integrated test system for a disc drive pivot bearing and actuator
JP3519278B2 (ja) * 1998-07-08 2004-04-12 三菱電機株式会社 レーザ加工方法、レーザ加工装置およびその方法を実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体
US6326758B1 (en) * 1999-12-15 2001-12-04 Reliance Electric Technologies, Llc Integrated diagnostics and control systems
US6317637B1 (en) 1998-10-22 2001-11-13 National Instruments Corporation System and method for maintaining output continuity of PID controllers in response to changes in controller parameters
US6071653A (en) * 1998-11-04 2000-06-06 United Microelectronics Corp. Method for fabricating a photomask
US6449564B1 (en) 1998-11-23 2002-09-10 General Electric Company Apparatus and method for monitoring shaft cracking or incipient pinion slip in a geared system
US6054828A (en) 1998-12-16 2000-04-25 Stmicroelectronics, N.V. Circuitry and methods for adjusting and switching the gain of a digital-to-analog converter in a disk drive
US6463352B1 (en) * 1999-01-21 2002-10-08 Amada Cutting Technologies, Inc. System for management of cutting machines
US6198176B1 (en) * 1999-02-16 2001-03-06 Statordyne Llc UPS/CPS system
US6445962B1 (en) 1999-03-15 2002-09-03 Fisher Rosemount Systems, Inc. Auto-tuning in a distributed process control environment
JP4273560B2 (ja) 1999-03-23 2009-06-03 パナソニック株式会社 モータの制御装置
US6304359B1 (en) 1999-07-20 2001-10-16 Lasesys Corporation High scan efficiency galvanometric laser scanning device
JP2003506799A (ja) * 1999-08-09 2003-02-18 クロス マッチ テクノロジーズ, インコーポレイテッド Guiと指紋スキャナとの間のインターフェースのための方法、システム、およびコンピュータプログラム製品
US6198246B1 (en) 1999-08-19 2001-03-06 Siemens Energy & Automation, Inc. Method and apparatus for tuning control system parameters
US6643080B1 (en) 1999-08-25 2003-11-04 Seagate Technology Llc Resonance identification by commanding a spindle speed change
US6256121B1 (en) * 1999-10-08 2001-07-03 Nanovia, Lp Apparatus for ablating high-density array of vias or indentation in surface of object
US6510353B1 (en) * 1999-11-04 2003-01-21 Fisher-Rosemount Systems, Inc. Determining tuning parameters for a process controller from a robustness map
US6697685B1 (en) 1999-11-06 2004-02-24 David J. Caldwell Flexible closed-loop controller
JP3852070B2 (ja) * 1999-11-11 2006-11-29 富士通株式会社 光路シミュレーションcad装置及び方法
US6350239B1 (en) * 1999-12-28 2002-02-26 Ge Medical Systems Global Technology Company, Llc Method and apparatus for distributed software architecture for medical diagnostic systems
US6424873B1 (en) 1999-12-30 2002-07-23 Honeywell Inc. Systems and methods for limiting integral calculation components in PID controllers
EP1122646B1 (fr) * 2000-01-31 2003-04-23 Miriad technologies Procédé de détection d'anomalies dans un signal
DE10005611A1 (de) * 2000-02-09 2001-08-30 Randolf Hoche Verfahren und Vorrichtung zum Verstellen eines Elements
EP1283593B1 (en) * 2000-04-20 2009-08-05 Kabushiki Kaisha Yaskawa Denki Motor controller
US6577907B1 (en) * 2000-04-24 2003-06-10 International Business Machines Corporation Fully modular multifunction device
US6690534B2 (en) * 2000-06-14 2004-02-10 Seagate Technology Llc Method and apparatus for handling multiple resonance frequencies in disc drives using active damping
US6622099B2 (en) 2000-08-14 2003-09-16 Kollmorgen Corporation Frequency domain auto-tune for an internal motor controller
KR100873237B1 (ko) * 2000-09-21 2008-12-10 지에스아이 루모닉스 코포레이션 디지털 제어 서보 시스템
US6496782B1 (en) * 2000-10-30 2002-12-17 General Electric Company Electric machine monitoring method and system
ATE508398T1 (de) * 2001-03-29 2011-05-15 Lasx Ind Inc Steuerung für einen laser mit prädiktiven modellen des bewegungssystems des laserstrahls
US6727725B2 (en) * 2001-05-01 2004-04-27 Square D Company Motor bearing damage detection via wavelet analysis of the starting current transient
US6774601B2 (en) * 2001-06-11 2004-08-10 Predictive Systems Engineering, Ltd. System and method for predicting mechanical failures in machinery driven by an induction motor
JP4149691B2 (ja) * 2001-08-31 2008-09-10 株式会社東芝 半導体製造装置用回転機の寿命予測方法及び半導体製造装置
DE10144076A1 (de) * 2001-09-07 2003-03-27 Daimler Chrysler Ag Vorrichtung und Verfahren zur Früherkennung und Vorhersage von Aggregateschädigungen
DE60203458T3 (de) * 2001-09-27 2010-02-18 Reliance Electric Technologies, LLC, Mayfield Heights Integrierte Steuerung und Diagnose für ein motorbetriebenes System unter Verwendung von Schwingungs-, Druck-, Temperatur-, Geschwindigkeits-, und/oder Stromanalyse
US6668202B2 (en) * 2001-11-21 2003-12-23 Sumitomo Heavy Industries, Ltd. Position control system and velocity control system for stage driving mechanism
EP1321114B1 (de) * 2001-11-21 2018-03-07 Zimmer GmbH Schultergelenkprothese
WO2003054503A2 (en) * 2001-12-07 2003-07-03 Battelle Memorial Institute Methods and systems for analyzing the degradation and failure of mechanical systems
US6980938B2 (en) * 2002-01-10 2005-12-27 Cutler Technology Corporation Method for removal of PID dynamics from MPC models
AU2003206526A1 (en) * 2002-02-28 2003-09-09 Zetacon Corporation Predictive control system and method
US6895352B2 (en) * 2002-03-12 2005-05-17 Itt Manufacturing Enterprises, Inc. Simultaneous rapid open and closed loop bode plot measurement using a binary pseudo-random sequence
US6812668B2 (en) * 2002-03-25 2004-11-02 Brother Kogyo Kabushiki Kaisha Apparatus, method and program for controlling an electric motor
US7067763B2 (en) * 2002-05-17 2006-06-27 Gsi Group Corporation High speed, laser-based marking method and system for producing machine readable marks on workpieces and semiconductor devices with reduced subsurface damage produced thereby
JP4265206B2 (ja) * 2002-11-27 2009-05-20 株式会社 東北テクノアーチ 非接触導電率測定システム
US7437201B2 (en) * 2003-01-14 2008-10-14 Cullen Christopher P Electric motor controller
US6876167B1 (en) * 2003-01-24 2005-04-05 Trw Automotive U.S. Llc Method and apparatus for determining the rotational rate of a rotating device
KR100507835B1 (ko) * 2003-02-03 2005-08-17 한국과학기술원 Pid 제어기의 최적 게인 선정방법
WO2005064781A1 (ja) * 2003-12-25 2005-07-14 Mitsubishi Denki Kabushiki Kaisha モータの制御装置
US7170251B2 (en) * 2004-01-23 2007-01-30 Gsi Group Corporation System and method for diagnosing a controller in a limited rotation motor system
TW200534068A (en) * 2004-04-07 2005-10-16 Macronix Int Co Ltd Close loop control system and method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101402064B1 (ko) * 2010-06-03 2014-06-03 캐논 가부시끼가이샤 미러 각도-위치 결정 장치 및 처리 장치

Also Published As

Publication number Publication date
EP1706776A1 (en) 2006-10-04
US20070089500A1 (en) 2007-04-26
US7170251B2 (en) 2007-01-30
US20070121485A1 (en) 2007-05-31
EP1706775B1 (en) 2008-11-26
WO2005072264A2 (en) 2005-08-11
US7190144B2 (en) 2007-03-13
WO2005073819A1 (en) 2005-08-11
ATE415643T1 (de) 2008-12-15
US20050162174A1 (en) 2005-07-28
US20050165590A1 (en) 2005-07-28
US7291999B2 (en) 2007-11-06
WO2005073782A1 (en) 2005-08-11
EP1706801A1 (en) 2006-10-04
EP1706775A1 (en) 2006-10-04
US20050177330A1 (en) 2005-08-11
WO2005073783A1 (en) 2005-08-11
US20050174124A1 (en) 2005-08-11
JP2007519122A (ja) 2007-07-12
DE602005011248D1 (de) 2009-01-08
WO2005072264A3 (en) 2005-10-13

Similar Documents

Publication Publication Date Title
KR20060131849A (ko) 가상 레이저 마킹 시스템 및 방법
CN101396767B (zh) 激光加工设备、加工数据产生方法
CN106695118B (zh) 一种四自由度xy振镜扫描装置及控制方法
JP3263724B2 (ja) 2次元レーザパターンによる形状特徴抽出装置
CN107193123B (zh) 一种自适应线结构光的闭环调制方法
JP6325646B1 (ja) ロボットを用いてレーザ加工を行うレーザ加工ロボットシステム及びレーザ加工ロボットの制御方法
CN105301768B (zh) 振镜式激光扫描系统
JP2003136270A (ja) レーザ加工装置
US20050187650A1 (en) Servo control system for movable body, and laser drilling machine
JP5162471B2 (ja) 軸方向での相対位置及び/又は相対運動を制御するための方法、並びに、工作機械
JP3365388B2 (ja) レーザ加工光学装置
Xu et al. Novel stereolithography system for small size objects
JP6908642B2 (ja) レーザ加工装置
JPH052146A (ja) ビームポジシヨナ
KR20020025180A (ko) 미리 정해진 희망 경로를 입자 비임 또는 파동 비임으로 표시하는 방법 및 그 방법의 이용방법
JP4497985B2 (ja) ガルバノスキャナの制御方法及びガルバノスキャナの制御装置並びにレーザ加工機
CN1910498A (zh) 用于虚拟激光标记的系统和方法
JP2005014089A (ja) レーザマーキング方法
JP3852070B2 (ja) 光路シミュレーションcad装置及び方法
JP2008132514A (ja) レーザ加工方法及びその方法を用いて製造されるマイクロセル
JP2004038106A (ja) レーザビーム走査装置
Benti Design and development of a laser projection platform as assistant for mapping the utilities during construction projects
CN117300396B (zh) 激光打孔控制方法、装置、激光设备及存储介质
WO2022176247A1 (ja) 制御システムおよび制御方法
CN118049935A (zh) 基于单线激光和mems扫描微镜的三维测量装置及方法

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid