KR102070558B1 - 발광 장치 - Google Patents

발광 장치 Download PDF

Info

Publication number
KR102070558B1
KR102070558B1 KR1020190091424A KR20190091424A KR102070558B1 KR 102070558 B1 KR102070558 B1 KR 102070558B1 KR 1020190091424 A KR1020190091424 A KR 1020190091424A KR 20190091424 A KR20190091424 A KR 20190091424A KR 102070558 B1 KR102070558 B1 KR 102070558B1
Authority
KR
South Korea
Prior art keywords
transistor
conductive film
film
light emitting
gate
Prior art date
Application number
KR1020190091424A
Other languages
English (en)
Other versions
KR20190094321A (ko
Inventor
준 고야마
Original Assignee
가부시키가이샤 한도오따이 에네루기 켄큐쇼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 한도오따이 에네루기 켄큐쇼 filed Critical 가부시키가이샤 한도오따이 에네루기 켄큐쇼
Publication of KR20190094321A publication Critical patent/KR20190094321A/ko
Application granted granted Critical
Publication of KR102070558B1 publication Critical patent/KR102070558B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1255Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs integrated with passive devices, e.g. auxiliary capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/043Compensation electrodes or other additional electrodes in matrix displays related to distortions or compensation signals, e.g. for modifying TFT threshold voltage in column driver
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0852Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor being a dynamic memory with more than one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0861Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0204Compensation of DC component across the pixels in flat panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • G09G2320/045Compensation of drifts in the characteristics of light emitting or modulating elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/155Hole transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/818Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/852Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]

Abstract

트랜지스터의 임계값 전압의 편차에 의한, 발광 소자의 휘도의 편차를 억제한다. 또한, 전계 발광층의 열화에 의한, 발광 소자의 휘도의 저하를 억제한다.
발광 소자와, 소스가 발광 소자의 애노드에 전기적으로 접속되는 제 1 트랜지스터와, 제 1 트랜지스터의 게이트에 화상 신호를 입력할지 여부를 제어하는 제 2 트랜지스터와, 제 1 트랜지스터의 게이트와 드레인을 전기적으로 접속할지 여부를 제어하는 제 3 트랜지스터와, 제 1 트랜지스터의 드레인에 제 1 전원 전위를 공급할지 여부를 제어하는 제 4 트랜지스터와, 발광 소자의 애노드에 제 2 전원 전위를 공급할지 여부를 제어하는 제 5 트랜지스터와, 제 1 트랜지스터의 게이트와 소스 사이의 전압을 유지하는 제 1 용량 소자와, 제 1 용량 소자에 직렬 접속으로 전기적으로 접속되고, 발광 소자에 직렬 접속으로 전기적으로 접속되는 제 2 용량 소자를 구비한다.

Description

발광 장치{LIGHT-EMITTING DEVICE}
본 발명은 트랜지스터가 각 화소에 형성된 발광 장치에 관한 것이다.
발광 소자를 사용한 표시 장치는 시인성이 높고, 박형화에 최적인 동시에, 시야각에도 제한이 없기 때문에, CRT(Cathode Ray Tube)나 액정 표시 장치를 대신할 표시 장치로서 주목받고 있다. 발광 소자를 사용한 액티브 매트릭스형의 표시 장치는, 구체적으로 제안되어 있는 구성이 메이커에 따라 상이하지만, 통상, 적어도 발광 소자와, 화소로의 비디오 신호의 입력을 제어하는 트랜지스터(스위칭용 트랜지스터)와, 상기 발광 소자에 공급하는 전류값을 제어하는 트랜지스터(구동용 트랜지스터)가, 각 화소에 형성되어 있다.
화소에 형성하는 상기 트랜지스터를 모두 동일한 극성으로 함으로써, 트랜지스터의 제작 공정에 있어서, 반도체층에 1도전성을 부여하는 불순물 원소의 첨가 등의 공정을, 일부 생략할 수 있다. 하기의 특허문헌 1에는, n채널형 트랜지스터만으로 화소가 구성되어 있는 발광 소자형 디스플레이에 관해서, 기재되어 있다.
일본 공개특허공보 제2003-195810호
그런데, 발광 장치에서는, 구동용 트랜지스터의 드레인 전류가 발광 소자에 공급되기 때문에, 화소간에 있어서 구동용 트랜지스터의 임계값 전압에 편차가 발생하면, 발광 소자의 휘도에도 그 편차가 반영되어 버린다. 따라서, 임계값 전압의 편차를 예측하여 구동용 트랜지스터의 전류값을 보정할 수 있는 화소 구성의 제안은, 발광 장치의 화질 향상을 도모하는데 있어서, 중요한 과제이다.
또한, 일반적으로, 발광 소자의 애노드로서 사용하는 도전막은, 발광 소자의 캐소드로서 사용하는 도전막보다도, 대기 중에 있어서 그 표면이 산화되기 어렵다. 게다가, 발광 소자의 애노드로서 사용하는 도전막은, 통상, 스퍼터링법을 사용하여 형성되기 때문에, 전계 발광 재료를 함유하는 전계 발광층 위에 애노드를 형성하면, 스퍼터링 대미지에 의해 전계 발광층이 손상을 받기 쉽다. 따라서, 애노드, 전계 발광층, 캐소드의 순으로 적층된 구조를 갖는 발광 소자는, 제작 프로세스도 간이하고, 높은 발광 효율이 얻어지기 쉽다. 그러나, 상기 구조의 발광 소자에 n채널형의 구동용 트랜지스터를 조합하는 경우, 구동용 트랜지스터의 소스가 발광 소자의 애노드에 접속된다. 따라서, 전계 발광 재료의 열화에 따라, 발광 소자의 애노드와 캐소드간의 전압이 증가하면, 구동용 트랜지스터에 있어서 소스의 전위가 상승하고, 게이트와 소스간의 전압(게이트 전압)이 작아진다. 이로 인해, 구동용 트랜지스터의 드레인 전류, 즉, 발광 소자에 공급되는 전류가 작아져 발광 소자의 휘도가 저하된다.
상기의 문제를 감안하여, 본 발명은 구동용 트랜지스터의 임계값 전압의 편차에 의한 화소간의 휘도의 편차가 억제되는, 발광 장치의 제공을 과제의 하나로 한다. 또는, 본 발명은, 전계 발광층의 열화에 의해, 발광 소자의 휘도가 저하되는 것을 억제할 수 있는 발광 장치의 제공을, 과제의 하나로 한다.
본 발명의 일 형태에서는, 상기 과제를 해결하기 위해, 구동용 트랜지스터의 게이트와 소스간의 전압을 유지하는 제 1 용량 소자와, 상기 제 1 용량 소자에 직렬로 접속되고, 또한 발광 소자와 직렬로 접속된 제 2 용량 소자를, 화소에 형성한다. 또한, 제 1 용량 소자가 갖는 용량값은, 발광 소자 및 제 2 용량 소자로 구성되는 합성 용량의 용량값보다도, 작은 구성으로 한다. 상기 화소에 있어서, 구동용 트랜지스터의 게이트와 드레인을 접속한 상태에서, 임계값 전압보다도 큰 전압을 구동용 트랜지스터의 게이트와 소스 사이에 인가한다. 이어서, 상기 게이트와 드레인을 접속한 채, 소스를 플로팅(부유 상태)으로 함으로써, 상기 제 1 용량 소자에 구동용 트랜지스터의 임계값 전압이 유지된다. 그리고, 소스를 플로팅(부유 상태)으로 한 채, 게이트에 화상 신호의 전압을 주면, 구동용 트랜지스터의 게이트와 소스간에, 화상 신호의 전압에 임계값 전압을 가산한 전압이 주어진다. 발광 소자는, 구동용 트랜지스터의 게이트 전압에 적합한 값의 전류가 공급되어 계조의 표시를 행한다.
본 발명의 일 형태에서는, 상기 구성에 의해, 구동용 트랜지스터의 임계값 전압이 시프트해도, 임계값 전압의 크기에 맞춰서 그 게이트 전압을 결정할 수 있다. 또한, 본 발명의 일 형태에서는, 상기 구성에 의해, 전계 발광 재료의 열화에 따라 발광 소자의 애노드와 캐소드간의 전압이 증가해도, 구동용 트랜지스터의 게이트 전압에 변화가 생기지 않는다.
구체적으로, 본 발명의 일 형태에 따른 발광 장치는, 발광 소자와, 소스가 발광 소자의 애노드에 전기적으로 접속되어, 발광 소자에 흐르는 전류를 제어하는 제 1 트랜지스터와, 제 1 트랜지스터의 게이트에 화상 신호를 입력할지 여부를 제어하는 제 2 트랜지스터와, 제 1 트랜지스터의 게이트와 드레인을 전기적으로 접속할지 여부를 제어하는 제 3 트랜지스터와, 제 1 트랜지스터의 드레인에 제 1 전원 전위를 공급할지 여부를 제어하는 제 4 트랜지스터와, 발광 소자의 애노드에 제 2 전원 전위를 공급할지 여부를 제어하는 제 5 트랜지스터와, 제 1 트랜지스터의 게이트와 소스 사이의 전압을 유지하는 제 1 용량 소자와, 제 1 용량 소자에 직렬 접속으로 전기적으로 접속되어 발광 소자에 직렬 접속으로 전기적으로 접속되는 제 2 용량 소자를 구비하고, 제 1 트랜지스터 내지 제 5 트랜지스터 각각은, n채널형 트랜지스터인 발광 장치이다.
또한, 본 발명의 일 형태에 따른 발광 장치에서는, 제 2 트랜지스터의 드레인에 제 2 전원 전위를 공급할지 여부를 제어하는 제 6 트랜지스터를 형성해도 좋다.
또한, 상기 본 발명의 일 형태에 따른 발광 장치에서는, 제 1 트랜지스터 내지 제 6 트랜지스터에 있어서, 소스와 드레인 사이에 형성되는 채널 형성 영역이 산화물 반도체, 또는 단결정 실리콘이라도 좋다.
본 발명의 일 형태에서는, 상기 구성에 의해, 구동용 트랜지스터의 임계값 전압의 편차에 의한 화소간의 휘도의 편차가 억제된다. 또는, 본 발명의 일 형태에서는, 전계 발광층의 열화에 의해, 발광 소자의 휘도가 저하되는 것을 억제할 수 있다.
도 1은 발광 장치에 있어서의 화소부를 도시하는 회로도와, 타이밍 차트.
도 2는 발광 장치의 구동 방법을 도시하는 도면.
도 3은 발광 장치의 구동 방법을 도시하는 도면.
도 4는 발광 장치에 있어서의 화소부를 도시하는 회로도.
도 5는 화소의 상면도.
도 6은 화소의 단면도.
도 7은 화소의 상면도.
도 8은 화소의 상면도.
도 9는 화소의 단면도.
도 10은 화소의 단면도.
도 11은 구동 회로의 블록도.
도 12는 구동 회로의 블록도.
도 13은 발광 장치의 사시도.
도 14는 전자 기기의 도면.
도 15는 산화물 재료의 구조를 설명하는 도면.
도 16은 산화물 재료의 구조를 설명하는 도면.
도 17은 산화물 재료의 구조를 설명하는 도면.
도 18은 계산에 의해 얻어진 이동도의 게이트 전압 의존성을 설명하는 도면.
도 19는 계산에 의해 얻어진 드레인 전류와 이동도의 게이트 전압 의존성을 설명하는 도면.
도 20은 계산에 의해 얻어진 드레인 전류와 이동도의 게이트 전압 의존성을 설명하는 도면.
도 21은 계산에 의해 얻어진 드레인 전류와 이동도의 게이트 전압 의존성을 설명하는 도면.
도 22는 계산에 사용한 트랜지스터의 단면 구조를 설명하는 도면.
도 23은 트랜지스터의 특성을 도시하는 도면.
도 24는 트랜지스터의 특성을 도시하는 도면.
도 25는 트랜지스터의 특성을 도시하는 도면.
도 26은 트랜지스터의 특성을 도시하는 도면.
도 27은 트랜지스터의 특성을 도시하는 도면.
도 28은 트랜지스터의 XRD 스펙트럼을 도시하는 도면.
도 29는 트랜지스터의 특성을 도시하는 도면.
도 30은 트랜지스터의 구조를 설명하는 도면.
도 31은 트랜지스터의 구조를 설명하는 도면.
이하에서는, 본 발명의 실시형태에 관해서 도면을 사용하여 상세하게 설명한다. 다만, 본 발명은 이하의 설명에 한정되지 않고, 본 발명의 취지 및 그 범위에서 일탈하지 않고 그 형태 및 상세를 다양하게 변경할 수 있는 것은, 당업자라면 용이하게 이해할 수 있다. 따라서, 본 발명은, 이하에 나타내는 실시형태의 기재 내용으로 한정하여 해석되는 것은 아니다.
(실시형태 1)
본 실시형태에 있어서의 발광 장치는, 화소부를 포함한다. 또한, 본 실시형태의 발광 장치에 있어서의 화소부의 예에 관해서 도 1을 사용하여 설명한다.
도 1a에 도시하는 바와 같이, 화소부는, 신호선(S1)과, 전원선(VA)과, 전원선(VB)과, 전원선(VC)과, 주사선(G1)과, 주사선(G2)과, 주사선(G3)과, 주사선(G4)과, 발광 소자(101)와, 트랜지스터(102)와, 트랜지스터(103)와, 트랜지스터(104)와, 트랜지스터(105)와, 트랜지스터(106)와, 용량 소자(107)와, 용량 소자(108)와, 트랜지스터(109)를 구비한다.
도 1a에 도시하는 발광 장치에 있어서, 트랜지스터는 전계 효과 트랜지스터이다. 또한, 상기 트랜지스터에서는, 구조나 동작 조건 등에 따라, 소스와 드레인이 서로 바뀌는 경우가 있다.
예를 들면, 발광 소자(101), 트랜지스터(102), 트랜지스터(103), 트랜지스터(104), 트랜지스터(105), 트랜지스터(106), 용량 소자(107), 용량 소자(108), 및 트랜지스터(109)를 구비하는 회로를 1개의 화소 회로로 하여, 1개의 화소 회로에 의해 1개의 화소를 구성해도 좋다. 상기 화소 회로는, 화소부에 있어서, 행렬 방향으로 복수 형성된다. 또한, 2개 이상의 상기 화소 회로에 의해 1개의 화소를 구성해도 좋다. 그 경우, 하나의 화소에 있어서의 상기 화소 회로를 서브 화소라고도 한다.
발광 소자(101)는 애노드 및 캐소드를 가지며, 상기 애노드와 캐소드 사이에 흐르는 전류량에 따른 휘도로 발광한다. 따라서, 발광 소자(101)에 의해, 계조의 표시를 행할 수 있다.
발광 소자(101)로서는, 예를 들면 일렉트로루미네선스 소자 또는 발광 다이오드 등을 사용할 수 있다. 예를 들면, 발광 소자(101)의 구조를, 애노드로서 사용되는 도전막 및 캐소드로서 사용되는 도전막 사이에 전계 발광 재료를 함유하는 전계 발광층을 포함하는 구조로 할 수 있다.
트랜지스터(102)의 소스는, 발광 소자(101)의 애노드에 전기적으로 접속된다. 트랜지스터(102)는 발광 소자(101)에 흐르는 전류를 제어하는 구동용 트랜지스터로서의 기능을 가진다.
트랜지스터(103)의 소스 및 드레인의 한쪽은, 신호선(S1)에 전기적으로 접속되고, 트랜지스터(103)의 소스 및 드레인의 다른쪽은, 트랜지스터(102)의 게이트에 전기적으로 접속된다. 신호선(S1)은, 화상 신호(비디오 신호)가 공급되는 배선이다. 또한, 도 1a에 있어서, 트랜지스터(103)의 게이트는, 주사선(G1)에 전기적으로 접속된다. 주사선(G1)은 주사 신호(SCN1)가 공급되는 배선이며, 트랜지스터(103)는 주사 신호(SCN1)에 따라 온 상태 또는 오프 상태가 된다. 트랜지스터(103)는, 트랜지스터(102)의 게이트에 화상 신호를 입력할지 여부를 제어하는 스위칭용 트랜지스터로서의 기능을 가진다.
트랜지스터(104)의 소스 및 드레인의 한쪽은, 트랜지스터(102)의 드레인에 전기적으로 접속되고, 트랜지스터(104)의 소스 및 드레인의 다른쪽은, 트랜지스터(102)의 게이트에 전기적으로 접속된다. 또한, 도 1a에 있어서, 트랜지스터(104)의 게이트는, 주사선(G2)에 전기적으로 접속된다. 주사선(G2)은 주사 신호(SCN2)가 공급되는 배선이며, 트랜지스터(104)는 주사 신호(SCN2)에 따라 온 상태 또는 오프 상태가 된다. 트랜지스터(104)는 트랜지스터(102)의 게이트와 드레인을 전기적으로 접속할지 여부를 제어하는 기능을 가진다.
트랜지스터(105)의 소스 및 드레인의 한쪽은, 전원선(VA)에 전기적으로 접속되고, 트랜지스터(105)의 소스 및 드레인의 다른쪽은, 트랜지스터(102)의 드레인에 전기적으로 접속된다. 전원선(VA)은, 전원 전위(V1)가 공급되는 배선이며, 전원 전위(V1)는, 기준 전위(예를 들면 접지 전위)보다 높은 전위이다. 또한, 도 1a에 있어서, 트랜지스터(105)의 게이트는, 주사선(G3)에 전기적으로 접속된다. 주사선(G3)은, 주사 신호(SCN3)가 공급되는 배선이며, 트랜지스터(105)는 주사 신호(SCN3)에 따라 온 상태 또는 오프 상태가 된다. 트랜지스터(105)는 트랜지스터(102)의 드레인에 전원 전위(V1)를 공급할지 여부를 제어하는 기능을 가진다.
트랜지스터(106)의 소스 및 드레인의 한쪽은, 전원선(VB)에 전기적으로 접속되고, 트랜지스터(106)의 소스 및 드레인의 다른쪽은, 발광 소자(101)의 애노드에 전기적으로 접속된다. 전원선(VB)은, 전원 전위(V2)가 공급되는 배선이며, 전원 전위(V2)는, 기준 전위 미만의 전위이다. 또한, 도 1a에 있어서, 트랜지스터(106)의 게이트는, 주사선(G4)에 전기적으로 접속된다. 주사선(G4)은, 주사 신호(SCN4)가 공급되는 배선이며, 트랜지스터(106)는 주사 신호(SCN4)에 따라 온 상태 또는 오프 상태가 된다. 트랜지스터(106)는, 발광 소자(101)의 애노드에 전원 전위(V2)를 공급할지 여부를 제어하는 기능을 가진다. 또한, 발광 소자(101)의 캐소드의 전압을, 전원 전위(V2)보다 높은 전위로 함으로써, 예를 들면 초기화 기간에 있어서, 발광 소자(101)에 흐르는 전류량을 저감시킬 수 있다.
용량 소자(107)의 한 쌍의 전극의 한쪽은, 트랜지스터(102)의 게이트에 전기적으로 접속되고, 용량 소자(107)의 한 쌍의 전극의 다른쪽은, 트랜지스터(102)의 소스에 전기적으로 접속된다. 용량 소자(107)는 트랜지스터(102)의 게이트와 소스 사이의 전압을 유지하는 기능을 가진다.
용량 소자(108)의 한 쌍의 전극의 한쪽은, 용량 소자(107)의 한 쌍의 전극의 다른쪽 및 발광 소자(101)의 애노드에 전기적으로 접속되고, 용량 소자(108)의 한 쌍의 전극의 다른쪽은, 전원선(VB)에 전기적으로 접속된다. 용량 소자(108)는 용량 소자(107)에 직렬 접속으로 전기적으로 접속되고, 발광 소자(101)에 직렬 접속으로 전기적으로 접속된다.
또한, 용량 소자(107)가 갖는 용량값은, 발광 소자(101) 및 용량 소자(108)로 구성되는 합성 용량의 용량값보다도 작은 것이 바람직하다. 이것에 의해, 발광 소자(101)에 있어서의 용량에 의한 트랜지스터(102)의 게이트와 소스 사이에 있어서의 전압의 저하를 억제할 수 있다.
트랜지스터(109)의 소스 및 드레인의 한쪽은, 전원선(VC)에 전기적으로 접속되고, 트랜지스터(109)의 소스 및 드레인의 다른쪽은, 트랜지스터(102)의 드레인에 전기적으로 접속된다. 전원선(VC)은, 전원 전위(V3)가 공급되는 배선이며, 전원 전위(V3)는 전원 전위(V1)보다도 낮고, 전원 전위(V2)보다도 높고, 발광 소자(101)의 캐소드의 전위보다 높은 전위이다. 또한, 이것에 한정되지 않고, 발광 소자(101)의 캐소드를 전원선(VC)에 전기적으로 접속시켜도 좋다. 또한, 전원 전위(V3)와 전원 전위(V2)의 전위차는, 트랜지스터(102)의 임계값 전압보다 크다. 또한, 트랜지스터(109)의 소스 및 드레인의 다른쪽을, 트랜지스터(102)의 드레인이 아니라 게이트에 전기적으로 접속시켜도 좋다. 또한, 도 1a에 있어서, 트랜지스터(109)의 게이트는, 주사선(G2)에 전기적으로 접속되고, 트랜지스터(109)는 주사 신호(SCN2)에 따라 온 상태 또는 오프 상태가 된다. 트랜지스터(109)는 트랜지스터(102)의 드레인에 전원 전위(V3)를 공급할지 여부를 제어하는 기능을 가진다. 트랜지스터(109)를 형성함으로써, 초기화 기간에 있어서, 트랜지스터(102)의 게이트와 드레인에 전원 전위(V1)보다 낮은 전원 전위(V3)를 공급하고, 트랜지스터(102)의 소스와 드레인 사이에 흐르는 전류값을 작게 할 수 있다. 따라서, 소비 전력을 저감시킬 수 있다.
트랜지스터(102)로서는, n채널형 트랜지스터를 사용할 수 있다. 또한, 트랜지스터(103), 트랜지스터(104), 트랜지스터(105), 트랜지스터(106), 및 트랜지스터(109)로서는, n채널형 트랜지스터 또는 p채널형 트랜지스터를 사용할 수 있다. 예를 들면, 트랜지스터(102), 트랜지스터(103), 트랜지스터(104), 트랜지스터(105), 트랜지스터(106), 및 트랜지스터(109)로서 n채널형 트랜지스터를 사용함으로써, 제조 공정수를 삭감할 수 있다.
또한, 트랜지스터(102), 트랜지스터(103), 트랜지스터(104), 트랜지스터(105), 트랜지스터(106), 및 트랜지스터(109)로서는, 예를 들면 소스와 드레인 사이에 형성되는 채널 형성 영역이 산화물 반도체 등의 와이드 갭 반도체인 트랜지스터를 사용해도 좋고, 상기 채널 형성 영역이 비정질, 미결정, 다결정 또는 단결정인, 실리콘 또는 게르마늄 등의 반도체인 트랜지스터를 사용해도 좋다. 상기 산화물 반도체를 사용한 트랜지스터는, 종래의 실리콘 등의 반도체를 사용한 트랜지스터보다 오프 전류가 낮은 산화물 반도체를 사용한 트랜지스터이다. 상기 산화물 반도체는, 실리콘보다도 밴드 갭이 넓고, 진성 캐리어 밀도가 실리콘보다도 낮다. 이로 인해, 트랜지스터의 오프 전류를 매우 낮게 할 수 있고, 상기 산화물 반도체를 사용한 트랜지스터의 오프 전류는, 채널 폭 1㎛당 10aA(1×10-17A) 이하, 바람직하게는 채널 폭 1㎛당 1aA(1×10-18A) 이하, 더욱 바람직하게는 채널 폭 1㎛당 10zA(1×10-20A) 이하, 더욱 바람직하게는 채널 폭 1㎛당 1zA(1×10-21A) 이하, 더욱 바람직하게는 채널 폭 1㎛당 100yA(1×10-22A) 이하이다.
다음에, 본 실시형태에 있어서의 발광 장치의 구동 방법예에 관해서, 도 1b에 도시하는 타이밍 차트, 및 도 2 및 도 3을 사용하여 설명한다. 또한, 여기에서는 일례로서 트랜지스터(102), 트랜지스터(103), 트랜지스터(104), 트랜지스터(105), 트랜지스터(106), 및 트랜지스터(109)가 모두 n채널형 트랜지스터인 것으로 한다. 또한, 용량 소자(107)의 용량값은, 발광 소자(101) 및 용량 소자(108)로 구성되는 합성 용량의 용량값보다 훨씬 작고, 상기 합성 용량에 의한 트랜지스터(102)의 게이트와 소스 사이에 있어서의 전압의 저하는 없는 것으로 한다.
본 실시형태에 있어서의 발광 장치의 구동 방법예는, 초기화 기간(T11), 임계값 전압 데이터 취득 기간(T12), 화상 신호 입력 기간(T13), 표시 기간(T14)으로 크게 나뉘어진다.
우선, 초기화 기간(T11)에 있어서, 도 1b 및 도 2a에 도시하는 바와 같이, 트랜지스터(104), 트랜지스터(106), 및 트랜지스터(109)를 온 상태로 한다.
이 때, 트랜지스터(102)의 게이트 및 드레인의 각각의 전위가 전원 전위(V3)가 된다. 또한, 트랜지스터(102)의 소스의 전위가 전원 전위(V2)가 된다. 이것에 의해, 트랜지스터(102)가 온 상태가 되고, 트랜지스터(102)의 게이트와 소스 사이의 전압(전압(Vgs102)라고도 한다)은, 전원 전위(V3)로부터 전원 전위(V2)를 뺀 값(V3-V2)이 된다.
다음에, 임계값 전압 데이터 취득 기간(T12)에 있어서, 도 1b 및 도 2b에 도시하는 바와 같이, 트랜지스터(106)를 오프 상태로 한다.
이 때, 트랜지스터(102)는 온 상태 그대로 트랜지스터(102)의 소스와 드레인 사이에 전류가 흐름으로써, 트랜지스터(102)의 소스의 전위가 상승하고, 트랜지스터(102)의 게이트와 소스 사이의 전압이 트랜지스터(102)의 임계값 전압(전압(Vth102)이라고도 한다) 이하가 된 시점에서 트랜지스터(102)가 오프 상태가 된다. 그 후, 트랜지스터(104) 및 트랜지스터(109)를 오프 상태로 함으로써, 트랜지스터(102)의 게이트와 소스 사이의 전압이 유지된다.
다음에, 화상 신호 입력 기간(T13)에 있어서, 도 1b 및 도 3a에 도시하는 바와 같이, 트랜지스터(103)를 온 상태로 한다.
이 때, 트랜지스터(102)의 게이트에 화상 신호가 입력되고, 트랜지스터(102)의 게이트의 전위가 화상 신호에 따라 변화된다. 이 때, 트랜지스터(102)의 게이트와 소스 사이의 전압은, 트랜지스터(102)의 임계값 전압+전압(Vs)(Vth102+Vs)이 된다. 전압(Vs)의 값은, 화상 신호에 의한 트랜지스터(102)의 게이트의 전위의 변화량에 따라 결정된다. 도 3a에서는, 일례로서 트랜지스터(102)가 온 상태가 되는 것으로 한다.
다음에, 표시 기간(T14)에 있어서, 도 1b 및 도 3b에 도시하는 바와 같이, 트랜지스터(103)를 오프 상태로 하고, 트랜지스터(105)를 온 상태로 한다.
이 때, 트랜지스터(102)의 드레인의 전위가 전원 전위(V1)가 되고, 트랜지스터(102)의 소스와 드레인 사이에 전류가 흐른다. 또한, 발광 소자(101)의 애노드와 캐소드 사이에 전류가 흐름으로써 발광 소자(101)가 발광한다. 따라서, 표시 상태가 된다.
이 때, 발광 소자(101)에 흐르는 전류값은, 트랜지스터(102)의 소스와 드레인 사이에 흐르는 전류값(Ids102라고도 한다)에 의해 결정되고, 트랜지스터(102)를 포화 영역에서 동작시키는 경우, 트랜지스터(102)의 소스와 드레인 사이에 흐르는 전류값은, 하기 수학식 1로 표기할 수 있다.
Figure 112019077375913-pat00001
β는, 트랜지스터(102)의 이동도, 채널 길이, 채널 폭 등으로부터 구해지는 상수이다.
표시 기간(T14)에 있어서, 트랜지스터(102)의 게이트와 소스 사이의 전압(Vgs102)은, Vth102+Vs이기 때문에, 상기 수학식 1에 대입하면 하기 수학식 2와 같이 된다.
Figure 112019077375913-pat00002
따라서, 트랜지스터(102)의 소스와 드레인 사이에 흐르는 전류값(Ids102)은, 트랜지스터(102)의 임계값 전압에 관계없이, 화상 신호의 값에 따라 결정된다.
상기 동작을 모든 화소 회로에서 행함으로써, 발광 장치에 있어서 화상이 표시된다. 또한, 상기 동작을 각 화소 회로에서 반복하여 행함으로써, 발광 장치의 표시 화상을 재기록할 수 있다.
이상이 본 실시형태에 있어서의 발광 장치의 구동 방법예이다.
또한, 본 실시형태에 있어서의 발광 장치에서는, 도 4에 도시하는 바와 같이 트랜지스터(109)를 형성하지 않아도 좋다. 이 때, 초기화 기간(T11)에서는, 트랜지스터(105)를 온 상태로 하고 트랜지스터(102)의 드레인에 전원 전위(V1)를 공급한다. 트랜지스터(109)를 형성하지 않는 구성으로 함으로써, 트랜지스터의 수를 적게 할 수 있어 회로 면적을 작게 할 수 있다.
도 1 내지 도 4를 사용하여 설명한 바와 같이, 본 실시형태에 있어서의 발광 장치에서는, 임계값 전압 데이터 취득 기간을 마련하고, 용량 소자를 사용하여 구동 트랜지스터의 게이트와 소스 사이의 전압을 구동용 트랜지스터의 임계값 전압에 따른 값으로 설정해 둔다. 이것에 의해, 표시 기간에 있어서, 구동용 트랜지스터의 소스와 드레인 사이에 흐르는 전류량을, 구동용 트랜지스터의 임계값 전압에 관계없이 결정할 수 있기 때문에, 구동 트랜지스터의 임계값 전압의 편차에 의한 화소간의 휘도의 편차를 억제할 수 있다.
또한, 본 실시형태에 있어서의 발광 장치에서는, 초기화 기간에 있어서, 발광 소자의 애노드에 초기화용의 전원 전위를 공급함으로써, 발광 소자에 있어서의 전계 발광층의 열화에 의한 발광 소자의 애노드와 캐소드 사이에 인가되는 전압의 변화를 억제할 수 있다. 따라서, 전계 발광층의 열화에 의해, 발광 소자의 휘도가 저하되는 것을 억제할 수 있다.
또한, 본 실시형태에 있어서의 발광 장치에서는, 화소부에 있어서의 모든 트랜지스터를 n채널형 트랜지스터로 구성함으로써, 제조 공정수를 삭감할 수 있다.
본 실시형태는, 다른 실시형태와 적절히 조합하여 실시하는 것이 가능하다.
(실시형태 2)
본 실시형태에서는, 본 발명의 일 형태에 따른 발광 장치의, 화소의 구체적인 구성에 관해서 설명한다.
도 5에, 도 1a에 도시한 화소의 상면도를 일례로서 도시한다. 또한, 도 5에서는, 화소의 레이아웃을 명확하게 나타내기 위해, 각종 절연막을 생략하고, 화소의 상면도를 도시한다. 또한, 도 5에서는, 화소가 갖는 트랜지스터와 용량 소자의 레이아웃을 명확하게 나타내기 위해, 애노드와, 전계 발광층과, 캐소드를 생략하고, 화소의 상면도를 도시한다.
또한, 도 6에, 도 5에 도시하는 상면도의, 파선 A1-A2 및 파선 A3-A4에 있어서의 단면도를 도시한다.
트랜지스터(103)는, 절연 표면을 갖는 기판(800) 위에, 게이트로서 기능하는 도전막(801)과, 도전막(801) 위의 게이트 절연막(802)과, 도전막(801)과 중첩되는 위치에 있어서 게이트 절연막(802) 위에 위치하는 반도체층(803)과, 소스 또는 드레인으로서 기능하고, 반도체층(803) 위에 위치하는 도전막(804) 및 도전막(805)을 가진다. 도전막(801)은 주사선(G1)으로서도 기능한다. 도전막(804)은 신호선(S1)으로서도 기능한다.
트랜지스터(102)는 절연 표면을 갖는 기판(800) 위에, 게이트로서 기능하는 도전막(806)과, 도전막(806) 위의 게이트 절연막(802)과, 도전막(806)과 중첩되는 위치에 있어서 게이트 절연막(802) 위에 위치하는 반도체층(807)과, 소스 또는 드레인으로서 기능하고, 반도체층(807) 위에 위치하는 도전막(808) 및 도전막(809)을 가진다. 도전막(806)은 콘택트홀을 통하여 도전막(805)에 접속되어 있다.
트랜지스터(104)는, 절연 표면을 갖는 기판(800) 위에, 게이트로서 기능하는 도전막(810)과, 도전막(810) 위의 게이트 절연막(802)과, 도전막(810)과 중첩되는 위치에 있어서 게이트 절연막(802) 위에 위치하는 반도체층(811)과, 소스 또는 드레인으로서 기능하며, 반도체층(811) 위에 위치하는 도전막(805) 및 도전막(808)을 가진다. 도전막(810)은 주사선(G2)으로서도 기능한다.
트랜지스터(105)는 절연 표면을 갖는 기판(800) 위에, 게이트로서 기능하는 도전막(812)과, 도전막(812) 위의 게이트 절연막(802)과, 도전막(812)과 중첩되는 위치에 있어서 게이트 절연막(802) 위에 위치하는 반도체층(813)과, 소스 또는 드레인으로서 기능하며, 반도체층(813) 위에 위치하는 도전막(808) 및 도전막(814)을 가진다. 도전막(812)은 주사선(G3)으로서도 기능한다. 도전막(814)은 전원선(VA)으로서도 기능한다.
트랜지스터(106)는, 절연 표면을 갖는 기판(800) 위에, 게이트로서 기능하는 도전막(815)과, 도전막(815) 위의 게이트 절연막(802)과, 도전막(815)과 중첩되는 위치에 있어서 게이트 절연막(802) 위에 위치하는 반도체층(816)과, 소스 또는 드레인으로서 기능하며, 반도체층(816) 위에 위치하는 도전막(809) 및 도전막(817)을 가진다. 도전막(815)은 주사선(G4)으로서도 기능한다.
용량 소자(107)는 절연 표면을 갖는 기판(800) 위에, 도전막(806)과, 도전막(806) 위의 게이트 절연막(802)과, 도전막(806)과 중첩되는 위치에 있어서 게이트 절연막(802) 위에 위치하는 도전막(809)을 가진다.
용량 소자(108)는 절연 표면을 갖는 기판(800) 위에, 도전막(818)과, 도전막(818) 위의 게이트 절연막(802)과, 도전막(818)과 중첩되는 위치에 있어서 게이트 절연막(802) 위에 위치하는 도전막(809)을 가진다. 도전막(818)은 전원선(VB)으로서도 기능하고, 콘택트홀을 통하여 도전막(817)에 접속하고 있다.
트랜지스터(109)는, 절연 표면을 갖는 기판(800) 위에, 게이트로서 기능하는 도전막(819)과, 도전막(819) 위의 게이트 절연막(802)과, 도전막(819)과 중첩되는 위치에 있어서 게이트 절연막(802) 위에 위치하는 반도체층(820)과, 소스 또는 드레인으로서 기능하며, 반도체층(820) 위에 위치하는 도전막(808) 및 도전막(821)을 가진다. 도전막(819)은 주사선(G2)으로서도 기능한다. 또한, 도전막(821)은, 콘택트홀을 통하여, 전원선(VC)으로서 기능하는 도전막(822)에 접속되어 있다.
또한, 도전막(804), 도전막(805), 도전막(808), 도전막(809), 도전막(814), 도전막(817), 도전막(821) 위에는, 절연막(823) 및 절연막(824)이 순차적으로 형성되어 있다. 그리고, 절연막(824) 위에는, 애노드로서 기능하는 도전막(825)이 형성되어 있다. 도전막(825)은, 절연막(823) 및 절연막(824)에 형성된 콘택트홀(826)을 통하여, 도전막(809)에 접속되어 있다.
또한, 도전막(825)의 일부가 노출되는 개구부를 가진 절연막(827)이, 절연막(824) 위에 형성되어 있다. 도전막(825)의 일부 및 절연막(827) 위에는, 전계 발광층(828)과, 캐소드로서 기능하는 도전막(829)이, 순차적으로 적층하도록 형성되어 있다. 도전막(825)과, 전계 발광층(828)과, 도전막(829)이 중첩되어 있는 영역이, 발광 소자(101)에 상당한다.
또한, 도 5에서는, 도전막(810)과 도전막(819)이 모두 주사선(G2)으로서도 기능하는 경우를 예시하고 있지만, 도전막(810)과 도전막(819)이 하나의 도전막으로 구성되어 있어도 좋다.
계속해서, 도 7에, 도 4에 도시한 화소의 상면도를 일례로서 도시한다. 또한, 도 7에서는, 화소의 레이아웃을 명확하게 나타내기 위해, 각종 절연막을 생략하고, 화소의 상면도를 도시한다. 또한, 도 7에서는, 화소가 갖는 트랜지스터와 용량 소자의 레이아웃을 명확하게 나타내기 위해, 애노드와, 전계 발광층과, 캐소드를 생략하고, 화소의 상면도를 도시한다.
도 7에 도시하는 화소는, 트랜지스터(109)와, 트랜지스터(109)의 게이트로서 기능하는 도전막(819)과, 전원선(VC)으로서 기능하는 도전막(822)과, 도전막(822)에 접속된 도전막(821)을 갖지 않는 점에 있어서, 도 5에 도시하는 화소와 상이하다.
또한, 도 5 내지 도 7에서는, 반도체층(803), 반도체층(807), 반도체층(811), 반도체층(813), 반도체층(816), 반도체층(820)에, 산화물 반도체 등의 와이드 갭 반도체를 사용한 경우를 예시하고 있다.
산화물 반도체는, 실리콘보다도 밴드 갭이 넓고, 진성 캐리어 밀도가 실리콘보다도 낮다. 이로 인해, 상기한 바와 같이, 산화물 반도체를 사용한 트랜지스터는, 통상의 실리콘이나 게르마늄 등의 반도체를 사용한 트랜지스터에 비해, 오프 전류가 매우 낮다.
사용하는 산화물 반도체로서는, 적어도 인듐(In) 또는 아연(Zn)을 함유하는 것이 바람직하다. 특히 In과 Zn을 함유하는 것이 바람직하다. 또한, 상기 산화물 반도체를 사용한 트랜지스터의 전기 특성의 편차를 감소시키기 위한 스테빌라이저로서, 이들 외에 갈륨(Ga)을 갖는 것이 바람직하다. 또한, 스테빌라이저로서 주석(Sn)을 갖는 것이 바람직하다. 또한, 스테빌라이저로서 하프늄(Hf)을 갖는 것이 바람직하다. 또한, 스테빌라이저로서 알루미늄(Al)을 갖는 것이 바람직하다.
또한, 기타 스테빌라이저로서, 란타노이드인, 란탄(La), 세륨(Ce), 프라세오디뮴(Pr), 네오디뮴(Nd), 사마륨(Sm), 유로퓸(Eu), 가돌리늄(Gd), 테르븀(Tb), 디스프로슘(Dy), 홀뮴(Ho), 에르븀(Er), 툴륨(Tm), 이테르븀(Yb), 루테튬(Lu) 중 어느 1종 또는 복수종을 가져도 좋다.
예를 들면, 산화물 반도체로서, 산화인듐, 산화주석, 산화아연, 2원계 금속의 산화물인 In-Zn계 산화물, Sn-Zn계 산화물, Al-Zn계 산화물, Zn-Mg계 산화물, Sn-Mg계 산화물, In-Mg계 산화물, In-Ga계 산화물, 3원계 금속의 산화물인 In-Ga-Zn계 산화물(IGZO라고도 표기), In-Al-Zn계 산화물, In-Sn-Zn계 산화물, Sn-Ga-Zn계 산화물, Al-Ga-Zn계 산화물, Sn-Al-Zn계 산화물, In-Hf-Zn계 산화물, In-La-Zn계 산화물, In-Ce-Zn계 산화물, In-Pr-Zn계 산화물, In-Nd-Zn계 산화물, In-Sm-Zn계 산화물, In-Eu-Zn계 산화물, In-Gd-Zn계 산화물, In-Tb-Zn계 산화물, In-Dy-Zn계 산화물, In-Ho-Zn계 산화물, In-Er-Zn계 산화물, In-Tm-Zn계 산화물, In-Yb-Zn계 산화물, In-Lu-Zn계 산화물, 4원계 금속의 산화물인 In-Sn-Ga-Zn계 산화물, In-Hf-Ga-Zn계 산화물, In-Al-Ga-Zn계 산화물, In-Sn-Al-Zn계 산화물, In-Sn-Hf-Zn계 산화물, In-Hf-Al-Zn계 산화물을 사용할 수 있다.
또한, 여기에서, 예를 들면, In-Ga-Zn계 산화물이란, In과 Ga와 Zn을 주성분으로서 갖는 산화물이라는 의미이며, In과 Ga와 Zn의 비율은 상관없다. 또한, In과 Ga와 Zn 이외의 금속 원소가 들어가 있어도 좋다.
또한, 산화물 반도체로서, InMO3(ZnO)m(m>0, 또한, m은 정수가 아니다)로 표기되는 재료를 사용해도 좋다. 또한, M은, Ga, Fe, Mn 및 Co로부터 선택된 하나의 금속 원소 또는 복수의 금속 원소를 나타낸다. 또한, 산화물 반도체로서, In3SnO5(ZnO)n(n>0, 또한, n은 정수)로 표기되는 재료를 사용해도 좋다.
또한, 산화물 반도체로서, In:Ga:Zn=1:1:1(=1/3:1/3:1/3) 또는 In:Ga:Zn=2:2:1(=2/5:2/5:1/5)의 원자수비의 In-Ga-Zn계 산화물이나 그 조성 근방의 산화물을 사용할 수 있다. 또는, In:Sn:Zn=1:1:1(=1/3:1/3:1/3), In:Sn:Zn=2:1:3(=1/3:1/6:1/2) 또는 In:Sn:Zn=2:1:5(=1/4:1/8:5/8)의 원자수비의 In-Sn-Zn계 산화물이나 그 조성 근방의 산화물을 사용하면 좋다.
그러나, 이들에 한정되지 않고, 필요로 하는 반도체 특성(이동도, 임계값, 편차 등)에 따라 적절한 조성의 것을 사용하면 좋다. 또한, 필요로 하는 반도체 특성을 얻기 위해서, 캐리어 농도나 불순물 농도, 결함 밀도, 금속 원소와 산소의 원자수비, 원자간 결합 거리, 밀도 등을 적절한 것으로 하는 것이 바람직하다.
예를 들면, In-Sn-Zn계 산화물에서는 비교적 용이하게 높은 이동도가 얻어진다. 그러나, In-Ga-Zn계 산화물에서도, 벌크내 결함 밀도를 저감시킴으로써 이동도를 높일 수 있다.
또한, 예를 들면, In, Ga, Zn의 원자수비가 In:Ga:Zn=a:b:c(a+b+c=1)인 산화물의 조성이, 원자수비가 In:Ga:Zn=A:B:C(A+B+C=1)인 산화물의 조성 근방이다란, a, b, c가, (a-A)2+(b-B)2+(c-C)2≤r2을 만족시키는 것을 말한다. r로서는, 예를 들면, 0.05로 하면 좋다. 다른 산화물에서도 마찬가지이다.
산화물 반도체는 단결정이라도, 비단결정이라도 좋다. 후자의 경우, 비정질이라도, 다결정이라도 좋다. 또한, 비정질 중에 결정성을 갖는 부분을 포함하는 구조라도, 비비정질이라도 좋다.
비정질 상태의 산화물 반도체는, 비교적 용이하게 평탄한 표면을 얻을 수 있기 때문에, 이것을 사용하여 트랜지스터를 제작했을 때의 계면 산란을 저감시킬 수 있고, 비교적 용이하게, 비교적 높은 이동도를 얻을 수 있다.
또한, 결정성을 갖는 산화물 반도체에서는, 보다 벌크내 결함을 저감시킬 수 있고, 표면의 평탄성을 높이면 비정질 상태의 산화물 반도체 이상의 이동도를 얻을 수 있다. 표면의 평탄성을 높이기 위해서는, 평탄한 표면 위에 산화물 반도체를 형성하는 것이 바람직하며, 구체적으로는, 평균 면 거칠기(Ra)가 1nm 이하, 바람직하게는 0.3nm 이하, 보다 바람직하게는 0.1nm 이하인 표면 위에 형성하면 좋다.
또한, Ra는, JIS B0601에서 정의되어 있는 중심선 평균 거칠기를 면에 대해 적용할 수 있도록 삼차원으로 확장한 것이며, 「기준면으로부터 지정면까지의 편차의 절대값을 평균한 값」으로 표현할 수 있으며, 이하의 식으로 정의된다.
Figure 112019077375913-pat00003
또한, 상기에 있어서, S0는, 측정면(좌표(x1,y1)(x1,y2)(x2,y1)(x2,y2)로 표시되는 4점에 의해 둘러싸이는 장방형의 영역)의 면적을 가리키고, Z0은 측정면의 평균 높이를 가리킨다. Ra는 원자간력 현미경(AFM: Atomic Force Microscope)으로 평가 가능하다.
또한, 특별히 언급하지 않는 한, 본 명세서에서 오프 전류란, n채널형 트랜지스터에 있어서는, 드레인을 소스와 게이트보다도 높은 전위로 한 상태에 있어서, 소스의 전위를 기준으로 했을 때의 게이트의 전위가 0 이하일 때에, 소스와 드레인 사이에 흐르는 전류를 의미한다. 또는, 오프 전류란, p채널형 트랜지스터에 있어서는, 드레인을 소스와 게이트보다도 낮은 전위로 한 상태에 있어서, 소스의 전위를 기준으로 했을 때의 게이트의 전위가 0 이상일 때에, 소스와 드레인 사이에 흐르는 전류를 의미한다.
또한, 실리콘보다도 밴드 갭이 넓고, 진성 캐리어 밀도가 실리콘보다도 낮은 반도체 재료의 일례로서, 산화물 반도체 이외에, 탄화규소(SiC), 질화갈륨(GaN) 등이 있다. 탄화실리콘이나 질화갈륨 등의 화합물 반도체는 단결정인 것이 필수적이며, 단결정 재료를 얻기 위해서는, 산화물 반도체의 프로세스 온도보다도 현저하게 높은 온도에 의한 결정 성장이라든가, 특수한 기판 위의 에피택셜 성장이 필요하다라든가, 제작 조건이 엄격하여, 모두 입수가 용이한 실리콘 웨이퍼나 내열 온도가 낮은 유리 기판 위로의 성막은 어렵다. 그러나, 산화물 반도체는, 스퍼터링법이나 습식법에 의해 제작 가능하고, 양산성이 우수한 것과 같은 이점이 있다. 또한, 산화물 반도체는 실온에서도 성막이 가능하기 때문에, 유리 기판 위로의 성막, 또는 반도체 소자를 사용한 집적 회로 위로의 성막이 가능하여 기판의 대형화에도 대응이 가능하다. 따라서, 산화물 반도체는 양산성이 높다는 장점을 가진다. 또한, 트랜지스터의 성능(예를 들면 전계 효과 이동도)을 향상시키기 위해서 결정성의 산화물 반도체를 얻고자 하는 경우에도, 200℃에서 800℃의 열처리에 의해 결정성의 산화물 반도체를 얻을 수 있다.
또한, 도전막(801), 도전막(804) 내지 도전막(806), 도전막(808) 내지 도전막(810), 도전막(812), 도전막(814), 도전막(815), 도전막(817) 내지 도전막(819), 도전막(821), 도전막(822) 등의 각종 도전막은, 알루미늄, 크롬, 구리, 탄탈, 티타늄, 몰리브덴, 텅스텐으로부터 선택된 원소, 또는 상기한 원소를 성분으로 하는 합금막이나, 상기한 원소를 조합한 합금막 등을 사용할 수 있다. 또한, 알루미늄, 구리 등의 금속막의 하측 또는 상측에 크롬, 탄탈, 티타늄, 몰리브덴, 텅스텐 등의 고융점 금속막을 적층시킨 구성으로 해도 좋다. 또한, 알루미늄 또는 구리는, 내열성이나 부식성의 문제를 회피하기 위해서, 고융점 금속 재료와 조합하여 사용하면 좋다. 고융점 금속 재료로서는, 몰리브덴, 티타늄, 크롬, 탄탈, 텅스텐, 네오디뮴, 스칸듐, 이트륨 등을 사용할 수 있다. 또한, Cu-Mg-Al 합금, Mo-Ti 합금, Ti, Mo는, 산화막과의 밀착성이 높다. 따라서, 게이트 절연막(802)이 산화물인 경우, 게이트 절연막(802) 위의 도전막(804), 도전막(805), 도전막(808), 도전막(809), 도전막(814), 도전막(817), 도전막(821)에, 상기한 산화막과의 밀착성이 높은 재료를 사용하는 것이 바람직하다. 예를 들면, 도전막(804), 도전막(805), 도전막(808), 도전막(809), 도전막(814), 도전막(817), 도전막(821)으로서, 하층에 Cu-Mg-Al 합금, Mo-Ti 합금, Ti, 또는 Mo로 구성되는 도전막, 상층에 저항값이 낮은 Cu로 구성되는 도전막을 적층하여 사용함으로써, 산화물인 게이트 절연막(802)과의 밀착성을 높이고, 또한 저항값을 낮출 수 있다.
반도체층(803), 반도체층(807), 반도체층(811), 반도체층(813), 반도체층(816), 반도체층(820)에 산화물 반도체층을 사용하는 경우, 산화물 반도체층의 성막은, 감압 상태로 유지된 처리실 내에 기판을 유지하고, 처리실 내의 잔류 수분을 제거하면서 수소 및 수분이 제거된 스퍼터링 가스를 도입하고, 타깃을 사용하여 행할 수 있다. 성막시에, 기판 온도를 100℃ 이상 600℃ 이하, 바람직하게는 200℃ 이상 400℃ 이하로 해도 좋다. 기판을 가열하면서 성막함으로써, 성막한 산화물 반도체층에 함유되는 불순물 농도를 저감시킬 수 있다. 또한, 스퍼터링에 의한 손상이 경감된다. 처리실 내의 잔류 수분을 제거하기 위해서는, 흡착형의 진공 펌프를 사용하는 것이 바람직하다. 예를 들면, 크라이오 펌프, 이온 펌프, 티타늄 서블리메이션 펌프를 사용하는 것이 바람직하다. 또한, 배기 수단으로서는, 터보 펌프에 콜드 트랩을 가한 것이라도 좋다. 크라이오 펌프를 사용하여 처리실을 배기하면, 예를 들면, 수소 원자, 물(H20) 등 수소 원자를 함유하는 화합물(보다 바람직하게는 탄소 원자를 함유하는 화합물도) 등이 배기되기 때문에, 상기 처리실에서 성막한 산화물 반도체층에 함유되는 불순물의 농도를 저감시킬 수 있다.
또한, 스퍼터링 장치의 처리실의 리크 레이트를 1×10-10Pa·㎥/초 이하로 함으로써, 스퍼터링법에 의한 성막 도중에 있어서의 산화물 반도체층으로의, 알칼리 금속, 수소화물 등의 불순물의 혼입을 저감시킬 수 있다. 또한, 배기계로서 상기한 흡착형의 진공 펌프를 사용함으로써, 배기계로부터의 알칼리 금속, 수소 원자, 수소 분자, 물, 하이드록실기, 또는 수소화물 등의 불순물의 역류를 저감시킬 수 있다.
또한, 타깃의 순도를, 99.99% 이상으로 함으로써, 산화물 반도체층에 혼입되는 알칼리 금속, 수소 원자, 수소 분자, 물, 하이드록실기, 또는 수소화물 등을 저감시킬 수 있다. 또한, 상기 타깃을 사용함으로써, 산화물 반도체층에 있어서, 리튬, 나트륨, 칼륨 등의 알칼리 금속의 농도를 저감시킬 수 있다.
또한, 스퍼터링 등으로 성막된 산화물 반도체층 중에는, 불순물로서의 수분 또는 수소(하이드록실기를 함유)가 다량으로 함유되어 있는 경우가 있다. 수분 또는 수소는 도너 준위를 형성하기 쉽기 때문에, 산화물 반도체에 있어서는 불순물이다. 그래서, 산화물 반도체층 중의 수분 또는 수소 등의 불순물을 저감(탈수화 또는 탈수소화)시키기 위해서, 산화물 반도체층에 대해, 감압 분위기하, 질소나 희가스 등의 불활성 가스 분위기하, 산소 가스 분위기하, 또는 초건조 에어(CRDS(캐비티 링다운 레이저 분광법) 방식의 노점계를 사용하여 측정한 경우의 수분량이 20ppm(노점 환산으로 -55℃) 이하, 바람직하게는 1ppm 이하, 바람직하게는 10ppb 이하의 공기) 분위기 하에서, 가열 처리를 가해 두는 것이 바람직하다.
산화물 반도체층에 가열 처리를 가함으로써, 산화물 반도체층 중의 수분 또는 수소를 탈리시킬 수 있다. 구체적으로는, 250℃ 이상 750℃ 이하, 바람직하게는 400℃ 이상 기판의 변형점 미만의 온도로 가열 처리를 행하면 좋다. 예를 들면, 500℃, 3분 이상 6분 이하 정도로 행하면 좋다. 가열 처리에 RTA법을 사용하면, 단시간에 탈수화 또는 탈수소화를 행할 수 있기 때문에, 유리 기판의 변형점을 초과하는 온도로도 처리할 수 있다.
또한, 가열 처리 장치는 전기로 이외에, 저항 발열체 등의 발열체로부터의 열전도 또는 열복사에 의해, 피처리물을 가열하는 장치를 구비하고 있어도 좋다. 예를 들면, GRTA(Gas Rapid Thermal Anneal) 장치, LRTA(Lamp Rapid Thermal Anneal) 장치 등의 RTA(Rapid Thermal Anneal) 장치를 사용할 수 있다. LRTA 장치는, 할로겐 램프, 메탈할라이드 램프, 크세논 아크 램프, 카본 아크 램프, 고압 나트륨 램프, 고압 수은 램프 등의 램프로부터 발하는 광(전자파)의 복사에 의해, 피처리물을 가열하는 장치이다. GRTA 장치는, 고온의 가스를 사용하여 가열 처리를 행하는 장치이다. 기체에는, 아르곤 등의 희가스, 또는 질소와 같은, 가열 처리에 의해 피처리물과 반응하지 않는 불활성 기체가 사용된다.
가열 처리에 있어서는, 질소, 또는 헬륨, 네온, 아르곤 등의 희가스에, 수분 또는 수소 등이 함유되지 않는 것이 바람직하다. 또는, 가열 처리 장치에 도입하는 질소, 또는 헬륨, 네온, 아르곤 등의 희가스의 순도를, 6N(99.9999%) 이상, 바람직하게는 7N(99.99999%) 이상(즉 불순물 농도를 1ppm 이하, 바람직하게는 0.1ppm 이하)으로 하는 것이 바람직하다.
한편, 산화물 반도체는 불순물에 대해 둔감하여 막 중에는 상당한 금속 불순물이 함유되어 있어도 문제가 없고, 나트륨과 같은 알칼리금속이 다량으로 함유되는 염가의 소다석회유리도 사용할 수 있다고 지적되고 있다(카미야, 노무라, 호소노, 「비정질 산화물 반도체의 물성과 디바이스 개발의 현상」, 고체 물리, 2009년 9월호, Vol.44, pp.621-633.). 그러나, 이러한 지적은 적절하지 않다. 알칼리금속은 산화물 반도체를 구성하는 원소가 아니기 때문에, 불순물이다. 알칼리 토금속도, 산화물 반도체를 구성하는 원소가 아닌 경우에 있어서, 불순물이 된다. 특히, 알칼리 금속 중 Na는, 산화물 반도체층에 접하는 절연막이 산화물인 경우, 상기 절연막 중으로 확산되어 Na+가 된다. 또한, Na는, 산화물 반도체층 내에 있어서, 산화물 반도체를 구성하는 금속과 산소의 결합을 분단하거나, 또는, 그 결합 중에 끼어든다. 그 결과, 예를 들면, 임계값 전압이 마이너스 방향으로 시프트하는 것에 의한 노멀리온화, 이동도의 저하 등의, 트랜지스터의 특성의 열화가 일어나고, 또한, 특성의 편차도 발생한다. 이 불순물에 의해 초래되는 트랜지스터의 특성의 열화와, 특성의 편차는, 산화물 반도체층 중의 수소 농도가 충분히 낮은 경우에 있어서 현저하게 나타난다. 따라서, 산화물 반도체층 중의 수소 농도가 1×1018/c㎥ 이하, 보다 바람직하게는 1×1017/c㎥ 이하인 경우에는, 상기 불순물의 농도를 저감시키는 것이 바람직하다. 구체적으로, 2차 이온 질량 분석법에 의한 Na 농도의 측정값은, 5×1016/c㎥ 이하, 바람직하게는 1×1016/c㎥ 이하, 더욱 바람직하게는 1×1015/c㎥ 이하로 하면 좋다. 마찬가지로, Li 농도의 측정값은, 5×1015/c㎥ 이하, 바람직하게는 1×1015/c㎥ 이하로 하면 좋다. 마찬가지로, K 농도의 측정값은, 5×1015/c㎥ 이하, 바람직하게는 1×1015/c㎥ 이하로 하면 좋다.
산화물 반도체층 중의 수소의 농도를 저감시키고, 고순도화함으로써, 산화물 반도체층의 안정화를 도모할 수 있다. 또한, 유리 전이 온도 이하의 가열 처리로, 캐리어 밀도가 극단적으로 적고, 밴드 갭이 넓은 산화물 반도체층을 형성할 수 있다. 이로 인해, 대면적 기판을 사용하여 트랜지스터를 제작할 수 있어 양산성을 높일 수 있다. 또한, 상기 수소 농도가 저감되어 고순도화된 산화물 반도체층을 사용함으로써, 내압성이 높고, 오프 전류가 현저하게 낮은 트랜지스터를 제작할 수 있다. 상기 가열 처리는, 산화물 반도체층의 성막 이후이면, 언제라도 행할 수 있다.
본 실시형태에서는, c축 배향하고, 또한 ab면, 표면 또는 계면의 방향에서 볼 때 삼각형상 또는 육각형상의 원자 배열을 가지며, c축에 있어서는 금속 원자가 층상 또는 금속 원자와 산소 원자가 층상으로 배열되어 있고, ab면에 있어서는 a축 또는 b축의 방향이 상이한(c축을 중심으로 회전한) 상(CAAC: C Axis Aligned Crystal이라고도 한다.)을 함유하는 산화물에 관해서 설명한다.
CAAC를 함유하는 산화물이란, 광의적으로 비단결정이며, 그 ab면에 수직한 방향에서 볼 때, 삼각형, 육각형, 정삼각형 또는 정육각형의 원자 배열을 가지며, 또한 c축 방향에 수직한 방향에서 볼 때, 금속 원자가 층상, 또는 금속 원자와 산소 원자가 층상으로 배열된 상을 함유하는 산화물을 말한다.
CAAC는 단결정은 아니지만, 비정질만으로 형성되어 있는 것도 아니다. 또한, CAAC는 결정화된 부분(결정 부분)을 포함하지만, 1개의 결정 부분과 다른 결정 부분의 경계를 명확하게 판별할 수 없는 경우도 있다.
CAAC에 산소가 함유되는 경우, 산소의 일부는 질소로 치환되어도 좋다. 또한, CAAC를 구성하는 개개의 결정 부분의 c축은 일정한 방향(예를 들면, CAAC가 형성되는 기판면, CAAC의 표면 등에 수직한 방향)으로 정렬되어 있어도 좋다. 또는, CAAC를 구성하는 개개의 결정 부분의 ab면의 법선은 일정한 방향(예를 들면, CAAC가 형성되는 기판면, CAAC의 표면 등에 수직한 방향)을 향하고 있어도 좋다.
CAAC는, 그 조성 등에 따라, 도체이거나, 반도체이거나, 절연체이거나 한다. 또한, 그 조성 등에 따라, 가시광에 대해 투명하거나 불투명하거나 한다.
이러한 CAAC의 예로서, 막상으로 형성되고, 막 표면 또는 지지하는 기판면에 수직한 방향에서 관찰하면 삼각형 또는 육각형의 원자 배열이 확인되고, 또한 그 막 단면을 관찰하면 금속 원자 또는 금속 원자 및 산소 원자(또는 질소 원자)의 층상 배열이 확인되는 결정을 들 수도 있다.
CAAC에 포함되는 결정 구조의 일례에 관해서 도 15 내지 도 17을 사용하여 상세하게 설명한다. 또한, 특별히 언급하지 않는 한, 도 15 내지 도 17은 상방을 c축 방향으로 하고, c축 방향과 직교하는 면을 ab면으로 한다. 또한, 단순히 상반부, 하반부라고 하는 경우, ab면을 경계로 한 경우의 상반부, 하반부를 말한다. 또한, 도 15에 있어서, 원으로 둘러싸인 O는 4배위의 O를 나타내고, 2중원으로 둘러싸인 O는 3배위의 O를 나타낸다.
도 15a에, 1개의 6배위의 In과, In에 근접한 6개의 4배위의 산소 원자(이하 4배위의 O)를 갖는 구조를 도시한다. 여기에서는, 금속 원자 1개에 대해, 근접한 산소 원자만 나타낸 구조를 소그룹이라고 부른다. 도 15a의 구조는, 팔면체 구조를 취하지만, 간단하게 하기 위해 평면 구조로 나타내고 있다. 또한, 도 15a의 상반부 및 하반부에는 각각 3개씩 4배위의 O가 있다. 도 15a에 도시하는 소그룹은 전하가 0이다.
도 15b에, 1개의 5배위의 Ga와, Ga에 근접한 3개의 3배위의 산소 원자(이하 3배위의 O)와, Ga에 근접한 2개의 4배위의 O를 갖는 구조를 나타낸다. 3배위의 O는, 모두 ab면에 존재한다. 도 15b의 상반부 및 하반부에는 각각 1개씩 4배위의 O가 있다. 또한, In도 5배위를 취하기 때문에, 도 15b에 도시하는 구조를 취할 수 있다. 도 15b에 도시하는 소그룹은 전하가 0이다.
도 15c에, 1개의 4배위의 Zn과, Zn에 근접한 4개의 4배위의 O를 갖는 구조를 도시한다. 도 15c의 상반부에는 1개의 4배위의 O가 있고, 하반부에는 3개의 4배위의 O가 있다. 도 15c에 도시하는 소그룹은 전하가 0이다.
도 15d에, 1개의 6배위의 Sn과, Sn에 근접한 6개의 4배위의 O를 갖는 구조를 도시한다. 도 15d의 상반부에는 3개의 4배위의 O가 있고, 하반부에는 3개의 4배위의 O가 있다. 도 15d에 도시하는 소그룹은 전하가 +1이 된다.
도 15e에, 2개의 Zn을 함유하는 소그룹을 도시한다. 도 15e의 상반부에는 1개의 4배위의 O가 있고, 하반부에는 1개의 4배위의 O가 있다. 도 15e에 도시하는 소그룹은 전하가 -1이 된다.
여기에서는, 복수의 소그룹의 집합체를 중그룹이라고 부르고, 복수의 중그룹의 집합체를 대그룹(유닛 셀이라고도 말한다.)이라고 부른다.
여기에서, 이들 소그룹끼리가 결합하는 규칙에 관해서 설명한다. 도 15a에 도시하는 6배위의 In의 상반부의 3개의 O는 하방향에 각각 3개의 근접 In을 가지며, 하반부의 3개의 O는 상방향에 각각 3개의 근접 In을 가진다. 도 15b에 도시하는 5배위의 Ga의 상반부의 1개의 O는 하방향에 1개의 근접 Ga를 가지며, 하반부의 1개의 O는 상방향에 1개의 근접 Ga를 가진다. 도 15c에 도시하는 4배위의 Zn의 상반부의 1개의 O는 하방향에 1개의 근접 Zn을 가지며, 하반부의 3개의 O는 상방향에 3개의 근접 Zn을 가진다. 이와 같이, 금속 원자의 상방향의 4배위의 O의 수와, 그 O의 하방향에 있는 근접 금속 원자의 수는 동일하며, 마찬가지로 금속 원자의 하방향의 4배위의 O의 수와, 그 O의 상방향에 있는 근접 금속 원자의 수는 동일하다. O는 4배위이기 때문에, 하방향에 있는 근접 금속 원자의 수와, 상방향에 있는 근접 금속 원자의 수의 합은 4가 된다. 따라서, 금속 원자의 상방향에 있는 4배위의 O의 수와, 별도의 금속 원자의 하방향에 있는 4배위의 O의 수의 합이 4개일 때, 금속 원자를 갖는 2종의 소그룹끼리는 결합할 수 있다. 예를 들면, 6배위의 금속 원자(In 또는 Sn)가 상반부의 4배위의 O를 통하여 결합하는 경우, 4배위의 O가 3개이기 때문에, 5배위의 금속 원자(Ga 또는 In) 또는 4배위의 금속 원자(Zn) 중 어느 하나와 결합하게 된다.
이러한 배위수를 갖는 금속 원자는, c축 방향에 있어서, 4배위의 O를 통하여 결합한다. 또한, 이것 외에도, 층 구조의 합계의 전하가 0이 되도록 복수의 소그룹이 결합하여 중그룹을 구성한다.
도 16a에, In-Sn-Zn-O계의 층 구조를 구성하는 중그룹의 모델도를 도시한다. 도 16b에, 3개의 중그룹으로 구성되는 대그룹을 도시한다. 또한, 도 16c는, 도 16b의 층 구조를 c축 방향에서 관찰한 경우의 원자 배열을 도시한다.
도 16a에 있어서는, 간단하게 하기 위해, 3배위의 O는 생략하고, 4배위의 O는 개수만 나타내고, 예를 들면, Sn의 상반부 및 하반부에는 각각 3개씩 4배위의 O가 있는 것을 동그라미 3으로 나타내고 있다. 마찬가지로, 도 16a에 있어서, In의 상반부 및 하반부에는 각각 1개씩 4배위의 O가 있고, 동그라미 1로 나타내고 있다. 또한, 마찬가지로, 도 16a에 있어서, 하반부에는 1개의 4배위의 O가 있고, 상반부에는 3개의 4배위의 O가 있는 Zn과, 상반부에는 1개의 4배위의 O가 있고, 하반부에는 3개의 4배위의 O가 있는 Zn을 도시하고 있다.
도 16a에 있어서, In-Sn-Zn-O계의 층 구조를 구성하는 중그룹은, 위에서부터 순차적으로 4배위의 O가 3개씩 상반부 및 하반부에 있는 Sn이, 4배위의 O가 1개씩 상반부 및 하반부에 있는 In과 결합하고, 그 In이, 상반부에 3개의 4배위의 O가 있는 Zn과 결합하고, 그 Zn의 하반부의 1개의 4배위의 O를 통하여 4배위의 O가 3개씩 상반부 및 하반부에 있는 In과 결합하고, 그 In이, 상반부에 1개의 4배위의 O가 있는 Zn 2개로 이루어지는 소그룹과 결합하고, 이 소그룹의 하반부의 1개의 4배위의 O를 통하여 4배위의 O가 3개씩 상반부 및 하반부에 있는 Sn과 결합하고 있는 구성이다. 이 중그룹이 복수 결합하여 대그룹을 구성한다.
여기에서, 3배위의 O 및 4배위의 O의 경우, 결합 1개당의 전하는 각각 -0.667, -0.5라고 생각할 수 있다. 예를 들면, In(6배위 또는 5배위), Zn(4배위), Sn(5배위 또는 6배위)의 전하는, 각각 +3, +2, +4이다. 따라서, Sn을 함유하는 소그룹은 전하가 +1이 된다. 이로 인해, Sn을 함유하는 층 구조를 형성하기 위해서는, 전하 +1을 상쇄하는 전하 -1이 필요해진다. 전하 -1을 취하는 구조로서, 도 15e에 도시하는 바와 같이, 2개의 Zn을 함유하는 소그룹을 들 수 있다. 예를 들면, Sn을 함유하는 소그룹 1개에 대해, 2개의 Zn을 함유하는 소그룹이 1개 있으면, 전하가 상쇄되기 때문에, 층 구조의 합계의 전하를 0으로 할 수 있다.
구체적으로는, 도 16b에 도시한 대그룹이 반복됨으로써, In-Sn-Zn-O계의 결정(In2SnZn3O8)을 얻을 수 있다. 또한, 얻어지는 In-Sn-Zn-O계의 층 구조는, In2SnZn207(ZnO)m(m은 0 또는 자연수)으로 하는 조성식으로 나타낼 수 있다. 또한, In-Sn-Zn-O계의 결정은, m의 수가 크면 결정성이 향상되기 때문에, 바람직하다.
또한, 이외에도, 4원계 금속의 산화물인 In-Sn-Ga-Zn계 산화물이나, 3원계 금속의 산화물인 In-Ga-Zn계 산화물(IGZO라고도 표기한다.), In-Al-Zn계 산화물, Sn-Ga-Zn계 산화물, Al-Ga-Zn계 산화물, Sn-Al-Zn계 산화물이나, In-Hf-Zn계 산화물, In-La-Zn계 산화물, In-Ce-Zn계 산화물, In-Pr-Zn계 산화물, In-Nd-Zn계 산화물, In-Sm-Zn계 산화물, In-Eu-Zn계 산화물, In-Gd-Zn계 산화물, In-Tb-Zn계 산화물, In-Dy-Zn계 산화물, In-Ho-Zn계 산화물, In-Er-Zn계 산화물, In-Tm-Zn계 산화물, In-Yb-Zn계 산화물, In-Lu-Zn계 산화물이나, 2원계 금속의 산화물인 In-Zn계 산화물, Sn-Zn계 산화물, Al-Zn계 산화물, Zn-Mg계 산화물, Sn-Mg계 산화물, In-Mg계 산화물이나, In-Ga계 산화물, 1원계 금속의 산화물인 In계 산화물, Sn계 산화물, Zn계 산화물 등을 사용한 경우도 마찬가지이다.
예를 들면, 도 17a에, In-Ga-Zn-O계의 층 구조를 구성하는 중그룹의 모델도를 도시한다.
도 17a에 있어서, In-Ga-Zn-O계의 층 구조를 구성하는 중그룹은, 위에서부터 순차적으로 4배위의 O가 3개씩 상반부 및 하반부에 있는 In이, 4배위의 O가 1개 상반부에 있는 Zn과 결합하고, 그 Zn의 하반부의 3개의 4배위의 O를 통하여, 4배위의 O가 1개씩 상반부 및 하반부에 있는 Ga와 결합하고, 그 Ga의 하반부의 1개의 4배위의 O를 통하여, 4배위의 O가 3개씩 상반부 및 하반부에 있는 In과 결합하고 있는 구성이다. 이 중그룹이 복수 결합하여 대그룹을 구성한다.
도 17b에 3개의 중그룹으로 구성되는 대그룹을 도시한다. 또한, 도 17c는 도 17b의 층 구조를 c축 방향에서 관찰한 경우의 원자 배열을 나타내고 있다.
여기에서, In(6배위 또는 5배위), Zn(4배위), Ga(5배위)의 전하는, 각각 +3, +2, +3이기 때문에, In, Zn 및 Ga 중 어느 하나를 함유하는 소그룹은, 전하가 0이 된다. 이로 인해, 이들 소그룹의 조합이면 중그룹의 합계 전하는 항상 0이 된다.
또한, In-Ga-Zn-O계의 층 구조를 구성하는 중그룹은, 도 17a에 도시한 중그룹으로 한정되지 않고, In, Ga, Zn의 배열이 상이한 중그룹을 조합한 대그룹도 취할 수 있다.
CAAC로 구성된 산화물 반도체층은, 스퍼터링법에 의해서도 제작할 수 있다. 스퍼터링법에 의해 CAAC를 얻기 위해서는 산화물 반도체층의 퇴적 초기 단계에 있어서 육방정의 결정이 형성되도록 하는 것과, 상기 결정을 종으로 하여 결정이 성장되도록 하는 것이 중요하다. 이를 위해서는, 타깃과 기판의 거리를 넓게 취하고(예를 들면, 150mm 내지 200mm 정도), 기판 가열 온도를 100℃ 내지 500℃, 적합하게는 200℃ 내지 400℃, 더욱 적합하게는 250℃ 내지 300℃로 하면 바람직하다. 또한, 이것에 더해서, 성막시의 기판 가열 온도보다도 높은 온도로, 퇴적된 산화물 반도체층을 열처리함으로써 막중에 함유되는 미소한 결함이나, 적층 계면의 결함을 수복할 수 있다.
또한, In-Sn-Zn계 산화물층의 형성에 사용하는 타깃의 조성비는, In:Sn:Zn이 원자수비로, 1:2:2, 2:1:3, 1:1:1, 또는 20:45:35 등이 되는 산화물 타깃을 사용한다.
CAAC는, 비정질의 산화물 반도체와 비교하여, 금속과 산소의 결합이 질서화되어 있다. 즉, 산화물 반도체가 비정질인 경우에는, 개개의 금속 원자에 의해 산소 원자의 배위수가 상이한 것도 있을 수 있지만, CAAC에서는 금속 원자에 있어서의 산소 원자의 배위수는 거의 일정해진다. 이로 인해, 미시적인 산소의 결손이 감소되고, 수소 원자(수소 이온을 포함)나 알칼리 금속 원자의 탈착에 의한 전하의 이동이나 불안정성을 감소시키는 효과가 있다.
따라서, CAAC로 구성된 산화물 반도체층을 사용하여 트랜지스터를 제작함으로써, 트랜지스터로의 광조사 또는 바이어스-열 스트레스(BT)의 부가를 행한 후에 발생하는, 트랜지스터의 임계값 전압의 변화량을 저감시킬 수 있다. 따라서, 안정된 전기적 특성을 갖는 트랜지스터를 제작할 수 있다.
또한, 산화물 반도체층을 반도체층(803), 반도체층(807), 반도체층(811), 반도체층(813), 반도체층(816), 반도체층(820)에 사용하는 경우, 산화물 반도체층에 접하는 게이트 절연막(802), 절연막(823) 등의 절연막은, 플라즈마 CVD법 또는 스퍼터링법 등을 사용하여 산화규소, 질화산화규소, 산화질화규소, 산화하프늄, 산화알루미늄 또는 산화탄탈, 산화이트륨, 하프늄실리케이트(HfSixOy(x>0, y>0)), 질소가 첨가된 하프늄실리케이트(HfSixOy(x>0, y>0)), 질소가 첨가된 하프늄알루미네이트(HfAlxOy(x>0, y>0)) 등을 함유하는 막을, 단수로, 또는 복수 적층시킴으로써, 형성할 수 있다.
산소를 함유하는 무기 재료를 상기 절연막에 사용함으로써, 수분 또는 수소를 저감시키기 위한 가열 처리에 의해 산화물 반도체층 중에 산소 결손이 발생하고 있었다고 해도, 산화물 반도체층에 상기 절연막으로부터 산소를 공급하여 도너가 되는 산소 결손을 저감시켜 화학량론 조성비를 충족시키는 구성으로 하는 것이 가능하다. 따라서, 채널 형성 영역을, i형에 가깝게 할 수 있고, 산소 결손에 의한 트랜지스터(103), 트랜지스터(104), 트랜지스터(105), 트랜지스터(106), 트랜지스터(109)의 전기 특성의 편차를 경감시켜 전기 특성의 향상을 실현할 수 있다.
또한, 산화물 반도체층에 접하는 게이트 절연막(802), 절연막(823) 등의 절연막은, 제 13 족 원소 및 산소를 함유하는 절연 재료를 사용하도록 해도 좋다. 산화물 반도체에는 제 13 족 원소를 함유하는 것이 많으며, 제 13 족 원소를 함유하는 절연 재료는 산화물 반도체와의 상성이 양호하며, 이것을 산화물 반도체층에 접하는 절연막에 사용함으로써, 산화물 반도체층과의 계면의 상태를 양호하게 유지할 수 있다.
제 13 족 원소를 함유하는 절연 재료란, 절연 재료에 하나 또는 복수의 제 13 족 원소를 함유하는 것을 의미한다. 제 13 족 원소를 함유하는 절연 재료로서는, 예를 들면, 산화갈륨, 산화알루미늄, 산화알루미늄갈륨, 산화갈륨알루미늄 등이 있다. 여기에서, 산화알루미늄갈륨이란, 갈륨의 함유량(원자%)보다 알루미늄의 함유량(원자%)이 많은 것을 나타내고, 산화갈륨알루미늄이란, 갈륨의 함유량(원자%)이 알루미늄의 함유량(원자%) 이상인 것을 나타낸다.
예를 들면, 갈륨을 함유하는 산화물 반도체층에 접하여 절연막을 형성하는 경우에, 절연막에 산화갈륨을 함유하는 재료를 사용함으로써 산화물 반도체층과 절연막의 계면 특성을 양호하게 유지할 수 있다. 예를 들면, 산화물 반도체층과 산화갈륨을 함유하는 절연막을 접하여 형성함으로써, 산화물 반도체층과 절연막의 계면에 있어서의 수소의 파일업을 저감시킬 수 있다. 또한, 절연막에 산화물 반도체의 성분 원소와 동일한 족의 원소를 사용하는 경우에는, 같은 효과를 얻는 것이 가능하다. 예를 들면, 산화알루미늄을 함유하는 재료를 사용하여 절연막을 형성하는 것도 유효하다. 또한, 산화알루미늄은, 물을 투과시키기 어렵다고 하는 특성을 가지고 있기 때문에, 상기 재료를 사용하는 것은, 산화물 반도체층으로의 물의 침입 방지라는 점에 있어서도 바람직하다.
또한, 도 5 내지 도 7에 있어서, 반도체층(803), 반도체층(807), 반도체층(811), 반도체층(813), 반도체층(816), 반도체층(820)에, 비정질, 미결정, 또는 다결정인 실리콘 또는 게르마늄 등의 반도체를 사용해도 좋다. 다만, 비정질, 미결정, 또는 다결정인 실리콘 또는 게르마늄 등의 반도체를, 반도체층(803), 반도체층(807), 반도체층(811), 반도체층(813), 반도체층(816), 반도체층(820)에 사용하는 경우, 1 도전성을 부여하는 불순물 원소를 상기 반도체층에 첨가하여 소스 또는 드레인으로서 기능하는 불순물 영역을 형성한다. 예를 들면, 인 또는 비소를 상기 반도체층에 첨가함으로써, n형의 도전성을 갖는 불순물 영역을 형성할 수 있다. 또한, 예를 들면, 붕소를 상기 반도체층에 첨가함으로써, p형의 도전성을 갖는 불순물 영역을 형성할 수 있다.
이어서, 도 8에, 도 1a에 도시한 화소의 상면도를, 별도의 일례로서 도시한다. 또한, 도 8에서는, 화소의 레이아웃을 명확하게 나타내기 위해, 각종 절연막을 생략하고, 화소의 상면도를 도시한다. 또한, 도 8에서는, 화소가 갖는 트랜지스터와 용량 소자의 레이아웃을 명확하게 나타내기 위해, 애노드와, 전계 발광층과, 캐소드를 생략하고, 화소의 상면도를 도시한다.
또한, 도 9에, 도 8에 도시하는 상면도의, 파선 A1-A2 및 파선 A3-A4에 있어서의 단면도를 도시한다.
트랜지스터(103)는, 절연 표면을 갖는 기판(900) 위에, 반도체층(903)과, 반도체층(903) 위의 게이트 절연막(902)과, 반도체층(903)과 중첩되는 위치에 있어서 게이트 절연막(902) 위에 위치하고, 또한 게이트로서 기능하는 도전막(901)과, 소스 또는 드레인으로서 기능하며, 반도체층(903) 위에 위치하는 도전막(904) 및 도전막(905)을 가진다. 도전막(901)은 주사선(G1)으로서도 기능한다. 도전막(904)은, 신호선(S1)으로서도 기능한다.
트랜지스터(102)는 절연 표면을 갖는 기판(900) 위에, 반도체층(907)과, 반도체층(907) 위의 게이트 절연막(902)과, 반도체층(907)과 중첩되는 위치에 있어서 게이트 절연막(902) 위에 위치하고, 또한 게이트로서 기능하는 도전막(906)과, 소스 또는 드레인으로서 기능하며, 반도체층(907) 위에 위치하는 도전막(908) 및 도전막(909)을 가진다. 도전막(906)은, 콘택트홀을 통하여 도전막(905)에 접속되어 있다.
트랜지스터(104)는, 절연 표면을 갖는 기판(900) 위에, 반도체층(907)과, 반도체층(907) 위의 게이트 절연막(902)과, 반도체층(907)과 중첩되는 위치에 있어서 게이트 절연막(902) 위에 위치하고, 또한 게이트로서 기능하는 도전막(910)과, 소스 또는 드레인으로서 기능하고, 반도체층(907) 위에 위치하는 도전막(911) 및 도전막(908)을 가진다. 도전막(910)은 주사선(G2)으로서도 기능한다. 도전막(911)은, 콘택트홀을 통하여 도전막(906)에 접속되어 있다. 또한, 도 8에서는, 트랜지스터(102)와 트랜지스터(104)가 하나의 반도체층(907)을 공유하고 있지만, 트랜지스터(102)와 트랜지스터(104)가 서로 독립된 반도체층을 갖고 있어도 좋다.
트랜지스터(105)는, 절연 표면을 갖는 기판(900) 위에, 반도체층(913)과, 반도체층(913) 위의 게이트 절연막(902)과, 반도체층(913)과 중첩되는 위치에 있어서 게이트 절연막(902) 위에 위치하고, 또한 게이트로서 기능하는 도전막(912)과, 소스 또는 드레인으로서 기능하며, 반도체층(913) 위에 위치하는 도전막(908) 및 도전막(914)을 가진다. 도전막(912)은 주사선(G3)으로서도 기능한다. 도전막(914)은 전원선(VA)으로서도 기능한다.
트랜지스터(106)는, 절연 표면을 갖는 기판(900) 위에, 반도체층(916)과, 반도체층(916) 위의 게이트 절연막(902)과, 반도체층(916)과 중첩되는 위치에 있어서 게이트 절연막(902) 위에 위치하고, 또한 게이트로서 기능하는 도전막(915)과, 소스 또는 드레인으로서 기능하며, 반도체층(916) 위에 위치하는 도전막(909) 및 도전막(917)을 가진다. 도전막(915)은 주사선(G4)으로서도 기능한다.
용량 소자(107)는, 절연 표면을 갖는 기판(900) 위에, 반도체층(907)과, 반도체층(907) 위의 게이트 절연막(902)과, 반도체층(907)과 중첩되는 위치에 있어서 게이트 절연막(902) 위에 위치하는 도전막(906)을 가진다. 또한, 도 8에서는, 용량 소자(107)와, 트랜지스터(102)가 하나의 반도체층(907)을 공유하고 있지만, 용량 소자(107)와 트랜지스터(102)가, 서로 독립된 반도체층을 갖고 있어도 좋다.
용량 소자(108)는, 절연 표면을 갖는 기판(900) 위에, 반도체층(918)과, 반도체층(918) 위의 게이트 절연막(902)과, 반도체층(918)과 중첩되는 위치에 있어서 게이트 절연막(902) 위에 위치하는 도전막(906)을 가진다. 반도체층(918)은, 도전막(917)을 통하여, 전원선(VB)으로서도 기능하는 도전막(930)에 접속하고 있다.
트랜지스터(109)는, 절연 표면을 갖는 기판(900) 위에, 반도체층(913)과, 반도체층(913) 위의 게이트 절연막(902)과, 반도체층(913)과 중첩되는 위치에 있어서 게이트 절연막(902) 위에 위치하고, 또한 게이트로서 기능하는 도전막(919)과, 소스 또는 드레인으로서 기능하고, 반도체층(913) 위에 위치하는 도전막(908) 및 도전막(921)을 가진다. 도전막(919)은 주사선(G2)으로서도 기능한다. 또한, 도전막(921)은 콘택트홀을 통하여, 전원선(VC)으로서 기능하는 도전막(922)에 접속되어 있다. 또한, 도 8에서는, 트랜지스터(105)와 트랜지스터(109)가 하나의 반도체층(913)을 공유하고 있지만, 트랜지스터(105)와 트랜지스터(109)가 서로 독립된 반도체층을 갖고 있어도 좋다.
또한, 도전막(904), 도전막(905), 도전막(908), 도전막(909), 도전막(911), 도전막(914), 도전막(917), 도전막(921) 위에는, 절연막(923)이 형성되어 있다. 그리고, 절연막(923) 위에는, 애노드로서 기능하는 도전막(925)이 형성되어 있다. 도전막(925)은 절연막(923)에 형성된 콘택트홀(926)을 통하여, 도전막(909)에 접속되어 있다.
또한, 도전막(925)의 일부가 노출되는 개구부를 가진 절연막(927)이, 절연막(923) 위에 형성되어 있다. 도전막(925)의 일부 및 절연막(927) 위에는, 전계 발광층(928)과, 캐소드로서 기능하는 도전막(929)이, 순차적으로 적층되도록 형성되어 있다. 도전막(925)과, 전계 발광층(928)과, 도전막(929)이 중첩되고 있는 영역이, 발광 소자(101)에 상당한다.
또한, 도 8에서는, 도전막(910)과 도전막(919)이 모두 주사선(G2)으로서도 기능하는 경우를 예시하고 있지만, 도전막(910)과 도전막(919)이 하나의 도전막으로 구성되어 있어도 좋다.
또한, 반도체층(903), 반도체층(907), 반도체층(913), 반도체층(916), 반도체층(918)에는, 단결정인, 실리콘 또는 게르마늄 등의 반도체를 사용한다.
반도체층(903), 반도체층(907), 반도체층(913), 반도체층(916), 및 반도체층(918)이 단결정의 실리콘인 경우, 우선, 단결정의 반도체 기판인 본드 기판을 준비한다. 그리고 상기 본드 기판에, 전계에서 가속된 이온으로 이루어지는 이온빔을 주입하고, 본드 기판의 표면으로부터 일정한 깊이의 영역에, 결정 구조가 흐트러짐으로써 국소적으로 취약화된 취화층을 형성한다. 취화층이 형성되는 영역의 깊이는, 이온빔의 가속 에너지와 이온빔의 입사각에 의해 조절할 수 있다. 그리고, 본드 기판과, 절연 표면을 갖는 기판(900)을 첩합한다. 첩합은, 본드 기판과 기판(900)을 포갠 후, 본드 기판과 기판(900)의 일부에, 1N/㎠ 이상 500N/㎠ 이하, 바람직하게는 11N/㎠ 이상 20N/㎠ 이하 정도의 압력을 가한다. 압력을 가하면, 그 부분으로부터 본드 기판과 기판(900)의 절연 표면이 접합을 개시하고, 최종적으로는 밀착된 면 전체에 접합이 미친다. 이어서, 가열 처리를 행함으로써, 취화층에 존재하는 미소 보이드의 체적이 증대하여 미소 보이드끼리가 결합한다. 그 결과, 취화층에 있어서 본드 기판의 일부인 단결정 반도체층이, 본드 기판으로부터 분리된다. 상기 가열 처리의 온도는, 기판(900)의 변형점을 초과하지 않는 온도로 한다. 그리고, 상기 단결정 반도체층을 에칭 등에 의해 원하는 형상으로 가공함으로써, 반도체층(903), 반도체층(907), 반도체층(913), 반도체층(916), 및 반도체층(918)을 형성할 수 있다.
반도체층(903), 반도체층(907), 반도체층(913), 반도체층(916), 및 반도체층(918)에는, 임계값 전압을 제어하기 위해서, 붕소, 알루미늄, 갈륨 등의 p형의 도전성을 부여하는 불순물 원소, 또는 인, 비소 등의 n형의 도전성을 부여하는 불순물 원소를 첨가해도 좋다. 임계값 전압을 제어하기 위한 불순물 원소의 첨가는, 패터닝하기 전의 반도체층에 대해 행해도 좋고, 패터닝 후에 형성된 반도체층(903), 반도체층(907), 반도체층(913), 반도체층(916), 및 반도체층(918)에 대해 행해도 좋다. 또한, 임계값 전압을 제어하기 위한 불순물 원소의 첨가를, 본드 기판에 대해 행해도 좋다. 또는, 불순물 원소의 첨가를, 임계값 전압을 대략 조정하기 위해서 본드 기판에 대해 행한 후, 임계값 전압을 미세 조정하기 위해서, 패터닝전의 반도체층에 대해, 또는 패터닝에 의해 형성된 반도체층(903), 반도체층(907), 반도체층(913), 반도체층(916), 및 반도체층(918)에 대해서도 행해도 좋다.
또한, 반도체층(903), 반도체층(907), 반도체층(913), 반도체층(916), 및 반도체층(918)은, 예를 들면, 절연 표면을 갖는 기판(900) 위에 기상 성장법을 사용하여 형성된 다결정, 미결정, 비정질의 반도체층을 사용해도 좋고, 상기 반도체층을 공지의 기술에 의해 결정화해도 좋다. 공지의 결정화 방법으로서는, 레이저광을 사용한 레이저 결정화법, 촉매 원소를 사용하는 결정화법이 있다. 또는, 촉매 원소를 사용하는 결정화법과 레이저 결정화법을 조합하여 사용할 수도 있다. 또한, 석영과 같은 내열성이 우수한 기판을 기판(900)으로서 사용하는 경우, 전열로를 사용한 열결정화 방법, 적외광을 사용한 램프 어닐 결정화법, 촉매 원소를 사용하는 결정화법, 950℃ 정도의 고온 어닐법 등을 사용해도 좋다.
또한, 반도체층(903), 반도체층(907), 반도체층(913), 반도체층(916), 및 반도체층(918)에, 산화물 반도체 등의 와이드 갭 반도체를 사용해도 좋다. 산화물 반도체를 반도체층(903), 반도체층(907), 반도체층(913), 반도체층(916), 및 반도체층(918)에 사용하는 경우, 도펀트를 상기 반도체층에 첨가하여 소스 또는 드레인으로서 기능하는 불순물 영역을 형성한다. 도펀트의 첨가는, 이온 주입법을 사용할 수 있다. 도펀트는, 예를 들면 헬륨, 아르곤, 크세논 등의 희가스나, 질소, 인, 비소, 안티몬 등의 15족 원자 등을 사용할 수 있다. 예를 들면, 질소를 도펀트로서 사용한 경우, 불순물 영역 중의 질소 원자의 농도는, 5×1019/c㎥ 이상 1×1022/c㎥ 이하인 것이 바람직하다.
또한, 본 발명의 일 형태에 따른 발광 장치에서는, 백색 등의 단색의 광을 발하는 발광 소자와, 컬러 필터를 조합함으로써, 풀컬러 화상의 표시를 행하는, 컬러 필터 방식을 채용할 수 있다. 또는, 서로 상이한 색상의 광을 발하는 복수의 발광 소자를 사용하여 풀컬러 화상의 표시를 행하는 방식을 채용할 수도 있다. 이 방식은, 발광 소자가 갖는 한 쌍의 전극간에 형성되는 전계 발광층을, 대응하는 색별로 분리 도포하기 때문에, 분리 도포 방식이라고 불린다.
분리 도포 방식의 경우, 전계 발광층의 분리 도포는, 통상, 메탈 마스크 등의 마스크를 사용하여 증착법으로 행해진다. 이로 인해, 화소의 사이즈는 증착법에 의한 전계 발광층의 분리 도포 정밀도에 의존한다. 한편, 컬러 필터 방식의 경우, 분리 도포 방식과는 달리, 전계 발광층의 분리 도포를 행할 필요가 없다. 따라서, 분리 도포 방식의 경우보다도, 화소 사이즈의 축소화가 용이하여 고선명한 화소부를 실현할 수 있다.
또한, 발광 장치에는, 트랜지스터가 형성된 기판(800) 또는 기판(900) 등의 소자 기판 측으로부터 발광 소자의 광을 추출하는 배면 발광 구조와, 소자 기판과는 반대측으로부터 발광 소자의 광을 추출하는 전면 발광 구조가 있다. 전면 발광 구조의 경우, 발광 소자로부터 발해지는 광을, 배선, 트랜지스터, 유지 용량 등의 각종소자에 의해 차단되는 경우가 없기 때문에, 배면 발광 구조에 비해, 화소로부터의 광의 추출 효율을 높일 수 있다. 따라서, 전면 발광 구조는, 발광 소자에 공급하는 전류값을 낮게 억제해도, 높은 휘도를 얻을 수 있기 때문에, 발광 소자의 장수명화에 유리하다.
또한, 본 발명의 일 형태에 따른 발광 장치에서는, 전계 발광층으로부터 발해지는 광을 발광 소자 내에서 공진시키는, 마이크로 캐비티(미소광공진기) 구조를 갖고 있어도 좋다. 마이크로 캐비티 구조에 의해, 특정한 파장의 광에 관해서, 발광 소자로부터의 추출 효율을 향상시킬 수 있기 때문에, 화소부의 휘도와 색 순도를 향상시킬 수 있다.
도 10에, 마이크로 캐비티 구조를 갖는 화소의 단면도를, 일례로서 도시한다. 또한, 도 10에서는, 적색에 대응하는 화소의 단면의 일부, 청색에 대응하는 화소의 단면의 일부와, 녹색에 대응하는 화소의 단면의 일부를 도시하고 있다.
구체적으로, 도 10에서는, 적색에 대응한 화소(140r)와, 녹색에 대응한 화소(140g)와, 청색에 대응한 화소(140b)가 도시되어 있다. 화소(140r), 화소(140g), 화소(140b)는, 각각 애노드(715r), 애노드(715g), 애노드(715b)를 가진다. 상기 애노드(715r), 애노드(715g), 애노드(715b)는, 화소(140r), 화소(140g), 화소(140b)의 각각에 있어서, 기판(740)에 형성된 절연막(750) 위에 형성되어 있다.
그리고, 애노드(715r), 애노드(715g), 및 애노드(715b) 위에는 절연막을 갖는 격벽(730)이 설치되어 있다. 격벽(730)은 개구부를 가지며, 상기 개구부에 있어서, 애노드(715r), 애노드(715g), 및 애노드(715b)가, 각각 일부 노출되어 있다. 또한, 상기 노출되어 있는 영역을 덮도록, 격벽(730) 위에, 전계 발광층(731)과, 가시광에 대해 투광성을 갖는 캐소드(732)가, 순차적으로 적층되어 있다.
애노드(715r)와, 전계 발광층(731)과, 캐소드(732)가 중첩되는 부분이, 적색에 대응한 발광 소자(741r)에 상당한다. 애노드(715g)와, 전계 발광층(731)과, 캐소드(732)가 중첩되는 부분이, 녹색에 대응한 발광 소자(741g)에 상당한다. 애노드(715b)와, 전계 발광층(731)과, 캐소드(732)가 중첩되는 부분이, 청색에 대응한 발광 소자(741b)에 상당한다.
또한, 기판(742)은, 발광 소자(741r), 발광 소자(741g), 및 발광 소자(741b)를 사이에 개재하도록, 기판(740)과 대치되어 있다. 기판(742) 위에는, 화소(140r)에 대응한 착색층(743r), 화소(140g)에 대응한 착색층(743g), 화소(140b)에 대응한 착색층(743b)이 형성되어 있다. 착색층(743r)은 적색에 대응한 파장 영역의 광의 투과율이, 다른 파장 영역의 광의 투과율보다 높은 층이며, 착색층(743g)은 녹색에 대응한 파장 영역의 광의 투과율이, 다른 파장 영역의 광의 투과율보다 높은 층이며, 착색층(743b)은 청색에 대응한 파장 영역의 광의 투과율이, 다른 파장 영역의 광의 투과율보다 높은 층이다.
또한, 기판(742) 위에는, 착색층(743r), 착색층(743g), 착색층(743b)을 덮도록, 오버코트(744)가 형성되어 있다. 오버코트(744)는 착색층(743r), 착색층(743g), 착색층(743b)을 보호하기 위한, 가시광에 대해 투광성을 갖는 층이며, 평탄성이 높은 수지 재료를 사용하는 것이 바람직하다. 착색층(743r), 착색층(743g), 및 착색층(743b)과, 오버코트(744)를 합하여 컬러 필터로 간주해도 좋고, 착색층(743r), 착색층(743g), 및 착색층(743b)의 각각을 컬러 필터로 간주해도 좋다.
그리고, 도 10에서는, 애노드(715r)에, 가시광의 반사율이 높은 도전막(745r)과, 가시광의 투과율이 상기 도전막(745r)보다도 높은 도전막(746r)을, 순차적으로 적층하여 사용한다. 또한, 애노드(715g)에, 가시광의 반사율이 높은 도전막(745g)과, 가시광의 투과율이 상기 도전막(745g)보다도 높은 도전막(746g)을, 순차적으로 적층하여 사용한다. 도전막(746g)의 막 두께는, 도전막(746r)의 막 두께보다도 작은 것으로 한다. 또한, 애노드(715b)에, 가시광의 반사율이 높은 도전막(745b)을 사용한다.
따라서, 도 10에 도시하는 발광 장치에서는, 발광 소자(741r)에 있어서, 전계 발광층(731)으로부터 발해진 광의 광로 길이는, 도전막(745r)과 캐소드(732)의 거리에 의해 조절할 수 있다. 또한, 발광 소자(741g)에 있어서, 전계 발광층(731)으로부터 발해진 광의 광로 길이는, 도전막(745g)과 캐소드(732)의 거리에 의해 조절할 수 있다. 또한, 발광 소자(741b)에 있어서, 전계 발광층(731)으로부터 발해진 광의 광로 길이는, 도전막(745b)과 캐소드(732)의 거리에 의해 조절할 수 있다.
본 발명의 일 형태에서는, 발광 소자(741r)와, 발광 소자(741g)와, 발광 소자(741b)에 각각 대응하는 광의 파장에 맞추어, 상기 광로 길이를 조정함으로써, 전계 발광층(731)으로부터 발해진 광을 상기 각 발광 소자내에 있어서 공진시키는, 마이크로 캐비티 구조로 해도 좋다. 예를 들면, 도 10의 경우, 도전막(745r), 도전막(745g), 또는 도전막(745b)과, 캐소드(732) 사이의 거리를 L, 전계 발광층(731)의 굴절율을 n, 공진시키고 싶은 광의 파장을 λ로 하면, 거리(L)와 굴절율(n)의 곱이, 파장(λ)의 (2N-1)/4배(N은 자연수)가 되도록 하면 좋다.
상기 마이크로 캐비티 구조를, 본 발명의 일 형태에 따른 발광 장치에 채용함으로써, 발광 소자(741r)로부터 발해지는 광에 있어서, 적색에 대응한 파장을 갖는 광의 강도가, 공진에 의해 향상된다. 따라서, 착색층(743r)을 통과시켜 얻어지는 적색의 광의 색 순도 및 휘도가 높아진다. 또한, 발광 소자(741g)로부터 발해지는 광에 있어서, 녹색에 대응한 파장을 갖는 광의 강도가, 공진에 의해 향상된다. 따라서, 착색층(743g)을 통과시켜 얻어지는 녹색의 광의 색 순도 및 휘도가 높아진다. 또한, 발광 소자(741b)로부터 발해지는 광에 있어서, 청색에 대응한 파장을 갖는 광의 강도가, 공진에 의해 향상된다. 따라서, 착색층(743b)을 통과시켜 얻어지는 청색의 광의 색 순도 및 휘도가 높아진다.
또한, 도 10에서는, 적색, 녹색, 청색의 3색에 대응하는 화소를 사용하는 구성에 관해서 도시하였지만, 본 발명의 일 형태에서는, 상기 구성으로 한정되지 않는다. 본 발명의 일 형태에서 사용하는 색의 조합은, 예를 들면, 적색, 녹색, 청색, 황색의 4색, 또는, 시안, 마젠타, 옐로우의 3색을 사용하고 있어도 좋다. 또는, 상기 색의 조합은, 옅은 색의 적색, 녹색, 및 청색, 및 짙은 색의 적색, 녹색, 및 청색의 6색을 사용하고 있어도 좋다. 또는, 상기 색의 조합은, 적색, 녹색, 청색, 시안, 마젠타, 옐로우의 6색을 사용하고 있어도 좋다.
또한, 예를 들면, 적색, 녹색, 및 청색의 화소를 사용하여 표현할 수 있는 색은, 색도도상의 각각의 발광색에 대응하는 3점이 그리는 삼각형의 내측에 나타내어지는 색으로 한정된다. 따라서, 적색, 녹색, 청색, 황색의 화소를 사용한 경우와 같이, 색도도상의 상기 삼각형의 외측에 발광색이 존재하는 발광 소자를 별도 가함으로써, 상기 발광 장치에 있어서 표현할 수 있는 색역을 확대하여 색재현성을 풍부하게 할 수 있다.
또한, 도 10에서는, 발광 소자(741r), 발광 소자(741g), 발광 소자(741b) 중, 광의 파장(λ)이 가장 짧은 발광 소자(741b)에 있어서, 가시광의 반사율이 높은 도전막(745b)을 애노드로서 사용하고, 다른 발광 소자(741r), 발광 소자(741g)에 있어서는, 막 두께가 서로 상이한 도전막(746r) 및 도전막(746g)을 사용함으로써, 광로 길이를 조정하고 있다. 본 발명의 일 형태에서는, 파장(λ)이 가장 짧은 발광 소자(741b)에 있어서도, 가시광의 반사율이 높은 도전막(745b) 위에, 도전막(746r) 및 도전막(746g)과 같은, 가시광의 투과율이 높은 도전막을 형성하고 있어도 좋다. 다만, 도 10에 도시하는 바와 같이, 파장(λ)이 가장 짧은 발광 소자(741b)에 있어서, 가시광의 반사율이 높은 도전막(745b)으로 애노드를 구성하는 경우, 모든 발광 소자에 있어서, 애노드에 가시광의 투과율이 높은 도전막을 사용하는 경우보다도, 애노드의 제작 공정이 간소화되기 때문에, 바람직하다.
또한, 가시광의 반사율이 높은 도전막(745b)은, 가시광의 투과율이 높은 도전막(746r) 및 도전막(746g)에 비해, 일함수가 작은 경우가 많다. 따라서, 광의 파장(λ)이 가장 짧은 발광 소자(741b)에서는, 발광 소자(741r), 발광 소자(741g)에 비해, 애노드(715b)로부터 전계 발광층(731)으로의 정공 주입이 행해지기 어렵기 때문에, 발광 효율이 낮은 경향이 있다. 그래서, 본 발명의 일 형태에서는, 광의 파장(λ)이 가장 짧은 발광 소자(741b)에 있어서, 전계 발광층(731) 중, 가시광의 반사율이 높은 도전막(745b)과 접하는 층에 있어서, 정공 수송성이 높은 물질에, 상기 정공 수송성이 높은 물질에 대해 억셉터성(전자 수용성)을 나타내는 물질을 함유시킨 복합 재료를 사용하는 것이 바람직하다. 상기 복합 재료를, 애노드(715b)에 접하여 형성함으로써, 애노드(715b)로부터 전계 발광층(731)으로의 정공 주입이 행해지기 쉬워져 발광 소자(741b)의 발광 효율을 높일 수 있다.
억셉터성을 나타내는 물질로서는, 7,7,8,8-테트라시아노-2,3,5,6-테트라플루오로퀴노디메탄(약칭: F4-TCNQ), 클로라닐 등을 들 수 있다. 또한, 전이 금속산 화합물을 들 수 있다. 또한, 원소주기표에 있어서의 제 4 족 내지 제 8 족에 속하는 금속의 산화물을 들 수 있다. 구체적으로는, 산화바나듐, 산화니오븀, 산화탄탈, 산화크롬, 산화몰리브덴, 산화텅스텐, 산화망간, 산화레늄은 억셉터성이 높기 때문에 바람직하다. 이 중에서도 특히, 산화몰리브덴은 대기 중에서도 안정적이며, 흡습성이 낮고, 취급하기 쉽기 때문에 바람직하다.
복합 재료에 사용하는 정공 수송성이 높은 물질로서는, 방향족 아민 화합물, 카르바졸 유도체, 방향족 탄화수소, 고분자 화합물(올리고머, 덴드리머, 중합체 등) 등, 다양한 화합물을 사용할 수 있다. 또한, 복합 재료에 사용하는 유기 화합물로서는, 정공 수송성이 높은 유기 화합물인 것이 바람직하다. 구체적으로는, 10-6㎠/Vs 이상의 정공 이동도를 갖는 물질인 것이 바람직하다. 단, 전자보다도 정공의 수송성이 높은 물질이면, 이들 이외의 것을 사용해도 좋다.
또한, 가시광의 반사율이 높은 도전막(745r), 도전막(745g), 도전막(745b)으로서는, 예를 들면, 알루미늄, 은, 또는, 이들 금속 재료를 함유하는 합금 등을, 단층으로, 또는 적층함으로써, 형성할 수 있다. 또한, 도전막(745r), 도전막(745g), 도전막(745b)을, 가시광의 반사율이 높은 도전막과, 막 두께가 얇은 도전막(바람직하게는 20nm 이하, 더욱 바람직하게는 10nm 이하)을 적층시켜 형성해도 좋다. 예를 들면, 가시광의 반사율이 높은 도전막 위에, 얇은 티타늄막이나 몰리브덴막을 적층하여, 도전막(745b)을 형성함으로써, 가시광의 반사율이 높은 도전막(알루미늄, 알루미늄을 함유하는 합금, 또는 은 등)의 표면에 산화막이 형성되는 것을 방지할 수 있다.
또한, 가시광의 투과율이 높은 도전막(746r) 및 도전막(746g)에는, 예를 들면, 산화인듐, 산화주석, 산화아연, 인듐주석 산화물, 인듐아연 산화물 등을 사용할 수 있다.
또한, 캐소드(732)는, 예를 들면, 광을 투과할 정도의 얇은 도전막(바람직하게는 20nm 이하, 더욱 바람직하게는 10nm 이하)과, 도전성의 금속 산화물로 구성된 도전막을 적층함으로써, 형성할 수 있다. 광을 투과할 정도의 얇은 도전막은, 은, 마그네슘, 또는 이들의 금속 재료를 함유하는 합금 등을, 단층으로, 또는 적층하여 형성할 수 있다. 도전성의 금속 산화물로서는, 산화인듐, 산화주석, 산화아연, 인듐주석 산화물, 인듐아연 산화물, 또는 이들의 금속 산화물 재료에 산화실리콘을 함유시킨 것을 사용할 수 있다.
본 실시형태는, 다른 실시형태와 적절히 조합하여 실시하는 것이 가능하다.
(실시형태 3)
본 실시형태에서는, 본 발명의 발광 장치의 구체적인 구성의 일례에 관해서 설명한다. 도 11에, 본 실시형태에 있어서의 발광 장치의 블록도를, 일례로서 나타낸다. 또한, 도 11에 도시하는 블록도에서는, 발광 장치 내의 회로를 기능별로 분류하고, 서로 독립된 블록으로서 나타내고 있지만, 실제 회로는 기능별로 완전히 구분하기 어려우며, 하나의 회로가 복수의 기능에 관련되는 경우도 있을 수 있다.
도 11에 도시하는 발광 장치는, 화소를 복수 갖는 화소부(500)와, 각 화소를 라인별로 선택하는 주사선 구동 회로(510)와, 선택된 라인의 화소로의 화상 신호의 입력을 제어하는 신호선 구동 회로(520)를 가진다.
화소부(500)의 구성으로서는, 예를 들면 상기 실시형태 1에 나타내는 발광 장치에 있어서의 화소부의 구성을 적용할 수 있다.
신호선 구동 회로(520)는, 시프트 레지스터(521), 제 1 기억 회로(522), 제 2 기억 회로(523), DA 변환 회로(524)를 가지고 있다. 시프트 레지스터(521)에는, 클록 신호(S-CLK), 스타트 펄스 신호(S-SP)가 입력된다. 시프트 레지스터(521)는 이들 클록 신호(S-CLK) 및 스타트 펄스 신호(S-SP)에 따라, 펄스가 순차 시프트하는 타이밍 신호를 생성하고, 제 1 기억 회로(522)로 출력한다. 타이밍 신호의 펄스가 출현하는 순서는, 주사 방향 전환 신호에 따라서 전환하도록 해도 좋다.
제 1 기억 회로(522)에 타이밍 신호가 입력되면, 상기 타이밍 신호의 펄스에 따라, 화상 신호가 순차적으로 제 1 기억 회로(522)에 기록되고, 유지된다. 또한, 제 1 기억 회로(522)가 갖는 복수의 기억 회로에 순차적으로 화상 신호를 기록해도 좋지만, 제 1 기억 회로(522)가 갖는 복수의 기억 회로를 몇개의 그룹으로 나누고, 상기 그룹별로 병행하여 화상 신호를 입력하는, 소위 분할 구동을 행해도 좋다.
제 1 기억 회로(522)의 모든 기억 회로로의, 화상 신호의 기록이 대충 종료될 때까지의 시간을, 라인 기간이라고 부른다. 실제로는, 상기 라인 기간에 수평 귀선 시간이 가해진 기간을 라인 기간에 포함하는 경우가 있다.
1라인 기간이 종료되면, 제 2 기억 회로(523)에 입력되는 래치 신호(S-LS)의 펄스에 따라, 제 1 기억 회로(522)에 유지되어 있는 화상 신호가, 제 2 기억 회로(523)에 일제히 기록되고, 유지된다. 화상 신호를 제 2 기억 회로(523)로 송출을 끝낸 제 1 기억 회로(522)에는, 다시 시프트 레지스터(521)로부터의 타이밍 신호에 따라, 다음 화상 신호의 기록이 순차적으로 행해진다. 이 2사이클째의 1라인 기간 중에는, 제 2 기억 회로(523)에 기록되고, 유지되어 있는 화상 신호가, DA 변환 회로(524)에 입력된다.
그리고 DA 변환 회로(524)는, 입력된 디지털의 화상 신호를 아날로그의 화상 신호로 변환하고, 신호선을 통하여 화소부(500) 내의 각 화소에 입력한다.
또한, 신호선 구동 회로(520)는, 시프트 레지스터(521) 대신에, 펄스가 순차 시프트하는 신호를 출력할 수 있는 다른 회로를 사용해도 좋다.
또한, 도 11에서는, DA 변환 회로(524)의 후단에 화소부(500)가 직접 접속되어 있지만, 본 발명은 이 구성으로 한정되지 않는다. 화소부(500)의 전단에, DA 변환 회로(524)로부터 출력된 화상 신호에 신호 처리를 가하는 회로를 형성할 수 있다. 신호 처리를 가하는 회로의 일례로서, 예를 들면 버퍼, 레벨 시프터 등을 들 수 있다.
다음에, 주사선 구동 회로(510)의 동작에 관해서 설명한다. 주사선 구동 회로(510)는 펄스가 순차 시프트하는 선택 신호를 생성하고, 상기 선택 신호를 복수의 주사선에 입력함으로써, 화소를 라인별로 선택한다. 선택 신호에 의해 화소가 선택되면, 각각 게이트가 주사선의 하나에 전기적으로 접속된 복수의 트랜지스터가 적절히 온 상태 또는 오프 상태가 되고, 각 신호 또는 전원 전위의 공급이 이루어진다.
또한, 화소부(500), 주사선 구동 회로(510), 신호선 구동 회로(520)는, 동일한 기판에 형성할 수 있지만, 어느 하나를 상이한 기판에 형성할 수도 있다.
본 실시형태는, 상기 실시형태와 적절히 조합하여 실시하는 것이 가능하다.
(실시형태 4)
본 실시형태에서는, 본 발명의 발광 장치의 구체적인 구성의 일례에 관해서 설명한다. 도 12에, 본 실시형태에 있어서의 발광 장치의 블록도를, 일례로서 나타낸다. 또한, 도 12에 도시하는 블록도에서는, 발광 장치 내의 회로를 기능별로 분류하고, 서로 독립된 블록으로서 나타내고 있지만, 실제 회로는 기능별로 완전히 구분하기 어려우며, 하나의 회로가 복수의 기능에 관련되는 경우도 있을 수 있다.
도 12에 도시하는 본 발명의 발광 장치는, 복수의 화소를 갖는 화소부(600)와, 복수의 화소를 라인별로 선택하는 주사선 구동 회로(610)와, 선택된 라인 내의 화소로의 화상 신호의 입력을 제어하는 신호선 구동 회로(620)를 가진다.
화소부(600)의 구성으로서는, 예를 들면 상기 실시형태 1에 나타내는 발광 장치에 있어서의 화소부의 구성을 적용할 수 있다.
신호선 구동 회로(620)는, 시프트 레지스터(621)와, 샘플링 회로(622)와, 아날로그 신호를 기억할 수 있는 기억 회로(623)를 적어도 가진다. 시프트 레지스터(621)에 클록 신호(S-CLK)와, 스타트 펄스 신호(S-SP)가 입력된다. 시프트 레지스터(621)는 이들 클록 신호(S-CLK) 및 스타트 펄스 신호(S-SP)에 따라, 펄스가 순차 시프트하는 타이밍 신호를 생성하고, 샘플링 회로(622)에 입력한다. 샘플링 회로(622)에서는, 입력된 타이밍 신호에 따라, 신호선 구동 회로(620)에 입력된 1라인 기간분의 아날로그의 화상 신호를 샘플링한다. 그리고 1라인 기간분의 화상 신호가 모두 샘플링되면, 샘플링된 화상 신호는 래치 신호(S-LS)에 따라 일제히 기억 회로(623)로 출력되고, 유지된다. 기억 회로(623)에 유지되는 화상 신호는, 신호선을 통하여 화소부(600)에 입력된다.
또한 본 실시형태에서는, 샘플링 회로(622)에 있어서 1라인 기간분의 화상 신호를 모두 샘플링한 후에, 일제히 하단의 기억 회로(623)에 샘플링된 화상 신호를 입력하는 경우를 예로 들어 설명하지만, 본 발명은 이 구성에 한정되지 않는다. 샘플링 회로(622)에 있어서 각 화소에 대응하는 화상 신호를 샘플링하면, 1라인 기간을 기다리지 않고, 그 때마다 하단의 기억 회로(623)에 샘플링된 화상 신호를 입력해도 좋다.
또한 화상 신호의 샘플링은 대응하는 화소별로 순차적으로 행해도 좋고, 1라인 내의 화소를 몇개의 그룹으로 나누고, 각 그룹에 대응하는 화소별로 병행하여서 행해도 좋다.
또한 도 12에서는 기억 회로(623)의 후단에 직접 화소부(600)가 접속되어 있지만, 본 발명은 이 구성에 한정되지 않는다. 화소부(600)의 전단에, 기억 회로(623)로부터 출력된 아날로그의 화상 신호에 신호 처리를 가하는 회로를 형성할 수 있다. 신호 처리를 가하는 회로의 일례로서, 예를 들면 파형을 정형할 수 있는 버퍼 등을 들 수 있다.
그리고, 기억 회로(623)로부터 화소부(600)에 화상 신호가 입력되는 것과 병행하여, 샘플링 회로(622)는 다음 라인 기간에 대응하는 화상 신호를 다시 샘플링할 수 있다.
다음에, 주사선 구동 회로(610)의 동작에 관해서 설명한다. 주사선 구동 회로(610)는 펄스가 순차 시프트하는 선택 신호를 생성하고, 상기 선택 신호를 복수의 주사선에 입력함으로써, 화소를 라인별로 선택한다. 선택 신호에 의해 화소가 선택되면, 게이트의 각각이 주사선의 하나에 전기적으로 접속된 복수의 트랜지스터가 적절히 온 상태 또는 오프 상태가 되고, 각 신호 또는 전원 전위의 공급이 이루어진다.
또한, 화소부(600), 주사선 구동 회로(610), 신호선 구동 회로(620)는, 동일한 기판에 형성할 수 있지만, 어느 하나를 상이한 기판에 형성할 수도 있다.
본 실시형태는, 상기 실시형태와 적절히 조합하여 실시하는 것이 가능하다.
(실시형태 5)
도 13은, 본 발명의 일 형태에 따른 발광 장치의 사시도의 일례이다. 도 13에서는, 상기 실시형태에 있어서의 발광 장치를 표시부에 사용한 경우의, 발광 장치를 예시하고 있다.
도 13에 도시하는 발광 장치는, 표시부(1601)와, 회로 기판(1602)과, 접속부(1603)를 가지고 있다.
회로 기판(1602)에는, 화상 처리부가 설치되어 있고, 접속부(1603)를 통하여 각종 신호나 전원 전위가 표시부(1601)에 입력된다. 접속부(1603)에는, FPC(Flexible Printed Circuit) 등을 사용할 수 있다. 또한, 접속부(1603)에 COF 테이프를 사용하는 경우, 화상 처리부의 일부의 회로, 또는 표시부(1601)가 갖는 구동 회로의 일부 등을 별도 준비한 칩에 형성해 두고, COF(Chip On Film)법을 사용하여 상기 칩을 COF 테이프에 접속해 두어도 좋다.
본 실시형태는, 상기 실시형태와 조합하여 실시하는 것이 가능하다.
(실시형태 6)
산화물 반도체에 한하지 않고, 실제로 측정되는 절연 게이트형 트랜지스터의 전계 효과 이동도는, 다양한 이유에 의해 본래의 이동도보다도 낮아진다. 이동도를 저하시키는 요인으로서는 반도체 내부의 결함이나 반도체와 절연막 계면의 결함이 있는데, Levinson 모델을 사용하면, 반도체 내부에 결함이 없는 것으로 가정한 경우의 전계 효과 이동도를 이론적으로 도출할 수 있다. 그래서, 본 실시형태에서는, 반도체 내부에 결함이 없는 이상적인 산화물 반도체의 전계 효과 이동도를 이론적으로 도출하는 동시에, 이러한 산화물 반도체를 사용하여 미세한 트랜지스터를 제작한 경우의 특성의 계산 결과를 나타낸다.
반도체 본래의 이동도를 μ0, 측정되는 전계 효과 이동도를 μ으로 하고, 반도체 중에 어떠한 포텐셜 장벽(입계 등)이 존재하는 것으로 가정하면, 이하의 식으로 표현할 수 있다.
Figure 112019077375913-pat00004
여기에서, E는 포텐셜 장벽의 높이이며, k가 볼츠만 상수, T는 절대 온도이다. 또한, 포텐셜 장벽이 결함에 유래하는 것으로 가정하면, Levinson 모델에서는, 이하의 식으로 나타내진다.
Figure 112019077375913-pat00005
여기에서, e는 전기 소량(elementary charge), N은 채널 내의 단위 면적당 평균 결함 밀도, ε는 반도체의 유전율, n은 단위 면적당 채널에 포함되는 캐리어수, Cox는 단위 면적당 용량, Vg은 게이트 전압, t는 채널의 두께이다. 또한, 두께 30nm 이하의 반도체층이면, 채널의 두께는 반도체층의 두께와 동일해도 지장이 없다. 선형 영역에 있어서의 드레인 전류(Id)는, 이하의 식이 된다.
Figure 112019077375913-pat00006
여기에서, L은 채널 길이, W는 채널 폭이며, 여기에서는, L=W=10㎛이다. 또한, Vd는 드레인 전압이다. 상기 식의 양변을 Vg로 나누고, 다시 양변의 대수를 취하면, 이하와 같이 된다.
Figure 112019077375913-pat00007
수학식 7의 우변은 Vg의 함수이다. 이 식으로부터 알 수 있는 바와 같이, 세로축을 ln(Id/Vg), 가로축을 l/Vg로 하는 직선의 경사로부터의 결함 밀도(N)가 구해진다. 즉, 트랜지스터의 Id-Vg 특성으로부터, 결함 밀도를 평가할 수 있다. 산화물 반도체로서는, 인듐(In), 주석(Sn), 아연(Zn)의 비율이, In:Sn:Zn=1:1:1인 것에서는 결함 밀도(N)는 1×1012/㎠ 정도이다.
이와 같이 하여 구한 결함 밀도 등을 바탕으로 수학식 4 및 수학식 5로부터 μ0=120㎠/Vs가 도출된다. 결함이 있는 In-Sn-Zn계 산화물에서 측정되는 이동도는 35㎠/Vs 정도이다. 그러나, 반도체 내부 및 반도체와 절연막 계면의 결함이 없는 산화물 반도체의 이동도(μ0)는 120㎠/Vs가 될 것으로 예상할 수 있다.
단, 반도체 내부에 결함이 없어도, 채널과 게이트 절연물 계면에서의 산란에 의해 트랜지스터의 수송 특성은 영향을 받는다. 즉, 게이트 절연물 계면에서 x만큼 떨어진 장소에 있어서의 이동도(μ1)는, 이하의 식으로 표기된다.
Figure 112019077375913-pat00008
여기에서, D는 게이트 방향의 전계, B, G는 상수이다. B 및 G는, 실제의 측정 결과로부터 구할 수 있고, 상기의 측정 결과로부터는 B=4.75×107cm/s, G=10nm(계면 산란이 미치는 깊이)이다. D가 증가하면(즉, 게이트 전압이 높아지면) 수학식 8의 제 2 항이 증가하기 때문에, 이동도(μ1)는 저하되는 것을 알 수 있다.
반도체 내부의 결함이 없는 이상적인 산화물 반도체를 채널에 사용한 트랜지스터의 이동도(μ2)를 계산한 결과를 도 18에 도시한다. 또한, 계산에는 시놉시스사 제조의 디바이스 시뮬레이션 소프트, Sentaurus Device를 사용하고, 산화물 반도체의 밴드 갭, 전자 친화력, 비유전율, 두께를 각각, 2.8전자볼트, 4.7전자볼트, 15, 15nm으로 하였다. 이들 값은, 스퍼터링법에 의해 형성된 박막을 측정하여 얻어진 것이다.
또한, 게이트, 소스, 드레인의 일함수를 각각, 5.5전자볼트, 4.6전자볼트, 4.6전자볼트로 하였다. 또한, 게이트 절연물의 두께는 100nm, 비유전률은 4.1로 하였다. 채널 길이 및 채널 폭은 모두 10㎛, 드레인 전압(Vd)은 0.1V이다.
도 18에서 도시되는 바와 같이, 게이트 전압 1V강에서 이동도 100㎠/Vs 이상의 피크를 나타내지만, 게이트 전압이 더욱 높아지게 되면, 계면 산란이 커지고, 이동도가 저하된다. 또한, 계면 산란을 저감시키기 위해서는, 반도체층 표면을 원자 레벨로 평탄하게 하는 것(Atomic Layer Flatness)이 바람직하다.
이러한 이동도를 갖는 산화물 반도체를 사용하여 미세한 트랜지스터를 제작한 경우의 특성을 계산한 결과를 도 19 내지 도 21에 도시한다. 또한, 계산에 사용한 트랜지스터의 단면 구조를 도 22에 도시한다. 도 22에 도시하는 트랜지스터는 산화물 반도체층에 n+의 도전형을 나타내는 반도체 영역(8103a) 및 반도체 영역(8103c)을 가진다. 반도체 영역(8103a) 및 반도체 영역(8103c)의 저항율은 2×10-3Ωcm으로 한다.
도 22a에 도시하는 트랜지스터는, 하지 절연물(8101)과, 하지 절연물(8101)에 매립되도록 형성된 산화알루미늄으로 이루어지는 매립 절연물(8102) 위에 형성된다. 트랜지스터는 반도체 영역(8103a), 반도체 영역(8103c)과, 이들 사이에 개재되어 있고, 채널 형성 영역이 되는 진성의 반도체 영역(8103b)과, 게이트(8105)를 가진다. 게이트(8105)의 폭을 33nm으로 한다.
게이트(8105)와 반도체 영역(8103b) 사이에는, 게이트 절연물(8104)을 가지며, 또한, 게이트(8105)의 양측면에는 측벽 절연물(8106a) 및 측벽 절연물(8106b), 게이트(8105)의 상부에는, 게이트(8105)와 다른 배선의 단락을 방지하기 위한 절연물(8107)을 가진다. 측벽 절연물의 폭은 5nm으로 한다. 또한, 반도체 영역(8103a) 및 반도체 영역(8103c)에 접하고, 소스(8108a) 및 드레인(8108b)을 가진다. 또한, 이 트랜지스터에 있어서의 채널 폭을 40nm으로 한다.
도 22b에 도시하는 트랜지스터는, 하지 절연물(8101)과, 산화알루미늄으로 이루어지는 매립 절연물(8102) 위에 형성되며, 반도체 영역(8103a), 반도체 영역(8103c)과, 이들 사이에 개재된 진성의 반도체 영역(8103b)과, 폭 33nm의 게이트(8105)와 게이트 절연물(8104)과 측벽 절연물(8106a) 및 측벽 절연물(8106b)과 절연물(8107)과 소스(8108a) 및 드레인(8108b)을 갖는 점에서 도 22a에 도시하는 트랜지스터와 동일하다.
도 22a에 도시하는 트랜지스터와 도 22b에 도시하는 트랜지스터의 차이점은, 측벽 절연물(8106a) 및 측벽 절연물(8106b) 아래의 반도체 영역의 도전형이다. 도 22a에 도시하는 트랜지스터에서는, 측벽 절연물(8106a) 및 측벽 절연물(8106b) 아래의 반도체 영역은 n+의 도전형을 나타내는 반도체 영역(8103a) 및 반도체 영역(8103c)이지만, 도 22b에 도시하는 트랜지스터에서는, 진성의 반도체 영역(8103b)이다. 즉, 반도체 영역(8103a)(반도체 영역(8103c))과 게이트(8105)가 Loff만큼 중첩되지 않는 영역이 형성되어 있다. 이 영역을 오프셋 영역이라고 하고, 그 폭(Loff)을 오프셋 길이라고 한다. 도면으로부터 명백한 바와 같이, 오프셋 길이는, 측벽 절연물(8106a)(측벽 절연물(8106b))의 폭과 동일하다.
기타 계산에 사용하는 파라미터는 상기한 바와 같다. 계산에는 시놉시스사 제조의 디바이스 시뮬레이션 소프트, Sentaurus Device를 사용하였다. 도 19는, 도 22a에 도시되는 구조의 트랜지스터의 드레인 전류(Id, 실선) 및 이동도(μ, 점선)의 게이트 전압(Vg, 게이트와 소스의 전위차) 의존성을 나타낸다. 드레인 전류(Id)는, 드레인 전압(드레인과 소스의 전위차)을 +1V로 하고, 이동도(μ)는 드레인 전압을 +0.1V로 하여 계산한 것이다.
도 19a는 게이트 절연막의 두께를 15nm으로 한 것이며, 도 19b는 10nm으로 한 것이며, 도 19c는 5nm으로 한 것이다. 게이트 절연막이 얇아질수록, 특히 오프 상태에서의 드레인 전류(Id)(오프 전류)가 현저하게 저하된다. 한편, 이동도(μ)의 피크값이나 온 상태에서의 드레인 전류(Id)(온 전류)에는 눈에 띄는 변화가 없다. 게이트 전압 1V 전후에서, 10μA를 초과하는 것이 나타났다.
도 20은, 도 22b에 도시되는 구조의 트랜지스터에서, 오프셋 길이(Loff)를 5nm으로 한 것의 드레인 전류(Id)(실선) 및 이동도(μ)(점선)의 게이트 전압(Vg) 의존성을 나타낸다. 드레인 전류(Id)는, 드레인 전압을 +1V로 하고, 이동도(μ)는 드레인 전압을 +0.1V로 하여 계산한 것이다. 도 20a는 게이트 절연막의 두께를 15nm으로 한 것이며, 도 20b는 10nm으로 한 것이며, 도 20c는 5nm으로 한 것이다.
또한, 도 21은, 도 22b에 도시되는 구조의 트랜지스터에서, 오프셋 길이(Loff)를 15nm으로 한 것의 드레인 전류(Id)(실선) 및 이동도(μ)(점선)의 게이트 전압 의존성을 도시한다. 드레인 전류(Id)는, 드레인 전압을 +1V로 하고, 이동도(μ)는 드레인 전압을 +0.1V로 하여 계산한 것이다. 도 21a는 게이트 절연막의 두께를 15nm으로 한 것이며, 도 21b는 10nm으로 한 것이며, 도 21c는 5nm으로 한 것이다.
모두 게이트 절연막이 얇아질수록, 오프 전류가 현저하게 저하되는 한편, 이동도(μ)의 피크값이나 온 전류에는 눈에 띄는 변화가 없다.
또한, 이동도(μ)의 피크는, 도 19에서는 80㎠/Vs 정도이지만, 도 20에서는 60㎠/Vs 정도, 도 21에서는 40㎠/Vs 정도로, 오프셋 길이(Loff)가 증가할수록 저하된다. 또한, 오프 전류도 같은 경향이 있다. 한편, 온 전류는 오프셋 길이(Loff)의 증가에 따라 감소되지만, 오프 전류의 저하에 비하면 훨씬 완만하다. 또한, 모두 게이트 전압 1V 전후에서, 10μA를 초과하는 것이 나타났다.
(실시형태 7)
In, Sn, Zn을 주성분으로 하는 산화물 반도체를 채널 형성 영역으로 하는 트랜지스터는, 상기 산화물 반도체를 형성할 때에 기판을 가열하여 성막하는 것, 또는 산화물 반도체막을 형성한 후에 열처리를 행함으로써 양호한 특성을 얻을 수 있다. 또한, 주성분이란 조성비로 5atomic% 이상 함유되는 원소를 말한다. 그래서, 본 실시형태에서는, 산화물 반도체막의 성막후에 기판을 의도적으로 가열함으로써, 트랜지스터의 전계 효과 이동도를 향상시킨 경우를 도 23 내지 도 29를 사용하여 설명한다.
In, Sn, Zn을 주성분으로 하는 산화물 반도체막의 성막후에 기판을 의도적으로 가열함으로써, 트랜지스터의 전계 효과 이동도를 향상시키는 것이 가능해진다. 또한, 트랜지스터의 임계값 전압을 플러스 시프트시켜 노멀리·오프화시키는 것이 가능해진다.
예를 들면, 도 23a 내지 도 23c는, In, Sn, Zn을 주성분으로 하고, 채널 길이(L)가 3㎛, 채널 폭(W)이 10㎛인 산화물 반도체막과, 두께 100nm의 게이트 절연막을 사용한 트랜지스터의 특성이다. 또한, Vd는 10V로 하였다.
도 23a는 기판을 의도적으로 가열하지 않고 스퍼터링법으로 In, Sn, Zn을 주성분으로 하는 산화물 반도체막을 형성했을 때의 트랜지스터 특성이다. 이 때 전계 효과 이동도는 18.8㎠/Vsec가 얻어지고 있다. 한편, 기판을 의도적으로 가열하여 In, Sn, Zn을 주성분으로 하는 산화물 반도체막을 형성하면 전계 효과 이동도를 향상시키는 것이 가능해진다. 도 23b는 기판을 200℃로 가열하여 In, Sn, Zn을 주성분으로 하는 산화물 반도체막을 형성했을 때의 트랜지스터 특성을 나타내는데, 전계 효과 이동도는 32.2㎠/Vsec가 얻어지고 있다.
전계 효과 이동도는, In, Sn, Zn을 주성분으로 하는 산화물 반도체막을 형성한 후에 열처리를 함으로써, 더욱 높일 수 있다. 도 23c는, In, Sn, Zn을 주성분으로 하는 산화물 반도체막을 200℃에서 스퍼터링 성막한 후, 650℃에서 열처리를 했을 때의 트랜지스터 특성을 나타낸다. 이 때 전계 효과 이동도는 34.5㎠/Vsec가 얻어지고 있다.
기판을 의도적으로 가열함으로써 스퍼터링 성막 중의 수분이 산화물 반도체막 중에 도입되는 것을 저감시키는 효과를 기대할 수 있다. 또한, 성막후에 열처리를 함으로써도, 산화물 반도체막으로부터 수소나 하이드록실기 또는 수분을 방출시켜 제거할 수 있고, 상기와 같이 전계 효과 이동도를 향상시킬 수 있다. 이러한 전계 효과 이동도의 향상은, 탈수화·탈수소화에 의한 불순물의 제거뿐만 아니라, 고밀도화에 의해 원자간 거리가 짧아지기 때문이라고도 추정된다. 또한, 산화물 반도체로부터 불순물을 제거하여 고순도화함으로써 결정화를 도모할 수 있다. 이와 같이 고순도화된 비단결정 산화물 반도체는, 이상적으로는 100㎠/Vsec을 초과하는 전계 효과 이동도를 실현하는 것도 가능하게 될 것으로 추정된다.
In, Sn, Zn을 주성분으로 하는 산화물 반도체에 산소 이온을 주입하고, 열처리에 의해 상기 산화물 반도체에 함유되는 수소나 하이드록실기 또는 수분을 방출시키고, 그 열처리와 동시에 또는 그 후의 열처리에 의해 산화물 반도체를 결정화시켜도 좋다. 이러한 결정화 또는 재결정화의 처리에 의해 결정성이 양호한 비단결정 산화물 반도체를 얻을 수 있다.
기판을 의도적으로 가열하여 성막하는 것 및/또는 성막후에 열처리하는 것의 효과는, 전계 효과 이동도의 향상뿐만 아니라, 트랜지스터의 노멀리·오프화를 도모하는 것에도 기여하고 있다. 기판을 의도적으로 가열하지 않고 형성된 In, Sn, Zn을 주성분으로 하는 산화물 반도체막을 채널 형성 영역으로 한 트랜지스터는, 임계값 전압이 마이너스 시프트해 버리는 경향이 있다. 그러나, 기판을 의도적으로 가열하여 형성된 산화물 반도체막을 사용한 경우, 이 임계값 전압의 마이너스 시프트화는 해소된다. 즉, 임계값 전압은 트랜지스터가 노멀리·오프가 되는 방향으로 이동하고, 이러한 경향은 도 23a와 도 23b의 대비로부터도 확인할 수 있다.
또한, 임계값 전압은 In, Sn 및 Zn의 비율을 바꿈으로써도 제어하는 것이 가능하며, 조성비로서 In:Sn:Zn=2:1:3으로 함으로써 트랜지스터의 노멀리·오프화를 기대할 수 있다. 또한, 타깃의 조성비를 In:Sn:Zn=2:1:3으로 함으로써 결정성이 높은 산화물 반도체막을 얻을 수 있다.
의도적인 기판 가열 온도 또는 열처리 온도는, 150℃ 이상, 바람직하게는 200℃ 이상, 보다 바람직하게는 400℃ 이상이며, 보다 고온으로 성막 또는 열처리함으로써 트랜지스터의 노멀리·오프화를 도모하는 것이 가능해진다.
또한, 의도적으로 기판을 가열한 성막 및/또는 성막후에 열처리를 함으로써, 게이트 바이어스·스트레스에 대한 안정성을 높일 수 있다. 예를 들면, 2MV/cm, 150℃, 1시간의 인가 조건에 있어서, 드리프트가 각각 ±1.5V 미만, 바람직하게는 1.0V 미만을 얻을 수 있다.
실제로, 산화물 반도체막 성막후에 가열 처리를 행하지 않은 시료 1과, 650℃의 가열 처리를 행한 시료 2의 트랜지스터에 대해 BT 시험을 행하였다.
우선 기판 온도를 25℃로 하고, Vd을 10V로 하고, 트랜지스터의 Vg-Id 특성의 측정을 행하였다. 다음에, 기판 온도를 150℃로 하고, Vd를 0.1V로 하였다. 다음에, 게이트 절연막에 인가되는 전계 강도가 2MV/cm가 되도록 Vg로서 20V를 인가하고, 그대로 1시간 동안 유지하였다. 다음에, Vg를 0V로 하였다. 다음에, 기판 온도를 25℃로 하고, Vd를 10V로 하고, 트랜지스터의 Vg-Id 측정을 행하였다. 이것을 플러스 BT 시험이라고 부른다.
마찬가지로, 우선 기판 온도를 25℃로 하고, Vd를 10V로 하고, 트랜지스터의 Vg-Id 특성의 측정을 행하였다. 다음에, 기판 온도를 150℃로 하고, Vd를 0.1V로 하였다. 다음에, 게이트 절연막에 인가되는 전계 강도가 -2MV/cm이 되도록 Vg에 -20V를 인가하고, 그대로 1시간 동안 유지하였다. 다음에, Vg를 0V로 하였다. 다음에, 기판 온도를 25℃로 하고, Vd를 10V로 하고, 트랜지스터의 Vg-Id 측정을 행하였다. 이것을 마이너스 BT 시험이라고 부른다.
시료 1의 플러스 BT 시험의 결과를 도 24a에, 마이너스 BT 시험의 결과를 도 24b에 도시한다. 또한, 시료 2의 플러스 BT 시험의 결과를 도 25a에, 마이너스 BT 시험의 결과를 도 25b에 도시한다.
시료 1의 플러스 BT 시험 및 마이너스 BT 시험에 의한 임계값 전압의 변동은, 각각 1.80V 및 -0.42V이었다. 또한, 시료 2의 플러스 BT 시험 및 마이너스 BT 시험에 의한 임계값 전압의 변동은, 각각 0.79V 및 0.76V이었다. 시료 1 및 시료 2 모두, BT 시험 전후에 있어서의 임계값 전압의 변동이 작고, 신뢰성이 높은 것을 알 수 있다.
열처리는 산소 분위기 중에서 행할 수 있지만, 우선 질소 또는 불활성 가스, 또는 감압하에서 열처리를 행한 후 산소를 함유하는 분위기 중에서 열처리를 행해도 좋다. 처음에 탈수화·탈수소화를 행한 후 산소를 산화물 반도체에 가함으로써, 열처리의 효과를 보다 높일 수 있다. 또한, 나중에 산소를 가하기 위해서는, 산소 이온을 전계에서 가속하여 산화물 반도체막에 주입하는 방법을 적용해도 좋다.
산화물 반도체중 및 적층되는 막과의 계면에는, 산소 결손에 의한 결함이 생성되기 쉽지만, 이러한 열처리에 의해 산화물 반도체 중에 산소를 과잉으로 함유시킴으로써, 정상적으로 생성되는 산소 결손을 과잉 산소에 의해 보상하는 것이 가능해진다. 과잉 산소는 주로 격자간에 존재하는 산소이며, 그 산소 농도는 1×1016/c㎥ 이상 2×1020/c㎥ 이하로 하면, 결정에 변형 등을 주지 않고 산화물 반도체중에 함유시킬 수 있다.
또한, 열처리에 의해 산화물 반도체에 결정이 적어도 일부에 포함되도록 함으로써, 보다 안정된 산화물 반도체막을 얻을 수 있다. 예를 들면, 조성비 In:Sn:Zn=1:1:1의 타깃을 사용하고, 기판을 의도적으로 가열하지 않고 스퍼터링 성막한 산화물 반도체막은, X선 회절(XRD: X-Ray Diffraction)에서 할로 패턴(halo pattern)이 관측 된다. 이 성막된 산화물 반도체막을 열처리함으로써 결정화시킬 수 있다. 열처리 온도는 임의적이지만, 예를 들면, 650℃의 열처리를 행함으로써, X선 회절에 의해 명확한 회절 피크를 관측할 수 있다.
실제로, In-Sn-Zn-O막의 XRD 분석을 행하였다. XRD 분석에는, Bruker AXS사 제조의 X선 회절 장치 D8 ADVANCE를 사용하고, Out-of-Plane법으로 측정하였다.
XRD 분석을 행한 시료로서, 시료 A 및 시료 B를 준비하였다. 이하에 시료 A 및 시료 B의 제작 방법을 설명한다.
탈수소화 처리 완료된 석영 기판 위에 In-Sn-Zn-O막을 100nm의 두께로 성막하였다.
In-Sn-Zn-O막은, 스퍼터링 장치를 사용하고, 산소 분위기에서 전력을 100W(DC)로 하여 성막하였다. 타깃은, In:Sn:Zn=1:1:1[원자수비]의 In-Sn-Zn-O 타깃을 사용하였다. 또한, 성막시의 기판 가열 온도는 200℃로 하였다. 이와 같이 하여 제작한 시료를 시료 A로 하였다.
다음에, 시료 A와 같은 방법으로 제작한 시료에 대해 가열 처리를 650℃의 온도로 행하였다. 가열 처리는, 처음에 질소 분위기에서 1시간의 가열 처리를 행하고, 온도를 낮추지 않고 산소 분위기에서 다시 1시간의 가열 처리를 행하고 있다. 이와 같이 하여 제작한 시료를 시료 B로 하였다.
도 28에 시료 A 및 시료 B의 XRD 스펙트럼을 도시한다. 시료 A에서는, 결정 유래의 피크가 관측되지 않았지만, 시료 B에서는, 2θ이 35deg 근방 및 37deg 내지 38deg에 결정 유래의 피크가 관측되었다.
이와 같이, In, Sn, Zn을 주성분으로 하는 산화물 반도체는 성막시에 의도적으로 가열하는 것 및/또는 성막후에 열처리함으로써 트랜지스터의 특성을 향상시킬 수 있다.
이 기판 가열이나 열처리는, 산화물 반도체에 있어서 악성 불순물인 수소나 하이드록실기를 막 중에 함유시키지 않도록 하는 것, 또는 막 중에서 제거하는 작용이 있다. 즉, 산화물 반도체 중에서 도너 불순물이 되는 수소를 제거함으로써 고순도화를 도모할 수 있고, 그것에 의해서 트랜지스터의 노멀리·오프화를 도모할 수 있고, 산화물 반도체가 고순도화됨으로써 오프 전류를 1aA/㎛ 이하로 할 수 있다. 여기에서, 상기 오프 전류값의 단위는, 채널 폭 1㎛당 전류값을 나타낸다.
구체적으로는, 도 29에 도시하는 바와 같이, 기판 온도가 125℃인 경우에는 1aA/㎛(1×10-18A/㎛) 이하, 85℃인 경우에는 100zA/㎛(1×10-19A/㎛) 이하, 실온(27℃)의 경우에는 1zA/㎛(1×10-21A/㎛) 이하로 할 수 있다. 바람직하게는, 125℃에 있어서 0.1aA/㎛(1×10-19A/㎛) 이하로, 85℃에 있어서 10zA/㎛(1×10-20A/㎛) 이하로, 실온에 있어서 0.1zA/㎛(1×10-22A/㎛) 이하로 할 수 있다.
무엇보다, 산화물 반도체막의 성막시에 수소나 수분이 막중에 혼입되지 않도록, 성막실 외부로부터의 리크나 성막실 내의 내벽으로부터의 탈가스를 충분히 억제하여 스퍼터링 가스의 고순도화를 도모하는 것이 바람직하다. 예를 들면, 스퍼터링 가스는 수분이 막 중에 함유되지 않도록 노점 -70℃ 이하인 가스를 사용하는 것이 바람직하다. 또한, 타깃 그 자체에 수소나 수분 등의 불순물이 함유되어 있지 않도록, 고순도화된 타깃을 사용하는 것이 바람직하다. In, Sn, Zn을 주성분으로 하는 산화물 반도체는 열처리에 의해 막중의 수분을 제거할 수 있지만, In, Ga, Zn을 주성분으로 하는 산화물 반도체와 비교하여 수분의 방출 온도가 높기 때문에, 바람직하게는 처음부터 수분이 함유되지 않는 막을 형성해 두는 것이 바람직하다.
또한, 산화물 반도체막 성막후에 650℃의 가열 처리를 행한 시료의 트랜지스터에 있어서, 기판 온도와 전기적 특성의 관계에 관해서 평가하였다.
측정에 사용한 트랜지스터는, 채널 길이(L)가 3㎛, 채널 폭(W)이 10㎛, Lov가 한쪽 3㎛(합계 6㎛), dW가 0㎛이다. 또한, Vd는 10V로 하였다. 또한, 기판 온도는 -40℃, -25℃, 25℃, 75℃, 125℃ 및 150℃에서 행하였다. 여기에서, 트랜지스터에 있어서, 게이트 전극과 한 쌍의 전극의 중첩되는 폭을 Lov라고 부르고, 산화물 반도체막에 대해 한 쌍의 전극이 튀어 나오는 것을 dW라고 부른다.
도 26에, Id(실선) 및 전계 효과 이동도(점선)의 Vg 의존성을 도시한다. 또한, 도 27a에 기판 온도와 임계값 전압의 관계를, 도 27b에 기판 온도와 전계 효과 이동도의 관계를 도시한다.
도 27a로부터, 기판 온도가 높을수록 임계값 전압은 낮아지는 것을 알 수 있다. 또한, 그 범위는 -40℃ 내지 150℃에서 1.09V 내지 -0.23V이었다.
또한, 도 27b로부터, 기판 온도가 높을수록 전계 효과 이동도가 낮아지는 것을 알 수 있다. 또한, 그 범위는 -40℃ 내지 150℃에서 36㎠/Vs 내지 32㎠/Vs이었다. 따라서, 상기의 온도 범위에 있어서 전기적 특성의 변동이 작은 것을 알 수 있다.
상기와 같은 In, Sn, Zn을 주성분으로 하는 산화물 반도체를 채널 형성 영역으로 하는 트랜지스터에 의하면, 오프 전류를 1aA/㎛ 이하로 유지하면서, 전계 효과 이동도를 30㎠/Vsec 이상, 바람직하게는 40㎠/Vsec 이상, 보다 바람직하게는 60㎠/Vsec 이상으로 하고, LSI에서 요구되는 온 전류의 값을 충족시킬 수 있다. 예를 들면, L/W=33nm/40nm의 FET에서, 게이트 전압 2.7V, 드레인 전압 1.0V일 때 12μA 이상의 온 전류를 흘려보낼 수 있다. 또한 트랜지스터의 동작에 요구되는 온도 범위에 있어서도, 충분한 전기적 특성을 확보할 수 있다. 이러한 특성이면, Si 반도체로 만들어지는 집적 회로 중에 산화물 반도체로 형성되는 트랜지스터를 혼재해도, 동작 속도를 희생시키지 않고 새로운 기능을 갖는 집적 회로를 실현할 수 있다.
(실시예 1)
본 실시예에서는, In-Sn-Zn-O막을 산화물 반도체막에 사용한 트랜지스터의 일례에 관해서, 도 30 등을 사용하여 설명한다.
도 30은, 코플레이너형인 톱 게이트·톱 컨택트 구조의 트랜지스터의 상면도 및 단면도이다. 도 30a에 트랜지스터의 상면도를 도시한다. 또한, 도 30b에 도 30a의 일점 쇄선 A-B에 대응하는 단면 A-B를 도시한다.
도 30b에 도시하는 트랜지스터는, 기판(2100)과, 기판(2100) 위에 형성된 하지 절연막(2102)과, 하지 절연막(2102)의 주변에 형성된 보호 절연막(2104)과, 하지 절연막(2102) 및 보호 절연막(2104) 위에 형성된 고저항 영역(2106a) 및 저저항 영역(2106b)을 갖는 산화물 반도체막(2106)과, 산화물 반도체막(2106) 위에 형성된 게이트 절연막(2108)과, 게이트 절연막(2108)을 개재하여 산화물 반도체막(2106)과 중첩되어 형성된 게이트 전극(2110)과, 게이트 전극(2110)의 측면에 접하여 형성된 측벽 절연막(2112)과, 적어도 저저항 영역(2106b)과 접하여 형성된 한 쌍의 전극(2114)과, 적어도 산화물 반도체막(2106), 게이트 전극(2110) 및 한 쌍의 전극(2114)을 덮고 형성된 층간 절연막(2116)과, 층간 절연막(2116)에 형성된 개구부를 통하여 적어도 한 쌍의 전극(2114)의 한쪽과 접속하여 형성된 배선(2118)을 가진다.
또한, 도시하지 않지만, 층간 절연막(2116) 및 배선(2118)을 덮고 형성된 보호막을 가지고 있어도 상관없다. 상기 보호막을 형성함으로써, 층간 절연막(2116)의 표면 전도에 기인하여 발생하는 미소 리크 전류를 저감시킬 수 있어 트랜지스터의 오프 전류를 저감시킬 수 있다.
(실시예 2)
본 실시예에서는, 상기와는 상이한 In-Sn-Zn-O막을 산화물 반도체막에 사용한 트랜지스터의 다른 일례에 관해서 나타낸다.
도 31은, 본 실시예에서 제작한 트랜지스터의 구조를 도시하는 상면도 및 단면도이다. 도 31a는 트랜지스터의 상면도이다. 또한, 도 31b는 도 31a의 일점 쇄선 A-B에 대응하는 단면도이다.
도 31b에 도시하는 트랜지스터는, 기판(3600)과, 기판(3600) 위에 형성된 하지 절연막(3602)과, 하지 절연막(3602) 위에 형성된 산화물 반도체막(3606)과, 산화물 반도체막(3606)과 접하는 한 쌍의 전극(3614)과, 산화물 반도체막(3606) 및 한 쌍의 전극(3614) 위에 형성된 게이트 절연막(3608)과, 게이트 절연막(3608)을 개재하여 산화물 반도체막(3606)과 중첩되어 형성된 게이트 전극(3610)과, 게이트 절연막(3608) 및 게이트 전극(3610)을 덮고 형성된 층간 절연막(3616)과, 층간 절연막(3616)에 형성된 개구부를 통하여 한 쌍의 전극(3614)과 접속하는 배선(3618)과, 층간 절연막(3616) 및 배선(3618)을 덮고 형성된 보호막(3620)을 가진다.
기판(3600)으로서는 유리 기판을, 하지 절연막(3602)으로서는 산화실리콘막을, 산화물 반도체막(3606)으로서는 In-Sn-Zn-O막을, 한 쌍의 전극(3614)으로서는 텅스텐막을, 게이트 절연막(3608)으로서는 산화실리콘막을, 게이트 전극(3610)으로서는 질화탄탈막과 텅스텐막의 적층 구조를, 층간 절연막(3616)으로서는 산화질화실리콘막과 폴리이미드막의 적층 구조를, 배선(3618)으로서는 티타늄막, 알루미늄막, 티타늄막이 이 순으로 형성된 적층 구조를, 보호막(3620)으로서는 폴리이미드막을, 각각 사용하였다.
또한, 도 31a에 도시하는 구조의 트랜지스터에 있어서, 게이트 전극(3610)과 한 쌍의 전극(3614)의 중첩되는 폭을 Lov라고 부른다. 마찬가지로, 산화물 반도체막(3606)에 대해 한 쌍의 전극(3614)이 튀어 나오는 것을 dW라고 부른다.
(실시예 3)
본 발명의 일 형태에 따른 발광 장치는, 화상 발광 장치, 노트형 PC, 기록 매체를 구비한 화상 재생 장치(대표적으로는 DVD: Digital Versatile Disc 등의 기록 매체를 재생하고, 그 화상을 표시할 수 있는 디스플레이를 갖는 장치)에 사용할 수 있다. 그 밖에, 본 발명의 일 형태에 따른 발광 장치를 사용할 수 있는 전자 기기로서, 휴대 전화, 휴대형 게임기, 휴대 정보 단말, 전자 서적, 비디오 카메라, 디지털 스틸 카메라, 고글형 디스플레이(헤드 마운트 디스플레이), 네비게이션 시스템, 음향 재생 장치(카 오디오, 디지털 오디오 플레이어 등), 복사기, 팩시밀리, 프린터, 프린터 복합기, 현금 자동 입출금기(ATM), 자동판매기 등을 들 수 있다. 이들 전자 기기의 구체적인 예를 도 14에 도시한다.
도 14a는 휴대형 게임기이며, 하우징(5001), 하우징(5002), 화상 표시부(5003), 화상 표시부(5004), 마이크로폰(5005), 스피커(5006), 조작 키(5007), 스타일러스(5008) 등을 가진다. 본 발명의 일 형태에 따른 발광 장치를, 화상 표시부(5003) 또는 화상 표시부(5004)에 사용할 수 있다. 화상 표시부(5003) 또는 화상 표시부(5004)에 본 발명의 일 형태에 따른 발광 장치를 사용함으로써, 고화질의 휴대형 게임기를 제공할 수 있다. 또한, 도 14a에 도시한 휴대형 게임기는, 2개의 화상 표시부(5003)와 화상 표시부(5004)를 가지고 있지만, 휴대형 게임기가 갖는 화상 표시부의 수는, 이것에 한정되지 않는다.
도 14b는 노트형 PC이며, 하우징(5201), 화상 표시부(5202), 키보드(5203), 포인팅 디바이스(5204) 등을 가진다. 본 발명의 일 형태에 따른 발광 장치는, 화상 표시부(5202)에 사용할 수 있다. 화상 표시부(5202)에 본 발명의 일 형태에 따른 발광 장치를 사용함으로써, 고화질의 노트형 PC를 제공할 수 있다.
도 14c는 휴대 정보 단말이며, 하우징(5401), 화상 표시부(5402), 조작 키(5403) 등을 가진다. 본 발명의 일 형태에 따른 발광 장치는, 화상 표시부(5402)에 사용할 수 있다. 화상 표시부(5402)에 본 발명의 일 형태에 따른 발광 장치를 사용함으로써, 고화질의 휴대 정보 단말을 제공할 수 있다.
이상과 같이, 본 발명의 적용 범위는 매우 넓어 모든 분야의 전자 기기에 사용하는 것이 가능하다.
본 실시예는, 상기 실시형태와 적절히 조합하여 실시할 수 있다.
101; 발광 소자 102; 트랜지스터
103; 트랜지스터 104; 트랜지스터
105; 트랜지스터 106; 트랜지스터
107; 용량 소자 108; 용량 소자
109; 트랜지스터 140b; 화소
140g; 화소 140r; 화소
500; 화소부 510; 주사선 구동 회로
520; 신호선 구동 회로 521; 시프트 레지스터
522; 기억 회로 523; 기억 회로
524; DA 변환 회로 600; 화소부
610; 주사선 구동 회로 620; 신호선 구동 회로
621; 시프트 레지스터 622; 샘플링 회로
623; 기억 회로 715b; 애노드
715g; 애노드 715r; 애노드
730; 격벽 731; 전계 발광층
732; 캐소드 740; 기판
741b; 발광 소자 741g; 발광 소자
741r; 발광 소자 742; 기판
743b; 착색층 743g; 착색층
743r; 착색층 744; 오버코트
745b; 도전막 745g; 도전막
745r; 도전막 746g; 도전막
746r; 도전막 750; 절연막
800; 기판 801; 도전막
802; 게이트 절연막 803; 반도체층
804; 도전막 805; 도전막
806; 도전막 807; 반도체층
808; 도전막 809; 도전막
810; 도전막 811; 반도체층
812; 도전막 813; 반도체층
814; 도전막 815; 도전막
816; 반도체층 817; 도전막
818; 도전막 819; 도전막
820; 반도체층 821; 도전막
822; 도전막 823; 절연막
824; 절연막 825; 도전막
826; 콘택트홀 827; 절연막
828; 전계 발광층 829; 도전막
900; 기판 901; 도전막
902; 게이트 절연막 903; 반도체층
904; 도전막 905; 도전막
906; 도전막 907; 반도체층
908; 도전막 909; 도전막
910; 도전막 911; 도전막
912; 도전막 913; 반도체층
914; 도전막 915; 도전막
916; 반도체층 917; 도전막
918; 반도체층 919; 도전막
921; 도전막 922; 도전막
923; 절연막 925; 도전막
926; 콘택트홀 927; 절연막
928; 전계 발광층 929; 도전막
930; 도전막 1601; 표시부
1602; 회로 기판 1603; 접속부
2100; 기판 2102; 하지 절연막
2104; 보호 절연막 2106a; 고저항 영역
2106b; 저저항 영역 2106; 산화물 반도체막
2108; 게이트 절연막 2110; 게이트 전극
2112; 측벽 절연막 2114; 한쌍의 전극
2116; 층간 절연막 2118; 배선
3600; 기판 3602; 하지 절연막
3606; 산화물 반도체막 3608; 게이트 절연막
3610; 게이트 전극 3614; 한쌍의 전극
3616; 층간 절연막 3618; 배선
3620; 보호막 5001; 하우징
5002; 하우징 5003; 화상 표시부
5004; 화상 표시부 5005; 마이크로폰
5006; 스피커 5007; 조작 키
5008; 스타일러스 5201; 하우징
5202; 화상 표시부 5203; 키보드
5204; 포인팅 디바이스 5401; 하우징
5402; 화상 표시부 5403; 조작 키
8101; 하지 절연물 8102; 매립 절연물
8103a; 반도체 영역 8103b; 반도체 영역
8103c; 반도체 영역 8104; 게이트 절연물
8105; 게이트 8106a; 측벽 절연물
8106b; 측벽 절연물 8107; 절연물
8108a; 소스 8108b; 드레인

Claims (4)

  1. 반도체막과, 제 1 도전막과, 제 2 도전막과, 제 3 도전막을 갖고,
    상기 반도체막은 제 1 트랜지스터의 채널 형성 영역을 갖고,
    상기 반도체막은 제 2 트랜지스터의 채널 형성 영역을 갖고,
    상기 반도체막은 상기 제 1 트랜지스터의 채널 형성 영역과 상기 제 2 트랜지스터의 채널 형성 영역 사이에 불순물 영역을 갖고,
    상기 제 1 도전막은 상기 제 1 트랜지스터의 게이트로서의 기능을 갖고,
    상기 제 2 도전막은 상기 제 2 트랜지스터의 게이트로서의 기능을 갖고,
    상기 반도체막은 상기 제 1 트랜지스터의 채널 형성 영역에서 구부러진 형상을 갖고,
    상기 제 3 도전막은 발광 소자의 화소 전극으로서의 기능을 갖고,
    상기 제 1 트랜지스터의 소스 또는 드레인의 한쪽은, 상기 불순물 영역을 통하여 상기 제 2 트랜지스터의 소스 또는 드레인의 한쪽에 전기적으로 접속되고,
    상기 제 2 트랜지스터의 소스 또는 드레인의 다른쪽은, 상기 제 1 트랜지스터의 게이트에 전기적으로 접속되고,
    상기 제 3 도전막은 상기 반도체막과 중첩되는 영역을 갖고,
    상기 제 1 도전막은 상기 반도체막의 위쪽에 위치하고,
    상기 제 3 도전막은 상기 제 1 도전막의 위쪽에 위치하고,
    상기 제 1 트랜지스터는 상기 발광 소자로의 전류의 공급을 제어하는 기능을 갖는 발광 장치.
  2. 제 1 반도체막과, 제 1 도전막과, 제 2 도전막과, 제 3 도전막과, 제 4 도전막을 갖고,
    상기 제 1 반도체막은 제 1 트랜지스터의 채널 형성 영역을 갖고,
    상기 제 1 반도체막은 제 2 트랜지스터의 채널 형성 영역을 갖고,
    상기 제 1 도전막은 상기 제 1 트랜지스터의 게이트로서의 기능을 갖고,
    상기 제 2 도전막은 상기 제 2 트랜지스터의 게이트로서의 기능을 갖고,
    상기 제 1 반도체막은 상기 제 1 트랜지스터의 채널 형성 영역에서 구부러진 형상을 갖고,
    상기 제 3 도전막은 발광 소자의 화소 전극으로서의 기능을 갖고,
    상기 제 3 도전막은 상기 제 4 도전막에 전기적으로 접속되고,
    상기 제 4 도전막은 제 3 트랜지스터의 소스 또는 드레인의 한쪽으로서의 기능을 갖고,
    상기 제 1 트랜지스터의 소스 또는 드레인의 한쪽은, 상기 발광 소자의 화소 전극에 전기적으로 접속되고,
    상기 제 1 트랜지스터의 소스 또는 드레인의 다른쪽은, 상기 제 2 트랜지스터의 소스 또는 드레인의 한쪽에 전기적으로 접속되고,
    상기 제 2 트랜지스터의 소스 또는 드레인의 다른쪽은, 상기 제 1 트랜지스터의 게이트에 전기적으로 접속되고,
    상기 제 3 도전막은 상기 제 1 트랜지스터의 채널 형성 영역과 중첩되는 영역을 갖고,
    상기 제 1 도전막은 상기 제 1 트랜지스터의 채널 형성 영역의 위쪽에 위치하고,
    상기 제 3 도전막은 상기 제 1 도전막의 위쪽에 위치하는 발광 장치.
  3. 제 1 반도체막과, 제 1 도전막과, 제 2 도전막과, 제 3 도전막과, 제 4 도전막과, 제 5 도전막을 갖고,
    상기 제 1 반도체막은 제 1 트랜지스터의 채널 형성 영역을 갖고,
    상기 제 1 반도체막은 제 2 트랜지스터의 채널 형성 영역을 갖고,
    상기 제 1 도전막은 상기 제 1 트랜지스터의 게이트로서의 기능을 갖고,
    상기 제 2 도전막은 상기 제 2 트랜지스터의 게이트로서의 기능을 갖고,
    상기 제 1 반도체막은 상기 제 1 트랜지스터의 채널 형성 영역에서 구부러진 형상을 갖고,
    상기 제 3 도전막은 발광 소자의 화소 전극으로서의 기능을 갖고,
    상기 제 3 도전막은 상기 제 4 도전막에 전기적으로 접속되고,
    상기 제 4 도전막은 제 3 트랜지스터의 소스 또는 드레인의 한쪽으로서의 기능을 갖고,
    상기 제 5 도전막은 상기 제 3 트랜지스터의 게이트로서의 기능을 갖고,
    상기 제 1 트랜지스터의 소스 또는 드레인의 한쪽은, 상기 발광 소자의 화소 전극에 전기적으로 접속되고,
    상기 제 1 트랜지스터의 소스 또는 드레인의 다른쪽은, 상기 제 2 트랜지스터의 소스 또는 드레인의 한쪽에 전기적으로 접속되고,
    상기 제 2 트랜지스터의 소스 또는 드레인의 다른쪽은, 상기 제 1 트랜지스터의 게이트에 전기적으로 접속되고,
    상기 제 3 도전막은 상기 제 1 트랜지스터의 채널 형성 영역과 중첩되는 영역을 갖고,
    상기 제 1 도전막은 상기 제 1 트랜지스터의 채널 형성 영역의 위쪽에 위치하고,
    상기 제 3 도전막은 상기 제 1 도전막의 위쪽에 위치하고,
    상기 제 2 도전막은 제 1 주사선으로서의 기능을 갖고,
    상기 제 5 도전막은 제 2 주사선으로서의 기능을 갖는 발광 장치.
  4. 제 1 반도체막과, 제 1 도전막과, 제 2 도전막과, 제 3 도전막과, 제 4 도전막과, 제 5 도전막과, 제 6 도전막을 갖고,
    상기 제 1 반도체막은 제 1 트랜지스터의 채널 형성 영역을 갖고,
    상기 제 1 반도체막은 제 2 트랜지스터의 채널 형성 영역을 갖고,
    상기 제 1 도전막은 상기 제 1 트랜지스터의 게이트로서의 기능을 갖고,
    상기 제 2 도전막은 상기 제 2 트랜지스터의 게이트로서의 기능을 갖고,
    상기 제 1 반도체막은 상기 제 1 트랜지스터의 채널 형성 영역에서 구부러진 형상을 갖고,
    상기 제 3 도전막은 발광 소자의 화소 전극으로서의 기능을 갖고,
    상기 제 3 도전막은 상기 제 4 도전막에 전기적으로 접속되고,
    상기 제 4 도전막은 제 3 트랜지스터의 소스 또는 드레인의 한쪽으로서의 기능을 갖고,
    상기 제 5 도전막은 상기 제 3 트랜지스터의 게이트로서의 기능을 갖고,
    상기 제 1 트랜지스터의 소스 또는 드레인의 한쪽은, 상기 발광 소자의 화소 전극에 전기적으로 접속되고,
    상기 제 1 트랜지스터의 소스 또는 드레인의 다른쪽은, 상기 제 2 트랜지스터의 소스 또는 드레인의 한쪽에 전기적으로 접속되고,
    상기 제 2 트랜지스터의 소스 또는 드레인의 다른쪽은, 상기 제 1 트랜지스터의 게이트에 전기적으로 접속되고,
    상기 제 3 도전막은 상기 제 1 트랜지스터의 채널 형성 영역과 중첩되는 영역을 갖고,
    상기 제 1 도전막은 상기 제 1 트랜지스터의 채널 형성 영역의 위쪽에 위치하고,
    상기 제 3 도전막은 상기 제 1 도전막의 위쪽에 위치하고,
    상기 제 2 도전막은 제 1 주사선으로서의 기능을 갖고,
    상기 제 5 도전막은 제 2 주사선으로서의 기능을 갖고,
    상기 제 6 도전막은 상기 제 3 트랜지스터의 소스 또는 드레인의 다른쪽에 전원 전위를 공급하는 배선으로서의 기능을 갖는 발광 장치.
KR1020190091424A 2011-04-01 2019-07-29 발광 장치 KR102070558B1 (ko)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JPJP-P-2011-081928 2011-04-01
JP2011081923 2011-04-01
JP2011081928 2011-04-01
JPJP-P-2011-081923 2011-04-01
JPJP-P-2011-108610 2011-05-13
JP2011108610 2011-05-13
JPJP-P-2011-108587 2011-05-13
JP2011108587 2011-05-13

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020120032146A Division KR102016896B1 (ko) 2011-04-01 2012-03-29 발광 장치

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020200002831A Division KR102130954B1 (ko) 2011-04-01 2020-01-09 발광 장치

Publications (2)

Publication Number Publication Date
KR20190094321A KR20190094321A (ko) 2019-08-13
KR102070558B1 true KR102070558B1 (ko) 2020-01-29

Family

ID=46926031

Family Applications (9)

Application Number Title Priority Date Filing Date
KR1020120032146A KR102016896B1 (ko) 2011-04-01 2012-03-29 발광 장치
KR1020190091424A KR102070558B1 (ko) 2011-04-01 2019-07-29 발광 장치
KR1020200002831A KR102130954B1 (ko) 2011-04-01 2020-01-09 발광 장치
KR1020200079215A KR102198451B1 (ko) 2011-04-01 2020-06-29 발광 장치
KR1020200178056A KR102335303B1 (ko) 2011-04-01 2020-12-18 발광 장치
KR1020210159886A KR102403845B1 (ko) 2011-04-01 2021-11-19 발광 장치
KR1020220058702A KR102522732B1 (ko) 2011-04-01 2022-05-13 발광 장치
KR1020230045849A KR102651641B1 (ko) 2011-04-01 2023-04-07 발광 장치
KR1020240034271A KR20240038674A (ko) 2011-04-01 2024-03-12 발광 장치

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020120032146A KR102016896B1 (ko) 2011-04-01 2012-03-29 발광 장치

Family Applications After (7)

Application Number Title Priority Date Filing Date
KR1020200002831A KR102130954B1 (ko) 2011-04-01 2020-01-09 발광 장치
KR1020200079215A KR102198451B1 (ko) 2011-04-01 2020-06-29 발광 장치
KR1020200178056A KR102335303B1 (ko) 2011-04-01 2020-12-18 발광 장치
KR1020210159886A KR102403845B1 (ko) 2011-04-01 2021-11-19 발광 장치
KR1020220058702A KR102522732B1 (ko) 2011-04-01 2022-05-13 발광 장치
KR1020230045849A KR102651641B1 (ko) 2011-04-01 2023-04-07 발광 장치
KR1020240034271A KR20240038674A (ko) 2011-04-01 2024-03-12 발광 장치

Country Status (3)

Country Link
US (1) US9030105B2 (ko)
JP (9) JP5982147B2 (ko)
KR (9) KR102016896B1 (ko)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5982147B2 (ja) * 2011-04-01 2016-08-31 株式会社半導体エネルギー研究所 発光装置
KR102549647B1 (ko) * 2011-10-18 2023-07-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 장치
US10043794B2 (en) 2012-03-22 2018-08-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
KR20130133499A (ko) * 2012-05-29 2013-12-09 삼성디스플레이 주식회사 유기전계발광 표시장치 및 그의 구동방법
JP6120511B2 (ja) * 2012-09-20 2017-04-26 キヤノン株式会社 発光装置、発光素子の駆動回路および駆動方法
CN103165080B (zh) 2013-03-21 2015-06-17 京东方科技集团股份有限公司 像素电路及其驱动方法、显示装置
JP6164059B2 (ja) * 2013-11-15 2017-07-19 ソニー株式会社 表示装置、電子機器、及び表示装置の駆動方法
KR102107565B1 (ko) * 2013-12-18 2020-05-08 삼성디스플레이 주식회사 유기 발광 표시 장치
DE112014006046T5 (de) * 2013-12-27 2016-09-15 Semiconductor Energy Laboratory Co., Ltd. Licht emittierende Vorrichtung
TWI682632B (zh) * 2014-12-26 2020-01-11 日商半導體能源研究所股份有限公司 半導體裝置
KR102242350B1 (ko) * 2014-12-31 2021-04-20 엘지디스플레이 주식회사 유기발광 디스플레이 장치
JP6665536B2 (ja) * 2016-01-12 2020-03-13 株式会社リコー 酸化物半導体
CN107170412B (zh) * 2017-07-11 2018-01-05 深圳市华星光电半导体显示技术有限公司 一种amoled像素驱动电路及像素驱动方法
CN109637454B (zh) * 2018-12-29 2020-10-13 深圳市华星光电半导体显示技术有限公司 发光二极管像素电路及显示面板
JP2021026187A (ja) * 2019-08-08 2021-02-22 株式会社ジャパンディスプレイ 表示装置
CN110910825B (zh) 2019-12-10 2021-04-02 京东方科技集团股份有限公司 一种显示面板及显示装置
KR20210088318A (ko) * 2020-01-06 2021-07-14 삼성전자주식회사 플라즈마를 이용하는 박막 형성 장치 및 박막 형성 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007272224A (ja) 2006-03-10 2007-10-18 Canon Inc 表示素子の駆動回路及び画像表示装置
JP2010224532A (ja) 2009-02-27 2010-10-07 Semiconductor Energy Lab Co Ltd 半導体装置の駆動方法

Family Cites Families (190)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60198861A (ja) 1984-03-23 1985-10-08 Fujitsu Ltd 薄膜トランジスタ
JPH0244256B2 (ja) 1987-01-28 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn2o5deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244260B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn5o8deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPS63210023A (ja) 1987-02-24 1988-08-31 Natl Inst For Res In Inorg Mater InGaZn↓4O↓7で示される六方晶系の層状構造を有する化合物およびその製造法
JPH0244258B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn3o6deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244262B2 (ja) 1987-02-27 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn6o9deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244263B2 (ja) 1987-04-22 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn7o10deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH05251705A (ja) 1992-03-04 1993-09-28 Fuji Xerox Co Ltd 薄膜トランジスタ
JP2755281B2 (ja) * 1992-12-28 1998-05-20 富士電機株式会社 薄膜太陽電池およびその製造方法
US5684365A (en) 1994-12-14 1997-11-04 Eastman Kodak Company TFT-el display panel using organic electroluminescent media
JP3535301B2 (ja) * 1995-02-15 2004-06-07 株式会社半導体エネルギー研究所 アクティブマトリクス表示装置
JP3479375B2 (ja) 1995-03-27 2003-12-15 科学技術振興事業団 亜酸化銅等の金属酸化物半導体による薄膜トランジスタとpn接合を形成した金属酸化物半導体装置およびそれらの製造方法
WO1997006554A2 (en) 1995-08-03 1997-02-20 Philips Electronics N.V. Semiconductor device provided with transparent switching element
JP3647523B2 (ja) 1995-10-14 2005-05-11 株式会社半導体エネルギー研究所 マトリクス型液晶表示装置
JP3625598B2 (ja) 1995-12-30 2005-03-02 三星電子株式会社 液晶表示装置の製造方法
US6229506B1 (en) 1997-04-23 2001-05-08 Sarnoff Corporation Active matrix light emitting diode pixel structure and concomitant method
US6518945B1 (en) 1997-07-25 2003-02-11 Aurora Systems, Inc. Replacing defective circuit elements by column and row shifting in a flat-panel display
JP3629939B2 (ja) 1998-03-18 2005-03-16 セイコーエプソン株式会社 トランジスタ回路、表示パネル及び電子機器
JP4170454B2 (ja) 1998-07-24 2008-10-22 Hoya株式会社 透明導電性酸化物薄膜を有する物品及びその製造方法
JP2000150861A (ja) 1998-11-16 2000-05-30 Tdk Corp 酸化物薄膜
JP3276930B2 (ja) 1998-11-17 2002-04-22 科学技術振興事業団 トランジスタ及び半導体装置
TW460731B (en) 1999-09-03 2001-10-21 Ind Tech Res Inst Electrode structure and production method of wide viewing angle LCD
JP2001318627A (ja) 2000-02-29 2001-11-16 Semiconductor Energy Lab Co Ltd 発光装置
JP4700160B2 (ja) 2000-03-13 2011-06-15 株式会社半導体エネルギー研究所 半導体装置
GB0008019D0 (en) 2000-03-31 2000-05-17 Koninkl Philips Electronics Nv Display device having current-addressed pixels
TW554638B (en) 2000-05-12 2003-09-21 Semiconductor Energy Lab Light emitting device
JP2002072963A (ja) 2000-06-12 2002-03-12 Semiconductor Energy Lab Co Ltd 発光モジュールおよびその駆動方法並びに光センサ
JP4089858B2 (ja) 2000-09-01 2008-05-28 国立大学法人東北大学 半導体デバイス
KR20020038482A (ko) 2000-11-15 2002-05-23 모리시타 요이찌 박막 트랜지스터 어레이, 그 제조방법 및 그것을 이용한표시패널
JP3997731B2 (ja) 2001-03-19 2007-10-24 富士ゼロックス株式会社 基材上に結晶性半導体薄膜を形成する方法
JP2002351401A (ja) 2001-03-21 2002-12-06 Mitsubishi Electric Corp 自発光型表示装置
JP2002289859A (ja) 2001-03-23 2002-10-04 Minolta Co Ltd 薄膜トランジスタ
TW550878B (en) 2001-04-06 2003-09-01 Delta Electronics Inc Zero-voltage zero-current switching power factor correction converter
JP4090716B2 (ja) 2001-09-10 2008-05-28 雅司 川崎 薄膜トランジスタおよびマトリクス表示装置
JP3925839B2 (ja) 2001-09-10 2007-06-06 シャープ株式会社 半導体記憶装置およびその試験方法
JP2003091245A (ja) * 2001-09-18 2003-03-28 Semiconductor Energy Lab Co Ltd 表示装置
US6858989B2 (en) 2001-09-20 2005-02-22 Emagin Corporation Method and system for stabilizing thin film transistors in AMOLED displays
US7365713B2 (en) 2001-10-24 2008-04-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
US7456810B2 (en) 2001-10-26 2008-11-25 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and driving method thereof
JP4498669B2 (ja) 2001-10-30 2010-07-07 株式会社半導体エネルギー研究所 半導体装置、表示装置、及びそれらを具備する電子機器
WO2003040441A1 (en) 2001-11-05 2003-05-15 Japan Science And Technology Agency Natural superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film
JP4164562B2 (ja) 2002-09-11 2008-10-15 独立行政法人科学技術振興機構 ホモロガス薄膜を活性層として用いる透明薄膜電界効果型トランジスタ
US20030103022A1 (en) 2001-11-09 2003-06-05 Yukihiro Noguchi Display apparatus with function for initializing luminance data of optical element
KR100940342B1 (ko) 2001-11-13 2010-02-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시장치 및 그 구동방법
US7071932B2 (en) 2001-11-20 2006-07-04 Toppoly Optoelectronics Corporation Data voltage current drive amoled pixel circuit
US6768348B2 (en) 2001-11-30 2004-07-27 Semiconductor Energy Laboratory Co., Ltd. Sense amplifier and electronic apparatus using the same
JP2003195810A (ja) 2001-12-28 2003-07-09 Casio Comput Co Ltd 駆動回路、駆動装置及び光学要素の駆動方法
EP2348502B1 (en) 2002-01-24 2013-04-03 Semiconductor Energy Laboratory Co. Ltd. Semiconductor device and method of driving the semiconductor device
JP4083486B2 (ja) 2002-02-21 2008-04-30 独立行政法人科学技術振興機構 LnCuO(S,Se,Te)単結晶薄膜の製造方法
US7042162B2 (en) 2002-02-28 2006-05-09 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US7049190B2 (en) 2002-03-15 2006-05-23 Sanyo Electric Co., Ltd. Method for forming ZnO film, method for forming ZnO semiconductor layer, method for fabricating semiconductor device, and semiconductor device
JP3933591B2 (ja) 2002-03-26 2007-06-20 淳二 城戸 有機エレクトロルミネッセント素子
US7339187B2 (en) 2002-05-21 2008-03-04 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures
JP2004022625A (ja) 2002-06-13 2004-01-22 Murata Mfg Co Ltd 半導体デバイス及び該半導体デバイスの製造方法
JP4610843B2 (ja) 2002-06-20 2011-01-12 カシオ計算機株式会社 表示装置及び表示装置の駆動方法
US7105868B2 (en) 2002-06-24 2006-09-12 Cermet, Inc. High-electron mobility transistor with zinc oxide
JP2004146369A (ja) * 2002-09-20 2004-05-20 Semiconductor Energy Lab Co Ltd 製造装置および発光装置の作製方法
JP3832415B2 (ja) 2002-10-11 2006-10-11 ソニー株式会社 アクティブマトリクス型表示装置
US7067843B2 (en) 2002-10-11 2006-06-27 E. I. Du Pont De Nemours And Company Transparent oxide semiconductor thin film transistors
US7327168B2 (en) 2002-11-20 2008-02-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
JP2004246320A (ja) 2003-01-20 2004-09-02 Sanyo Electric Co Ltd アクティブマトリクス駆動型表示装置
JP2008112189A (ja) * 2003-01-20 2008-05-15 Sanyo Electric Co Ltd アクティブマトリクス駆動型表示装置
US7528643B2 (en) 2003-02-12 2009-05-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, electronic device having the same, and driving method of the same
JP4734529B2 (ja) 2003-02-24 2011-07-27 奇美電子股▲ふん▼有限公司 表示装置
US7612749B2 (en) 2003-03-04 2009-11-03 Chi Mei Optoelectronics Corporation Driving circuits for displays
JP4166105B2 (ja) 2003-03-06 2008-10-15 シャープ株式会社 半導体装置およびその製造方法
JP2004273732A (ja) 2003-03-07 2004-09-30 Sharp Corp アクティブマトリクス基板およびその製造方法
KR100502912B1 (ko) 2003-04-01 2005-07-21 삼성에스디아이 주식회사 발광 표시 장치 및 그 표시 패널과 구동 방법
JP4062179B2 (ja) 2003-06-04 2008-03-19 ソニー株式会社 画素回路、表示装置、および画素回路の駆動方法
JP4641710B2 (ja) * 2003-06-18 2011-03-02 株式会社半導体エネルギー研究所 表示装置
JP4108633B2 (ja) 2003-06-20 2008-06-25 シャープ株式会社 薄膜トランジスタおよびその製造方法ならびに電子デバイス
JP4112527B2 (ja) * 2003-07-14 2008-07-02 株式会社半導体エネルギー研究所 システムオンパネル型の発光装置の作製方法
US7262463B2 (en) 2003-07-25 2007-08-28 Hewlett-Packard Development Company, L.P. Transistor including a deposited channel region having a doped portion
JP4522777B2 (ja) * 2003-07-25 2010-08-11 株式会社半導体エネルギー研究所 発光装置の作製方法
JP2005099714A (ja) 2003-08-29 2005-04-14 Seiko Epson Corp 電気光学装置、電気光学装置の駆動方法および電子機器
JP2005099715A (ja) 2003-08-29 2005-04-14 Seiko Epson Corp 電子回路の駆動方法、電子回路、電子装置、電気光学装置、電子機器および電子装置の駆動方法
US7126566B2 (en) * 2003-11-01 2006-10-24 Wintek Corporation Driving circuit and driving method of active matrix organic electro-luminescence display
JP2005189381A (ja) * 2003-12-25 2005-07-14 Sony Corp ディスプレイ装置及びディスプレイ装置の駆動方法
JP4810790B2 (ja) * 2003-12-25 2011-11-09 ソニー株式会社 ディスプレイ装置及びディスプレイ装置の駆動方法
JP2005189643A (ja) 2003-12-26 2005-07-14 Sony Corp ディスプレイ装置及びディスプレイ装置の駆動方法
JP4566575B2 (ja) * 2004-02-13 2010-10-20 株式会社半導体エネルギー研究所 発光装置の作製方法
KR100684712B1 (ko) 2004-03-09 2007-02-20 삼성에스디아이 주식회사 발광 표시 장치
US7297977B2 (en) 2004-03-12 2007-11-20 Hewlett-Packard Development Company, L.P. Semiconductor device
US7145174B2 (en) 2004-03-12 2006-12-05 Hewlett-Packard Development Company, Lp. Semiconductor device
KR101078509B1 (ko) 2004-03-12 2011-10-31 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬 박막 트랜지스터의 제조 방법
US7282782B2 (en) 2004-03-12 2007-10-16 Hewlett-Packard Development Company, L.P. Combined binary oxide semiconductor device
JP4036209B2 (ja) 2004-04-22 2008-01-23 セイコーエプソン株式会社 電子回路、その駆動方法、電気光学装置および電子機器
KR101142994B1 (ko) 2004-05-20 2012-05-08 삼성전자주식회사 표시 장치 및 그 구동 방법
US7173590B2 (en) 2004-06-02 2007-02-06 Sony Corporation Pixel circuit, active matrix apparatus and display apparatus
US7211825B2 (en) 2004-06-14 2007-05-01 Yi-Chi Shih Indium oxide-based thin film transistors and circuits
JP2006065284A (ja) * 2004-07-26 2006-03-09 Seiko Epson Corp 発光装置及び電子機器
JP2006100760A (ja) 2004-09-02 2006-04-13 Casio Comput Co Ltd 薄膜トランジスタおよびその製造方法
KR100673760B1 (ko) * 2004-09-08 2007-01-24 삼성에스디아이 주식회사 발광 표시장치
US7285501B2 (en) 2004-09-17 2007-10-23 Hewlett-Packard Development Company, L.P. Method of forming a solution processed device
JP4379285B2 (ja) * 2004-09-29 2009-12-09 カシオ計算機株式会社 ディスプレイパネル
US7298084B2 (en) 2004-11-02 2007-11-20 3M Innovative Properties Company Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes
CA2585071A1 (en) 2004-11-10 2006-05-18 Canon Kabushiki Kaisha Field effect transistor employing an amorphous oxide
US7453065B2 (en) 2004-11-10 2008-11-18 Canon Kabushiki Kaisha Sensor and image pickup device
US7829444B2 (en) 2004-11-10 2010-11-09 Canon Kabushiki Kaisha Field effect transistor manufacturing method
US7791072B2 (en) 2004-11-10 2010-09-07 Canon Kabushiki Kaisha Display
CN102938420B (zh) 2004-11-10 2015-12-02 佳能株式会社 无定形氧化物和场效应晶体管
US7863611B2 (en) 2004-11-10 2011-01-04 Canon Kabushiki Kaisha Integrated circuits utilizing amorphous oxides
WO2006051994A2 (en) 2004-11-10 2006-05-18 Canon Kabushiki Kaisha Light-emitting device
KR100600345B1 (ko) 2004-11-22 2006-07-18 삼성에스디아이 주식회사 화소회로 및 그를 이용한 발광 표시장치
EP1817764A4 (en) 2004-11-30 2009-08-26 Semiconductor Energy Lab DISPLAY DEVICE AND CONTROL METHOD FOR CELLUI-CI, SEMICONDUCTOR DEVICE, AND ELECTRONIC APPARATUS
CA2490858A1 (en) 2004-12-07 2006-06-07 Ignis Innovation Inc. Driving method for compensated voltage-programming of amoled displays
KR100602363B1 (ko) 2005-01-10 2006-07-18 삼성에스디아이 주식회사 발광제어구동부 및 그를 이용한 발광 표시장치
JP4792748B2 (ja) * 2005-01-14 2011-10-12 カシオ計算機株式会社 ディスプレイパネル
US7579224B2 (en) 2005-01-21 2009-08-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film semiconductor device
TWI472037B (zh) 2005-01-28 2015-02-01 Semiconductor Energy Lab 半導體裝置,電子裝置,和半導體裝置的製造方法
TWI569441B (zh) 2005-01-28 2017-02-01 半導體能源研究所股份有限公司 半導體裝置,電子裝置,和半導體裝置的製造方法
JP4923410B2 (ja) 2005-02-02 2012-04-25 ソニー株式会社 画素回路及び表示装置
JP2006215275A (ja) 2005-02-03 2006-08-17 Sony Corp 表示装置
US7858451B2 (en) 2005-02-03 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US7948171B2 (en) 2005-02-18 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US20060197092A1 (en) 2005-03-03 2006-09-07 Randy Hoffman System and method for forming conductive material on a substrate
US8681077B2 (en) 2005-03-18 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and display device, driving method and electronic apparatus thereof
WO2006105077A2 (en) 2005-03-28 2006-10-05 Massachusetts Institute Of Technology Low voltage thin film transistor with high-k dielectric material
US20060221005A1 (en) 2005-03-31 2006-10-05 Kazuyoshi Omata Display, array substrate, and method of driving display
US7645478B2 (en) 2005-03-31 2010-01-12 3M Innovative Properties Company Methods of making displays
US8300031B2 (en) 2005-04-20 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element
KR101160830B1 (ko) 2005-04-21 2012-06-29 삼성전자주식회사 표시 장치 및 그 구동 방법
KR100719924B1 (ko) * 2005-04-29 2007-05-18 비오이 하이디스 테크놀로지 주식회사 유기 전계발광 표시장치
JP2006344849A (ja) 2005-06-10 2006-12-21 Casio Comput Co Ltd 薄膜トランジスタ
KR20060128445A (ko) 2005-06-10 2006-12-14 삼성전자주식회사 유기전계발광 표시패널 및 이를 갖는 표시장치
US7691666B2 (en) 2005-06-16 2010-04-06 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7402506B2 (en) 2005-06-16 2008-07-22 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7507618B2 (en) 2005-06-27 2009-03-24 3M Innovative Properties Company Method for making electronic devices using metal oxide nanoparticles
TWI429327B (zh) 2005-06-30 2014-03-01 Semiconductor Energy Lab 半導體裝置、顯示裝置、及電子設備
US7898623B2 (en) 2005-07-04 2011-03-01 Semiconductor Energy Laboratory Co., Ltd. Display device, electronic device and method of driving display device
KR100711890B1 (ko) 2005-07-28 2007-04-25 삼성에스디아이 주식회사 유기 발광표시장치 및 그의 제조방법
JP2007059128A (ja) 2005-08-23 2007-03-08 Canon Inc 有機el表示装置およびその製造方法
JP2007073705A (ja) 2005-09-06 2007-03-22 Canon Inc 酸化物半導体チャネル薄膜トランジスタおよびその製造方法
JP5116225B2 (ja) 2005-09-06 2013-01-09 キヤノン株式会社 酸化物半導体デバイスの製造方法
JP4850457B2 (ja) 2005-09-06 2012-01-11 キヤノン株式会社 薄膜トランジスタ及び薄膜ダイオード
JP4280736B2 (ja) 2005-09-06 2009-06-17 キヤノン株式会社 半導体素子
EP1764770A3 (en) 2005-09-16 2012-03-14 Semiconductor Energy Laboratory Co., Ltd. Display device and driving method of display device
JP4753373B2 (ja) 2005-09-16 2011-08-24 株式会社半導体エネルギー研究所 表示装置及び表示装置の駆動方法
EP1995787A3 (en) 2005-09-29 2012-01-18 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device having oxide semiconductor layer and manufacturing method therof
JP2007108380A (ja) * 2005-10-13 2007-04-26 Sony Corp 表示装置および表示装置の駆動方法
KR101324756B1 (ko) 2005-10-18 2013-11-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시장치 및 그의 구동방법
JP5037808B2 (ja) 2005-10-20 2012-10-03 キヤノン株式会社 アモルファス酸化物を用いた電界効果型トランジスタ、及び該トランジスタを用いた表示装置
US8004477B2 (en) 2005-11-14 2011-08-23 Sony Corporation Display apparatus and driving method thereof
CN101707212B (zh) 2005-11-15 2012-07-11 株式会社半导体能源研究所 半导体器件及其制造方法
US7692610B2 (en) 2005-11-30 2010-04-06 Semiconductor Energy Laboratory Co., Ltd. Display device
EP1793366A3 (en) 2005-12-02 2009-11-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device, and electronic device
CN102176304B (zh) 2005-12-02 2013-07-03 株式会社半导体能源研究所 半导体器件
KR101214205B1 (ko) * 2005-12-02 2012-12-21 재단법인서울대학교산학협력재단 표시 장치 및 그 구동 방법
TWI292281B (en) 2005-12-29 2008-01-01 Ind Tech Res Inst Pixel structure of active organic light emitting diode and method of fabricating the same
US7867636B2 (en) 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
JP4977478B2 (ja) 2006-01-21 2012-07-18 三星電子株式会社 ZnOフィルム及びこれを用いたTFTの製造方法
US7576394B2 (en) 2006-02-02 2009-08-18 Kochi Industrial Promotion Center Thin film transistor including low resistance conductive thin films and manufacturing method thereof
US7977169B2 (en) 2006-02-15 2011-07-12 Kochi Industrial Promotion Center Semiconductor device including active layer made of zinc oxide with controlled orientations and manufacturing method thereof
KR100719662B1 (ko) 2006-02-28 2007-05-17 삼성에스디아이 주식회사 화소 및 이를 이용한 유기 발광 표시장치와 그의 구동방법
TWI603307B (zh) 2006-04-05 2017-10-21 半導體能源研究所股份有限公司 半導體裝置,顯示裝置,和電子裝置
KR20070101595A (ko) 2006-04-11 2007-10-17 삼성전자주식회사 ZnO TFT
JP5397219B2 (ja) 2006-04-19 2014-01-22 イグニス・イノベーション・インコーポレイテッド アクティブマトリックス表示装置用の安定な駆動スキーム
US20070252928A1 (en) 2006-04-28 2007-11-01 Toppan Printing Co., Ltd. Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof
JP5028033B2 (ja) 2006-06-13 2012-09-19 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
KR20080006894A (ko) * 2006-07-14 2008-01-17 삼성전자주식회사 표시 장치 및 그 제조 방법
JP4609797B2 (ja) 2006-08-09 2011-01-12 Nec液晶テクノロジー株式会社 薄膜デバイス及びその製造方法
JP4999400B2 (ja) 2006-08-09 2012-08-15 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
ES2373340T3 (es) 2006-08-30 2012-02-02 Basf Se Método para la preparación de poliesteroles.
JP4332545B2 (ja) 2006-09-15 2009-09-16 キヤノン株式会社 電界効果型トランジスタ及びその製造方法
JP4274219B2 (ja) 2006-09-27 2009-06-03 セイコーエプソン株式会社 電子デバイス、有機エレクトロルミネッセンス装置、有機薄膜半導体装置
JP5164357B2 (ja) 2006-09-27 2013-03-21 キヤノン株式会社 半導体装置及び半導体装置の製造方法
US7622371B2 (en) 2006-10-10 2009-11-24 Hewlett-Packard Development Company, L.P. Fused nanocrystal thin film semiconductor and method
TWI442368B (zh) 2006-10-26 2014-06-21 Semiconductor Energy Lab 電子裝置,顯示裝置,和半導體裝置,以及其驅動方法
US7772021B2 (en) 2006-11-29 2010-08-10 Samsung Electronics Co., Ltd. Flat panel displays comprising a thin-film transistor having a semiconductive oxide in its channel and methods of fabricating the same for use in flat panel displays
JP2008140684A (ja) 2006-12-04 2008-06-19 Toppan Printing Co Ltd カラーelディスプレイおよびその製造方法
KR101303578B1 (ko) 2007-01-05 2013-09-09 삼성전자주식회사 박막 식각 방법
US8207063B2 (en) 2007-01-26 2012-06-26 Eastman Kodak Company Process for atomic layer deposition
KR100851215B1 (ko) 2007-03-14 2008-08-07 삼성에스디아이 주식회사 박막 트랜지스터 및 이를 이용한 유기 전계 발광표시장치
KR101415560B1 (ko) * 2007-03-30 2014-07-07 삼성디스플레이 주식회사 박막 트랜지스터 표시판 및 그 제조 방법
US7795613B2 (en) 2007-04-17 2010-09-14 Toppan Printing Co., Ltd. Structure with transistor
KR101325053B1 (ko) 2007-04-18 2013-11-05 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 이의 제조 방법
KR20080094300A (ko) 2007-04-19 2008-10-23 삼성전자주식회사 박막 트랜지스터 및 그 제조 방법과 박막 트랜지스터를포함하는 평판 디스플레이
KR101334181B1 (ko) 2007-04-20 2013-11-28 삼성전자주식회사 선택적으로 결정화된 채널층을 갖는 박막 트랜지스터 및 그제조 방법
CN101663762B (zh) 2007-04-25 2011-09-21 佳能株式会社 氧氮化物半导体
KR101345376B1 (ko) 2007-05-29 2013-12-24 삼성전자주식회사 ZnO 계 박막 트랜지스터 및 그 제조방법
US8202365B2 (en) 2007-12-17 2012-06-19 Fujifilm Corporation Process for producing oriented inorganic crystalline film, and semiconductor device using the oriented inorganic crystalline film
CN101950746B (zh) 2008-01-18 2012-03-21 友达光电股份有限公司 像素结构
CN101221960B (zh) * 2008-01-18 2010-12-08 友达光电股份有限公司 像素结构
JP2009258397A (ja) * 2008-04-17 2009-11-05 Toshiba Mobile Display Co Ltd El表示装置の駆動方法。
JP4623179B2 (ja) 2008-09-18 2011-02-02 ソニー株式会社 薄膜トランジスタおよびその製造方法
JP5451280B2 (ja) 2008-10-09 2014-03-26 キヤノン株式会社 ウルツ鉱型結晶成長用基板およびその製造方法ならびに半導体装置
KR20100041176A (ko) * 2008-10-13 2010-04-22 엘지디스플레이 주식회사 유기전계발광표시장치
KR101056241B1 (ko) * 2008-12-19 2011-08-11 삼성모바일디스플레이주식회사 유기전계발광 표시장치
JP5212405B2 (ja) * 2010-03-04 2013-06-19 カシオ計算機株式会社 ディスプレイパネル
JP5982147B2 (ja) 2011-04-01 2016-08-31 株式会社半導体エネルギー研究所 発光装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007272224A (ja) 2006-03-10 2007-10-18 Canon Inc 表示素子の駆動回路及び画像表示装置
JP2010224532A (ja) 2009-02-27 2010-10-07 Semiconductor Energy Lab Co Ltd 半導体装置の駆動方法

Also Published As

Publication number Publication date
JP6397858B2 (ja) 2018-09-26
KR20200144527A (ko) 2020-12-29
JP2017022382A (ja) 2017-01-26
KR102335303B1 (ko) 2021-12-06
KR20220070178A (ko) 2022-05-30
JP6709260B2 (ja) 2020-06-10
JP7035155B2 (ja) 2022-03-14
KR20200083414A (ko) 2020-07-08
KR102198451B1 (ko) 2021-01-06
KR102651641B1 (ko) 2024-03-28
JP2023055747A (ja) 2023-04-18
JP2020197739A (ja) 2020-12-10
US9030105B2 (en) 2015-05-12
KR102403845B1 (ko) 2022-05-31
JP2022091756A (ja) 2022-06-21
KR20230054621A (ko) 2023-04-25
US20120248435A1 (en) 2012-10-04
JP7082250B1 (ja) 2022-06-07
JP6748330B1 (ja) 2020-08-26
JP7161640B2 (ja) 2022-10-26
KR102016896B1 (ko) 2019-09-02
JP7214031B2 (ja) 2023-01-27
KR20210146260A (ko) 2021-12-03
KR102522732B1 (ko) 2023-04-19
JP2022119903A (ja) 2022-08-17
JP6810822B2 (ja) 2021-01-06
JP2019049707A (ja) 2019-03-28
JP5982147B2 (ja) 2016-08-31
KR102130954B1 (ko) 2020-07-07
JP2021073480A (ja) 2021-05-13
KR20120112161A (ko) 2012-10-11
JP2012256025A (ja) 2012-12-27
KR20190094321A (ko) 2019-08-13
KR20200006155A (ko) 2020-01-17
KR20240038674A (ko) 2024-03-25
JP2023002646A (ja) 2023-01-10
JP2020154324A (ja) 2020-09-24

Similar Documents

Publication Publication Date Title
KR102070558B1 (ko) 발광 장치
KR102009317B1 (ko) 기억 장치 및 반도체 장치
KR20230152617A (ko) 기억 장치 및 반도체 장치
JP2022169558A (ja) 半導体装置
KR102297329B1 (ko) 발광 장치
US8912985B2 (en) Method for driving display device
JP7486623B2 (ja) 発光装置

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant