KR100618531B1 - 전자방출소자, 전자원 및 다이폴층을 가진 화상표시장치 - Google Patents

전자방출소자, 전자원 및 다이폴층을 가진 화상표시장치 Download PDF

Info

Publication number
KR100618531B1
KR100618531B1 KR1020040042794A KR20040042794A KR100618531B1 KR 100618531 B1 KR100618531 B1 KR 100618531B1 KR 1020040042794 A KR1020040042794 A KR 1020040042794A KR 20040042794 A KR20040042794 A KR 20040042794A KR 100618531 B1 KR100618531 B1 KR 100618531B1
Authority
KR
South Korea
Prior art keywords
electron
insulating layer
electrode
cathode electrode
emitting device
Prior art date
Application number
KR1020040042794A
Other languages
English (en)
Other versions
KR20040106244A (ko
Inventor
후지와라료지
테라모토요지
Original Assignee
캐논 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 캐논 가부시끼가이샤 filed Critical 캐논 가부시끼가이샤
Publication of KR20040106244A publication Critical patent/KR20040106244A/ko
Application granted granted Critical
Publication of KR100618531B1 publication Critical patent/KR100618531B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/10Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes
    • H01J31/12Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes with luminescent screen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/312Cold cathodes, e.g. field-emissive cathode having an electric field perpendicular to the surface, e.g. tunnel-effect cathodes of metal-insulator-metal [MIM] type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/316Cold cathodes, e.g. field-emissive cathode having an electric field parallel to the surface, e.g. thin film cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/10Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes
    • H01J31/12Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes with luminescent screen
    • H01J31/123Flat display tubes
    • H01J31/125Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection
    • H01J31/127Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection using large area or array sources, i.e. essentially a source for each pixel group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/027Manufacture of electrodes or electrode systems of cold cathodes of thin film cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/316Cold cathodes having an electric field parallel to the surface thereof, e.g. thin film cathodes
    • H01J2201/3165Surface conduction emission type cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2329/00Electron emission display panels, e.g. field emission display panels
    • H01J2329/02Electrodes other than control electrodes
    • H01J2329/04Cathode electrodes
    • H01J2329/0486Cold cathodes having an electric field parallel to the surface thereof, e.g. thin film cathodes
    • H01J2329/0489Surface conduction emission type cathodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • Y10S977/846Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes internal modifications, e.g. filling, endohedral modifications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • Y10S977/847Surface modifications, e.g. functionalization, coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • Y10S977/848Tube end modifications, e.g. capping, joining, splicing

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Electrodes For Cathode-Ray Tubes (AREA)
  • Cold Cathode And The Manufacture (AREA)

Abstract

충분한 온/오프 특성을 가지고, 저전압으로 효율적으로 전자방출이 가능한 전계 방출형의 전자방출소자를 제공한다. 전자방출소자는 기판과, 상기 기판 상에 배치된 캐소드전극 및 게이트전극과, 캐소드전극의 표면을 보호하는 절연층과, 상기 절연층의 표면을 수소로 종단하므로써 형성된 다이폴층을 포함하고 있다.

Description

전자방출소자, 전자원 및 다이폴층을 가진 화상표시장치{ELECTRON EMISSION DEVICE, ELECTRON SOURCE, AND IMAGE DISPLAY HAVING DIPOLE LAYER}
도 1a 및 도 1b로 구성된 도 1은 본 발명에 의한 전자방출소자의 전자방출원리를 설명한 밴드 다이어그램
도 2a 및 도 2b로 구성된 도 2는 본 발명에 의한 전자방출소자의 부분 확대 개략도
도 3은 본 발명에 의한 전자방출소자의 일예의 개략 단면도
도 4는 본 발명에 의한 전자방출소자의 일예의 개략 단면도
도 5는 본 발명에 의한 전자방출소자의 일예의 개략 단면도
도 6은 본 발명에 의한 전자방출소자의 일예의 개략 단면도
도 7a 및 도 7b로 구성된 도 7은 본 발명에 의한 전자방출소자의 제조방법의 일례를 나타낸 개략 단면도
도 8은 본 발명에 의한 전자원의 일례를 나타내는 개략 구성도
도 9는 본 발명에 의한 화상표시장치의 일례를 나타내는 개략 구성도
도 10a 및 도 10c로 구성된 도 10은 본 발명에 의한 전자방출소자의 제조방법의 다른예를 나타낸 개략 단면도
도 11a 및 도 11b로 구성된 도 11은 본 발명의 실시예 1에서의 절연층의 SES 스펙트럼을 나타낸 도면
도 12는 본 발명의 실시예 1의 절연층으로부터 전자를 방출할 때 전류/전압 특성을 나타낸 도면
도 13은 본 발명의 실시예 3의 전자방출소자의 전류/전압 특성을 나타낸 도면
도 14는 종래의 전자방출소자의 전자방출원리를 설명한 밴드 다이어그램
도 15는 본 발명에 의한 전자방출소자에서 1/1000의 콘트라스트비를 얻을 수 있는 범위를 나타낸 도면
도 16a 내지 도 16e로 구성된 도 16은 본 발명에 의한 전자방출소자의 제조방법의 다른 예를 나타내는 개략 단면도
도 17a 내지 도 17h로 구성된 도 17은 본 발명에 의한 전자방출소자의 제조방법의 다른 예를 나타낸 개략 단면도
<간단한 도면부호의 설명>
1: 캐소드전극 2: 절연층
3: 인출전극 4: 진공 장벽
5, 15: 다이폴층 6: 전자
21: 탄소 원자 22: 수소 원자
31: 기판 32: 게이트전극
33: 애노드전극 71: 전극층
72: 포토레지스트 73, 85: 개구부
74: 분위기 81: 전자원 기판
82: X방향 배선 83: Y방향 배선
84: 전자방출소자 91: 이면판
92: 지지범위 93: 유리 기체
94: 형광막 95: 메탈백
96: 전면판 97: 페키지(외위기)
본 발명은, 전자방출막을 이용한 전계 방출형의 전자방출소자, 다수의 상기 전자방출소자를 가진 전자원, 상기 전자원을 이용하여 구성된 화상표시장치에 관한 것이다.
전자방출소자는 전계 방출형(이하, FE형이라고 칭함) 및 표면 전도형 전자방출소자를 포함한다.
FE형 전자방출소자는, 캐소드전극(및 그 위에 배치된 전자방출막)과 게이트전극 사이에 전압(전계)을 인가함으로써, 캐소드전극(또는 전자방출막)으로부터 전자를 진공 중에 추출하는 소자이다. 그 때문에, 캐소드전극(전자방출막)의 일 함수 및 그 형상에 의해 동작하는 전계가 크게 영향을 받아서, 일반적으로는, 작은 일 함수의 캐소드전극(전자방출막)을 선택하는 것이 필요하다.
일본국 특개평 9-199001호 공보에는, 캐소드전극으로서 금속과 그 금속과 접합된 반도체(다이아몬드, AlN, BN 등)를 갖춘 전자방출장치가 개시되어 있다. 상기 일본 특허에는, 막두께가 약 1Onm 이하의 다이아몬드로부터 이루어진 반도체막 표면을 수소 종단함으로써, 반도체막의 전자 친화력을 부(負)로 형성하는 방법이 개시되어 있다. 도 14는 일본국 특개평 9-199001호 공보에 개시된 전자방출소자의 전자방출원리를 나타내는 밴드 다이어그램이다. 상기 도면에서, (1)은 캐소드전극, (141)은 반도체막, (3)은 인출전극, (4)는 진공 장벽, (6)은 전자를 나타낸다.
수소로 종단된 표면을 가진 다이아몬드는 부성(負性) 전자친화력을 가진 재료로서 대표적인 것이다. 다이아몬드 표면을 전자방출면으로서 이용하는 전자방출소자로서는 미국특허 제 5283501호 공보, 미국특허 제 5180951호 공보, Zhinov. J. Liu et al, " Environmental Effect On the electron emission from diamond surfaces", J. Vac. Sci. Techno1., B16(3), May/June, 1998, PP. 1188-1193 에 개시되어 있다.
상술한, 다이아몬드를 이용한 종래의 전자방출소자에서는, 낮은 한계치 전계에서의 전자방출 및 큰 전류방출을 가능하게 한다. 한편, 부의 전자 친화력을 가진 반도체 또는 매우 작은 정(正)의 전자 친화력을 가진 반도체를 전자방출소자에 이용했을 경우, 일단 전자가 반도체에 주입되면, 상기 전자는 거의 확실하게 방출 된다. 그 때문에, 용이하게 전자를 방출하는 특성에 의해, 전자원 또는 디스플레이에 적용되는 각 전자방출소자로부터의 전자의 방출의 제어(특히 온/오프 절환)가 불가능하게 될 수도 있다.
일반적으로, FE형의 전자방출소자를 매트릭스 형상으로 배치한 전자원 및 상기 전자원을 이용한 디스플레이(FED)에서, 각각의 전자방출소자는, 복수의 X방향 의 배선(주사신호에 의해 인가된 주사배선)중의 1개 및 복수의 Y방향의 배선(변조 신호에 의해 인가된 신호배선)중의 1개에 접속된다. 이른바 "선 순차 구동"을 실시하는 경우에는, 복수의 X방향의 배선 중에서 소망한 X방향 배선을 1개 선택 하여 주사신호를 인가하고, 상기 주사신호와 함께 상기 선택된 X방향의 배선에 접속된 소망한 전자방출소자에 접속된 Y방향의 배선에 변조신호를 인가한다. 이 조작을 순차적으로 다른 X방향 배선에 실시함으로써, "선 순차 구동"을 실행한다. 또, 선 순차 구동에서는, 1회에 1라인 구동에 한정하지 않고, 복수 라인(복수의 X방향의 배선)을 동시에 구동하여도 된다. 즉, 상기 주사신호는 동시에 X방향으로 2개이상의 배선에 인가되어도 된다.
이 "선순차 구동"에서는, 비선택의 전자방출소자(비선택의 주사 배선에 접속된 전자방출소자)에, OV 이외의 전압(전형적으로는 선택된 전자방출소자에 인가된 구동전압의 절반)에 의해 인가되는 전자방출소자가 존재할 수도 있다. 비선택의 전자방출소자에 인가되는 선택(및 0V이외)시의 구동전압보다 낮은 전압을 상태를 "반 선택( half selected)" 상태라고 칭한다. 상기 "반선택" 상태의 전자방출소자에 인가되는 전압을 "반선택 전압"이라고 부른다. 또, "반선택" 상태의 전자방출소자로부터 방출된 전류 및/또는 "반선택" 상태의 전자방출소자를 통하여 흐르는 전류를 "반선택 전류"라고 칭한다. 선택된 전자방출소자로부터 방출되는 전류 및/또는 선택된 상태의 전자방출소자를 통하여 흐르는 전류를 "선택 전류"라고 칭하고, 상 기 "반선택 전류"와 "선택 전류"의 비를 "반선택 전류비"라고 칭한다.
매트릭스 형상으로 배치된 부의 전자 친화력 또는 매우 작은 정의 전자 친화력을 가진 반도체를 이용한 복수의 전자방출소자를 포함한 전자원 또는 표시장치에 "선순차 구동방법"이 적용되는 경우에, 상술한 "반선택 전류"가 발생하기 쉬워진다. 이에 의해, 표시된 화상 또는 화상의 콘트라스트가 열화될 수 있다.
다음에, 콘트라스트에 관련하여 "반선택 전류"에 대해 설명한다. 파울러-노드하임 모델(Fowler-Nordheim Model)에 따른 전계 방출형의 전자방출소자로부터의 전계 방출 전류(J)는, 다음과 같이 표현된다.
Figure 112004025185379-pat00001
(1)
여기서, A, B는 상수, Φ는 장벽의 높이(전자 친화력에 상당), V는 인가 전압, β는 전계증강인자이다. 그러므로 반선택 전류 Jhalf
Figure 112004025185379-pat00002
(2)
가 된다 . 따라서, 반선택 전류비는
Figure 112004025185379-pat00003
(3)
으로 표현된다.
상술한 "반선택 전류비"는, 표시를 행하는 표시부(발광부)와 비표시부(비발 광부)사이의 콘트라스트에 대응하는 것이다. 예를 들면, 디스플레이에 대해 1/1000의 콘트라스트비를 가지는 것이 중요하다. 이 콘트라스트비=1/1000을 달성하는 데에는, 캐소드전극(또는 전자방출막)으로부터 전계 방출된 전자의 모두가 발광부재의 발광에 기여한다고 가정하면, "반선택 전류비"는
Figure 112004025185379-pat00004
(4)
로 주어진다.
상기 식(4)는
Figure 112004025185379-pat00005
(5)
와 같이 표현될 수 있다.
(5) 식으로부터 명백해진 바와 같이, 콘트라스트비=1/1000를 가지지 위해서는 V 및 β는 작고, φ는 큰 것이 바람직하다. 또한, 부성 전자 친화력을 가진 재료를 이용한 경우, (5) 식을 만족하지 못하여, 이러한 전자방출소자를 이용한 화상표시장치에서 충분한 콘트리스트, 즉 소망하는 콘트라스트를 실현할 수 없다. 도 15는 각 φ의 Vβ와 φ1.5/Vβ의 관계를 도시한다.
캐소드전극(또는 전자방출막)으로부터 방출된 전자가 모두 방출전류가 되는 경우에 대해서 설명하였다. 그러나, 상기 "반선택" 상태에서, 방출된 전자의 일부 (또는 모두)가 게이트전극에 흐르는 경우에도, 장치 자체의 소비전력이 커질 뿐만 아니라, 이른바 "선순차 구동"이 실질적으로 실시할 수 없게 된다.
여기에서는, 전자방출소자를 매트릭스 배치에서 구동하였을 때 발생되는 문제를 설명하였다. 부의 전자 친화력을 가지는 반도체 또는 매우 작은 정의 전자 친화력을 가지는 반도체를 이용한 전자방출소자에서는, 다른 문제가 있을 수도 있다. 즉, 상술한 전자방출소자는, 매우 낮은 한계값 전계를 가지므로, 화상표시장치와 같이, 애노드전극과 전자방출소자를 서로 대향하도록 배치하는 경우에, 항상, 애노드전극에 의한 높은 전계에 노출되게 된다. 그 때문에, 단순하게, 애노드전극과 전자방출소자를 서로 대향하도록 배치하면, 전자방출소자에 인가한 전압이 OV(비선택 상태)인 경우에도, 애노드전극에 의한 전계에 의해 용이하게 전자가 방출될 수도 있다. 그 결과, 상술한 "선순차 구동"시의 문제와 마찬가지의 방식으로, 온과 오프의 콘트라스트에 문제가 발생되어 화상표시장치의 기능이 불가능하게 될 수도 있다.
본 발명의 목적은, 상기 문제점을 극복하고, 충분한 온·오프특성을 나타내고, 저전압으로 고효율의 전자방출이 가능한 전자방출소자를 제공하고, 이 전자방출소자를 사용하는 전자원, 및 높은 콘트라스트를 가지는 화상표시장치를 제공하는데 있다.
본 발명에 의한 전자방출소자는,
(A) 캐소드전극과;
(B) 캐소드전극의 표면의 적어도 일부를 덮어서, 그 표면에 다이폴층을 가진 (또는 다이폴층을 포함한 표면을 가진)절연층과;
(C) 인출전극을 포함하고,
캐소드전극과 인출전극 사이에 전압을 인가함으로써 절연층의 표면 위의 전도대보다 다이폴층에 접촉하는 진공장벽이 높은 상태에서 절연층과 진공 장벽의 양자 역학적인 터널링(quantum mechanical tunneling)에 의해 진공중에 전자방출이 발생한다.
본 발명의 전자원은, 본 발명에 의한 복수의 전자방출소자와, 본 발명에 의한 전자원과 발광체(발광부재)를 가진 화상표시장치를 포함한다.
본 발명에 의한 전자방출소자는, 다음의 특징중의 적어도 하나를 부가하여 포함하는 것이 바람직하다;
상기 절연층의 두께가 1Onm이하이다;
상기 다이폴층이, 상기 절연층 표면을 수소로 종단함으로써 형성된다;
전자방출동안에 상기 절연층의 표면이 정의 전자 친화력을 가진다;
상기 절연층이 탄소를 주성분으로 함유하고, 상기 탄소는 주성분으로서 sp3 혼성궤도 구조의 탄소를 포함하는 것이 바람직하다;
상기 절연층의 RMS(Root-Mean-Square; 제곱평균의 제곱근)표면거칠기가, 상기 절연층의 막두께의 1/10보다 작다;
상기 캐소드전극의 RMS 표면 거칠기가 상기 절연층의 막두께의 1/10보다 작다;
상기 캐소드전극의 RMS 표면 거칠기가, 1nm이하이다;
상기 인출전극과 상기 캐소드전극은 상기 인출전극과 상기 캐소드전극이 배치된 기판상에 공간 간격을 두어서 분리되어 있다;
한층 더 바람직하게는, 상기 기판의 표면은 상기 캐소드전극과 상기 인출전극 사이에 형성된 갭을 개재하여 노출되고, 오목부도 형성한다;
상기 절연층의 적어도 일부는, 상기 인출전극과 대향하는 상기 캐소드전극 표면에 배치된다;
상기 절연층의 단부가 상기 기판 표면과 접촉하지 않거나 또는 상기 절연층의 단부가 간격을 두어 상기 인출전극과 대향하는 상기 캐소드전극의 표면의 적어도 일부를 덮지 않는다.
상기 인출전극이 상기 캐소드전극의 윗쪽에 배치되고 전자를 통과시키는 개구부를 가지고, 상기 절연층이 상기 캐소드전극을 노출시키는 개구부를 상기 인출전극의 개구부에 대응하는 위치에 배치된다.
상술한 바와 같이, 본 발명에 의한 전자방출장치는 저전압과 온/오프 특성에 의해 효율적으로 전자를 방출할 수 있는 전계 방출형 전자방출소자이다. 이 소자를 이용하여 높은 콘트라스트를 구비한 디스플레이를 달성할 수 있다.
삭제
본 발명의 부가적인 목적, 특징 및 이점은 첨부도면을 참조하여 다음의 바람직한 실시예로부터 자명해질 것이다.
< 바람직한 실시예의 설명>
본 발명의 목적은, 매트릭스 구동(예를들면 "선순차구동")등의 방법에 의해 복수의 전자방출소자를 선택적으로 구동하도록, 기판에 복수의 전자방출소자를 배치하는 경우에, 그것의 뛰어난 전자방출특성을 이용하면서 낮은 한계값 전계(전자방출 개시에 필요한 전계)를 가진 전자방출소자의 제어성을 향상하는 데 있다. 구체적으로는, 본 발명의 목적은 절연층을 통한 캐리어(전자)의 양자 터널링 현상과 전자방출재료를 수소로 종단함으로써 저감한 진공 장벽의 터널링현상을 이용하여 전자방출재료로부터 진공중에 전자를 인출하는 전자방출소자를 제공하는 데 있다.
본 발명에 의한 전자방출소자는, 기본 구성으로서 (A) 캐소드전극과 (B) 캐소드전극의 표면의 적어도 일부를 덮고, 그 표면에 형성된 다이폴층을 가진 절연층과 (C) 인출전극(게이트전극 및/혹은 애노드전극)으로 구성되어 있다.
이하에 도면을 참조하면서, 본 발명에 의한 바람직한 실시예를 상세하게 설명한다. 본 발명의 범위는 본 실시예에 기재되어 있는 구조적인 구성요소의 치수, 재료, 형상 및 상대 배치 등에 한정되는 것은 아니다.
본 발명에 의한 전자방출소자의 전자방출원리를 도 1a 및 도 1b를 참조하면서 설명한다. 이들 도면중에서, (1)은 캐소드전극; (2)는 절연층; (3)은 인출전극; (4)는 진공 장벽; (5)는 절연층에 형성된 다이폴층을 가진 절연층(2)과 진공 사이의 경계면; (6)은 전자를 나타낸다.
캐소드전극(1)으로부터 전자(6)를 진공중에 인출하기(끌어내기)위한 구동 전압은, 캐소드전극(1)의 전위 보다 높은 전위를 인출전극(3)에 인가한 상태에서의 캐소드전극(1)과 인출전극(3) 사이의 전압이다.
도 1a는 본 발명에 의한 전자방출소자의 구동 전압이 O[V](즉, 상기 케소드 전극 전위 및 인출전극 전위가 실질적으로 동일한 경우)인 상태의 밴드 다이어그램이다. 도 1b는 구동 전압(>0[V])을 상기 케소드 전극(1)과 인출전극(3) 사이에 인가한 상태의 밴드 다이어그램이다. 도 1a를 참조하면, 절연층(2)은 상기 절연층(2)의 표면에 형성된 다이폴층에 의해 분극 되므로, 상기 절연층(2)의 표면에 δ[V]의 전압이 인가된 상태와 등가의 상태를 형성한다. 이 상태에서 전압 V[V]을 더 인가하는 경우에, 상기 절연층(2)의 밴드는 보다 가파르게 굽어지고 진공 장벽은 한층 더 가파르게 굽어진다. 이 상태에서, 다이폴층에 접촉하는 진공장벽(4)은 절연층 (2)의 표면의 전도대 보다 높게 된다(도 1b참조). 환언하면, 이 상태에서, 다이폴층과 접촉하는 진공장벽의 레벨(높이)은 절연층(2)의 표면의 전도대의 높이 보다 높게 된다. 이 상태에서, 상기 캐소드전극(1)으로부터 주입된 전자(6)는 절연층(2) 및 진공장벽(4)을 통하여 터널링(양자 역학적인 터널링)함으로써 진공중에 방출될 수 있다. 본 발명에 의한 전자방출소자의 구동 전압은 바람직하게는 50V이하이며, 한층 더 바람직하게는 5[V]와 50[V]사이다.
삭제
도 2를 참조하면서 도 1a에 도시된 상태를 설명한다. 도 2에서, (20)은 다이폴층, (21)은 탄소원자, (22)는 수소원자를 나타낸다. 본 예제에서는, 상기 다이폴층(20)은 수소(22)로 종단된 절연층(2)의 표면(진공과의 경계면)에서 형성된다. 그러나, 본 발명의 종단재료는 수소(22)로 한정되는 것은 아니다. 또한, 탄소층을절연층(2)으로서 예시한다. 본 발명에 의한 절연층(2)의 재료는 탄소에 한정되는 것은 아니지만, 전자방출의 특성 및 제조의 용이성 면에서 절연층(2)의 재료로서 탄소층을 가진것이 바람직하다. 상기 절연층(2)의 표면을 종단 하는 재료는, 캐소드전극(1)과 인출전극(3)의 사이에 전압을 인가하고 있지 않는 상태에서, 절연층 (2)의 표면 준위(level)를 줄이는 것이면 어떤 것도 될 수 있다. 그러나, 바람직하게는 수소가 이용된다. 또, 절연층(2)의 표면을 종단하는 재료는, 절연층(2)의 표면 준위(전위)를, 캐소드전극(1)과 인출전극(3)의 사이에 전압을 인가하고 있지 않는 상태하에서, 0.5eV 이상, 더 바람직하게는 1eV이상 줄이는 것이 바람직하다. 그러나, 본 발명에 의한 전자방출소자에서는, 캐소드전극(1)과 인출전극(3) 사이에 전압을 인가하고 있을 때 및 전압을 인가하고 있지 않을 때의 양쪽 모두의 상태에서, 절연층(2)의 표면의 전자 친화력은 정의 전자 친화력을 나타낼 필요가 있다.애노드전극에 인가된 전압은 일반적으로 10kv초과 내지 30kv이다. 따라서, 상기 애노드전극과 전자방출소자 사이에 생성된 전계강도는 일반적으로 1 x 105 V/cm 이하로 가정된다. 그러므로, 전계강도 때문에, 전자는 전자방출소자로부터 방출되지 않는 것이 바람직하다. 따라서. 다이폴층이 형성된 절연층(2)의 표면위의 전자 친화력은, 후술하는 절연층(2)의 막 두께를 고려하여, 2.5eV 이상으로 되는 것이 바람직하다.
절연층(2)의 막 두께는, 구동 전압에 의해 결정되어도 되고, 바람직하게는 20nm이하, 한층 더 바람직하게는 10nm이하로 설정된다. 절연층(2)의 막 두께의 하한으로서는, 캐소드전극(1)으로부터 공급된 전자(6)가, 터널링 해야할 장벽(절연 층(2) 및 진공 장벽)을 형성할 수 있는한, 어떠한 두께로 설정되어도 된다; 그러나 막 재현성의 관점으로부터 바람직하게는 1nm이상으로 설정된다.
이러한 방식으로, 본 발명에 의한 전자방출소자에서는, 절연층(2)이 어떤 상태에서도 정의 전자 친화력을 가지므로, 명확한 전자방출량의 온/오프의 비(즉, 선택된 상태와 비선택 상태 사이의 전자방출양의 명확한 차)를 달성할 수 있다.
도 2는 수소(22)로 종단된 절연층(2)의 표면에서 형성된 다이폴층(20)의 예를 나타낸다. 수소(22)는 경미하게 정(positively)에 분극(δ+)한다. 이에 의해 절연층(2)의 표면의 원자(이 경우는 탄소원자(21))는 경미하게 부(negatively)에 분극(δ-)되어 다이폴층("전기 이중층"으로 칭하기도함)(20)이 형성된다.
따라서 도 1a에 도시된 바와 같이, 본 발명에 의한 전자방출소자에서는, 캐소드전극(1)과 인출전극(3) 사이에 구동 전압이 인가되어 있지 않은 경우에도, 상기 절연층(2)의 표면에, 전기 이중층의 전위 δ(V)가 인가되고 있는 상태와 등가 상태가 형성된다. 또, 도 1b에 도시된 바와 같이, 구동 전압 V[V]의 인가에 의해, 그것과 연동하여, 진공장벽(4)도 낮아지면서 절연층(2)의 표면의 준위(전위) 강하가 진행된다. 본 발명에 의하면, 구동 전압 V[V]에 응답하여 전자가 절연층(2)를 양자 역학적으로 터널링 할 수 있도록 절연층(2)의 막 두께를 설정한다; 예를 들면, 구동회로의 부하면에서는, 1Onm 이하가 바람직하다. 막 두께가 1Onm 정도가 되면, 구동 전압 V[V]의 인가에 의해, 캐소드전극(1)으로부터 공급되는 전자(6)가 통과하는 절연층(2)의 공간적 거리도 축소되고, 그 결과, 터널링이 가능한 상태가 된다.
상술한 바와 같이, 구동 전압 V[V]의 인가에 연동하여 진공 장벽(4)의 공간적 거리도 절연층(2)와 마찬가지로 축소되면서 진공 장벽(4)도 낮출 수 있기 때문에, 진공장벽(4)도 터널링이 가능한 상태가 되어, 진공에의 전자방출이 달성된다.
본 발명에 의한 전자방출소자에서는, 여러가지의 변경을 할 수 있다. 이러한 변경은 도 3 내지 도 6에 나타낸다. 상기 도면에서, (31)은 기판, (32)는 인출전극 등으로서 게이트전극을 나타내며, 도 1a 내지 도 2와 공통인 구성요소는 동일한 참조부호로 나타낸다.
도 3 내지 도 6에 도시한 바와같이, 본 발명에 의하면, 기판(31)의 표면에, 게이트전극(32)과 캐소드전극(1)을 그들 사이에 간격이 있도록 배치하고, 캐소드전극(1)의 표면을 다이폴층(20)을 가지는 절연층(2)으로 덮고, 게다가 캐소드전극(1)과 대향하도록 애노드전극(33)을 배치하여 소위 3단자 구조를 형성한다.
도 3 내지 도 6을 참조하면, 전압(Vg)는 게이트전극(32)과 캐소드전극(1) 사이에 인가되는 전압이고, 전압(Va)은 캐소드전극(1)과 애노드전극(33) 사이에 인가되는 전압이며, 전압(Vg)보다는 높다.
도 3 내지 도 6의 구성에서는, 소자를 구동시키기 위해서 전압(Vg) [V] 및 전압(Va) [V] 를 인가하면, 캐소드전극(1)상의 절연층(2)에 강한 전계가 인가되어 전압(Vg) [V]와, 절연층(2)의 두께및 형상과 절연층(2)의 유전율에 의해 등전위면의 형상이 결정된다. 절연층(2)의 등전위면 주변(캐소드전극(1)과 게이트전극(32) 사이의 경계면으로 부터)은 애노드전극(33)과 캐소드전극(1)사이의 거리에 의존하지만, 애노드전극면에 실질적으로 평행하게 된다.
전자방출막인 절연층(2)에 인가된 전계가 소정의 한계값을 초과하면, 절연층 (2)으로부터 전자가 방출이 발생된다. 이 때, 상기 방출된 전자는 애노드전극(33) 을 향해 가속되어 애노드전극(33)의 저면에 배치된 형광재료(도시되지 않음)에 충돌하여 상기재료에 발광을 일으킨다.
도 3은, 상술한 다이폴층(20)을 가진 절연막(2)이 캐소드전극(1)의 표면을 실질적으로 모두 덮고 있는 것을 나타내며, 도 4는 절연층(2)이 게이트전극(32)에 마주보고, 대향하는 캐소드전극(l)의 측(측면)에 인접한 기판(31)에 접촉하지 않아서, 캐소드전극(1) 측의 하부가 일부 노출되어 있는 것을 나타낸다. 도 5는 절연막 (2)이 캐소드전극(1)의 상부 면(애노드전극(33)과 대향하는 면 또는 기판(1)에 실질적으로 평행한 표면)에만 배치된 것을 나타낸 것이며, 도 6은, 게이트전극(32)에 대향하는 절연층(2)의 단부를 게이트전극(32)에 대향하는 캐소드 전극(1)의 면의 단부(에찌)로부터 후퇴시켜서, 캐소드전극(1)의 상부 면(에찌 표면)의 일부가 노출된 것을 나타낸 것이다. 전자방출의 효율(캐소드전극(1)으로부터 방출된 전자의 총량에 대한 애노드전극(33)에 도달한 전자의 비율)의 관점에서는, 상기 상태는 도 3 < 도 4 < 도 5 < 도 6의 순서로 뛰어난 경향을 가지고 있다. 도 6에 도시된 상태에서는, 절연층(2)에 인가된 전계 강도의 균일성이 높으므로, 방출 전류밀도 분포의 균일성이 한층 더 증가될 수 있다.
상술한 예는, 3단자 구조로 했지만, 대안적으로 다른 실시예에서, 도 3 내지 도 6에 도시된 구성으로부터 게이트전극(32)을 제거함으로써, 이른바 2단자 구조를 가질 수도 있다. 이 경우에는, 애노드전극이 인출전극이 된다. 도 3 내지 도 6에서, 게이트전극(32)과 캐소드전극(1)을 동일한 기판상에 배치한다; 대안적으로, 다른 실시예에서, 캐소드전극(1)과 애노드전극(33) 사이 및 캐소드전극(1)의 윗쪽에 게이트전극(32)을 배치하는 이른바 스핀드트형(spindt-type)과 같은 구성을 채택하여도 된다. 이러한 구성에서는, 일반적으로, 전기 절연을 위하여 절연층(도시하지 않음)이 캐소드전극(1)과 게이트전극 사이에 배치된다. 이 경우에, 전자가 통과할 수 있는 개구부, 즉 소위 "게이트 홀"을 형성하는 것이 바람직하다. 상기 캐소드전극이 개구부에 노출되도록, 상기 개구부를 상기 절연층 및 게이트전극에 형성하고, 절연층의 개구부를 게이트전극의 개구부에 위치적으로 대응시킴으로써(연통시킴으로써), 절연층의 개구부를 배치하는 것이 바람직하다.
또한, 상기 3단자 구조에서는, 게이트전극(32)과 애노드전극(33)의 쌍방에 의해 생성된 복합전계에 의해, 전자를 캐소드전극(1)(절연층(2))으로부터 방출할 수 있다. 이러한 경우에, 게이트전극(32) 및 에노드 전극(33)은 인출전극을 구성한다.
본 발명에 의한 전자방출소자는 전형적으로 상기 절연층(2)의 표면과 상기 인출전극의 사이에 1 X 106 V /cm 미만의 전계를 인가함으로써 전자를 방출할수 있다. 상기 절연층은 두께가 매우 얇기 때문에, 본 발명에 의한 전자방출소자는 캐소드전극과 인출전극 사이에 1 X 106 V /cm 미만의 전계를 인가함으로써 전자를 방출할 수 있다.
본 발명에 의하면, 캐소드전극(1)은 도 3 내지 도 6에 도시된 바와 같이 평탄한 형상을 가지는 것이 바람직하지만; 전계를 증가시키기 위해서, 다른 실시예의 캐소드전극(1)은, 원추형상 등의 돌기 형상을 가져도 된다. 그러나, 돌기 형상은, 전계가 국소적으로 과도하게 집중하는 경향을 가지고 있으므로, 예를 들면, 디스플레이와 같이, 대면적에 다수의 전자방출소자를 고밀도로 형성하는 경우에는, 역으로, 균일성이 저하될 수도 있다. 그러므로, 이러한 경우에는, 캐소드전극의 표면 형상(절연층(2)의 표면)은 평탄한 것이 바람직하다. 보다 구체적으로는, 캐소드전극(1)의 표면거칠기 및/또는 절연층(2)의 표면거칠기는, 제곱평균 제곱근(RMS) 표시 시스템으로 절연층(2)의 막 두께의 1/10 보다 작은 것이 바람직하다. 또한, 캐소드전극(1)의 RMS 표면거칠기 및/또는 절연층(2)의 RMS 표면거칠기는 1nm이하인 것이·바람직하다. 상기 RMS는, 예를 들면, 일본공업규격(JIS)에서 사용되고, 평균곡선과 측정 곡선사이의 편차를 제곱 평균한 값의 제곱근으로 나타낸다.
다음에, 본 발명에 의한 전자방출소자의 제조 방법의 예를 도 7a 내지 도 7e을 참조하면서 설명한다. 도시된 제조방법은 일례이며, 본 발명은 본 실시예의 구체적인 상세에만 한정되지 않고 광범위하게 해석된다. 퇴적순서 및 에칭 방법은 이하 실시예에서 부가적으로 설명된 바와같이, 이용되는 구조의 형식에 의존한다.
(공정 1)
미리, 그 표면을 충분히 세정한, 석영 유리, Na 등의 불순물을 감소시킨 유리, 석회유리, 기판 표면에 퇴적된 SiO2를 가진 복합재료 및 세라믹스 등으로 구성되는 절연성 기판 중의 어느 하나를 기판(31)으로서 이용하고, 기판(31) 상에 전극층(71)을 퇴적한다.
일반적으로 도전성을 가진 전극층(71)은 진공 증착 및 스퍼터링 등의 일반적인 막형성 기술 의해 형성된다. 전극층(71)의 재료는, 예를 들면, Be, Mg, Ti, Zr, Hf, V, Nb, Ta, Mo, W, Al, Cu, Ni, Cr, Au, Pt 및 Pd 등의 하나 이상의 금속 또는 합금으로부터 적절하게 선택될 수 있다. 전극층(71)의 두께는, 수십 nm 내지 수 백 ㎛에서 설정되고, 바람직하게는 1OOnm 내지 1O㎛의 범위에서 설정된다.
(공정 2)
도 7a에 도시한 바와 같이, 전극층 (71)상에 절연층(2)을 퇴적한다. 절연층 (2)은 진공 증착, 스퍼터링, HFCVD(Hot Filament CVD; 열 필라멘트 CVD)법 및 플라스마 CVD 법 등의 일반적인 막형성 기술에 의해 형성되지만; 그 방법은 이것에 한정되지 않는다. 절연층(2)의 막 두께는 전자 터널을 형성할 수 있는 막 두께의 범위에서 설정되고, 바람직하게는 4nm 내지 10nm의 범위에서 설정된다.
절연층(2)의 재료는, 기본적으로는 어떤 절연성 재료라도 적합하다. 전계 집중만을 고려하면, 유전율이 가능한한 작은 재료가 바람직하다. 바람직하게는, 상기 재료는 1×1O8 내지 1 ×1O 14Ωcm의 범위의 저항율을 가질 수 있다. 전자방출재료로서 생각하면, 바람직하게는, 상기 재료는 탄소를 이용할 수 있다. 상술한 바와 같이, 실질적으로 절연체로서 기능하도록 절연층(2)은 높은 저항을 가지는 것이 바람직하다. 따라서, 상기 절연층(2)은 주로 다이아몬드 라이크 카본(DLC) 등의 아몰퍼스(amorphous) 카본, 금속의 질화물, 금속의 산화물, 금속의 탄화물등을 함유할 수 있고, 특히 상기 층(2)은 sp3 혼성궤도의 탄소를 주성분으로 하는 것이 바람직하다.
(공정 3)
포토리도그래피에 의해 전극층(71)을 캐소드전극(1)과 게이트전극(32)으로 분리하기 위하여, 포토레지스트(72)를 패터닝한다(도 7b).
(공정 4)
에칭에 의해, 도 7c에 도시된 바와같이, 전극층(71)을 캐소드전극(1)과 게이트전극(32)으로 분리한다. 전극층(71) 및 절연층(2)의 에칭된 표면에 대해서는, 평활하고 수직인 내면 또는 평활하고 테이퍼진 면이 요망되고, 바람직하게는 에칭처리 및 적합한 에칭방법을 통하여 얻는 것이 바람직하고, 건식법 또는 습식법을 이용된 재료의 종류에 따라서 선택하면 된다. 일반적으로, 개구부(오목부)(73)의 폭(W)은 전자방출소자를 구성하는 재료의 종류 및 전기저항, 전자방출소자의 재료의 일 함수와 구동전압 및 필요로 하는 전자방출빔의 형상에 의거하여 적절하게 설정된다. 게이트전극(32)과 캐소드전극(1) 사이의 폭(W)은 수 백 nm 내지 100㎛에 설정되는 것이 바람직하다.
캐소드전극(1)과 게이트전극(32)간에 노출된 기판(31)의 표면은, 도 7c에 도시된 바와 같이, 상기 전극(1)과 상기 기판(31) 사이의 경계보다 낮은 것(바람직하게는 파내어도 됨)이 바람직하다. 이러한 방식으로, 캐소드전극(1)과 게이트전극 (32)간의 기판(1)의 표면을 오목한 형상을 형성함으로써(오목부 형성), 전자방출소자를 구동한 경우에 캐소드전극(1)과 게이트전극(32)간의 전기적 경로거리를 효과적으로 길게 할 수 있고, 캐소드전극(1)과 게이트전극(32)간의 리크 전류를 저감할 수 있다.
(공정 5)
도 7d에 도시한 바와 같이, 다음에, 포토레지스트(72)를 제거한다.
(공정 6)
최종적으로 열처리된 화학적 수식(修飾)에 의해 절연층(2)의 표면을 수소에 의해 종단하여, 다이폴층(20)을 형성한다(도 7e). 도 7e의 (74)는 이것이 발생하는 분위기를 나타내고 있다. 상기 열처리는 수소와 탄화수소가스를 함유한 분위기에서 가열함으로써 행하여도 된다. 탄화수소가스는, 아세틸렌 가스, 에틸렌 가스 및 메탄가스 등의 직쇄형상의 탄화수소를 포함하는 것이 바람직하다.
도 7e에 도시된, 상술한 구성에서는, 각 층(2)마다 캐소드전극(l) 및 게이트전극(32)의 표면 위에 다이폴층(20)을 가진 절연층(2)을 형성하는 예를 나타내고 있지만; 바람직하게는, 캐소드전극(1)상에만 배치된 절연층(2)이 다이폴층(20)을 가지는 것이 바람직하다.
본 발명에 의한 전자방출소자에서는, 도 16e 내지 도 17h에 도시된 바와 같이, 저항층(161)을 상기 캐소드전극(1)과 절연층(2) 사이에 배치한다. 상기 저항층 (161)을 부가함으로써, 전자방출동안 방출하는 전류의 일시적인 변화를 억제할 수 있다. 이러한 소자의 상세한 제조방법은 이하 실시예에서 설명한다.
저항층(161)의 막 두께는, 수 mm로부터 수십 nm까지의 범위이며; 바람직하게는, 수십nm와 수㎛의 범위내에 있다. 상기 두께의 범위를 가진 저항층(161)의 저항값은 1×105Ω과 1 ×1O8Ω사이의 범위로부터 선택되는 것이 바람직하고; 실용적으 로는, 1×1O6Ω과 1×1O7Ω사이의 범위로부터 선택된다. 저항층(161)의 재료는, DLC(다이아몬드 라이크 카본), 아몰퍼스(amorphous) 카본 및 도핑된 아몰퍼스 실리콘을 포함할 수 있지만; 이들 재료로 한정되는 것은 아니다.
다음에 본 발명에 의한 전자방출소자의 응용에 대해서 이하에 설명한다. 본 발명에 의한 복수개의 전자방출소자 구성요소(다이폴층(20)을 가진 상기 전극 및 층(2))(편의상 이후 "전자방출소자"로 칭함)를 베이스(기판)상에 배치함으로써, 예를 들면 전자원 및 화상표시장치를 구성할 수 있다.
상기 전자방출소자의 다양한 배치를 채택할 수 있다. 일례로서는, 상기 복수의 전자방출소자가 X방향을 따라서 복수의 행 및 Y방향을 따라서 복수의 열에 배치된 소위 매트릭스 형상의 배치가 있다. 동일한 열을 따라서 배치된 복수의 전자방출소자의 각각을 구성하는 캐소드전극 및 게이트전극의 한쪽은 X방향의 배선에 공통으로 접속되지만, 복수의 전자방출소자의 각각의 캐소드전극 및 게이트전극의 다른 쪽은 복수의 전자방출소자가 동일한 열에 접속된 대응 배선(Y방향 배선)에 접속된다.
복수의 전자방출소자를 배치함으로써, 얻어진 매트릭스 배치를 구비한 본 발명에 의한 전자원을 도 8을 참조하면서 설명한다. 도 8을 참조하면, (81)은 전자원 베이스(기판)을 나타내고, (82)는 X방향으로 배치된 배선을 나타내고, (83)은 Y방향으로 배치된 배선을 나타낸다. (84)는 전자방출소자를 나타내고, (85)는 개구부를 나타낸다. 본 예제의 전자방출소자(84)에서, 하나의 구성은 전자방출막을 가지 는 캐소드전극(1)상에, 개구부(85)를 가지는 게이트전극(32)을 배치한 것을 예로든 것이다.
Dx1 내지 Dxm으로 구성된 M 개의 X방향의 배선(82)은, 진공 증착, 인쇄법 및 스퍼터링 등에 의해 금속 등으로 형성된다. 상기 배선의 재료, 막 두께 및 폭은, 소정의 기준에 의거하여 적절하게 설계된다. Dy1 내지 Dyn으로 구성된 N개의 Y방향의 배선(83)은 같은 방식으로 형성된다. M, N 양자 모두는 정의 정수임을 유의해야한다. 개별적인 배선(82)과 개별적인 배선(83)의 사이에는, 배선(83)로부터 배선(82)을 전기적으로 절연하도록 층간 절연층이 형성된다.
도시하지 않은 층간 절연층은, 진공증착, 인쇄법 및 스퍼터링 등에 의해 형성된 Si02 등으로 형성된다. 상기 배선(82)과 상기 배선(83)의 일부(즉, 단부)는 외부 단자로서 이용된다.
각각의 전자방출소자(84)를 구성하는 전극(즉, 캐소드전극(1) 및 게이트전극 (32))은, 대응 배선(82) 및 대응배선(83)에 전기적으로 접속되어 있다.
상기 배선(82)과 상기 배선(83)을 형성하는 재료 및 캐소드전극(1)과 게이트전극(32)을 형성하는 재료는, 상기 재료를 구성하는 원소의 일부 또는 전부가 동일하거나 또는 서로 달라도 된다. 그것들이 동일한 경우에는, 배선(82) 및 배선(83)은 캐소드전극(1)또는 게이트전극(32)이라고 부를 수 있다.
X방향 배선(82)에 대해서, 도시하지 않은 주사신호 인가구동기가 전자방출소자(84)의 라인을 선택하기 위하여 접속된다. 한편, Y방향 배선(83)에 대해서는, 도시하지 않은 변조신호 발생구동기가 입력신호에 대응하는 전자방출소자(84)의 각 행을 변조하기 위하여 접속된다. 각 전자방출소자에 인가되는 구동 전압은, 해당 소자에 인가되는 주사 신호와 변조 신호 사이의 전압차로서 공급된다. 여기서, 구성은 게이트전극(32)에 주사신호를 인가하고, 캐소드전극(1)에 변조신호를 인가한 것을 예로 나타냈지만; 역으로, 게이트전극(32)에 변조신호를 인가하고, 캐소드전극(1)에 주사신호를 인가하여도 된다.
상기 구성에서는, 단순화된 매트릭스 배선을 이용하여 구동되도록 개별의 소자를 선택한다. 이러한 단순화된 매트릭스 배치를 가진 전자원를 이용한 화상표시장치에 대해서, 도 9를 참조하면서 설명한다. 도 9는, 화상표시장치의 표시 패널의 일례를 나타내는 개략도이다. 도 9에서 도 8과 공통인 부재는 도 8과 동일한 부호로 나타낸다.
도 9를 참조하면, 상기 전자원 베이스(기판)(81)는 본 발명에 의한 복수의 전자방출소자(84)를 가지고, 이면판(91)에 고정되고; 전면판(96)은 유리 등의 투명한 기판(93)의 내면에 형성된 형광막(94)과 메탈 백(95) 등으로 구성되는 화상 형성부재를 가진다. 지지 프레임(92)에 대해서, 이면판(91) 및 전면판(96)이 플릿 유리 등의 접착제에 의해 접합된다. 따라서, 패키지(패널 외위기)(97)는 상기 전면판(96), 상기 지지프레임(92) 및 상기 이면판(91)으로 구성된다.
상기 이면판(91)은 전자원 베이스(81)의 주로 강도를 강화하기 위해서 형성되므로, 전자원 베이스(81) 자체가 충분한 강도를 가진 경우에, 별도의 이면판(91)은 생략되어도 된다. 즉, 상기 지지 프레임(92)를 상기 전자원 베이스(81)에 직접 밀봉함으로써, 상기 패키지(97)는 전면판(96), 지지프레임(92) 및 전자원 베이스 (81)로 구성되어도 된다. 한편, 전면판(96)과 이면판(91) 사이에서, 스페이서로 부르는 지지체(도시되지 않음)를 형성하여 대기압에 대해 충분한 강도를 가진 패키지를 구성하여도 된다.
다음에, 상기 전면판(96), 상기 지지프레임(92) 및 상기 이면판(91)을 접합한 후 상기 페키지(외위기)를 밀봉한다. 상기 밀봉 공정에서, 페키지(97)를 가열하면서, 배기 펌프에 의해 배기관(도시하지 않음)을 통해서 페키지(97) 내부를 배기한 다음에, 상기 배기관을 밀봉한다. 상기 전면판(96), 상기 지지프레임(92) 및 상기 이면판(91)을 접합한 후 상기 패키지의 압력을 유지하기 위해서는, 게터 처리 (getter treatment)를 실시할 수도 있다. 게터(도시되지 않음)는 Ba(바륨) 등의 증발형 게터 및/또는 비증발형 게터를 이용할 수 있다. 또한, 여기서는 상기 전면판 (96), 상기 지지프레임(92) 및 상기 이면판(91)을 접합한 후 배기관을 밀봉하는 방법을 예로 나타냈지만; 대안적으로, 진공 채임버에서 상기 접합을 실시하면, 상기 배기관의 밀봉이 필수적으로 요구되지 않아서, 배기관 자체가 필요없다.
이상의 공정에 의해 제조된 매트릭스 배치를 가진 전자원를 이용하여 구성한 화상표시장치에서는, 각 전자방출소자에, 페키지 외부에 외부단자 Dx1~Dxm 및 단자 Dy1~Dyn를 개재하여 전압을 인가함으로써, 소망한 전자방출소자로부터 전자를 방출시킬 수 있다. 또한, 고압 단자(98)를 개재하여 메탈 백(95) 또는 투명 전극(도시하지 않음)에 고압(Va)을 인가함으로써, 전자빔을 가속한다. 가속된 전자는, 형광막(94)에 충돌하여 그 형광막을 발광시키고 화상을 형성한다.
본 발명의 화상표시장치는, 텔레비젼 방송, TV 회의 시스템 및 컴퓨터 등의 화상표시장치 이외에, 감광성 드럼등을 이용하여 구성된 광프린터를 위한 화상표시장치에도 이용할 수 있다.
또, 본 발명에 의하면, 패키지(97)를 이용한 데이터 표시장치 및/또는 플레잉 장치를 구성할 수도 있다. 구체적으로, 상기 데이터 표시장치 및/또는 플레잉 장치는 텔레비젼 방송신호 등의 방송신호를 수신하는 수신기와 수신된 신호로부터 방송국의 튜닝을 하는 튜너를 적어도 포함한다. 다음에, 상기 튜닝된 신호의 화상정보, 알파벳 정보 및 스피치정보 중의 적어도 하나를 상기 페키지에 생성하여 표시 및/또는 재현한다. 이 구성 때문에, 상기 데이터 표시장치 및/또는 플레잉 장치는 텔레비젼의 기능을 실현한다.
방송신호가 인코드된 경우에, 상기 데이터 표시장치 및/또는 플레잉 장치는물론 디코더를 포함하여도 된다. 상기 페키지에 표시된 화상정보와 알파벳 정보를 동시에 재현하도록 상기 데이터 표시장치 및/또는 플레잉 장치에 내장된 스피커 등의 음성재현수단에 상기 스피치정보를 생성한다. 상기 페키지(97)에 정보를 출력함으로써 화상정보 또는 알파벳 정보를 표시 및/또는 재현하는 방법은 다음과 같이 될 수 있다.
우선, 상기 페키지의 각 화소에 대응한 화상신호를 수신된 화상정보 또는 알파벳 정보로부터 생성한다. 다음에, 생성된 화상신호를 상기 페키지(97)의 구동회로에 입력한다. 상기 구동회로에 입력된 신호정보에 의거하여, 상기 구동회로로부터 상기 페키지 내에서 전자방출원소에 인가될 전압을 제어함으로써 화상을 표시한다.
<실시예>
이하, 본 발명의 실시예를 상세하게 설명한다.
<실시예 1>
도 10에 도시된 제조방법에 따라서, 본 발명에 의한 다이폴층을 갖춘 반도체층(전자방출막)을 제작하였다. 도 10을 참조하면 부호는, 도 7의 부호와 동일하다.
기판(31)으로서 석영을 이용하고 충분히 세정을 실시한 후 스퍼터링 함으로써 두께 500nm의 TiN막을 캐소드전극(1)으로서 형성하였다. 막 형성조건은 다음과 같다.
Rf 전원: 13.56MHz
Rf 파워: 7.7 W/cm2
가스압력: 0.6Pa
분위기 가스: N2/Ar(N2::10%)
기판 온도: 실온
타겟: Ti
다음에, 스퍼터링에 의해 탄소막을 캐소드전극(1)상에 두께 4nm로 퇴적하여, 절연층(2)을 형성한다(도 10b). 타겟으로서 그래파이트를 이용하여 아르곤 분위기중에서 막을 형성하였다.
다음에, 상기 절연층(2)을, 메탄과 수소의 혼합가스 분위기중에서 열처리 하 여 절연층(2)의 표면에 다이폴층(20)을 형성한다(도 10c). 열처리 조건은 다음과 같다.
열처리 온도: 600 ℃
가열 방식: 램프가열
처리 시간 : 60 분
혼합 가스비: 메탄/수소= 15/6
열처리시 압력: 6.65KPa
상기 제조 방법에 의해 얻어진 다이폴층(20)을 가진 절연층(2)(전자방출막)의 2차 전자 에너지 스펙트럼(이하, "SES"로 단축함)을 도 11a에 개략적으로 도시한다.
상기 SES는, 전자비임에 응답하여 방출되는 2차 전자의 에너지 분포를 측정하도록 시료에 전자비임을 조사함으로써 얻어지고, SES의 절편으로부터 측정 시료의 일 함수를 추정할 수 있다.
도 11b는 레퍼런스로서의 다이아몬드 라이크 카본(DLC) 막의 SES를 개략적으로 도시한다. 도 11b의 문자 A는, DLC막의 SES를 나타내고, 도 11 b의 SES의 문자 B는 DLC막에 2V의 바이어스 전압을 인가한 상태에서 측정한 것이다. 도 11b에 도시된 바와 같이, DLC막의 표면에 전위가 인가되면, 외관상의 일 함수는 인가된 전위만큼 감소되는 것으로 이해된다.
본 발명에 의한 전자방출소자에서는, 전자가 용이하게 방출되록 절연층(2) 표면에(또는 표면상에) 형성된 다이폴층에 의해 밴드가 구부러진다. 이러한 현상이 실제로 실행되면, 도 11b에 도시된 바와 같이, 그 표면에 전위를 인가하고 있는 것 같이 시료 SES의 측정 결과를 얻는다.
도 11a의 문자 D는 본 실시예에서 제작한 다이폴층(20)을 가진 절연층(2)의 SES를 나타내고, 문자 C는 열처리만을 실시하지 않은 다이폴층(20)이 없는 절연층의 SES를 나타낸다. 도 11a에서, 상기 SES로부터 추정된 일 함수는, 상기 열처리에서 대략 2eV 만큼 감소된다. 도 11b의 결과와 함께 결합하여 그 결과를 조사하면, 열처리에 의해 도 2에 대해서 설명한 바와 같이, 절연층(2)의 표면이 수소에 의해 화학적으로 수식되어 다이폴층을 형성하기 때문에, 일 함수가 감소되는 것으로 이해된다.
다음에, 본 실시예에서 제작한 절연층의 전자방출 특성을 측정하였다. 본 실시예에서 제작한 절연층으로부터 분리되고, 대향하도록 애노드전극(면적 1mm2)을 배치하고, 애노드전극과 캐소드전극과 사이에 구동 전압을 인가했다. 이 때의 전압/전류 특성을 도 12에 도시하고. 횡축은 전계 강도, 종축은 방출 전류밀도를 나타낸다. 도 12에서 문자 A는 본 실시예에서 제작한 다이폴층을 가진 절연층의 전압/전류 특성을 나타내며, 문자 B는 메탄과 수소의 분위기하에서 열처리를 실시하지 않은, 다이폴층을 가지지 않는 절연층의 전압/전류 특성을 나타낸다.
본 실시예의 다이폴층(20)을 가진 절연층(2)은 명확한 한계값 전계를 가지고, 전자가 낮은 전계강도로 방출되고, 우수한 전자방출특성을 나타낸다는 것을 확인하였다.
<실시예 2>
도 10에 도시된 제조방법에 따라서, 본 발명에 의한 다이폴층(20)을 가진 절연층(2)을 제작하였다.
충분히 세정을 실시한 후, 기판(31)으로서 석영을 이용하여 스퍼터링에 의해 캐소드전극(1)으로서 두께 500nm의 W막을 형성한다(도 10a).
다음에 스퍼터링에 의해 SiO2를 캐소드전극(1)상에 약 4 nm 퇴적하여 절연층 (2)을 형성한다(도 10b). 분위기 가스로서는 Ar/O2 = 1/1의 혼합가스를 이용하였다. 상기 조건은 다음과 같다.
Rf전원: 13.56MHz
Rf파워: 110W/cm2
가스압력: 0.5Pa
기판 온도: 300℃
타겟 :SiO2
다음에, 메탄과 수소의 혼합 가스분위중에서 기판을 열처리 하여, 절연층(2) 의 표면상에( 또는 표면에) 다이폴층(20)을 형성한다(도 10c). 열처리 조건은 다음과 같다.
열처리 온도: 600℃
가열 방식: 램프 가열
처리 시간: 60분
혼합 가스비: 메탄/수소=15/6
열처리시 압력: 7KPa
이와 같은 방식으로 제조한 다이폴층(20)을 가진 절연층(2)의 전자방출 특성을 측정하였다. 상기 다이폴층(20)을 가진 절연층(2)에 대향하고 분리되도록 애노드전극을 배치하고, 애노드전극과 캐소드전극과의 사이에 구동전압을 인가하였다. 그 결과, 실시예 1과 마찬가지의 방법으로, 명확한 한계값을 가지고 낮은 전계 강도로 전자를 방출하는, 우수한 전자방출 특성을 얻었다.
<실시예 3>
도 7에 도시된 제조공정에 따라서 전자방출소자를 제작했다.
(공정 1)
기판(31)으로서 석영을 이용하고 충분히 세정을 실시한 후 스퍼터링 함으로써 두께 500nm의 TiN막을 전극층(71)으로서 형성하였다.
(공정 2)
다음에, ECR 플라스마 CVD(electron cyclotron resonance plasma chemical vapor deposition; 전자 사이클로트론 레조넌스 프라즈마 화학증착)에 의해 탄소막을 6nm정도 퇴적하여, 반도체층(2)을 형성한다 (도7 a). 이것은 DLC(다이아몬드 라이크 카본)가 성장하는 조건하에서 되었다. 성장 조건은 다음과 같다.
가스: CH4
마이크로파 파워: 400W
기판 바이어스: -90V
가스압력: 25mmPa
기판 온도: 실온
(공정 3)
다음에, 도 7b에 도시된 바와 같이, 마스크 패턴(포토레지스트(72))을 형성하도록 포토리도그래피에 의해, 포지티브형 포토레지스트(AZ®1500; 클라리언트사의 제품)가 스핀-코팅되고, 노광되고, 현상된다.
(공정 4)
도 7c에 도시된 바와 같이, 마스크 패턴을 마스크로서 이용하여 DLC막과 TiN 전극을 연속적으로 드라이에칭을 하였다. 게이트전극과 캐소드전극의 열처리시에 생성되는 미량의 탄소로 인한 누설을 저감하기 위해서, 에칭은 석영을 경미하게 에칭한 정도로 다소 과도하게 실시한다.
(공정 5)
도 7d에 도시된 바와 같이, 마스크 패턴을 완전하게 제거하였다.
(공정 6)
최종적으로, 도 7e에 도시된 바와 같이, 메탄과 수소의 혼합 가스 분위기중에서 기판을 가열처리하여 절연층(2) 표면상에(또는 표면에) 다이폴층(20)을 형성하고, 전자방출소자를 완성시켰다. 상기 열처리 조건은 다음과 같다.
열처리 온도: 600℃
가열 방식: 램프 가열
처리시간: 60 분
혼합 가스비: 메탄/수소=15/6
열처리시 압력: 6KPa
상술한 바와 같이 제작한 전자방출소자의 윗쪽에, 도 3에 도시된 바와 같이, 애노드전극(33)을 배치하고, 캐소드전극(1)과 게이트전극(32)의 사이 및 애노드전극(33)을 가로 질러서 전압을 인가하여 상기 전자방츨소자를 구동하였다. 도 13은 전자방출소자의 전압/전류 특성의 그래프이다. 본 실시예의 전자방출소자에서는, 저전압으로 전자를 방출할 수 있고, 명확한 한계값을 가질 수 있었다. 실제의 구동 전압은, 전압(Vg)(캐소드전극(1)과 게이트전극(32)간에 인가하는 전압)=20V, 전압 (Va)(캐소드전극(1)과 애노드전극(33)에 인가하는 전압)=1OkV이었다.
<실시예 4>
실시예 3에서 제작한 전자방출소자를 이용하여 화상표시장치를 제작했다.
실시예 3에서 제작한 전자방출소자를 100 ×100의 매트릭스 패턴으로 배치하여 전자원를 구성하였다. 도 8에 도시된 바와 같이 X방향으로 배선(82)을 캐소드전극(1)에, Y방향으로 배선(83)을 게이트전극(32)에 접속하였다. 또한, 도 8에서, 전자방출소자(84)에서는, 캐소드전극(1)상에 개구부(85)를 가진 게이트전극(32)을 배치한 것을 개략적으로 도시하지만, 본 실시예의 화상표시장치의 전자방출소자에는 완전하게 대응하지 않는다. 본 실시예의 구성은, 전자방출소자의 구조(실시예 3에서 도시된 구조)를 제외하고는 도 8에 개략적으로 도시된 구성과 동일하다. 본 실시예의 전자방출소자는, 300㎛ X 300㎛의 피치로 배치되었다. 각 전자방출소자의 윗쪽에, 적색, 청색, 녹색에 발광하는 형광체중의 어느하나의 형광체를 배치하였다.
화상을 표시하기 위한 상기 전자원의 "선순차 구동"에 의해, 콘트라스트가 뛰어난, 고휘도 및 고정밀의 화상표시장치를 얻었다.
<실시예 5>
(공정 1)
우선, 도 16a에 도시된 바와 같이, 충분하게 기판을 세척한 후에 기판(31)으로서 석영을 이용하여 스퍼터링에 의해 전극층(71)으로서 두께 500nm의 TiN을 제조하였다.
(공정 2)
다음에, 스퍼터링에 의해 저항층(161)으로서 두께 50nm 탄소를 제조하였다. 1 X 106 Ω의 저항을 가지도록 다상기 탄소를 변조한다.
타켓: 그래파이트
가스: Ar
r.f.파워: 500W
가스 분압: 0.27Pa
(공정 3)
다음에, 절연층(2)으로서 두께 약 6nm의 탄소막을 가지도록 상기 ECR 플라즈마 CVD법에 의해 탄소를 퇴적한다. 이 때에, DLC가 성장하는 조건하에서 상기 막이 형성된다. 성장 조건은 다음과 같다:
가스: CH4
마이크로파 파워: 400W
기판 바이어스: -90V
가스압: 25mmPa
기판 온도: 실온
(공정 4)
다음에, 도 16b에 도시한 바와 같이, 마스크 패턴(레지스트(72))을 형성하도록 포토리도그래피에 의해, 포지티브형 포토레지스트(AZ®1500; 클라리언트사의 제품)가 스핀-코팅되고, 노광되고, 현상된다.
(공정 5)
도 16c에 도시된 바와 같이, 마스크 패턴을 마스크로서 이용하여 절연층(2), 저항층(161) 및 전극층(71)을 연속적으로 드라이에칭을 한 다음에, 층(71)으로 부재 (1)와 부재(32)를 형성한다. 에칭은 석영을 경미하게 에칭한 정도로 다소 과도하게 실시한다. 본 실시예에서는, 개구부(73)의 폭은 2㎛로 설정했다.
(공정 6)
도 16d에 도시된 바와 같이, 마스크 패턴을 완전하게 제거했다. 막응력은 작고, 막 필링 등의 프로세스상의 문제는 일어나지 않았다.
(공정7)
최종적으로, 도 16e에 도시된 바와 같이, 수소 분위기중(99.9% 수소)에서 기 판을 630℃에서, 60분간 램프에 의해 열처리를 실시하여 본 실시예의 전자방출소자를 완성시켰다.
이상과 같이 제작한 전자방출소자의 윗쪽에 애노드전극을 배치하고, 실시예 3과 마찬가지의 방식으로 상기 소자를 구동하였다. 그 결과, 본 실시예의 전자방출소자에서는, 실시예 3의 전자방출소자와 비교하여 전자방출시에 방출되는 전류의 일시적인 변화가 완화되었다.
<실시예 6>
(공정 1)
우선, 도 17a에 도시된 바와 같이, 충분하게 기판을 세척한 후에 기판(31)으로서 석영을 이용하여 스퍼터링에 의해 전극층(71)으로서 두께 500nm의 TiN을 제조하였다.
(공정 2)
다음에, 도 17b에 도시된 바와 같이, 마스크 패턴(레지스트(72))을 형성하도록 포토리도그래피에 의해, 포지티브형 포토레지스트(AZ®1500; 클라리언트사의 제품)가 스핀-코팅되고, 노광되고, 현상된다.
(공정 3)
도 17c에 도시된 바와 같이, 마스크 패턴을 마스크로서 이용하여 전극층 (71)을 드라이에칭 한다. 상기 에칭은 석영을 경미하게 에칭한 정도로 다소 과도하게 실시한다.
(공정 4)
다음에, 저항층(161)으로서 두께 50nm 탄소를 스퍼터링에 의해 탄소막을 제조하였다. 이 때, 1 X 106 Ω의 저항을 가지도록 상기 탄소를 조절하였다.
가스: Ar
r.f.파워: 500W
가스 분압: 0.27Pa
(공정5)
다음에, 절연층(2)으로서 두께 약 6nm의 탄소막을 가지도록 상기 ECR 플라즈마 CVD법에 의해 탄소를 퇴적한다. 이 때에, DLC가 성장하는 조건하에서 상기 막이 형성된다. 성장 조건은 다음과 같다:
가스: CH4
마이크로파 파워: 400W
기판 바이어스: -90V
가스압력: 25mmPa
기판 온도: 실온
(공정 6)
다음에, 도 17f에 도시된 바와 같이, 마스크 패턴(레지스트(72'))을 형성하도록 포토리도그래피에 의해, 포지티브형 포토레지스트(AZ®1500; 클라리언트사의 제품)가 스핀-코팅되고, 노광되고, 현상된다.
(공정 7)
도 17g에 도시된 바와 같이, 마스크 패턴을 마스크로서 이용하여 절연층(2) 및 저항층(161)을 연속적으로 드라이에칭을 하고, 다음에, 마스크 패턴을 완전하게 제거하였다. 본 실시예에서는, 개구부(73)의 폭은 약 1㎛로 설정했다. 막응력은 작고, 막 필링 등의 프로세스상의 문제는 일어나지 않았다.
(공정8)
최종적으로, 도 17h에 도시된 바와 같이, 수소 분위기중(99.9% 수소)에서 기판을 630℃에서, 60분간 램프에 의해 열처리를 실시하여 본 실시예의 전자방출소자를 완성시켰다.
이상과 같이 제작한 전자방출소자의 윗쪽에 애노드전극을 배치하고, 실시예 3과 마찬가지의 방식으로 상기 소자를 구동하였다. 그 결과, 본 실시예의 전자방출소자에서는, 실시예 5의 전자방출소자와 비교하여 전자방출시에 방출되는 전류의 시간적인 변화가 완화되었다.
<실시예 7>
본 실시예에서는, 실시예 5 및 실시예 6에서 각각 제작한 전자방출소자를 다수 배열한 전자원를 각각 배치함으로써, 전자원을 제조하였고, 각각의 전자원을 이용한 화상표시장치를 제조하였다.
각각의 전자원에서, 전자방출소자의 구조 이외에는 실시예 4와 마찬가지의 방법으로 전자원을 제조하였다. 다음에, 상기 전자원을 선순차 구동함으로써, 화상을 표시한 경우, 콘트라스트가 우수한, 고휘도 및 고정세의 화상을 장기간 동안 안정하게 표시할 수 있었다.
본 발명은 현재 바람직하다고 고려되는 것을 참조하면서 설명하였지만,본 발명은 상기 개시된 실시예에 한정되지 않는 것으로 이해되어야 한다. 반대로, 본 발명은 첨부된 청구항의 정신 및 범위내에 포함된 다양한 수정과 균등한 구성을 포함하도록 의도된 것이다. 다음의 청구항의 범위는 모든 이러한 수정과 균등한 구성과 기능을 포함하도록 가장 광범위하게 해석될 수 있다.
본 발명에 의하면, 본 발명의 전자방출소자는, 충분한 온/오프 특성과 저전압으로 고효율인 전자방출이 가능한 전계 방출형의 전자방출소자이며, 해당 소자를 이용함으로써, 콘트라스트가 높은 디스플레이를 실현할 수 있다.

Claims (23)

  1. (A) 캐소드전극과;
    (B) 이 캐소드전극 상에 배치된, 표면에 다이폴층을 가지는 절연층과;
    (C) 인출전극
    을 포함하는 전자방출소자로서,
    상기 캐소드전극과 상기 인출전극 사이에 전압을 인가함으로써 상기 절연층의 표면에 있어서의 전도대보다 상기 다이폴층에 접하는 진공장벽이 높은 상태에서 전자를 상기 캐소드전극으로부터 상기 절연층과 상기 진공장벽을 터널시켜서 방출하는 것을 특징으로 하는 전자방출소자.
  2. 제 1항에 있어서,
    상기 절연층의 두께가 1nm 이상 10nm 이하인 것을 특징으로 하는 전자방출소자.
  3. 제 1항에 있어서,
    상기 다이폴층이, 상기 절연층의 표면을 수소로 종단함으로써 형성되는 것을 특징으로 하는 전자방출소자.
  4. 제 1항에 있어서,
    전자방출시의 상기 절연층의 표면이 정의 전자친화력을 가지는 것을 특징으로 하는 전자방출소자.
  5. 제 1항에 있어서,
    상기 절연층이 탄소를 주성분으로서 함유하고 있는 것을 특징으로 하는 전자방출소자.
  6. 제 5항에 있어서,
    상기 절연층의 주성분인 탄소가 sp3 혼성 궤도 구조의 탄소를 주성분으로서 함유하는 것을 특징으로 하는 전자방출소자.
  7. 제 1항에 있어서,
    상기 절연층 표면의 RMS(제곱평균의 제곱근) 표면거칠기가, 상기 절연층의 막 두께의 1/10보다 작은 것을 특징으로 하는 전자방출소자.
  8. 제 1항에 있어서,
    상기 캐소드전극의 표면의 RMS 표면거칠기가, 상기 절연층의 막두께의 1/10보다 작은 것을 특징으로 하는 전자방출소자.
  9. 제 1항에 있어서,
    상기 캐소드전극의 표면의 RMS 표면거칠기가, 1nm이하인 것을 특징으로 하는 전자방출소자.
  10. 제 1항에 있어서,
    상기 캐소드전극과 상기 인출전극이 배치된 기판을 부가하여 포함하고, 상기 인출전극과 상기 캐소드전극이 공간 간격에 의해 분리되어 있는 것을 특징으로 하는 전자방출소자.
  11. 제 10항에 있어서,
    상기 캐소드전극과 상기 인출전극사이에 배치된 상기 기판의 표면이 오목부로 형성되는 것을 특징으로 하는 전자방출소자.
  12. 제 10항에 있어서,
    상기 절연층의 적어도 일부는, 상기 인출전극에 대향하는 상기 캐소드전극 표면에 배치되는 것을 특징으로 하는 전자방출소자.
  13. 제 10항에 있어서,
    상기 절연층은 상기 기판과 접촉하지 않는 것을 특징으로 하는 전자방출소자.
  14. 제 10항에 있어서,
    상기 절연층은 상기 인출전극과 대향하는 상기 캐소드전극의 표면의 적어도 일부를 덮지 않는 것을 특징으로 하는 전자방출소자.
  15. 제 1항에 있어서,
    상기 인출전극이 상기 캐소드전극의 윗쪽에 배치되고, 전자를 통과시키는 개구부를 가지고, 상기 절연층도 상기 인출전극의 개구부에 대응하는 개구부를 가지는 것을 특징으로 하는 전자방출소자.
  16. 제 1항에 있어서,
    상기 캐소드전극의 표면과 상기 절연층 사이에 저항층이 배치되어 있는 것을 특징으로 하는 전자방출소자.
  17. 제 16항에 있어서,
    상기 인출전극은 기판 상에 배치되어 있으며, 상기 저항층의 적어도 일부는 상기 인출전극과 상기 캐소드전극 사이에 배치되어 있는 것을 특징으로 하는 전자방출소자.
  18. 제 1항 내지 제 17항 중의 어느 한 항에 기재된 전자방출소자를 복수 가진 것을 특징으로 하는 전자원.
  19. 제 18항에 기재된 전자원과 발광체를 가진 것을 특징으로 하는 화상표시장치.
  20. 제 18항에 있어서,
    상기 전자방출소자가 상기 인출전극으로서의 게이트전극을 구비하고, 이 전자방출소자가 X방향 및 Y방향으로 행렬형상으로 복수개 배치되어 있으며, 같은 행에 배치된 복수의 전자방출소자의 각각을 구성하는 캐소드전극 및 게이트전극 중의 한 쪽을 공통으로 접속하는 복수의 X방향배선과, 같은 열에 배치된 복수의 전자방출소자의 각각을 구성하는 캐소드전극 및 게이트전극 중의 다른 쪽을 공통으로 접속하는 복수의 Y방향배선을 구비한 매트릭스배치의 전자원인 것을 특징으로 하는 전자원.
  21. 제 20항에 기재된 전자원과, 이 전자원과 떨어져서 배치된 애노드전극 및 발광체를 가진 것을 특징으로 하는 화상표시장치.
  22. 제 21항에 있어서,
    상기 복수의 X방향배선 중에서 소정의 X방향배선을 선택하고, 이 선택된 X방향배선에 주사신호를 인가하는 주사신호인가수단과, 상기 복수의 Y방향배선의 각각에 변조신호를 인가하는 변조신호인가수단을 구비한 것을 특징으로 하는 화상표시장치.
  23. 제 19항에 기재된 화상표시장치와 텔레비전신호의 수신회로를 구비한 것을 특징으로 하는 텔레비전.
KR1020040042794A 2003-06-11 2004-06-11 전자방출소자, 전자원 및 다이폴층을 가진 화상표시장치 KR100618531B1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003165857 2003-06-11
JPJP-P-2003-00165857 2003-06-11
JP2004082011A JP4154356B2 (ja) 2003-06-11 2004-03-22 電子放出素子、電子源、画像表示装置及びテレビ
JPJP-P-2004-00082011 2004-03-22

Publications (2)

Publication Number Publication Date
KR20040106244A KR20040106244A (ko) 2004-12-17
KR100618531B1 true KR100618531B1 (ko) 2006-08-31

Family

ID=33302287

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040042794A KR100618531B1 (ko) 2003-06-11 2004-06-11 전자방출소자, 전자원 및 다이폴층을 가진 화상표시장치

Country Status (6)

Country Link
US (3) US7109663B2 (ko)
EP (1) EP1487004B1 (ko)
JP (1) JP4154356B2 (ko)
KR (1) KR100618531B1 (ko)
CN (1) CN100428393C (ko)
DE (1) DE602004017540D1 (ko)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3535871B2 (ja) * 2002-06-13 2004-06-07 キヤノン株式会社 電子放出素子、電子源、画像表示装置及び電子放出素子の製造方法
JP4154356B2 (ja) 2003-06-11 2008-09-24 キヤノン株式会社 電子放出素子、電子源、画像表示装置及びテレビ
JP4667031B2 (ja) * 2004-12-10 2011-04-06 キヤノン株式会社 電子放出素子の製造方法、および該製造方法を用いた、電子源並びに画像表示装置の製造方法
JP2006269317A (ja) * 2005-03-25 2006-10-05 Hitachi Displays Ltd 画像表示装置
KR20060104654A (ko) * 2005-03-31 2006-10-09 삼성에스디아이 주식회사 전자 방출 소자와 이의 제조 방법
JP2006331900A (ja) * 2005-05-27 2006-12-07 Hitachi Displays Ltd 自発光型平面表示装置
JP2007073208A (ja) * 2005-09-05 2007-03-22 Canon Inc 電子放出素子、電子源および画像形成装置の製造方法
JP2007214032A (ja) 2006-02-10 2007-08-23 Canon Inc 電子放出素子、電子源及び画像表示装置の製造方法
JP2007294126A (ja) 2006-04-21 2007-11-08 Canon Inc 電子放出素子、電子源、画像表示装置、及び、電子放出素子の製造方法
JP2008218195A (ja) * 2007-03-05 2008-09-18 Canon Inc 電子源、画像表示装置及び情報表示再生装置
JP2008282607A (ja) 2007-05-09 2008-11-20 Canon Inc 電子放出素子、電子源、画像表示装置、および、電子放出素子の製造方法
JP2009032443A (ja) * 2007-07-25 2009-02-12 Canon Inc 電子放出素子、電子源および画像表示装置、並びに情報表示再生装置
JP2009104916A (ja) * 2007-10-24 2009-05-14 Canon Inc 電子放出素子、電子源、画像表示装置および電子放出素子の製造方法
JP2009110755A (ja) * 2007-10-29 2009-05-21 Canon Inc 電子放出素子、電子源、画像表示装置および電子放出素子の製造方法
JP2009117203A (ja) * 2007-11-07 2009-05-28 Canon Inc 電子放出素子の製造方法、電子源の製造方法、および、画像表示装置の製造方法
JP2009140655A (ja) * 2007-12-04 2009-06-25 Canon Inc 電子放出素子、電子源、画像表示装置および電子放出素子の製造方法
JP2009146639A (ja) * 2007-12-12 2009-07-02 Canon Inc 電子放出素子、電子源、画像表示装置、および、電子放出素子の製造方法
JP2009146751A (ja) * 2007-12-14 2009-07-02 Canon Inc 電子放出素子、電子源、および、画像表示装置
US9516713B2 (en) * 2011-01-25 2016-12-06 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
US10492008B2 (en) * 2016-04-06 2019-11-26 Starkey Laboratories, Inc. Hearing device with neural network-based microphone signal processing
CN106252179A (zh) * 2016-08-29 2016-12-21 北京大学 一种基于阻变材料的微型电子源及其阵列和实现方法
US10497817B1 (en) * 2018-07-09 2019-12-03 Wisconsin Alumni Research Foundation P-n diodes and p-n-p heterojunction bipolar transistors with diamond collectors and current tunneling layers

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4663559A (en) 1982-09-17 1987-05-05 Christensen Alton O Field emission device
US4904895A (en) 1987-05-06 1990-02-27 Canon Kabushiki Kaisha Electron emission device
JP2654012B2 (ja) 1987-05-06 1997-09-17 キヤノン株式会社 電子放出素子およびその製造方法
JPH0731390B2 (ja) 1990-09-21 1995-04-10 中外写真薬品株式会社 ハロゲン化銀カラー写真感光材料の処理方法
US5283501A (en) 1991-07-18 1994-02-01 Motorola, Inc. Electron device employing a low/negative electron affinity electron source
US5536193A (en) * 1991-11-07 1996-07-16 Microelectronics And Computer Technology Corporation Method of making wide band gap field emitter
US5180951A (en) * 1992-02-05 1993-01-19 Motorola, Inc. Electron device electron source including a polycrystalline diamond
EP0690467B1 (en) 1994-07-01 1999-11-10 Sony Corporation Fluorescent screen structure and field emission display and methods for manufacturing these
JP3409468B2 (ja) 1994-09-28 2003-05-26 ソニー株式会社 粒子放出装置、電界放出型装置及びこれらの製造方法
JPH0896704A (ja) 1994-09-28 1996-04-12 Sony Corp 粒子放出装置、電界放出型装置及びこれらの製造方法
JP2932250B2 (ja) * 1995-01-31 1999-08-09 キヤノン株式会社 電子放出素子、電子源、画像形成装置及びそれらの製造方法
JPH08264109A (ja) 1995-03-20 1996-10-11 Sony Corp 粒子放出装置、電界放出型装置及びこれらの製造方法
AU6626096A (en) 1995-08-04 1997-03-05 Printable Field Emitters Limited Field electron emission materials and devices
US5982095A (en) * 1995-09-19 1999-11-09 Lucent Technologies Inc. Plasma displays having electrodes of low-electron affinity materials
JP3580930B2 (ja) 1996-01-18 2004-10-27 住友電気工業株式会社 電子放出装置
DE69703962T2 (de) * 1996-03-27 2001-09-13 Akimitsu Hatta Elektronenemittierende Vorrichtung
JP3372848B2 (ja) 1996-10-31 2003-02-04 キヤノン株式会社 電子放出素子及び画像表示装置及びそれらの製造方法
GB9702348D0 (en) 1997-02-05 1997-03-26 Smiths Industries Plc Electron emitter devices
US5986857A (en) 1997-02-13 1999-11-16 Sanyo Electric Co., Ltd. Thin film magnetic head including adhesion enhancing interlayers, and upper and lower gap insulative layers having different hydrogen contents and internal stress states
GB2332089B (en) 1997-12-04 1999-11-03 Printable Field Emitters Limit Field electron emission materials and devices
WO1999040601A1 (fr) 1998-02-09 1999-08-12 Matsushita Electric Industrial Co., Ltd. Dispositif emetteur d'electrons, son procede de production, et son procede d'excitation; afficheur d'images comprenant ledit emetteur d'electrons et son procede de fabrication
EP0936651B1 (en) 1998-02-12 2004-08-11 Canon Kabushiki Kaisha Method for manufacturing electron emission element, electron source, and image forming apparatus
JP3278611B2 (ja) * 1998-05-18 2002-04-30 日本電気株式会社 有機el素子の封止方法
GB9816684D0 (en) 1998-07-31 1998-09-30 Printable Field Emitters Ltd Field electron emission materials and devices
RU2149477C1 (ru) 1998-08-12 2000-05-20 Акционерное общество закрытого типа "Карбид" Полевой эмиттер электронов
JP2000092056A (ja) 1998-09-14 2000-03-31 Nec Corp ネットワーク監視における選択的自動発見方法
JP2000311587A (ja) 1999-02-26 2000-11-07 Canon Inc 電子放出装置及び画像形成装置
US6861790B1 (en) 1999-03-31 2005-03-01 Honda Giken Kogyo Kabushiki Kaisha Electronic element
JP4104248B2 (ja) 1999-06-17 2008-06-18 本田技研工業株式会社 電子素子の製造方法および電子素子
FR2793602B1 (fr) 1999-05-12 2001-08-03 Univ Claude Bernard Lyon Procede et dispositif pour extraire des electrons dans le vide et cathodes d'emission pour un tel dispositif
JP3600126B2 (ja) 1999-07-29 2004-12-08 シャープ株式会社 電子源アレイ及び電子源アレイの駆動方法
GB9919737D0 (en) 1999-08-21 1999-10-20 Printable Field Emitters Limit Field emitters and devices
JP2001229808A (ja) 1999-12-08 2001-08-24 Canon Inc 電子放出装置
JP4545864B2 (ja) 2000-01-14 2010-09-15 本田技研工業株式会社 冷陰極素子
JP3658342B2 (ja) 2000-05-30 2005-06-08 キヤノン株式会社 電子放出素子、電子源及び画像形成装置、並びにテレビジョン放送表示装置
JP3604652B2 (ja) 2000-07-12 2004-12-22 昭夫 平木 電子放出陰極およびその製造方法
JP3658346B2 (ja) 2000-09-01 2005-06-08 キヤノン株式会社 電子放出素子、電子源および画像形成装置、並びに電子放出素子の製造方法
JP3689656B2 (ja) 2000-09-14 2005-08-31 キヤノン株式会社 電子放出素子及び電子源及び画像形成装置
JP3969981B2 (ja) * 2000-09-22 2007-09-05 キヤノン株式会社 電子源の駆動方法、駆動回路、電子源および画像形成装置
JP3969985B2 (ja) 2000-10-04 2007-09-05 キヤノン株式会社 電子源及び画像形成装置の駆動方法、並びに画像形成装置
JP2002373569A (ja) 2001-06-15 2002-12-26 Mitsubishi Electric Corp 電子源およびその製造方法
JP2003051243A (ja) 2001-08-07 2003-02-21 Canon Inc 電子放出素子,電子源及び画像形成装置
JP2003092056A (ja) 2001-09-14 2003-03-28 Canon Inc 電子放出素子、電子源及び画像形成装置
JP4741764B2 (ja) 2001-09-26 2011-08-10 キヤノン株式会社 電子放出素子
JP3983037B2 (ja) * 2001-11-22 2007-09-26 株式会社半導体エネルギー研究所 発光装置およびその作製方法
DK1452633T3 (da) 2001-11-30 2009-12-14 Teijin Ltd Syntetisk fiber der er kruset ved maskinkraft, og som har latente tredimensionale krusningsegenskaber, samt fremgangsmåde til fremstilling deraf
JP3535871B2 (ja) 2002-06-13 2004-06-07 キヤノン株式会社 電子放出素子、電子源、画像表示装置及び電子放出素子の製造方法
JP4154356B2 (ja) 2003-06-11 2008-09-24 キヤノン株式会社 電子放出素子、電子源、画像表示装置及びテレビ
JP3745348B2 (ja) 2003-06-16 2006-02-15 キヤノン株式会社 電子放出素子、電子源及び画像表示装置の製造方法
JP3826120B2 (ja) 2003-07-25 2006-09-27 キヤノン株式会社 電子放出素子、電子源及び画像表示装置の製造方法
JP4131846B2 (ja) 2003-10-21 2008-08-13 花王株式会社 濃色化剤組成物
JP4115410B2 (ja) 2004-03-12 2008-07-09 キヤノン株式会社 電子放出素子、電子源ならびに画像表示装置の製造方法および電子放出素子の駆動方法
JP4667031B2 (ja) 2004-12-10 2011-04-06 キヤノン株式会社 電子放出素子の製造方法、および該製造方法を用いた、電子源並びに画像表示装置の製造方法
JP2007073208A (ja) 2005-09-05 2007-03-22 Canon Inc 電子放出素子、電子源および画像形成装置の製造方法

Also Published As

Publication number Publication date
US20040251812A1 (en) 2004-12-16
US7259520B2 (en) 2007-08-21
DE602004017540D1 (de) 2008-12-18
JP4154356B2 (ja) 2008-09-24
KR20040106244A (ko) 2004-12-17
EP1487004B1 (en) 2008-11-05
EP1487004A3 (en) 2005-02-09
US20060061289A1 (en) 2006-03-23
EP1487004A2 (en) 2004-12-15
CN1574155A (zh) 2005-02-02
CN100428393C (zh) 2008-10-22
JP2005026209A (ja) 2005-01-27
US7109663B2 (en) 2006-09-19
US7682213B2 (en) 2010-03-23
US20080012463A1 (en) 2008-01-17

Similar Documents

Publication Publication Date Title
KR100618531B1 (ko) 전자방출소자, 전자원 및 다이폴층을 가진 화상표시장치
US5663608A (en) Field emission display devices, and field emisssion electron beam source and isolation structure components therefor
KR100706767B1 (ko) 전자방출소자의 제조방법, 전자원의 제조방법, 화상표시장치의 제조방법 및 전자방출소자의 구동방법
US7843118B2 (en) Electron-emitting device, electron source using the same, image display apparatus, and information displaying and reproducing apparatus
US7583016B2 (en) Producing method for electron-emitting device and electron source, and image display apparatus utilizing producing method for electron-emitting device
KR100709174B1 (ko) 전자방출소자, 전자원, 화상표시장치 및 해당 화상표시장치를 이용한 정보표시재생장치, 그리고 그의 제조방법
US20020031972A1 (en) Electron-emitting device, electron source, image-forming apparatus, and method for producing electron-emitting device and electron-emitting apparatus
JP2003100199A (ja) 電子放出素子、電子源及び画像形成装置
US20050236963A1 (en) Emitter structure with a protected gate electrode for an electron-emitting device
US7405092B2 (en) Method of manufacturing electron-emitting device and method of manufacturing image display apparatus
JP2002093307A (ja) 電子放出素子及び電子放出素子の製造方法及び電子源及び画像形成装置
JP4810010B2 (ja) 電子放出素子
KR100556747B1 (ko) 전계 방출 소자
KR100556745B1 (ko) 전계 방출 소자
JP2003092056A (ja) 電子放出素子、電子源及び画像形成装置
JP3935476B2 (ja) 電子放出素子の製造方法および画像表示装置の製造方法
JP2002093308A (ja) 電子放出素子、電子源、画像形成装置、及び電子放出素子の製造方法
JP2003109492A (ja) 電子放出素子、電子源および画像形成装置の製造方法
KR101000662B1 (ko) 전계 방출 소자
JP2003109489A (ja) 電子放出素子、電子源及び画像形成装置
KR20020017594A (ko) 클러스터 구조의 저항층이 있는 카본나노튜브 전계 방출소자
JP2003016917A (ja) 電子放出素子、電子源及び画像形成装置
JP2002184300A (ja) 電界電子放出素子及びその製造方法
KR20070036929A (ko) 전자 방출 디바이스와 이의 제조 방법 및 이를 이용한 전자방출 표시 디바이스
JP2009110791A (ja) 電子放出素子、電子源、画像表示装置および電子放出素子の製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120719

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20130726

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee