JPWO2018198976A1 - 発光素子 - Google Patents

発光素子 Download PDF

Info

Publication number
JPWO2018198976A1
JPWO2018198976A1 JP2018568975A JP2018568975A JPWO2018198976A1 JP WO2018198976 A1 JPWO2018198976 A1 JP WO2018198976A1 JP 2018568975 A JP2018568975 A JP 2018568975A JP 2018568975 A JP2018568975 A JP 2018568975A JP WO2018198976 A1 JPWO2018198976 A1 JP WO2018198976A1
Authority
JP
Japan
Prior art keywords
group
ring
atom
layer
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018568975A
Other languages
English (en)
Other versions
JP6642743B2 (ja
Inventor
慎一 稲員
慎一 稲員
元章 臼井
元章 臼井
田中 正信
正信 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Publication of JPWO2018198976A1 publication Critical patent/JPWO2018198976A1/ja
Application granted granted Critical
Publication of JP6642743B2 publication Critical patent/JP6642743B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0033Iridium compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/346Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/623Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing five rings, e.g. pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/653Aromatic compounds comprising a hetero atom comprising only oxygen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D219/00Heterocyclic compounds containing acridine or hydrogenated acridine ring systems
    • C07D219/02Heterocyclic compounds containing acridine or hydrogenated acridine ring systems with only hydrogen, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/76Dibenzothiophenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

輝度寿命に優れる発光素子を提供する。陽極と、陰極と、陽極及び陰極の間に設けられ、式(C−1)で表される化合物を含有する第1の層と、第1の層及び陰極の間に設けられ、アルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物から選ばれる少なくとも1種(第2の層の単体又は化合物)を含有する第2の層と、第2の層及び陰極の間に陰極に接して設けられ、アルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物から選ばれる少なくとも1種(第3の層の単体又は化合物)を含有する第3の層とを有し、第2の層の単体又は化合物の少なくとも1種と、第3の層の単体又は化合物の少なくとも1種とが互いに異なる、発光素子。[環R1C〜環R4Cは芳香族炭化水素環等を、RCは炭素原子等を表す。]

Description

本発明は、発光素子に関する。
有機エレクトロルミネッセンス素子等の発光素子は、ディスプレイ及び照明の用途に好適に使用することが可能である。例えば、特許文献1には、化合物(H0−1)を含有する発光層と、構成単位(E0)を含む高分子化合物を含有する電子輸送層と、フッ化ナトリウムを含有する電子注入層とを有する発光素子が記載されている。特許文献2には、化合物(H0−2)を含有する発光層と、フッ化リチウムを含有する電子注入層とを有する発光素子が記載されている。
Figure 2018198976
国際公開第2015/159932号 中国特許出願公開第102911145号明細書
しかし、この発光素子は、輝度寿命が必ずしも十分ではなかった。そこで、本発明は、輝度寿命に優れる発光素子を提供することを目的とする。
本発明は、以下の[1]〜[13]を提供する。
[1]陽極と、陰極と、
陽極及び陰極の間に設けられており、式(C−1)で表される化合物を含有する第1の層と、
第1の層及び陰極の間に設けられており、アルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物からなる群から選ばれる少なくとも1種を含有する第2の層と、
第2の層及び陰極の間に陰極に接して設けられており、アルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物からなる群から選ばれる少なくとも1種を含有する第3の層とを有する発光素子であって、
第2の層に含有されるアルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物からなる群から選ばれる少なくとも1種と、第3の層に含有されるアルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物からなる群から選ばれる少なくとも1種とが互いに異なる、発光素子。
Figure 2018198976
[式中、
環R1C、環R2C、環R3C及び環R4Cは、それぞれ独立に、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
Cは、炭素原子、ケイ素原子、ゲルマニウム原子、スズ原子又は鉛原子を表す。]
[2]前記環R1C、前記環R2C、前記環R3C及び前記環R4Cのうちの少なくとも1つが、置換基として式(D−1)で表される基を有する、[1]に記載の発光素子。
Figure 2018198976
[式中、
環RDは、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
D1及びXD2は、それぞれ独立に、単結合、酸素原子、硫黄原子、−N(RXD1)−で表される基、又は、−C(RXD2)2−で表される基を表す。RXD1及びRXD2は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。複数存在するRXD2は、同一でも異なっていてもよく、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。
1D、E2D及びE3Dは、それぞれ独立に、窒素原子又は炭素原子を表す。
1D、R2D及びR3Dは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。
1Dが窒素原子の場合、R1Dは存在しない。E2Dが窒素原子の場合、R2Dは存在しない。E3Dが窒素原子の場合、R3Dは存在しない。
1DとR2Dとは、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。R2DとR3Dとは、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。R1DとRXD1とは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。R1DとRXD2とは、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。環RDが有していてもよい置換基とRXD1とは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環RDが有していてもよい置換基とRXD2とは、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。]
[3]前記式(D−1)で表される基が、式(D−2)で表される基である、[2]に記載の発光素子。
Figure 2018198976
[式中、
D1、XD2、E1D、E2D、E3D、R1D、R2D及びR3Dは、前記と同じ意味を表す。
4D、E5D、E6D及びE7Dは、それぞれ独立に、窒素原子又は炭素原子を表す。
4D、R5D、R6D及びR7Dは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。
4Dが窒素原子の場合、R4Dは存在しない。E5Dが窒素原子の場合、R5Dは存在しない。E6Dが窒素原子の場合、R6Dは存在しない。E7Dが窒素原子の場合、R7Dは存在しない。
4DとR5D、R5DとR6D、R6DとR7D、R4DとRXD1、R4DとRXD2、R7DとRXD1、及び、R7DとRXD2は、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。]
[4]前記式(C−1)で表される化合物が、式(C−2)で表される化合物である、[1]〜[3]のいずれかに記載の発光素子。
Figure 2018198976
[式中、
Cは、前記と同じ意味を表す。
11C、E12C、E13C、E14C、E21C、E22C、E23C、E24C、E31C、E32C、E33C、E34C、E41C、E42C、E43C及びE44Cは、それぞれ独立に、窒素原子又は炭素原子を表す。
環R1C'、環R2C'、環R3C'及び環R4C'は、それぞれ独立に、ベンゼン環、ピリジン環又はジアザベンゼン環を表す。
11C、R12C、R13C、R14C、R21C、R22C、R23C、R24C、R31C、R32C、R33C、R34C、R41C、R42C、R43C及びR44Cは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。
11Cが窒素原子の場合、R11Cは存在しない。E12Cが窒素原子の場合、R12Cは存在しない。E13Cが窒素原子の場合、R13Cは存在しない。E14Cが窒素原子の場合、R14Cは存在しない。E21Cが窒素原子の場合、R21Cは存在しない。E22Cが窒素原子の場合、R22Cは存在しない。E23Cが窒素原子の場合、R23Cは存在しない。E24Cが窒素原子の場合、R24Cは存在しない。E31Cが窒素原子の場合、R31Cは存在しない。E32Cが窒素原子の場合、R32Cは存在しない。E33Cが窒素原子の場合、R33Cは存在しない。E34Cが窒素原子の場合、R34Cは存在しない。E41Cが窒素原子の場合、R41Cは存在しない。E42Cが窒素原子の場合、R42Cは存在しない。E43Cが窒素原子の場合、R43Cは存在しない。E44Cが窒素原子の場合、R44Cは存在しない。
11CとR12C、R12CとR13C、R13CとR14C、R14CとR34C、R34CとR33C、R33CとR32C、R32CとR31C、R31CとR41C、R41CとR42C、R42CとR43C、R43CとR44C、R44CとR24C、R24CとR23C、R23CとR22C、R22CとR21C、及び、R21CとR11Cは、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。]
[5]前記式(C−2)で表される化合物が、式(C−3)で表される化合物である、[4]に記載の発光素子。
Figure 2018198976
[式中、RC、R11C、R12C、R13C、R14C、R21C、R22C、R23C、R24C、R31C、R32C、R33C、R34C、R41C、R42C、R43C及びR44Cは、前記と同じ意味を表す。]
[6]前記R11C、前記R12C、前記R14C、前記R21C、前記R22C、前記R24C、前記R31C、前記R32C、前記R34C、前記R41C、前記R42C及び前記R44Cのうちの少なくとも一つが、前記式(D−1)で表される基である、[4]又は[5]に記載の発光素子。
[7]前記第1の層が、更に燐光発光性化合物を含む、[1]〜[6]のいずれかに記載の発光素子。
[8]前記燐光発光性化合物が、式(1)で表される燐光発光性化合物である、[7]に記載の発光素子。
Figure 2018198976
[式中、
Mは、ルテニウム原子、ロジウム原子、パラジウム原子、イリジウム原子又は白金原子を表す。
1は1以上の整数を表し、n2は0以上の整数を表す。但し、Mがルテニウム原子、ロジウム原子又はイリジウム原子の場合、n1+n2は3であり、Mがパラジウム原子又は白金原子の場合、n1+n2は2である。
1及びE2は、それぞれ独立に、炭素原子又は窒素原子を表す。但し、E1及びE2の少なくとも一方は炭素原子である。E1及びE2が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。
環L1は、置換基を有していてもよい芳香族複素環を表す。該置換基が複数存在する場合、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環L1が複数存在する場合、それらは同一でも異なっていてもよい。
環L2は、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環L2が複数存在する場合、それらは同一でも異なっていてもよい。
環L1が有していてもよい置換基と、環L2が有していてもよい置換基とは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
1−G1−A2は、アニオン性の2座配位子を表す。A1及びA2は、それぞれ独立に、炭素原子、酸素原子又は窒素原子を表し、これらの原子は環を構成する原子であってもよい。G1は、単結合、又は、A1及びA2とともに2座配位子を構成する原子団を表す。A1−G1−A2が複数存在する場合、それらは同一でも異なっていてもよい。]
[9]前記式(1)で表される燐光発光性化合物が、式(1−A)で表される燐光発光性化合物又は式(1−B)で表される燐光発光性化合物である、[8]に記載の発光素子。
Figure 2018198976
[式中、
M、n1、n2、E1及びA1−G1−A2は、前記と同じ意味を表す。
11A、E12A、E13A、E21A、E22A、E23A及びE24Aは、それぞれ独立に、窒素原子又は炭素原子を表す。E11A、E12A、E13A、E21A、E22A、E23A及びE24Aが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。E11Aが窒素原子の場合、R11Aは存在しても存在しなくてもよい。E12Aが窒素原子の場合、R12Aは存在しても存在しなくてもよい。E13Aが窒素原子の場合、R13Aは存在しても存在しなくてもよい。E21Aが窒素原子の場合、R21Aは存在しない。E22Aが窒素原子の場合、R22Aは存在しない。E23Aが窒素原子の場合、R23Aは存在しない。E24Aが窒素原子の場合、R24Aは存在しない。
11A、R12A、R13A、R21A、R22A、R23A及びR24Aは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、アルケニル基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。R11A、R12A、R13A、R21A、R22A、R23A及びR24Aが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。R11AとR12A、R12AとR13A、R11AとR21A、R21AとR22A、R22AとR23A、及び、R23AとR24Aは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
環L1Aは、トリアゾール環又はジアゾール環を表す。
環L2Aは、ベンゼン環、ピリジン環又はジアザベンゼン環を表す。]
Figure 2018198976
[式中、
M、n1、n2及びA1−G1−A2は、前記と同じ意味を表す。
11B、E12B、E13B、E14B、E21B、E22B、E23B及びE24Bは、それぞれ独立に、窒素原子又は炭素原子を表す。E11B、E12B、E13B、E14B、E21B、E22B、E23B及びE24Bが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。E11Bが窒素原子の場合、R11Bは存在しない。E12Bが窒素原子の場合、R12Bは存在しない。E13Bが窒素原子の場合、R13Bは存在しない。E14Bが窒素原子の場合、R14Bは存在しない。E21Bが窒素原子の場合、R21Bは存在しない。E22Bが窒素原子の場合、R22Bは存在しない。E23Bが窒素原子の場合、R23Bは存在しない。E24Bが窒素原子の場合、R24Bは存在しない。
11B、R12B、R13B、R14B、R21B、R22B、R23B及びR24Bは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、アルケニル基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。R11B、R12B、R13B、R14B、R21B、R22B、R23B及びR24Bが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。R11BとR12B、R12BとR13B、R13BとR14B、R11BとR21B、R21BとR22B、R22BとR23B、及び、R23BとR24Bは、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。
環L1Bは、ピリジン環又はジアザベンゼン環を表す。
環L2Bは、ベンゼン環、ピリジン環又はジアザベンゼン環を表す。]
[10]前記第2の層が、前記アルカリ金属元素を含む化合物及び前記第2族元素を含む化合物からなる群から選ばれる少なくとも1種を含有する層である、[1]〜[9]のいずれかに記載の発光素子。
[11]前記第3の層が、前記アルカリ金属元素を含む化合物及び前記第2族元素のみからなる単体からなる群から選ばれる少なくとも1種を含有する層である、[1]〜[10]のいずれかに記載の発光素子。
[12]前記第2の層と前記第3の層とが隣接している、[1]〜[11]のいずれかに記載の発光素子。
[13]前記第1の層と前記第2の層とが隣接している、[1]〜[12]のいずれかに記載の発光素子。
本発明によれば、輝度寿命に優れる発光素子を提供することができる。
以下、本発明の好適な実施形態について詳細に説明する。
<共通する用語の説明>
本明細書で共通して用いられる用語は、特記しない限り、以下の意味である。
Meはメチル基、Etはエチル基、Buはブチル基、i-Prはイソプロピル基、t-Buはtert-ブチル基を表す。
水素原子は、重水素原子であっても、軽水素原子であってもよい。
金属錯体及び燐光発光性化合物を表す式中、金属との結合を表す実線は、イオン結合、共有結合又は配位結合を意味する。
「高分子化合物」とは、分子量分布を有し、ポリスチレン換算の数平均分子量が1×103〜1×108である重合体を意味する。
「低分子化合物」とは、分子量分布を有さず、分子量が1×104以下の化合物を意味する。
「構成単位」とは、高分子化合物中に1個以上存在する単位を意味する。
「アルキル基」は、直鎖及び分岐のいずれでもよい。直鎖のアルキル基の炭素原子数は、置換基の炭素原子数を含めないで、通常1〜50であり、好ましくは3〜30であり、より好ましくは4〜20である。分岐のアルキル基の炭素原子数は、置換基の炭素原子数を含めないで、通常3〜50であり、好ましくは3〜30であり、より好ましくは4〜20である。
アルキル基は、置換基を有していてもよく、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、2-ブチル基、イソブチル基、tert-ブチル基、ペンチル基、イソアミル基、2-エチルブチル基、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、3-プロピルヘプチル基、デシル基、3,7-ジメチルオクチル基、2-エチルオクチル基、2-ヘキシルデシル基、ドデシル基、及び、これらの基における水素原子が、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等で置換された基(例えば、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロヘキシル基、パーフルオロオクチル基、3-フェニルプロピル基、3-(4-メチルフェニル)プロピル基、3-(3,5-ジ-ヘキシルフェニル)プロピル基、6-エチルオキシヘキシル基)が挙げられる。
「シクロアルキル基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3〜50であり、好ましくは3〜30であり、より好ましくは4〜20である。
シクロアルキル基は、置換基を有していてもよく、例えば、シクロヘキシル基、シクロヘキシルメチル基、シクロヘキシルエチル基が挙げられる。
「アリール基」は、芳香族炭化水素から環を構成する炭素原子に直接結合する水素原子1個を除いた残りの原子団を意味する。アリール基の炭素原子数は、置換基の炭素原子数を含めないで、通常6〜60であり、好ましくは6〜20であり、より好ましくは6〜10である。
アリール基は、置換基を有していてもよく、例えば、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、1-ピレニル基、2-ピレニル基、4-ピレニル基、2-フルオレニル基、3-フルオレニル基、4-フルオレニル基、2-フェニルフェニル基、3-フェニルフェニル基、4-フェニルフェニル基、及び、これらの基における水素原子が、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等で置換された基が挙げられる。
「アルコキシ基」は、直鎖及び分岐のいずれでもよい。直鎖のアルコキシ基の炭素原子数は、置換基の炭素原子数を含めないで、通常1〜40であり、好ましくは4〜10である。分岐のアルコキシ基の炭素原子数は、置換基の炭素原子数を含めないで、通常3〜40であり、好ましくは4〜10である。
アルコキシ基は、置換基を有していてもよく、例えば、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブチルオキシ基、イソブチルオキシ基、tert-ブチルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2-エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7-ジメチルオクチルオキシ基、ラウリルオキシ基、及び、これらの基における水素原子が、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等で置換された基が挙げられる。
「シクロアルコキシ基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3〜40であり、好ましくは4〜10である。
シクロアルコキシ基は、置換基を有していてもよく、例えば、シクロヘキシルオキシ基が挙げられる。
「アリールオキシ基」の炭素原子数は、置換基の炭素原子数を含めないで、通常6〜60であり、好ましくは6〜48である。
アリールオキシ基は、置換基を有していてもよく、例えば、フェノキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基、1-アントラセニルオキシ基、9-アントラセニルオキシ基、1-ピレニルオキシ基、及び、これらの基における水素原子が、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、フッ素原子等で置換された基が挙げられる。
「p価の複素環基」(pは、1以上の整数を表す。)とは、複素環式化合物から、環を構成する炭素原子又はヘテロ原子に直接結合している水素原子のうちp個の水素原子を除いた残りの原子団を意味する。p価の複素環基の中でも、芳香族複素環式化合物から、環を構成する炭素原子又はヘテロ原子に直接結合している水素原子のうちp個の水素原子を除いた残りの原子団である「p価の芳香族複素環基」が好ましい。
「芳香族複素環式化合物」は、オキサジアゾール、チアジアゾール、チアゾール、オキサゾール、チオフェン、ピロール、ホスホール、フラン、ピリジン、ピラジン、ピリミジン、トリアジン、ピリダジン、キノリン、イソキノリン、カルバゾール、ジベンゾホスホール等の複素環自体が芳香族性を示す化合物、及び、フェノキサジン、フェノチアジン、ジベンゾボロール、ジベンゾシロール、ベンゾピラン等の複素環自体は芳香族性を示さなくとも、複素環に芳香環が縮環されている化合物を意味する。
1価の複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常、2〜60であり、好ましくは4〜20である。
1価の複素環基は、置換基を有していてもよく、例えば、チエニル基、ピロリル基、フリル基、ピリジル基、ピペリジニル基、キノリニル基、イソキノリニル基、ピリミジニル基、トリアジニル基、及び、これらの基における水素原子が、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基等で置換された基が挙げられる。
「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子又はヨウ素原子を示す。
「アミノ基」は、置換基を有していてもよく、置換アミノ基が好ましい。アミノ基が有する置換基としては、アルキル基、シクロアルキル基、アリール基又は1価の複素環基が好ましい。
置換アミノ基としては、例えば、ジアルキルアミノ基、ジシクロアルキルアミノ基及びジアリールアミノ基が挙げられる。
アミノ基としては、例えば、ジメチルアミノ基、ジエチルアミノ基、ジフェニルアミノ基、ビス(4-メチルフェニル)アミノ基、ビス(4-tert-ブチルフェニル)アミノ基、ビス(3,5-ジ-tert-ブチルフェニル)アミノ基が挙げられる。
「アルケニル基」は、直鎖及び分岐のいずれでもよい。直鎖のアルケニル基の炭素原子数は、置換基の炭素原子数を含めないで、通常2〜30であり、好ましくは3〜20である。分岐のアルケニル基の炭素原子数は、置換基の炭素原子数を含めないで、通常3〜30であり、好ましくは4〜20である。
「シクロアルケニル基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3〜30であり、好ましくは4〜20である。
アルケニル基及びシクロアルケニル基は、置換基を有していてもよく、例えば、ビニル基、1-プロペニル基、2-プロペニル基、2-ブテニル基、3-ブテニル基、3-ペンテニル基、4-ペンテニル基、1-ヘキセニル基、5-ヘキセニル基、7-オクテニル基、及び、これらの基が置換基を有する基が挙げられる。
「アルキニル基」は、直鎖及び分岐のいずれでもよい。アルキニル基の炭素原子数は、置換基の炭素原子を含めないで、通常2〜20であり、好ましくは3〜20である。分岐のアルキニル基の炭素原子数は、置換基の炭素原子を含めないで、通常4〜30であり、好ましくは4〜20である。
「シクロアルキニル基」の炭素原子数は、置換基の炭素原子を含めないで、通常4〜30であり、好ましくは4〜20である。
アルキニル基及びシクロアルキニル基は、置換基を有していてもよく、例えば、エチニル基、1-プロピニル基、2-プロピニル基、2-ブチニル基、3-ブチニル基、3-ペンチニル基、4-ペンチニル基、1-ヘキシニル基、5-ヘキシニル基、及び、これらの基が置換基を有する基が挙げられる。
「アリーレン基」は、芳香族炭化水素から環を構成する炭素原子に直接結合する水素原子2個を除いた残りの原子団を意味する。アリーレン基の炭素原子数は、置換基の炭素原子数を含めないで、通常、6〜60であり、好ましくは6〜30であり、より好ましくは6〜18である。
アリーレン基は、置換基を有していてもよく、例えば、フェニレン基、ナフタレンジイル基、アントラセンジイル基、フェナントレンジイル基、ジヒドロフェナントレンジイル基、ナフタセンジイル基、フルオレンジイル基、ピレンジイル基、ペリレンジイル基、クリセンジイル基、及び、これらの基が置換基を有する基が挙げられ、好ましくは、式(A-1)〜式(A-20)で表される基である。アリーレン基は、これらの基が複数結合した基を含む。
Figure 2018198976
Figure 2018198976
Figure 2018198976
Figure 2018198976
[式中、R及びRaは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表す。複数存在するR及びRaは、各々、同一でも異なっていてもよく、Ra同士は互いに結合して、それぞれが結合する原子と共に環を形成していてもよい。]
2価の複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常、2〜60であり、好ましくは、3〜20であり、より好ましくは、4〜15である。
2価の複素環基は、置換基を有していてもよく、例えば、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン、カルバゾール、ジベンゾフラン、ジベンゾチオフェン、ジベンゾシロール、フェノキサジン、フェノチアジン、アクリジン、ジヒドロアクリジン、フラン、チオフェン、アゾール、ジアゾール、トリアゾールから、環を構成する炭素原子又はヘテロ原子に直接結合している水素原子のうち2個の水素原子を除いた2価の基が挙げられ、好ましくは、式(AA-1)〜式(AA-34)で表される基である。2価の複素環基は、これらの基が複数結合した基を含む。
Figure 2018198976
Figure 2018198976
Figure 2018198976
Figure 2018198976
Figure 2018198976
Figure 2018198976
Figure 2018198976
[式中、R及びRaは、前記と同じ意味を表す。]
「架橋基」とは、加熱、紫外線照射、近紫外線照射、可視光照射、赤外線照射、ラジカル反応等に供することにより、新たな結合を生成することが可能な基であり、好ましくは、架橋基A群の式(XL-1)〜式(XL-17)で表される架橋基である。
(架橋基A群)
Figure 2018198976
[式中、RXLは、メチレン基、酸素原子又は硫黄原子を表し、nXLは、0〜5の整数を表す。RXLが複数存在する場合、それらは同一でも異なっていてもよく、nXLが複数存在する場合、それらは同一でも異なっていてもよい。*1は結合位置を表す。これらの架橋基は置換基を有していてもよい。]
「置換基」とは、ハロゲン原子、シアノ基、アルキル基、シクロアルキル基、アリール基、1価の複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アミノ基、置換アミノ基、アルケニル基、シクロアルケニル基、アルキニル基又はシクロアルキニル基を表す。置換基は架橋基であってもよい。
<発光素子>
[第1の層]
本発明の発光素子が有する第1の層は、式(C−1)で表される化合物を含有する層である。
[式(C−1)で表される化合物]
式(C−1)で表される化合物の分子量は、好ましくは、2×102〜5×104であり、より好ましくは、2×102〜5×10であり、更に好ましくは3×102〜3×103であり、特に好ましくは、4×102〜1×103である。
環R1C、環R2C、環R3C及び環R4Cで表される芳香族炭化水素環の炭素原子数は、置換基の炭素原子数を含めないで、通常6〜60であり、好ましくは6〜30であり、より好ましくは6〜18である。
環R1C、環R2C、環R3C及び環R4Cで表される芳香族炭化水素環としては、例えば、ベンゼン環、ナフタレン環、アントラセン環、インデン環、フルオレン環、スピロビフルオレン環、フェナントレン環、ジヒドロフェナントレン環、ピレン環、クリセン環及びトリフェニレン環が挙げられ、好ましくは、ベンゼン環、ナフタレン環、アントラセン環、フルオレン環、スピロビフルオレン環、フェナントレン環又はジヒドロフェナントレン環であり、より好ましくはベンゼン環、ナフタレン環、フルオレン環又はスピロビフルオレン環であり、更に好ましくはベンゼン環であり、これらの環は置換基を有していてもよい。
環R1C、環R2C、環R3C及び環R4Cで表される芳香族複素環の炭素原子数は、置換基の炭素原子数を含めないで、通常2〜60であり、好ましくは、3〜30であり、より好ましくは、4〜15である。
環R1C、環R2C、環R3C及び環R4Cで表される芳香族複素環としては、例えば、ピロール環、ジアゾール環、トリアゾール環、フラン環、チオフェン環、オキサジアゾール環、チアジアゾール環、ピリジン環、ジアザベンゼン環、トリアジン環、アザナフタレン環、ジアザナフタレン環、トリアザナフタレン環、アザアントラセン環、ジアザアントラセン環、トリアザアントラセン環、アザフェナントレン環、ジアザフェナントレン環、トリアザフェナントレン環、ジベンゾフラン環、ジベンゾチオフェン環、ジベンゾシロール環、ジベンゾホスホール環、カルバゾール環、アザカルバゾール環、ジアザカルバゾール環、フェノキサジン環、フェノチアジン環、ジヒドロアクリジン環及びジヒドロフェナジン環が挙げられ、好ましくは、ピリジン環、ジアザベンゼン環、アザナフタレン環、ジアザナフタレン環、アザアントラセン環、ジアザフェナントレン環、ジベンゾフラン環、ジベンゾチオフェン環、カルバゾール環、フェノキサジン環、フェノチアジン環、ジヒドロアクリジン環又はジヒドロフェナジン環であり、より好ましくは、ピリジン環、ジアザベンゼン環、アザナフタレン環、ジアザナフタレン環、ジベンゾフラン環、ジベンゾチオフェン環又はカルバゾール環であり、更に好ましくは、ピリジン環又はジアザベンゼン環であり、これらの環は置換基を有していてもよい。
本発明の発光素子の輝度寿命がより優れるので、環R1C、環R2C、環R3C及び環R4Cのうちの少なくとも1つが芳香族炭化水素環であることが好ましく、環R1C、環R2C、環R3C及び環R4Cのうちの少なくとも2つが芳香族炭化水素環であることがより好ましく、環R1C、環R2C、環R3C及び環R4Cのすべてが芳香族炭化水素環であることが更に好ましく、環R1C、環R2C、環R3C及び環R4Cのすべてがベンゼン環であることが特に好ましく、これらの環は置換基を有していてもよい。
環R1C、環R2C、環R3C及び環R4Cが有していてもよい置換基としては、好ましくは、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子であり、より好ましくは、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であり、更に好ましくは、アリール基又は1価の複素環基であり、特に好ましくは、1価の複素環基であり、これらの基は更に置換基を有していてもよい。
環R1C、環R2C、環R3C及び環R4Cが有していてもよい置換基であるアリール基の炭素原子数は、置換基の炭素原子数を含めないで、通常6〜60であり、好ましくは6〜40であり、より好ましくは6〜25である。
環R1C、環R2C、環R3C及び環R4Cが有していてもよい置換基であるアリール基としては、例えば、ベンゼン環、ナフタレン環、アントラセン環、インデン環、フルオレン環、スピロビフルオレン環、フェナントレン環、ジヒドロフェナントレン環、ピレン環、クリセン環、トリフェニレン環又はこれらの環が縮合した環から、環を構成する炭素原子に直接結合する水素原子1個を除いた基が挙げられ、好ましくは、ベンゼン環、ナフタレン環、フルオレン環、スピロビフルオレン環、フェナントレン環、ジヒドロフェナントレン環又はトリフェニレン環から、環を構成する炭素原子に直接結合する水素原子1個を除いた基であり、より好ましくは、ベンゼン環、フルオレン環又はスピロビフルオレン環から、環を構成する炭素原子に直接結合する水素原子1個を除いた基であり、更に好ましくはフルオレン環又はスピロビフルオレン環から、環を構成する炭素原子に直接結合する水素原子1個を除いた基であり、これらの基は更に置換基を有していてもよい。
環R1C、環R2C、環R3C及び環R4Cが有していてもよい置換基である1価の複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常2〜60であり、好ましくは、3〜30であり、より好ましくは、3〜15である。
環R1C、環R2C、環R3C及び環R4Cが有していてもよい置換基である1価の複素環基としては、例えば、ピロール環、ジアゾール環、トリアゾール環、フラン環、チオフェン環、オキサジアゾール環、チアジアゾール環、ピリジン環、ジアザベンゼン環、トリアジン環、アザナフタレン環、ジアザナフタレン環、トリアザナフタレン環、アザアントラセン環、ジアザアントラセン環、トリアザアントラセン環、アザフェナントレン環、ジアザフェナントレン環、トリアザフェナントレン環、ジベンゾフラン環、ジベンゾチオフェン環、ジベンゾシロール環、ジベンゾホスホール環、カルバゾール環、アザカルバゾール環、ジアザカルバゾール環、フェノキサジン環、フェノチアジン環、ジヒドロアクリジン環、ジヒドロフェナジン環又はこれらの環に芳香環が縮合した環から、環を構成する炭素原子又はヘテロ原子に直接結合する水素原子1個を除いた基が挙げられ、好ましくは、ピリジン環、ジアザベンゼン環、トリアジン環、アザナフタレン環、ジアザナフタレン環、ジベンゾフラン環、ジベンゾチオフェン環、カルバゾール環、アザカルバゾール環、ジアザカルバゾール環、フェノキサジン環、フェノチアジン環、ジヒドロアクリジン環又はジヒドロフェナジン環から、環を構成する炭素原子又はヘテロ原子に直接結合する水素原子1個を除いた基であり、より好ましくは、ピリジン環、ジアザベンゼン環、トリアジン環、ジベンゾフラン環、ジベンゾチオフェン環、カルバゾール環、アザカルバゾール環、ジアザカルバゾール環、フェノキサジン環、フェノチアジン環、ジヒドロアクリジン環又はジヒドロフェナジン環から、環を構成する炭素原子又はヘテロ原子に直接結合する水素原子1個を除いた基であり、更に好ましくは、ジベンゾフラン環、ジベンゾチオフェン環、カルバゾール環、フェノキサジン環、フェノチアジン環、ジヒドロアクリジン環又はジヒドロフェナジン環から、環を構成する炭素原子又はヘテロ原子に直接結合する水素原子1個を除いた基であり、特に好ましくは、ジベンゾフラン環、ジベンゾチオフェン環、カルバゾール環又はジヒドロアクリジン環から、環を構成する炭素原子又はヘテロ原子に直接結合する水素原子1個を除いた基であり、とりわけ好ましくは、ジベンゾフラン環又はジベンゾチオフェン環から、環を構成する炭素原子に直接結合する水素原子1個を除いた基であり、これらの環は置換基を有していてもよい。
環R1C、環R2C、環R3C及び環R4Cが有していてもよい置換基である置換アミノ基において、アミノ基が有する置換基としては、アリール基又は1価の複素環基が好ましく、アリール基がより好ましく、これらの基は更に置換基を有していてもよい。アミノ基が有する置換基であるアリール基の例及び好ましい範囲は、環R1C、環R2C、環R3C及び環R4Cが有していてもよい置換基であるアリール基の例及び好ましい範囲と同じである。アミノ基が有する置換基である1価の複素環基の例及び好ましい範囲は、環R1C、環R2C、環R3C及び環R4Cが有していてもよい置換基である1価の複素環基の例及び好ましい範囲と同じである。
環R1C、環R2C、環R3C及び環R4Cが有していてもよい置換基が更に有していてもよい置換基としては、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子が好ましく、アルキル基、シクロアルキル基、アリール基又は1価の複素環基がより好ましく、アルキル基又はアリール基が更に好ましく、アルキル基が特に好ましく、これらの基は更に置換基を有していてもよいが、これらの基は置換基を有さないことが好ましい。
環R1C、環R2C、環R3C及び環R4Cが有していてもよい置換基が更に有していてもよい置換基であるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、環R1C、環R2C、環R3C及び環R4Cが有していてもよい置換基であるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
Cは、本発明の発光素子の輝度寿命がより優れるので、好ましくは炭素原子、ケイ素原子又はゲルマニウム原子であり、より好ましくは炭素原子又はケイ素原子であり、更に好ましくは炭素原子である。
本発明の発光素子の輝度寿命がより優れるので、環R1C、環R2C、環R3C及び環R4Cのうちの少なくとも1つは、置換基としてアリール基又は1価の複素環基を有することが好ましく、環R1C、環R2C、環R3C及び環R4Cのうちの少なくとも1つは、置換基として式(D−1)で表される基を有することがより好ましく、これらの基は置換基を有していてもよい。
環R1C、環R2C、環R3C及び環R4Cのうちの少なくとも1つが、置換基としてアリール基又は1価の複素環基を有する場合、環R1C、環R2C、環R3C及び環R4Cが有するアリール基及び1価の複素環基の合計の個数は、好ましくは1〜5個であり、より好ましくは、1〜3個であり、更に好ましくは1又は2個であり、特に好ましくは1個である。
環R1C、環R2C、環R3C及び環R4Cのうちの少なくとも1つが、置換基として式(D−1)で表される基を有する場合、環R1C、環R2C、環R3C及び環R4Cが有する式(D−1)で表される基の合計の個数は、好ましくは1〜5個であり、より好ましくは1〜3個であり、更に好ましくは1又は2個であり、特に好ましくは1個である。
・式(D−1)で表される基
環RDで表される芳香族炭化水素環及び芳香族複素環の例及び好ましい範囲は、それぞれ、環R1C、環R2C、環R3C及び環R4Cで表される芳香族炭化水素環及び芳香族複素環の例及び好ましい範囲と同じである。
環RDが有していてもよい置換基の例及び好ましい範囲は、環R1C、環R2C、環R3C及び環R4Cが有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲と同じである。
環RDは、本発明の発光素子の輝度寿命がより優れるので、芳香族炭化水素環であることが好ましく、ベンゼン環であることがより好ましい。
D1及びXD2は、本発明の発光素子の輝度寿命がより優れるので、好ましくは単結合、酸素原子、硫黄原子、又は、−C(RXD2)2−で表される基であり、より好ましくは、単結合、酸素原子又は硫黄原子であり、更に好ましくは、単結合、又は、硫黄原子であり、特に好ましくは、XD1及びXD2の一方が単結合であり、他方が硫黄原子である。
D1及びXD2のうち、少なくとも一方は、単結合であることが好ましく、XD2が単結合であることがより好ましい。
XD1は、好ましくは、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくは、アリール基又は1価の複素環基であり、更に好ましくは、アリール基であり、これらの基は置換基を有していてもよい。
XD2は、好ましくは、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくはアルキル基又はアリール基であり、これらの基は置換基を有していてもよい。
XD1及びRXD2で表されるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、環R1C、環R2C、環R3C及び環R4Cが有していてもよい置換基であるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
D1及びXD2で表される−C(RXD2)2−で表される基中の2個のRXD2の組み合わせは、好ましくは両方がアルキル基若しくはシクロアルキル基、両方がアリール基、両方が1価の複素環基、又は、一方がアルキル基若しくはシクロアルキル基で他方がアリール基若しくは1価の複素環基であり、より好ましくは、両方がアリール基、又は、一方がアルキル基若しくはシクロアルキル基で他方がアリール基であり、更に好ましくは、両方がアリール基であり、これらの基は置換基を有していてもよい。2個存在するRXD2は互いに結合して、それぞれが結合する炭素原子と共に環を形成することが好ましい。RXD2が環を形成する場合、−C(RXD2)2−で表される基としては、好ましくは式(Y-A1)-式(Y-A5)で表される基であり、より好ましくは式(Y-A4)で表される基であり、これらの基は置換基を有していてもよい。
Figure 2018198976
XD1及びRXD2が有していてもよい置換基の例及び好ましい範囲は、環R1C、環R2C、環R3C及び環R4Cが有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲と同じである。
1D、E2D及びE3Dは、炭素原子であることが好ましい。
1D、R2D及びR3Dは、水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であることが好ましく、水素原子、アルキル基又はアリール基であることがより好ましく、水素原子であることが更に好ましく、これらの基は更に置換基を有していてもよい。
1D、R2D及びR3Dで表されるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、環R1C、環R2C、環R3C及び環R4Cが有していてもよい置換基であるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
1D、R2D及びR3Dが有していてもよい置換基の例及び好ましい範囲は、RXD1及びRXD2が有していてもよい置換基の例及び好ましい範囲と同じである。
1DとR2D、R2DとR3D、R1DとRXD1、R1DとRXD2、RXD1と環RDが有していてもよい置換基、及び、RXD2と環RDが有していてもよい置換基は、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよいが、環を形成しないことが好ましい。
式(D−1)で表される基は、本発明の発光素子の輝度寿命がより優れるので、好ましくは、式(D−2)で表される基である。
4D、E5D、E6D及びE7Dは、炭素原子であることが好ましい。
4D、R5D、R6D及びR7Dの例及び好ましい範囲は、R1D、R2D及びR3Dの例及び好ましい範囲と同じである。
4D、R5D、R6D及びR7Dが有していてもよい置換基の例及び好ましい範囲は、R1D、R2D及びR3Dが有していてもよい置換基の例及び好ましい範囲と同じである。
4DとR5D、R5DとR6D、R6DとR7Dは互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよいが、環を形成しないことが好ましい。
[式(C−2)で表される化合物]
式(C−1)で表される化合物は、本発明の発光素子の輝度寿命がより優れるので、式(C−2)で表される化合物であることが好ましい。
11C、E12C、E13C、E14C、E21C、E22C、E23C、E24C、E31C、E32C、E33C、E34C、E41C、E42C、E43C及びE44Cは、炭素原子であることが好ましい。
環R1C'、環R2C'、環R3C'及び環R4C'は、好ましくはベンゼン環である。
11C、R12C、R13C、R14C、R21C、R22C、R23C、R24C、R31C、R32C、R33C、R34C、R41C、R42C、R43C及びR44Cは、水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であることが好ましく、水素原子、アリール基又は1価の複素環基であることがより好ましく、水素原子又は式(D−1)で表される基であることが更に好ましく、これらの基は更に置換基を有していてもよい。
11C、R12C、R13C、R14C、R21C、R22C、R23C、R24C、R31C、R32C、R33C、R34C、R41C、R42C、R43C及びR44Cのうちの少なくとも一つは、アリール基又は1価の複素環基であることが好ましく、式(D−1)で表される基であることがより好ましく、これらの基は更に置換基を有していてもよい。
11C、R12C、R13C、R14C、R21C、R22C、R23C、R24C、R31C、R32C、R33C、R34C、R41C、R42C、R43C及びR44Cで表されるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、環R1C、環R2C、環R3C及び環R4Cが有していてもよい置換基であるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
11C、R12C、R13C、R14C、R21C、R22C、R23C、R24C、R31C、R32C、R33C、R34C、R41C、R42C、R43C及びR44Cが有していてもよい置換基の例及び好ましい範囲は、環R1C、環R2C、環R3C及び環R4Cが有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲と同じである。
11C、R12C、R13C、R14C、R21C、R22C、R23C、R24C、R31C、R32C、R33C、R34C、R41C、R42C、R43C及びR44Cのうちの少なくとも一つがアリール基又は1価の複素環基である場合、R11C、R12C、R13C、R14C、R21C、R22C、R23C、R24C、R31C、R32C、R33C、R34C、R41C、R42C、R43C及びR44Cがアリール基又は1価の複素環基である合計の個数は、好ましくは1〜5個であり、より好ましくは1〜3個であり、更に好ましくは1又は2個であり、特に好ましくは1個である。
11C、R12C、R13C、R14C、R21C、R22C、R23C、R24C、R31C、R32C、R33C、R34C、R41C、R42C、R43C及びR44Cのうちの少なくとも1つが式(D−1)で表される基である場合、R11C、R12C、R13C、R14C、R21C、R22C、R23C、R24C、R31C、R32C、R33C、R34C、R41C、R42C、R43C及びR44Cが式(D−1)で表される基である合計の個数は、好ましくは1〜5個であり、より好ましくは1〜3個であり、更に好ましくは1又は2個であり、特に好ましくは1個である。
11C、R12C、R13C、R14C、R21C、R22C、R23C、R24C、R31C、R32C、R33C、R34C、R41C、R42C、R43C及びR44Cのうちの少なくとも一つがアリール基又は1価の複素環基である場合、R11C、R12C、R14C、R21C、R22C、R24C、R31C、R32C、R34C、R41C、R42C及びR44Cのうちの少なくとも一つがアリール基又は1価の複素環基であることが好ましく、R11C、R12C、R21C、R22C、R31C、R32C、R41C及びR42Cのうちの少なくとも一つがアリール基又は1価の複素環基であることがより好ましく、R11C、R12C、R21C及びR22Cのうちの少なくとも一つがアリール基又は1価の複素環基であることが更に好ましく、R11C及びR12Cのうちの少なくとも一つがアリール基又は1価の複素環基であることが特に好ましく、これらの基は置換基を有していてもよい。
11C、R12C、R13C、R14C、R21C、R22C、R23C、R24C、R31C、R32C、R33C、R34C、R41C、R42C、R43C及びR44Cのうちの少なくとも一つが式(D−1)で表される基である場合、R11C、R12C、R14C、R21C、R22C、R24C、R31C、R32C、R34C、R41C、R42C及びR44Cのうちの少なくとも一つが式(D−1)で表される基であることが好ましく、R11C、R12C、R21C、R22C、R31C、R32C、R41C及びR42Cのうちの少なくとも一つが式(D−1)で表される基であることがより好ましく、R11C、R12C、R21C及びR22Cのうちの少なくとも一つが式(D−1)で表される基であることが更に好ましく、R11C及びR12Cのうちの少なくとも一つが式(D−1)で表される基であることが特に好ましく、R12Cが式(D−1)で表される基であることがとりわけ好ましい。
11CとR12C、R12CとR13C、R13CとR14C、R14CとR34C、R34CとR33C、R33CとR32C、R32CとR31C、R31CとR41C、R41CとR42C、R42CとR43C、R43CとR44C、R44CとR24C、R24CとR23C、R23CとR22C、R22CとR21C、及び、R21CとR11Cは、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよいが、環を形成しないことが好ましい。
[式(C−3)で表される化合物]
式(C−2)で表される化合物は、本発明の発光素子の輝度寿命がより優れるので、式(C−3)で表される化合物であることが好ましい。
式(C−1)で表される化合物としては、例えば、式(C−101)〜式(C−137)で表される化合物が挙げられる。
Figure 2018198976
Figure 2018198976
Figure 2018198976
Figure 2018198976
Figure 2018198976
Figure 2018198976
Figure 2018198976
Figure 2018198976
[式中、Xは酸素原子又は硫黄原子を表す。Xが複数存在する場合、それらは同一でも異なっていてもよい。]
Xは、硫黄原子であることが好ましい。
式(C−1)で表される化合物は、例えば、Aldrich、Luminescence Technology Corp.から入手可能である。式(C−1)で表される化合物は、その他には、例えば、国際公開2014/023388号、国際公開2013/045408号、国際公開2013/045410号、国際公開2013/045411号、国際公開2012/048820号、国際公開2012/048819号、国際公開2011/006574号、「Organic Electronics vol.14、902−908(2013)」に記載されている方法に従って合成することができる。
・その他
本発明の発光素子の輝度寿命がより優れるので、第1の層は、式(C−1)で表される化合物と、燐光発光性化合物とを含有する層であることが好ましい。
第1の層には、式(C−1)で表される化合物が1種単独で含有されていてもよく、2種以上含有されていてもよい。また、第1の層が、式(C−1)で表される化合物と燐光発光性化合物とを含有する層である場合、燐光発光性化合物が1種単独で含有されていてもよく、2種以上含有されていてもよい。
第1の層が、式(C−1)で表される化合物と燐光発光性化合物とを含有する層である場合、燐光発光性化合物の含有量は、燐光発光性化合物と式(C−1)で表される化合物との合計を100質量部とした場合、通常、0.01〜95質量部であり、好ましくは0.1〜70質量部であり、より好ましくは1〜50質量部であり、更に好ましくは10〜40質量部である。
第1の層が、式(C−1)で表される化合物と燐光発光性化合物とを含有する層である場合、式(C−1)で表される化合物は、本発明の発光素子の輝度寿命がより優れるので、正孔注入性、正孔輸送性、電子注入性及び電子輸送性から選ばれる少なくとも1つの機能を有するホスト材料であることが好ましい。
第1の層が、式(C−1)で表される化合物と燐光発光性化合物とを含有する層である場合、式(C−1)で表される化合物の有する最低励起三重項状態(T1)は、本発明の発光素子の輝度寿命がより優れるので、第1の層に含有される燐光発光性化合物の有するT1と同等のエネルギー準位、又は、より高いエネルギー準位であることが好ましく、より高いエネルギー準位であることがより好ましい。
燐光発光性化合物としては、本発明の発光素子を塗布法で作製できるので、第1の層に含有される式(C−1)で表される化合物を溶解することが可能な溶媒に対して溶解性を示すものであることが好ましい。
「燐光発光性化合物」は、通常、室温(25℃)で燐光発光性を示す化合物を意味するが、好ましくは、室温で三重項励起状態からの発光を示す金属錯体である。この三重項励起状態からの発光を示す金属錯体は、中心金属原子及び配位子を有する。
中心金属原子としては、例えば、原子番号40以上の原子で、錯体にスピン−軌道相互作用があり、一重項状態と三重項状態との間の項間交差を起こし得る金属原子が挙げられる。金属原子としては、例えば、ルテニウム原子、ロジウム原子、パラジウム原子、イリジウム原子及び白金原子が挙げられ、本発明の発光素子の輝度寿命がより優れるので、好ましくはイリジウム原子又は白金原子である。
配位子としては、例えば、中心金属原子との間に、配位結合及び共有結合からなる群から選ばれる少なくとも1種の結合を形成する、中性若しくはアニオン性の単座配位子、又は、中性若しくはアニオン性の多座配位子が挙げられる。中心金属原子と配位子との間の結合としては、例えば、金属−窒素結合、金属−炭素結合、金属−酸素結合、金属−リン結合、金属−硫黄結合及び金属−ハロゲン結合が挙げられる。多座配位子とは、通常、2座以上6座以下の配位子を意味する。
・式(1)で表される燐光発光性化合物
燐光発光性化合物は、前記式(1)で表される燐光発光性化合物であることが好ましい。
Mは、本発明の発光素子の輝度寿命がより優れるので、イリジウム原子又は白金原子であることが好ましく、イリジウム原子であることがより好ましい。
Mがルテニウム原子、ロジウム原子又はイリジウム原子の場合、n1は2又は3であることが好ましく、3であることがより好ましい。
Mがパラジウム原子又は白金原子の場合、n1は2であることが好ましい。
1及びE2は、炭素原子であることが好ましい。
環L1は、5員の芳香族複素環又は6員の芳香族複素環であることが好ましく、2つ以上4つ以下の窒素原子を構成原子として有する5員の芳香族複素環又は1つ以上4つ以下の窒素原子を構成原子として有する6員の芳香族複素環であることがより好ましく、2つ以上3つ以下の窒素原子を構成原子として有する5員の芳香族複素環又は1つ以上2つ以下の窒素原子を構成原子として有する6員の芳香族複素環であることが更に好ましく、これらの環は置換基を有していてもよい。但し、環L1が6員の芳香族複素環である場合、E1は炭素原子であることが好ましい。
環L1としては、例えば、ジアゾール環、トリアゾール環、ピリジン環、ジアザベンゼン環、トリアジン環、アザナフタレン環及びジアザナフタレン環が挙げられ、ジアゾール環、トリアゾール環、ピリジン環、ジアザベンゼン環、キノリン環又はイソキノリン環が好ましく、ジアゾール環、トリアゾール環、ピリジン環、キノリン環又はイソキノリン環がより好ましく、ジアゾール環、トリアゾール環又はピリジン環が更に好ましく、ジアゾール環又はピリジン環が特に好ましく、これらの環は置換基を有していてもよい。
環L2は、5員若しくは6員の芳香族炭化水素環、又は、5員若しくは6員の芳香族複素環であることが好ましく、6員の芳香族炭化水素環又は6員の芳香族複素環であることがより好ましく、6員の芳香族炭化水素環であることが更に好ましく、これらの環は置換基を有していてもよい。環R2が6員の芳香族複素環である場合、E2は炭素原子であることが好ましい。
環L2としては、例えば、ベンゼン環、ナフタレン環、フルオレン環、フェナントレン環、インデン環、ピリジン環、ジアザベンゼン環及びトリアジン環が挙げられ、ベンゼン環、ナフタレン環、フルオレン環、ピリジン環又はジアザベンゼン環が好ましく、ベンゼン環、ピリジン環又はジアザベンゼン環がより好ましく、ベンゼン環が更に好ましく、これらの環は置換基を有していてもよい。
環L1及び環L2が有していてもよい置換基としては、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子が好ましく、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基、置換アミノ基又はフッ素原子がより好ましく、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基が更に好ましく、アリール基又は1価の複素環基が特に好ましく、アリール基がとりわけ好ましく、これらの基は更に置換基を有していてもよい。
環L1及び環L2が有していてもよい置換基であるアリール基としては、フェニル基、ナフチル基、アントラセニル基、フェナントレニル基、ジヒドロフェナントレニル基、フルオレニル基又はピレニル基が好ましく、フェニル基、ナフチル基又はフルオレニル基がより好ましく、フェニル基が更に好ましく、これらの基は更に置換基を有していてもよい。
環L1及び環L2が有していてもよい置換基である1価の複素環基としては、ピリジル基、ピリミジニル基、トリアジニル基、キノリニル基、イソキノリニル基、ジベンゾフラニル基、ジベンゾチエニル基、カルバゾリル基、アザカルバゾリル基、ジアザカルバゾリル基、フェノキサジニル基又はフェノチアジニル基が好ましく、ピリジル基、ピリミジニル基、トリアジニル基、カルバゾリル基、アザカルバゾリル基又はジアザカルバゾリル基がより好ましく、ピリジル基、ピリミジニル基又はトリアジニル基が更に好ましく、トリアジニル基が特に好ましく、これらの基は更に置換基を有していてもよい。
環L1及び環L2が有していてもよい置換基である置換アミノ基において、アミノ基が有する置換基としては、アリール基又は1価の複素環基が好ましく、アリール基がより好ましく、これらの基は更に置換基を有していてもよい。アミノ基が有する置換基におけるアリール基の例及び好ましい範囲は、環L1及び環L2が有していてもよい置換基におけるアリール基の例及び好ましい範囲と同じである。アミノ基が有する置換基における1価の複素環基の例及び好ましい範囲は、環L1及び環L2が有していてもよい置換基における1価の複素環基の例及び好ましい範囲と同じである。
環L1及び環L2が有していてもよい置換基が更に有していてもよい置換基としては、アルキル基、シクロアルキル基、アリール基、1価の複素環基、アルコキシ基、シクロアルコキシ基又は置換アミノ基が好ましく、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基がより好ましく、アルキル基、シクロアルキル基又はアリール基が更に好ましく、アルキル基又はシクロアルキル基が特に好ましく、これらの基は更に置換基を有していてもよいが、これらの基は更に置換基を有さないことが好ましい。
環L1及び環L2が有していてもよい置換基が更に有していてもよい置換基におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、環L1及び環L2が有していてもよい置換基におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
環L1及び環L2が有していてもよい置換基であるアリール基、1価の複素環基又は置換アミノ基は、本発明の発光素子の輝度寿命がより優れるので、好ましくは、式(D-A)、式(D-B)又は式(D-C)で表される基であり、より好ましくは、式(D-A)又は式(D-C)で表される基である。
Figure 2018198976
[式中、
DA1、mDA2及びmDA3は、それぞれ独立に、0以上の整数を表す。
DAは、窒素原子、芳香族炭化水素基又は複素環基を表し、これらの基は置換基を有していてもよい。
ArDA1、ArDA2及びArDA3は、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。ArDA1、ArDA2及びArDA3が複数ある場合、それらはそれぞれ同一でも異なっていてもよい。
DAは、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるTDAは、同一でも異なっていてもよい。]
Figure 2018198976
[式中、
DA1、mDA2、mDA3、mDA4、mDA5、mDA6及びmDA7は、それぞれ独立に、0以上の整数を表す。
DAは、窒素原子、芳香族炭化水素基又は複素環基を表し、これらの基は置換基を有していてもよい。複数あるGDAは、同一でも異なっていてもよい。
ArDA1、ArDA2、ArDA3、ArDA4、ArDA5、ArDA6及びArDA7は、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。ArDA1、ArDA2、ArDA3、ArDA4、ArDA5、ArDA6及びArDA7が複数ある場合、それらはそれぞれ同一でも異なっていてもよい。
DAは、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるTDAは、同一でも異なっていてもよい。]
Figure 2018198976
[式中、
DA1は、0以上の整数を表す。
ArDA1は、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。ArDA1が複数ある場合、それらは同一でも異なっていてもよい。
DAは、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。]
DA1、mDA2、mDA3、mDA4、mDA5、mDA6及びmDA7は、通常10以下の整数であり、好ましくは5以下の整数であり、より好ましくは2以下の整数であり、更に好ましくは0又は1である。mDA2、mDA3、mDA4、mDA5、mDA6及びmDA7は、同一の整数であることが好ましく、mDA1、mDA2、mDA3、mDA4、mDA5、mDA6及びmDA7は、同一の整数であることがより好ましい。
DAは、好ましくは芳香族炭化水素基又は複素環基であり、より好ましくはベンゼン環、ピリジン環、ピリミジン環、トリアジン環又はカルバゾール環から環を構成する炭素原子又は窒素原子に直接結合する水素原子3個を除いてなる基であり、これらの基は置換基を有していてもよい。
DAが有していてもよい置換基としては、好ましくは、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基であり、より好ましくは、アルキル基、シクロアルキル基、アルコキシ基又はシクロアルコキシ基であり、更に好ましくは、アルキル基又はシクロアルキル基であり、これらの基は更に置換基を有していてもよいが、これらの基は更に置換基を有さないことが好ましい。
DAは、好ましくは式(GDA-11)〜式(GDA-15)で表される基であり、より好ましくは式(GDA-11)〜式(GDA-14)で表される基であり、更に好ましくは式(GDA-11)又は式(GDA-14)で表される基であり、特に好ましくは式(GDA-11)で表される基である。
Figure 2018198976
[式中、
*は、式(D-A)におけるArDA1、式(D-B)におけるArDA1、式(D-B)におけるArDA2、又は、式(D-B)におけるArDA3との結合を表す。
**は、式(D-A)におけるArDA2、式(D-B)におけるArDA2、式(D-B)におけるArDA4、又は、式(D-B)におけるArDA6との結合を表す。
***は、式(D-A)におけるArDA3、式(D-B)におけるArDA3、式(D-B)におけるArDA5、又は、式(D-B)におけるArDA7との結合を表す。
DAは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は更に置換基を有していてもよい。RDAが複数ある場合、それらは同一でも異なっていてもよい。]
DAは、好ましくは水素原子、アルキル基、シクロアルキル基、アルコキシ基又はシクロアルコキシ基であり、より好ましくは水素原子、アルキル基又はシクロアルキル基であり、これらの基は置換基を有していてもよい。
ArDA1、ArDA2、ArDA3、ArDA4、ArDA5、ArDA6及びArDA7は、好ましくは、フェニレン基、フルオレンジイル基又はカルバゾールジイル基であり、より好ましくは式(ArDA-1)〜式(ArDA-5)で表される基であり、更に好ましくは式(ArDA-1)〜式(ArDA-3)で表される基であり、特に好ましくは式(ArDA-1)又は式(ArDA-2)で表される基であり、とりわけ好ましくは式(ArDA-1)で表される基であり、これらの基は置換基を有していてもよい。
Figure 2018198976
[式中、
DAは、前記と同じ意味を表す。
DBは、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。RDBが複数ある場合、それらは同一でも異なっていてもよい。]
DBは、好ましくはアルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくはアリール基又は1価の複素環基であり、更に好ましくはアリール基であり、これらの基は置換基を有していてもよい。
ArDA1、ArDA2、ArDA3、ArDA4、ArDA5、ArDA6、ArDA7及びRDBが有していてもよい置換基の例及び好ましい範囲は、GDAが有していてもよい置換基の例及び好ましい範囲と同じである。
DAは、好ましくは式(TDA-1)〜式(TDA-3)で表される基であり、より好ましくは式(TDA-1)で表される基である。
Figure 2018198976
[式中、RDA及びRDBは、前記と同じ意味を表す。]
式(D-A)で表される基は、好ましくは式(D-A1)〜式(D-A5)で表される基であり、より好ましくは式(D-A1)又は式(D-A3)〜式(D-A5)で表される基であり、さらに好ましくは式(D-A1)又は式(D-A3)で表される基であり、特に好ましくは式(D-A1)で表される基である。
Figure 2018198976
[式中、
p1、Rp2、Rp3及びRp4は、それぞれ独立に、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基又はハロゲン原子を表す。Rp1、Rp2及びRp4が複数ある場合、それらはそれぞれ同一であっても異なっていてもよい。
np1は、0〜5の整数を表し、np2は0〜3の整数を表し、np3は0又は1を表し、np4は0〜4の整数を表す。複数あるnp1は、同一でも異なっていてもよい。]
式(D-B)で表される基は、好ましくは式(D-B1)〜式(D-B6)で表される基であり、より好ましくは式(D-B1)〜式(D-B3)又は式(D-B5)で表される基であり、更に好ましくは式(D-B1)で表される基である。
Figure 2018198976
Figure 2018198976
[式中、
p1、Rp2、Rp3及びRp4は、それぞれ独立に、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基又はハロゲン原子を表す。Rp1、Rp2及びRp4が複数ある場合、それらはそれぞれ同一でも異なっていてもよい。
np1は0〜5の整数を表し、np2は0〜3の整数を表し、np3は0又は1を表し、np4は0〜4の整数を表す。複数あるnp1は同一でも異なっていてもよい。複数あるnp2は、それらは同一でも異なっていてもよい。]
式(D-C)で表される基は、好ましくは式(D-C1)〜式(D-C4)で表される基であり、より好ましくは式(D-C1)又は式(D-C2)で表される基であり、更に好ましくは式(D-C2)で表される基である。
Figure 2018198976
[式中、
p4、Rp5及びRp6は、それぞれ独立に、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基又はハロゲン原子を表す。Rp4、Rp5及びRp6が複数ある場合、それらはそれぞれ同一であっても異なっていてもよい。
np4は0〜4の整数を表し、np5は0〜5の整数を表し、np6は0〜5の整数を表す。]
np1は、好ましくは0〜2の整数であり、より好ましくは0又は1である。np2は、好ましくは0又は1であり、より好ましくは0である。np3は好ましくは0である。np4は、好ましくは0〜2の整数であり、より好ましくは0である。np5は、好ましくは0〜3の整数であり、より好ましくは0又は1である。np6は、好ましくは0〜2の整数であり、より好ましくは0又は1である。
p1、Rp2、Rp3、Rp4、Rp5及びRp6で表されるアルキル基又はシクロアルキル基としては、好ましくは、メチル基、エチル基、イソプロピル基、tert−ブチル基、ヘキシル基、2−エチルヘキシル基、シクロヘキシル基又はtert−オクチル基である。
p1、Rp2、Rp3、Rp4、Rp5及びRp6で表されるアルコキシ基又はシクロアルコキシ基としては、好ましくは、メトキシ基、2−エチルヘキシルオキシ基又はシクロへキシルオキシ基である。
p1、Rp2、Rp3、Rp4、Rp5及びRp6は、好ましくは、置換基を有していてもよいアルキル基又は置換基を有していてもよいシクロアルキル基であり、より好ましくは、置換基を有していてもよいアルキル基であり、更に好ましくは、メチル基、エチル基、イソプロピル基、tert−ブチル基、ヘキシル基、2−エチルヘキシル基又はtert−オクチル基である。
環L1が有していてもよい置換基が複数存在する場合、互いに結合して、それぞれが結合する原子とともに環を形成しないことが好ましい。
環L2が有していてもよい置換基が複数存在する場合、互いに結合して、それぞれが結合する原子とともに環を形成しないことが好ましい。
環L1が有していてもよい置換基と、環L2が有していてもよい置換基とは、互いに結合して、それぞれが結合する原子とともに環を形成しないことが好ましい。
[アニオン性の2座配位子]
1−G1−A2で表されるアニオン性の2座配位子としては、例えば、下記式で表される配位子が挙げられる。但し、A1−G1−A2で表されるアニオン性の2座配位子は、添え字n1でその数を定義されている配位子とは異なる。
Figure 2018198976
Figure 2018198976
[式中、
*は、Mと結合する部位を表す。
L1は、水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。複数存在するRL1は、同一でも異なっていてもよい。
L2は、アルキル基、シクロアルキル基、アリール基、1価の複素環基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。]
L1は、水素原子、アルキル基、シクロアルキル基、アリール基又はフッ素原子であることが好ましく、水素原子又はアルキル基であることがより好ましく、これらの基は置換基を有していてもよい。
L2は、アルキル基又はアリール基であることが好ましく、これらの基は置換基を有していてもよい。
式(1)で表される燐光発光性化合物は、本発明の発光素子の輝度寿命がより優れるので、式(1−A)で表される燐光発光性化合物又は式(1−B)で表される燐光発光性化合物であることが好ましい。
・式(1−A)で表される燐光発光性化合物
環L1Aがジアゾール環である場合、E11Aが窒素原子であるイミダゾール環、又は、E12Aが窒素原子であるイミダゾール環が好ましく、E11Aが窒素原子であるイミダゾール環がより好ましい。
環L1Aがトリアゾール環である場合、E11A及びE12Aが窒素原子であるトリアゾール環、又は、E11A及びE13Aが窒素原子であるトリアゾール環が好ましく、E11A及びE13Aが窒素原子であるトリアゾール環がより好ましい。
環L1Aはジアゾール環であることが好ましい。
11A、R12A、R13A、R21A、R22A、R23A及びR24Aで表されるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、環L1及び環L2が有していてもよい置換基であるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
11A、R12A、R13A、R21A、R22A、R23A及びR24Aが有していてもよい置換基の例及び好ましい範囲は、環L1及び環L2が有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲と同じである。
11Aが窒素原子であり、且つ、R11Aが存在する場合、R11Aはアルキル基、シクロアルキル基、アリール基又は1価の複素環基であることが好ましく、アリール基又は1価の複素環基であることがより好ましく、アリール基であることが更に好ましく、これらの基は置換基を有していてもよい。
11Aが炭素原子である場合、R11Aは水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であることが好ましく、水素原子、アルキル基、シクロアルキル基又はアリール基であることがより好ましく、水素原子、アルキル基又はシクロアルキル基であることが更に好ましく、水素原子であることが特に好ましく、これらの基は置換基を有していてもよい。
12Aが窒素原子であり、且つ、R12Aが存在する場合、R12Aはアルキル基、シクロアルキル基、アリール基又は1価の複素環基であることが好ましく、アリール基又は1価の複素環基であることがより好ましく、アリール基であることが更に好ましく、これらの基は置換基を有していてもよい。
12Aが炭素原子である場合、R12Aは水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であることが好ましく、水素原子、アルキル基、シクロアルキル基又はアリール基であることがより好ましく、水素原子、アルキル基又はシクロアルキル基であることが更に好ましく、水素原子であることが特に好ましく、これらの基は置換基を有していてもよい。
13Aが窒素原子であり、且つ、R13Aが存在する場合、R13Aはアルキル基、シクロアルキル基、アリール基又は1価の複素環基であることが好ましく、アリール基又は1価の複素環基であることがより好ましく、アリール基であることが更に好ましく、これらの基は置換基を有していてもよい。
13Aが炭素原子である場合、R13Aは水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であることが好ましく、水素原子、アルキル基、シクロアルキル基又はアリール基であることがより好ましく、水素原子、アルキル基又はシクロアルキル基であることが更に好ましく、水素原子であることが特に好ましく、これらの基は置換基を有していてもよい。
環L1Aがジアゾール環である場合、環L1Aは、好ましくは、E11Aが窒素原子であり、且つ、R11Aが存在するイミダゾール環、又は、E12Aが窒素原子であり、且つ、R12Aが存在するイミダゾール環であり、より好ましくは、E11Aが窒素原子であり、且つ、R11Aが存在するイミダゾール環である。
環L1Aがトリアゾール環である場合、環L1Aは、好ましくは、E11A及びE12Aが窒素原子であり、且つ、R11Aが存在しR12Aが存在しないトリアゾール環、又は、E11A及びE13Aが窒素原子であり、且つ、R11Aが存在しR13Aが存在しないトリアゾール環であり、より好ましくは、E11A及びE13Aが窒素原子であり、且つ、R11Aが存在しR13Aが存在しないトリアゾール環である。
環L1Aがトリアゾール環である場合、R11A、R12A及びR13Aのうちの2つは、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であることが好ましく、アルキル基又はアリール基であることがより好ましく、これらの基は置換基を有していてもよい。
環L2Aがピリジン環である場合、環L2Aは、E21Aが窒素原子であるピリジン環、E22Aが窒素原子であるピリジン環、又は、E23Aが窒素原子であるピリジン環であることが好ましく、E22Aが窒素原子であるピリジン環であることがより好ましい。
環L2Aがジアザベンゼン環である場合、環L2Aは、E22A及びE24Aが窒素原子であるピリミジン環、又は、E22A及びE24Aが窒素原子であるピリミジン環であることが好ましく、E22A及びE24Aが窒素原子であるピリミジン環であることがより好ましい。
環L2Aは、ベンゼン環であることが好ましい。
21A、R22A、R23A及びR24Aは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基、置換アミノ基又はフッ素原子であることが好ましく、水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であることがより好ましく、水素原子、アルキル基又は式(D−A)、式(D−B)若しくは式(D−C)で表される基であることが更に好ましく、水素原子又は式(D−A)で表される基であることが特に好ましく、水素原子であることがとりわけ好ましく、これらの基は置換基を有していてもよい。
環L2Aがアリール基、1価の複素環基又は置換アミノ基を有する場合、R22A又はR23Aがアリール基、1価の複素環基又は置換アミノ基であることが好ましく、R22Aがアリール基、1価の複素環基又は置換アミノ基であることがより好ましい。
11AとR12A、R12AとR13A、R11AとR21A、R21AとR22A、R22AとR23A、及び、R23AとR24Aは、互いに結合して、それぞれが結合する原子とともに環を形成しないことが好ましい。
式(1−A)で表される燐光発光性化合物は、本発明の発光素子の輝度寿命が更に優れるので、式(1−A1)〜式(1−A5)で表される燐光発光性化合物であることが好ましく、式(1−A1)、式(1−A3)又は式(1−A4)で表される燐光発光性化合物であることがより好ましく、式(1−A3)又は式(1−A4)で表される燐光発光性化合物であることが更に好ましく、式(1−A4)で表される燐光発光性化合物であることが特に好ましい。
Figure 2018198976
Figure 2018198976
Figure 2018198976
[式中、M、n1、n2、R11A、R12A、R13A、R21A、R22A、R23A、R24A及びA1−G1−A2は、前記と同じ意味を表す。]
・式(1−B)で表される燐光発光性化合物
環L1Bがジアザベンゼン環である場合、環L1Bは、E11Bが窒素原子であるピリミジン環、又は、E13Bが窒素原子であるピリミジン環であることが好ましく、E11Bが窒素原子であるピリミジン環であることがより好ましい。
環L1Bは、ピリジン環であることが好ましい。
環L2Bがピリジン環である場合、環L2Bは、E21Bが窒素原子であるピリジン環、E22Bが窒素原子であるピリジン環、又は、E23Bが窒素原子であるピリジン環であることが好ましく、E22Bが窒素原子であるであるピリジン環であることがより好ましい。
環L2Bがジアザベンゼン環である場合、環L2Bは、E22B及びE24Bが窒素原子であるピリミジン環、又は、E21B及びE23Bが窒素原子であるピリミジン環であることが好ましく、E22B及びE24Bが窒素原子であるピリミジン環であることがより好ましい。
環L2Bは、ベンゼン環であることが好ましい。
11B、R12B、R13B、R14B、R21B、R22B、R23B及びR24Bで表されるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、環L1及び環L2が有していてもよい置換基であるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
11B、R12B、R13B、R14B、R21B、R22B、R23B及びR24Bが有していてもよい置換基の例及び好ましい範囲は、環L1及び環L2が有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲と同じである。
11B、R12B、R13B、R14B、R21B、R22B、R23B及びR24Bは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アルケニル基、1価の複素環基、置換アミノ基又はフッ素原子であることが好ましく、水素原子、アルキル基、シクロアルキル基、アリール基、アルケニル基、1価の複素環基又は置換アミノ基であることがより好ましく、水素原子、アルキル基、又は、式(D−A)、式(D−B)若しくは式(D−C)で表される基であることが更に好ましく、水素原子、又は、式(D−A)で表される基であることが特に好ましく、これらの基は置換基を有していてもよい。
環L1Bがアリール基、1価の複素環基又は置換アミノ基を有する場合、R11B、R12B又はR13Bがアリール基、1価の複素環基又は置換アミノ基であることが好ましく、R12B又はR13Bがアリール基、1価の複素環基又は置換アミノ基であることがより好ましく、R13Bがアリール基、1価の複素環基又は置換アミノ基であることが更に好ましい。
環L2Bがアリール基、1価の複素環基又は置換アミノ基を有する場合、R22B又はR23Bがアリール基、1価の複素環基又は置換アミノ基であることが好ましく、R22Bがアリール基、1価の複素環基又は置換アミノ基であることがより好ましい。
式(1−B)で表される燐光発光性化合物は、本発明の発光素子の輝度寿命が更に優れるので、式(1−B1)〜式(1−B5)で表される燐光発光性化合物であることが好ましく、式(1−B1)〜式(1−B3)で表される燐光発光性化合物であることがより好ましく、式(1−B1)で表される燐光発光性化合物又は式(1−B2)で表される燐光発光性化合物であることが更に好ましく、式(1−B1)で表される燐光発光性化合物であることが特に好ましい。
Figure 2018198976
[式中、
M、n1、n2、A1−G1−A2、R11B、R12B、R13B、R14B、R21B、R22B、R23B及びR24Bは、前記と同じ意味を表す。
11及びn12は、それぞれ独立に、1以上の整数を表す。但し、Mがルテニウム原子、ロジウム原子又はイリジウム原子の場合、n11+n12は3であり、Mがパラジウム原子又は白金原子の場合、n11+n12は2である。
15B、R16B、R17B及びR18Bは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、アルケニル基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。R15B、R16B、R17B及びR18Bが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。R13BとR15B、R15BとR16B、R16BとR17B、R17BとR18B、及び、R18BとR21Bは、それぞれ結合して、それぞれが結合する原子とともに環を形成していてもよい。]
15B、R16B、R17B及びR18Bで表されるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、環L1及び環L2が有していてもよい置換基であるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
15B、R16B、R17B及びR18Bが有していてもよい置換基の例及び好ましい範囲は、環L1及び環L2が有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲と同じである。
15B、R16B、R17B及びR18Bは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、フッ素原子、アリール基、アルケニル基、1価の複素環基又は置換アミノ基であることが好ましく、水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であることがより好ましく、水素原子、アルキル基又はシクロアルキル基であることが更に好ましく、水素原子であることが特に好ましく、これらの基は置換基を有していてもよい。
燐光発光性化合物としては、例えば、下記式で表される燐光発光性化合物が挙げられる。
Figure 2018198976
Figure 2018198976
Figure 2018198976
Figure 2018198976
Figure 2018198976
Figure 2018198976
Figure 2018198976
Figure 2018198976
Figure 2018198976
Figure 2018198976
Figure 2018198976
・第1の組成物
第1の層は、式(C−1)で表される化合物と、前記燐光発光性化合物、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料及び酸化防止剤からなる群から選ばれる少なくとも1種の材料とを含む組成物(以下、「第1の組成物」ともいう。)を含有する層であってもよい。但し、第1の組成物に含有される正孔輸送材料、正孔注入材料、電子輸送材料及び電子注入材料は、式(C−1)で表される化合物とは異なり、第1の組成物に含有される発光材料は、式(C−1)で表される化合物とは異なり、燐光発光性化合物とは異なる。
・正孔輸送材料
正孔輸送材料は、低分子化合物と高分子化合物とに分類され、好ましくは高分子化合物である。正孔輸送材料は、架橋基を有していてもよい。
高分子化合物としては、例えば、ポリビニルカルバゾール及びその誘導体;側鎖又は主鎖に芳香族アミン構造を有するポリアリーレン及びその誘導体が挙げられる。高分子化合物は、電子受容性部位が結合された化合物でもよい。電子受容性部位としては、例えば、フラーレン、テトラフルオロテトラシアノキノジメタン、テトラシアノエチレン、トリニトロフルオレノン等が挙げられ、好ましくはフラーレンである。
第1の組成物において、正孔輸送材料の配合量は、式(C−1)で表される化合物を100質量部とした場合、通常、1〜400質量部であり、好ましくは5〜150質量部である。
正孔輸送材料は、一種単独で用いても二種以上を併用してもよい。
・電子輸送材料
電子輸送材料は、低分子化合物と高分子化合物とに分類される。電子輸送材料は、架橋基を有していてもよい。
低分子化合物としては、例えば、8-ヒドロキシキノリンを配位子とする金属錯体、オキサジアゾール、アントラキノジメタン、ベンゾキノン、ナフトキノン、アントラキノン、テトラシアノアントラキノジメタン、フルオレノン、ジフェニルジシアノエチレン及びジフェノキノン、並びに、これらの誘導体が挙げられる。
高分子化合物としては、例えば、ポリフェニレン、ポリフルオレン、及び、これらの誘導体が挙げられる。高分子化合物は、金属でドープされていてもよい。
第1の組成物において、電子輸送材料の配合量は、式(C−1)で表される化合物を100質量部とした場合、通常、1〜400質量部であり、好ましくは5〜150質量部である。
電子輸送材料は、一種単独で用いても二種以上を併用してもよい。
・正孔注入材料及び電子注入材料
正孔注入材料及び電子注入材料は、各々、低分子化合物と高分子化合物とに分類される。正孔注入材料及び電子注入材料は、架橋基を有していてもよい。
低分子化合物としては、例えば、銅フタロシアニン等の金属フタロシアニン;カーボン;モリブデン、タングステン等の金属酸化物;フッ化リチウム、フッ化ナトリウム、フッ化セシウム、フッ化カリウム等の金属フッ化物が挙げられる。
高分子化合物としては、例えば、ポリアニリン、ポリチオフェン、ポリピロール、ポリフェニレンビニレン、ポリチエニレンビニレン、ポリキノリン及びポリキノキサリン、並びに、これらの誘導体;芳香族アミン構造を主鎖又は側鎖に含む重合体等の導電性高分子が挙げられる。
第1の組成物において、正孔注入材料及び電子注入材料の配合量は、各々、式(C−1)で表される化合物を100質量部とした場合、通常、1〜400質量部であり、好ましくは5〜150質量部である。
電子注入材料及び正孔注入材料は、各々、一種単独で用いても二種以上を併用してもよい。
・イオンドープ
正孔注入材料又は電子注入材料が導電性高分子を含む場合、導電性高分子の電気伝導度は、好ましくは、1×10-5S/cm〜1×103S/cmである。導電性高分子の電気伝導度をかかる範囲とするために、導電性高分子に適量のイオンをドープすることができる。
ドープするイオンの種類は、正孔注入材料であればアニオン、電子注入材料であればカチオンである。アニオンとしては、例えば、ポリスチレンスルホン酸イオン、アルキルベンゼンスルホン酸イオン、樟脳スルホン酸イオンが挙げられる。カチオンとしては、例えば、リチウムイオン、ナトリウムイオン、カリウムイオン、テトラブチルアンモニウムイオンが挙げられる。
ドープするイオンは、一種単独で用いても二種以上を併用してもよい。
・発光材料
発光材料は、低分子化合物と高分子化合物とに分類される。発光材料は、架橋基を有していてもよい。
低分子化合物としては、例えば、ナフタレン及びその誘導体、アントラセン及びその誘導体、及び、ペリレン及びその誘導体が挙げられる。
高分子化合物としては、例えば、フェニレン基、ナフタレンジイル基、アントラセンジイル基、フルオレンジイル基、フェナントレンジイル基、ジヒドロフェナントレンジイル基、後述の式(X)で表される基、カルバゾールジイル基、フェノキサジンジイル基、フェノチアジンジイル基、ピレンジイル基等を含む高分子化合物が挙げられる。
第1の組成物において、発光材料の配合量は、式(C−1)で表される化合物を100質量部とした場合、通常、1〜400質量部であり、好ましくは5〜150質量部である。
発光材料は、一種単独で用いても二種以上を併用してもよい。
・酸化防止剤
酸化防止剤は、式(C−1)で表される化合物と同じ溶媒に可溶であり、発光及び電荷輸送を阻害しない化合物であればよく、例えば、フェノール系酸化防止剤、リン系酸化防止剤が挙げられる。
第1の組成物において、酸化防止剤の配合量は、式(C−1)で表される化合物を100質量部とした場合、通常、0.001〜10質量部である。
酸化防止剤は、一種単独で用いても二種以上を併用してもよい。
・第1のインク
式(C−1)で表される化合物は、例えば、溶媒に溶解させて用いることができる。式(C−1)で表される化合物と、溶媒とを含有する組成物(以下、「第1のインク」ともいう。)は、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイヤーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、キャピラリ−コート法、ノズルコート法等の塗布法に好適に使用することができる。
第1のインクの粘度は、塗布法の種類によって調整すればよいが、インクジェット印刷法等の溶液が吐出装置を経由する印刷法に適用する場合には、吐出時の目づまりと飛行曲がりが起こりづらいので、好ましくは25℃において1〜20mPa・sである。
第1のインクに含有される溶媒は、好ましくは、インク中の固形分を溶解又は均一に分散できる溶媒である。溶媒としては、例えば、1,2-ジクロロエタン、1,1,2-トリクロロエタン、クロロベンゼン、o-ジクロロベンゼン等の塩素系溶媒;テトラヒドロフラン、ジオキサン、アニソール、4-メチルアニソール等のエーテル系溶媒;トルエン、キシレン、メシチレン、エチルベンゼン、n-ヘキシルベンゼン、シクロヘキシルベンゼン等の芳香族炭化水素系溶媒;シクロヘキサン、メチルシクロヘキサン、n-ペンタン、n-ヘキサン、n-へプタン、n-オクタン、n-ノナン、n-デカン、n-ドデカン、ビシクロヘキシル等の脂肪族炭化水素系溶媒;アセトン、メチルエチルケトン、シクロヘキサノン、アセトフェノン等のケトン系溶媒;酢酸エチル、酢酸ブチル、エチルセルソルブアセテート、安息香酸メチル、酢酸フェニル等のエステル系溶媒;エチレングリコール、グリセリン、1,2-ヘキサンジオール等の多価アルコール系溶媒;イソプロピルアルコール、シクロヘキサノール等のアルコール系溶媒;ジメチルスルホキシド等のスルホキシド系溶媒;N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド等のアミド系溶媒が挙げられる。溶媒は、一種単独で用いても二種以上を併用してもよい。
第1のインクにおいて、溶媒の配合量は、式(C−1)で表される化合物を100質量部とした場合、通常、1000〜100000質量部であり、好ましくは2000〜20000質量部である。
[第2の層及び第3の層に含有される単体又は化合物]
本発明の発光素子が有する第2の層及び第3の層は、各々、アルカリ金属元素のみからなる単体、第2族(周期表第2族を意味し、本明細書において、同様である。)元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物からなる群から選ばれる少なくとも1種を含有する層である。
第2の層及び第3の層の各々において、アルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物は、それぞれ、1種単独で含有されていてもよく、2種以上含有されていてもよい。
本発明の発光素子において、第2の層に含有されるアルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物からなる群から選ばれる少なくとも1種(以下、「第2の層の単体又は化合物」とも言う)と、第3の層に含有されるアルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物からなる群から選ばれる少なくとも1種(以下、「第3の層の単体又は化合物」とも言う)とは、互いに異なる(以下、「互いに異なる関係」と言う)。
「互いに異なる関係」とは、第2の層が「第2の層の単体又は化合物」を1種のみ含有し、第3の層が「第3の層の単体又は化合物」を1種のみ含有する場合、第2の層の単体又は化合物と、第3の層の単体又は化合物とが、互いに異なることを意味する。
また、「互いに異なる関係」とは、第2の層が「第2の層の単体又は化合物」を2種以上含有する場合、第3の層が「第3の層の単体又は化合物」を少なくとも1種を含有することを意味する。
また、「互いに異なる関係」とは、第3の層が「第3の層の単体又は化合物」を2種以上含有する場合、第2の層が「第2の層の単体又は化合物」を少なくとも1種を含有することを意味する。
「互いに異なる関係」は、本発明の発光素子の輝度寿命がより優れるので、第2の層に含有される「第2の層の単体又は化合物」の全成分と、第3の層に含有される「第3の層の単体又は化合物」の全成分とが、完全に同一ではないことが好ましく、第2の層に含有される「第2の層の単体又は化合物」のうちの1種が、第3の層に含有されないことがより好ましく、第2の層に含有される「第2の層の単体又は化合物」の全成分が、第3の層に含有されないことが更に好ましい。
アルカリ金属元素のみからなる単体及びアルカリ金属元素を含む化合物において、アルカリ金属元素としては、本発明の発光素子の輝度寿命がより優れるので、好ましくはリチウム、ナトリウム、カリウム又はセシウムであり、より好ましくはリチウム、ナトリウム又はセシウムである。
第2族元素のみからなる単体及び第2族元素を含む化合物において、第2族元素としては、本発明の発光素子の輝度寿命がより優れるので、好ましくはベリリウム、マグネシウム、カルシウム又はバリウムであり、より好ましくはカルシウム又はバリウムである。
アルカリ金属元素を含む化合物は、アルカリ金属元素を含む高分子化合物であってもよく、アルカリ金属元素を含む低分子化合物であってもよいが、本発明の発光素子を塗布法で作製できるので、好ましくは、アルカリ金属元素を含む高分子化合物である。
アルカリ金属元素を含む化合物は、アルカリ金属元素を1種のみ含んでいてもよく、2種以上含んでいてもよい。
第2族元素を含む化合物は、第2族元素を含む高分子化合物であってもよく、第2族元素を含む低分子化合物であってもよいが、本発明の発光素子の輝度寿命がより優れるので、好ましくは、第2族元素を含む低分子化合物である。
第2族元素を含む化合物は、第2族元素を1種のみ含んでいてもよく、2種以上含んでいてもよい。
アルカリ金属元素を含む化合物及び第2族元素を含む化合物は、各々、単塩、複塩及び錯塩のいずれであってもよい。
アルカリ金属元素を含む低分子化合物としては、例えば、アルカリ金属元素を含む金属錯体及びアルカリ金属元素を含む無機化合物が挙げられる。
アルカリ金属元素を含む無機化合物としては、例えば、アルカリ金属ハロゲン化物、アルカリ金属酸化物、アルカリ金属水酸化物、アルカリ金属シアン化物、リン酸のアルカリ金属塩、炭酸のアルカリ金属塩、硫酸のアルカリ金属塩及び硝酸のアルカリ金属塩が挙げられ、本発明の発光素子の輝度寿命がより優れるので、アルカリ金属ハロゲン化物、アルカリ金属酸化物、アルカリ金属水酸化物又は炭酸のアルカリ金属塩が好ましく、アルカリ金属ハロゲン化物、アルカリ金属酸化物又は炭酸のアルカリ金属塩がより好ましく、アルカリ金属ハロゲン化物が更に好ましく、これらの化合物は水和物であっても、無水和物であってもよい。
アルカリ金属ハロゲン化物は、好ましくは、アルカリ金属フッ化物又はアルカリ金属塩化物であり、より好ましくはアルカリ金属フッ化物であり、これらの化合物は水和物であっても、無水和物であってもよい。また、アルカリ金属ハロゲン化物は、好ましくは、ハロゲン化リチウム、ハロゲン化ナトリウム、ハロゲン化カリウム又はハロゲン化セシウムであり、より好ましくはハロゲン化リチウム又はハロゲン化ナトリウムである。すなわち、アルカリ金属ハロゲン化物は、好ましくはフッ化リチウム、フッ化ナトリウム、フッ化カリウム又はフッ化セシウムであり、より好ましくはフッ化リチウム又はフッ化ナトリウムである。
アルカリ金属酸化物は、好ましくは、酸化リチウム、酸化ナトリウム、酸化カリウム又は酸化セシウムであり、より好ましくは酸化リチウム又は酸化セシウムであり、更に好ましくは酸化リチウムであり、これらの化合物は水和物であっても、無水和物であってもよい。
アルカリ金属水酸化物は、好ましくは、水酸化リチウム、水酸化ナトリウム、水酸化カリウム又は水酸化セシウムであり、より好ましくは水酸化リチウム又は水酸化セシウムであり、これらの化合物は水和物であっても、無水和物であってもよい。
アルカリ金属シアン化物は、好ましくは、シアン化リチウム、シアン化ナトリウム、シアン化カリウム又はシアン化セシウムであり、これらの化合物は水和物であっても、無水和物であってもよい。
リン酸のアルカリ金属塩としては、例えば、リン酸三アルカリ金属塩、リン酸水素二アルカリ金属塩及びリン酸二水素アルカリ金属塩が挙げられ、好ましくはリン酸三アルカリ金属塩であり、これらの化合物は水和物であっても、無水和物であってもよい。リン酸三アルカリ金属塩としては、例えば、リン酸三リチウム、リン酸三ナトリウム、リン酸三カリウム及びリン酸三セシウムが挙げられ、好ましくはリン酸三リチウム又はリン酸三セシウムである。リン酸水素二アルカリ金属塩としては、例えば、リン酸水素二リチウム、リン酸水素二ナトリウム、リン酸水素二カリウム及びリン酸水素二セシウムが挙げらる。リン酸二水素アルカリ金属塩としては、例えば、リン酸二水素リチウム、リン酸二水素ナトリウム、リン酸二水素カリウム及びリン酸二水素セシウムが挙げらる。
炭酸のアルカリ金属塩としては、例えば、アルカリ金属炭酸塩及びアルカリ金属炭酸水素塩が挙げられ、好ましくはアルカリ金属炭酸塩であり、これらの化合物は水和物であっても、無水和物であってもよい。アルカリ金属炭酸塩としては、好ましくは、炭酸リチウム、炭酸ナトリウム、炭酸カリウム又は炭酸セシウムであり、より好ましくは炭酸セシウムである。アルカリ金属炭酸水素塩としては、好ましくは、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム又は炭酸水素セシウムである。
硫酸のアルカリ金属塩としては、アルカリ金属硫酸塩及びアルカリ金属硫酸水素塩が挙げられ、好ましくはアルカリ金属硫酸塩であり、これらの化合物は水和物であっても、無水和物であってもよい。アルカリ金属硫酸塩としては、例えば、硫酸リチウム、硫酸ナトリウム、硫酸カリウム及び硫酸セシウムが挙げられ、好ましくは硫酸ナトリウム又は硫酸カリウムである。アルカリ金属硫酸水素塩としては、例えば、硫酸水素リチウム、硫酸水素ナトリウム、硫酸水素カリウム又は硫酸水素セシウムが挙げらる。
硝酸のアルカリ金属塩としては、例えば、硝酸リチウム、硝酸ナトリウム、硝酸カリウム及び硝酸セシウムが挙げられ、好ましくは硝酸ナトリウム又は硝酸カリウムであり、これらの化合物は水和物であっても、無水和物であってもよい。
第2族元素を含む低分子化合物としては、例えば、第2族元素を含む金属錯体及び第2族元素を含む無機化合物が挙げられる。
第2族元素を含む無機化合物としては、例えば、第2族元素のハロゲン化物、第2族元素の酸化物、第2族元素の水酸化物、第2族元素のシアン化物、リン酸の第2族元素塩、炭酸の第2族元素塩、硫酸の第2族元素塩、及び、硝酸の第2族元素塩が挙げられ、本発明の発光素子の輝度寿命がより優れるので、第2族元素のハロゲン化物、第2族元素の酸化物、第2族元素水酸化物、又は、炭酸の第2族元素塩が好ましく、第2族元素のハロゲン化物、第2族元素の酸化物、又は、炭酸の第2族元素塩がより好ましく、これらの化合物は水和物であっても、無水和物であってもよい。
第2族元素のハロゲン化物は、好ましくは、第2族元素のフッ化物又は第2族元素の塩化物であり、より好ましくは第2族元素のフッ化物であり、これらの化合物は水和物であっても、無水和物であってもよい。また、アルカリ金属ハロゲン化物は、好ましくは、ハロゲン化ベリリウム、ハロゲン化マグネシウム、ハロゲン化カルシウム又はハロゲン化バリウムであり、より好ましくはハロゲン化カルシウム又はハロゲン化バリウムである。すなわち、第2族元素のハロゲン化物は、好ましくは、フッ化ベリリウム、フッ化マグネシウム、フッ化カルシウム又はフッ化バリウムであり、より好ましくはフッ化カルシウム又はフッ化バリウムである。
第2族元素の酸化物は、好ましくは、酸化ベリリウム、酸化マグネシウム、酸化カルシウム又は酸化バリウムであり、より好ましくは酸化カルシウム又は酸化バリウムであり、これらの化合物は水和物であっても、無水和物であってもよい。
第2族元素の水酸化物は、好ましくは、水酸化ベリリウム、水酸化マグネシウム、水酸化カルシウム又は水酸化バリウムであり、より好ましくは水酸化カルシウム又は水酸化バリウムであり、これらの化合物は水和物であっても、無水和物であってもよい。
第2族元素シアン化物としては、例えば、シアン化マグネシウム、シアン化カルシウム又はシアン化バリウムが挙げられ、これらの化合物は水和物であっても、無水和物であってもよい。
リン酸の第2族元素塩としては、例えば、第2族元素のリン酸塩、第2族元素のリン酸水素塩及び第2族元素のリン酸二水素塩が挙げられ、好ましく第2族元素のリン酸塩であり、これらの化合物は水和物であっても、無水和物であってもよい。第2族元素のリン酸塩は、好ましくはリン酸カルシウム又はリン酸バリウムである。第2族元素のリン酸水素塩としては、例えば、リン酸水素カルシウム及びリン酸水素バリウムが挙げらる。第2族元素のリン酸二水素塩としては、例えば、リン酸二水素カルシウム及びリン酸水素バリウムが挙げらる。
炭酸の第2族元素塩としては、例えば、第2族元素の炭酸塩及び第2族元素の炭酸水素塩が挙げられ、好ましくは第2族元素の炭酸塩であり、これらの化合物は水和物であっても、無水和物であってもよい。第2族元素の炭酸塩としては、例えば、炭酸ベリリウム、炭酸マグネシウム、炭酸カルシウム又は炭酸バリウムが挙げられ、好ましくは炭酸カルシウム又は炭酸バリウムである。第2族元素の炭酸水素塩としては、例えば、炭酸水素ベリリウム、炭酸水素マグネシウム、炭酸水素カルシウム又は炭酸水素バリウムが挙げられ、好ましくは炭酸水素カルシウム又は炭酸水素バリウムである。
硫酸の第2族元素塩としては、第2族元素の硫酸塩及び第2族元素の硫酸水素塩が挙げられ、好ましくは第2族元素の硫酸塩であり、これらの化合物は水和物であっても、無水和物であってもよい。第2族元素の硫酸塩としては、例えば、硫酸ベリリウム、硫酸マグネシウム、硫酸カルシウム又は硫酸バリウムが挙げられ、好ましくは硫酸カルシウム又は硫酸バリウムである。第2族元素の硫酸水素塩としては、例えば、硫酸ベリリウム、硫酸マグネシウム、硫酸カルシウム又は硫酸バリウムが挙げらる。
硝酸の第2族元素塩としては、例えば、硝酸ベリリウム、硝酸マグネシウム、硝酸カルシウム又は硝酸バリウムが挙げられ、好ましくは硝酸カルシウム又は硝酸バリウムであり、これらの化合物は水和物であっても、無水和物であってもよい。
アルカリ金属元素を含む金属錯体は、少なくとも1つの有機配位子を有し、この有機配位子とアルカリ金属原子との間に、イオン結合、配位結合及び共有結合からなる群から選ばれる少なくとも1種の結合を形成している金属錯体である。
第2族元素を含む金属錯体は、少なくとも1つの有機配位子を有し、この有機配位子と周期表第2族の金属原子との間に、イオン結合、配位結合及び共有結合からなる群から選ばれる少なくとも1種の結合を形成している金属錯体である。
アルカリ金属元素を含む金属錯体及び第2族元素を含む金属錯体は、各々、ハロゲン化物イオン、水酸化物イオン、シアン化物イオン、リン酸イオン、炭酸イオン、炭酸水素イオン、硫酸イオン及び硝酸イオン等の無機配位子を更に有していてもよい。
アルカリ金属元素を含む金属錯体及び第2族元素を含む金属錯体が有機配位子を複数有する場合、それらは同一でも異なっていてもよい。
アルカリ金属元素を含む金属錯体及び第2族元素を含む金属錯体が無機配位子を複数有する場合、それらは同一でも異なっていてもよい。
アルカリ金属元素を含む金属錯体及び第2族元素を含む金属錯体は、各々、水和物であっても、無水和物であってもよい。
アルカリ金属元素を含む金属錯体及び第2族元素を含む金属錯体が有する有機配位子としては、アルカリ金属原子又は周期表第2族の金属原子との間に、イオン結合、配位結合及び共有結合からなる群から選ばれる少なくとも1種の結合を形成する、中性若しくはアニオン性の単座配位子、又は、中性若しくはアニオン性の多座配位子が挙げられる。アルカリ金属原子又は周期表第2族の金属原子と配位子との間の結合としては、例えば、金属−窒素結合、金属−酸素結合、金属−リン結合、及び、金属−硫黄結合が挙げられ、好ましくは、金属−窒素結合、金属−酸素結合又は金属−硫黄結合であり、より好ましくは金属−窒素結合又は金属−酸素結合である。多座配位子は、通常、2座以上6座以下の配位子であり、好ましくは2座以上4座以下の配位子であり、より好ましくは2座配位子である。
アルカリ金属元素を含む金属錯体及び第2族元素を含む金属錯体が有する有機配位子は、好ましくは単座以上4座以下の配位子であり、より好ましくは単座配位子又は2座配位子であり、更に好ましくは2座配位子である。
アルカリ金属元素を含む金属錯体及び第2族元素を含む金属錯体は、有機配位子のみからなる金属錯体であることが好ましい。すなわち、アルカリ金属元素を含む金属錯体及び第2族元素を含む金属錯体は、無機配位子を有さないことが好ましい。
アルカリ金属元素を含む金属錯体及び第2族元素を含む金属錯体が有する有機配位子としては、例えば、ピリジン、ビピリジン、キノリン、イソキノリン、フェナントロリン及びアゾール等の含窒素複素環式化合物;酢酸、安息香酸、ピコリン酸、ヒドロキシキノリン、アセチルアセトン、フェノール、チオフェノール、メタノール等の有機ブレンステッド酸の共役塩基;並びに、クラウンエーテル、クリプタント、アザクラウンエーテル及びフタロシアニン等の複素環式大環状化合物が挙げられる。
アルカリ金属元素を含む金属錯体及び第2族元素を含む金属錯体は、本発明の発光素子の輝度寿命がより優れるので、式(S−1)で表される化合物であることが好ましい。すなわち、アルカリ金属元素を含む金属錯体は、式(S−1)で表される化合物であり、且つ、MES1がアルカリ金属原子であることが好ましい。また、第2族元素を含む金属錯体は、式(S−1)で表される化合物であり、且つ、MES1が周期表第2族の金属原子であることが好ましい。
なお、式(S−1)で表される化合物は水和物であっても、無水和物であってもよい。
Figure 2018198976
[式中、
ES1は、アルカリ金属原子又は周期表第2族の金属原子を表す。
ES1がアルカリ金属原子である場合、nES1は1であり、MES2が周期表第2族の金属原子である場合、nES1は2である。
ES1は、−XES1−、−(XES2=)C−XES1−、−(XES2=)2S−XES1−、−(XES2=)S−XES1−又は−(XES2=)P−XES1−で表される基を表す。AES1が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。XES1は、酸素原子、硫黄原子又は−N(RES2)−で表される基を表す。XES2は、酸素原子、硫黄原子又は=N(RES3)で表される基を表す。XES2が複数存在する場合、それらは同一でも異なっていてもよい。RES2及びRES3は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。
ES1は、単結合又は2価の基を表す。GES1が複数存在する場合、それらは同一でも異なっていてもよい。
ES1は、RES1'−(XES3=)C−で表される基、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基又は置換アミノ基を表し、これらの基は置換基を有していてもよい。XES3は、酸素原子、硫黄原子又は=N(RES3)で表される基を表す。XES3が複数存在する場合、それらは同一でも異なっていてもよい。RES1'は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基又は置換アミノ基を表し、これらの基は置換基を有していてもよい。RES3は前記と同じ意味を表す。
ES1とRES1との間に化学結合が存在する場合、点線は実線を意味する。MES1とRES1との間に化学結合が存在しない場合、点線は存在しない。点線が複数存在する場合、それらは同一でも異なっていてもよい。]
ES1で表されるアルカリ金属原子としては、本発明の発光素子の輝度寿命がより優れるので、好ましくは、リチウム原子、ナトリウム原子、カリウム原子又はセシウム原子であり、より好ましくは、リチウム原子、ナトリウム原子又はセシウム原子であり、更に好ましくは、リチウム原子又はナトリウム原子であり、特に好ましくはリチウム原子である。
ES1で表される周期表第2族の金属原子としては、式(S−1)で表される化合物の合成が容易なので、好ましくは、ベリリウム原子、マグネシウム原子、カルシウム原子又はバリウム原子であり、より好ましくは、ベリリウム原子、カルシウム原子又はバリウム原子であり、更に好ましくはベリリウム原子である。
ES1における周期表第2族の金属原子は、本発明の発光素子の輝度寿命がより優れるので、好ましくは、ベリリウム原子、マグネシウム原子、カルシウム原子又はバリウム原子であり、より好ましくは、ベリリウム原子、カルシウム原子又はバリウム原子であり、更に好ましくは、ベリリウム原子である。
ES1は、本発明の発光素子の輝度寿命がより優れるので、アルカリ金属原子であることが好ましい。
ES1は、本発明の発光素子の輝度寿命がより優れ、且つ、式(S−1)で表される化合物の合成が容易なので、好ましくは、リチウム原子、ナトリウム原子、セシウム原子、ベリリウム原子、カルシウム原子又はバリウム原子であり、より好ましくは、リチウム原子、ナトリウム原子、セシウム原子又はベリリウム原子である。
ES1は、好ましくは、−XES1−、−(XES2=)C−XES1−、−(XES2=)2S−XES1−又は−(XES2=)P−XES1−で表される基であり、より好ましくは−XES1−又は−(XES2=)C−XES1−で表される基であり、更に好ましくは−XES1−で表される基である。
ES1は、好ましくは酸素原子又は硫黄原子であり、より好ましくは酸素原子である。XES2は、好ましくは酸素原子又は硫黄原子であり、より好ましくは酸素原子である。
ES2及びRES3は、好ましくは、アルキル基又はアリール基であり、より好ましくはアリール基であり、これらの基は置換基を有していてもよい。
ES2及びRES3が有していてもよい置換基としては、式(S−1)で表される化合物の合成が容易なので、好ましくは、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基、置換アミノ基又はハロゲン原子であり、より好ましくは、アルキル基、シクロアルキル基、アリール基、1価の複素環基又はフッ素原子であり、更に好ましくは、アルキル基又はシクロアルキル基であり、これらの基は更に置換基を有していてもよい。
ES2及びRES3が有していてもよい置換基であるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、後述のRES1で表されるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
ES1で表される2価の基としては、例えば、アルキレン基、シクロアルキレン基、アルケンジイル基、シクロアルケンジイル基、アルキンジイル基、シクロアルキンジイル基、アリーレン基、2価の複素環基、及び、これらの基が2〜10個(好ましくは2〜5個)直接結合した基が挙げられ、好ましくは、アルキレン基、アルケンジイル基、アリーレン基又は2価の複素環基であり、より好ましくはアルケンジイル基又はアリーレン基であり、これらの基は置換基を有していてもよい。
ES1で表されるアルキレン基は、前述のアルキル基の炭素原子に直接結合する水素原子1個を除いた基であり、好ましくは、置換基を有していてもよいメチレン基である。
ES1で表されるシクロアルキレン基は、前述のシクロアルキル基の炭素原子に直接結合する水素原子1個を除いた基である。
ES1で表されるアルケンジイル基は、前述のアルケニル基の炭素原子に直接結合する水素原子1個を除いた基であり、好ましくは、置換基を有していてもよいビニリデン基又は置換基を有していてもよいビニレン基である。
ES1で表されるシクロアルケンジイル基は、前述のシクロアルケニル基の炭素原子に直接結合する水素原子1個を除いた基である。
ES1で表されるアルキンジイル基は、前述のアルキニル基の炭素原子に直接結合する水素原子1個を除いた基である。
ES1で表されるシクロアルキンジイル基は、前述のシクロアルキニル基の炭素原子に直接結合する水素原子1個を除いた基である。
ES1は、好ましくは、単結合、アルケンジイル基又はアリーレン基であり、より好ましくは、単結合、ビニレン基又はフェニレン基であり、更に好ましくは、単結合又はフェニレン基であり、特に好ましくは、単結合である。
ES1が有していてもよい置換基の例及び好ましい範囲は、RES2及びRES3が有していてもよい置換基の例及び好ましい範囲と同じである。
ES1は、好ましくは、RES1'−(XES3=)C−で表される基、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくは、RES1'−(XES3=)C−で表される基、アリール基又は1価の複素環基であり、更に好ましくは1価の複素環基であり、これらの基は置換基を有していてもよい。
ES1で表されるアリール基及び置換アミノ基の例及び好ましい範囲は、それぞれ、前述の環L1及び環L2が有していてもよい置換基であるアリール基及び置換アミノ基の例及び好ましい範囲と同じである。
ES1における1価の複素環基の例は、前述の環R1C、環R2C、環R3C及び環R4Cが有していてもよい置換基である1価の複素環基の例と同じである。RES1で表される1価の複素環基は、本発明の発光素子の輝度寿命がより優れるので、好ましくは、ベンゾジアゾール環、ベンゾトリアゾール環、ベンゾオキサジアゾール環、ベンゾチアジアゾール環、ピリジン環、ジアザベンゼン環、トリアジン環、アザナフタレン環、ジアザナフタレン環、トリアザナフタレン環、アザアントラセン環、ジアザアントラセン環、トリアザアントラセン環、アザフェナントレン環、ジアザフェナントレン環又はトリアザフェナントレン環から、環を構成する炭素原子又はヘテロ原子に直接結合する水素原子1個を除いた基であり、より好ましくは、ピリジン環、ジアザベンゼン環、トリアジン環、アザナフタレン環、ジアザナフタレン環、トリアザナフタレン環、アザフェナントレン環、ジアザフェナントレン環又はトリアザフェナントレン環から、環を構成する炭素原子又はヘテロ原子に直接結合する水素原子1個を除いた基であり、更に好ましくは、ピリジン環、アザナフタレン環又はアザフェナントレン環から、環を構成する炭素原子又はヘテロ原子に直接結合する水素原子1個を除いた基であり、これらの基は置換基を有していてもよい。
ES3は、好ましくは、酸素原子又は=N(RES3)で表される基であり、より好ましくは=N(RES3)で表される基である。
ES1'は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、これらの基は置換基を有していてもよい。
ES1及びRES1'が有していてもよい置換基の例及び好ましい範囲は、RES2及びRES3が有していてもよい置換基の例及び好ましい範囲と同じである。
アルカリ金属元素を含む金属錯体及び第2族元素を含む金属錯体としては、例えば、下記式で表される化合物が挙げられ、これらの化合物は水和物であっても、無水和物であってもよい。
Figure 2018198976
Figure 2018198976
Figure 2018198976
[式中、
S1はアルカリ金属原子を表す。MS2は周期表第2族の金属原子を表す。
S1は酸素原子又は硫黄原子を表す。XS1が複数存在する場合、それらは同一でも異なっていてもよい。]
S1は、好ましくは、リチウム原子、ナトリウム原子、カリウム原子又はセシウム原子であり、より好ましくはリチウム原子である。
S2は、ベリリウム原子、マグネシウム原子、カルシウム原子又はバリウム原子であり、好ましくはベリリウム原子である。
S1は、好ましくは酸素原子である。
アルカリ金属元素を含む高分子化合物及び第2族元素を含む高分子化合物としては、本発明の発光素子の輝度寿命がより優れるので、式(ET−1)で表される構成単位を含む高分子化合物が好ましい。すなわち、アルカリ金属元素を含む高分子化合物は、式(ET−1)で表される構成単位を含む高分子化合物であり、且つ、式(ET−1)中のME1がアルカリ金属カチオンであることが好ましい。また、第2族元素を含む高分子化合物は、式(ET−1)で表される構成単位を含む高分子化合物であり、且つ、式(ET−1)中のME1が周期表第2族の金属カチオンであることが好ましい。
Figure 2018198976
[式中、
nE1は、1以上の整数を表す。
ArE1は、芳香族炭化水素基又は複素環基を表し、これらの基はRE1以外の置換基を有していてもよい。
E1は、式(ES−1)で表される基を表す。RE1が複数存在する場合、それらは同一でも異なっていてもよい。]
−RE3−{(QE1nE3−YE1(ME1aE1(ZE1bE1mE1
(ES−1)
[式中、
nE3は0以上の整数を表し、aE1は1以上の整数を表し、bE1は0以上の整数を表し、mE1は1以上の整数を表す。nE3、aE1及びbE1が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。但し、RE3が単結合である場合、mE1は1である。また、aE1及びbE1は、式(ES−1)で表される基の電荷が0となるように選択される。
E3は、単結合、炭化水素基、複素環基又はO−RE3’を表し(RE3’は、炭化水素基又は複素環基を表す。)、これらの基は置換基を有していてもよい。
E1は、アルキレン基、シクロアルキレン基、アリーレン基、酸素原子又は硫黄原子を表し、これらの基は置換基を有していてもよい。QE1が複数存在する場合、それらは同一でも異なっていてもよい。
E1は、CO2 -、SO3 -、SO2 -又はPO3 2-を表す。YE1が複数存在する場合、それらは同一でも異なっていてもよい。
E1は、アルカリ金属カチオン又は周期表第2族の金属カチオンを表す。ME1が複数存在する場合、それらは同一でも異なっていてもよい。
E1は、F-、Cl-、Br-、I-、OH-、B(RE44 -、RE4SO3 -、RE4COO-、NO3 -、SO4 2-、HSO4 -、PO4 3-、HPO4 2-、H2PO4 -、BF4 -又はPF6 -を表す。RE4は、アルキル基、シクロアルキル基又はアリール基を表し、これらの基は置換基を有していてもよい。ZE1が複数存在する場合、それらは同一でも異なっていてもよい。]
nE1は、通常1〜10の整数であり、好ましくは1〜4の整数であり、より好ましくは1又は2である。
ArE1で表される芳香族炭化水素基としては、例えば、前述のアリーレン基からnE1個の水素原子を除いた基が挙げられ、フェニレン基、ナフタレンジイル基、フルオレンジイル基又はフェナントレンジイル基から、環を構成する原子に直接結合する水素原子nE1個を除いた基が好ましく、フルオレンジイル基から、環を構成する原子に直接結合する水素原子nE1個を除いた基がより好ましく、これらの基はRE1以外の置換基を有していてもよい。
ArE1で表される複素環基としては、例えば、前述の2価の複素環基からnE1個の水素原子を除いた基が挙げられ、カルバゾールジイル基から、環を構成する原子に直接結合する水素原子nE1個を除いた基が好ましく、RE1以外の置換基を有していてもよい。
ArE1は、好ましくは、RE1以外の置換基を有していてもよい芳香族炭化水素基である。
ArE1が有していてもよいRE1以外の置換基としては、ハロゲン原子、シアノ基、アルキル基、シクロアルキル基、アリール基、1価の複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アミノ基、置換アミノ基、アルケニル基、シクロアルケニル基、アルキニル基、シクロアルキニル基、カルボキシル基及び式(ES−3)で表される基が挙げられ、好ましくは、アルキル基、シクロアルキル基、アリール基、1価の複素環基、アルコキシ基、シクロアルコキシ基、又は、式(ES−3)で表される基であり、より好ましくは、より好ましくは、アルキル基又はアリール基であり、これらの基は更に置換基を有していてもよい。
−O−(Cn'2n'O)nx−Cm'2m'+1 (ES−3)
[式中、n'、m'及びnxは、それぞれ独立に、1以上の整数を表す。]
nE3は、通常0〜10の整数であり、式(ET−1)で表される構成単位を含む高分子化合物の合成が容易になるので、好ましくは0〜8の整数であり、より好ましくは0〜2の整数である。
aE1は、通常1〜10の整数であり、好ましくは1〜5の整数であり、より好ましくは1又は2である。
bE1は、通常0〜10の整数であり、好ましくは0〜4の整数であり、より好ましくは0又は1である。
mE1は、通常1〜5の整数であり、式(ET−1)で表される構成単位を含む高分子化合物の合成が容易になるので、好ましくは1又は2であり、より好ましくは1である。
E3が−O−RE3’の場合、式(ES−1)で表される基は、下記式で表される基である。
−O−RE3’−{(QE1nE3−YE1(ME1aE1(ZE1bE1mE1
E3及びRE3’において、炭化水素基の炭素原子数は、置換基の炭素原子数を含めないで、好ましくは1〜20であり、より好ましくは1〜10であり、更に好ましくは1〜6である。
E3及びRE3’において、炭化水素基は、置換基を有していてもよい脂肪族炭化水素基であっても、置換基を有していてもよい芳香族炭化水素基であってもよい。
E3で表される炭化水素基は、式(ET−1)で表される構成単位を含む高分子化合物の電子輸送性が優れるので、置換基を有していてもよい芳香族炭化水素基であることが好ましい。
E3’で表される炭化水素基は、式(ET−1)で表される構成単位を含む高分子化合物の合成が容易になるので、置換基を有していてもよい脂肪族炭化水素基であることが好ましい。
E3及びRE3’における炭化水素基において、脂肪族炭化水素基は、例えば、前述のアルキル基の炭素原子に直接結合する水素原子mE1個を除いた基が挙げられ、この基は置換基を有していてもよい。
E3及びRE3’における炭化水素基において、芳香族炭化水素基は、例えば、前述のアリール基の炭素原子に直接結合する水素原子mE1個を除いた基が挙げられ、好ましくは、フェニル基の炭素原子に直接結合する水素原子mE1個を除いた基であり、これらの基は置換基を有していてもよい。
E3及びRE3’において、複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常2〜60であり、好ましくは3〜20であり、より好ましくは3〜15である。
E3及びRE3’において、複素環基は、式(ET−1)で表される構成単位を含む高分子化合物の合成が容易になるので、芳香族複素環基であることが好ましい。
E3及びRE3’において、複素環基は、例えば、前述の1価の複素環基の原子に直接結合する水素原子mE1個を除いた基が挙げられる。
E3は、本発明の発光素子の輝度寿命がより優れるので、好ましくは炭化水素基又は複素環基であり、より好ましくは芳香族炭化水素基又は芳香族複素環基であり、更に好ましくは芳香族炭化水素基であり、これらの基は置換基を有していてもよい。
E3’は、好ましくは炭化水素基であり、より好ましくは脂肪族炭化水素基であり、これらの基は置換基を有していてもよい。
E3及びRE3’が有していてもよい置換基としては、アルキル基、シクロアルキル基、アリール基、1価の複素環基及び式(ES−3)で表される基が好ましく、式(ES−3)で表される基がより好ましく、これらの基は更に置換基を有していてもよい。
E1としては、アルキレン基、アリーレン基又は酸素原子が好ましく、アルキレン基又は酸素原子がより好ましい。
E1におけるアルキレン基及びシクロアルキレン基の例及び好ましい範囲は、それぞれ、前述のGES1におけるアルキレン基及びシクロアルキレン基の例及び好ましい範囲と同じである。
E1としては、CO2 -、SO2 -又はPO3 2-が好ましく、CO2 -がより好ましい。
E1で表されるアルカリ金属カチオンとしては、例えば、Li+、Na+、K+、Rb+及びCs+が挙げられ、Li+、Na+、K+又はCs+が好ましく、Li+、Na+又はCs+がより好ましく、Cs+が更に好ましい。
E1で表される周期表第2族の金属カチオンとしては、例えば、Be2+、Mg2+、Ca2+、Sr2+、Ba2+が挙げられ、好ましくはBe2+、Mg2+、Ca2+又はBa2+であり、より好ましくはCa2+又はBa2+である。
E1は、本発明の発光素子の輝度寿命がより優れるので、アルカリ金属カチオンである。
E1としては、F-、Cl-、Br-、I-、OH-、B(RE44 -、RE4SO3 -、RE4COO-又はNO3 -が好ましく、F-、Cl-、Br-、I-、OH-、RE4SO3 -又はRE4COO-が好ましい。RE4としては、アルキル基が好ましい。
式(ES−1)で表される基としては、例えば、下記式で表される基が挙げられる。
Figure 2018198976
Figure 2018198976
[式中、M+は、Li+、Na+、K+、又はCs+を表す。M+が複数存在する場合、それらは同一でも異なっていてもよい。]
式(ET−1)で表される構成単位としては、例えば、下記式で表される構成単位が挙げられる。
Figure 2018198976
Figure 2018198976
Figure 2018198976
Figure 2018198976
Figure 2018198976
Figure 2018198976
Figure 2018198976
Figure 2018198976
Figure 2018198976
Figure 2018198976
Figure 2018198976
式(ET−1)で表される構成単位を含む高分子化合物は、本発明の発光素子の輝度寿命がより優れるので、更に、式(Y)で表される構成単位及び式(X)で表される構成単位からなる群から選ばれる少なくとも1種の構成単位を含むことが好ましく、式(Y)で表される構成単位を含むことがより好ましい。
Figure 2018198976
[式中、ArY1は、アリーレン基、2価の複素環基、又は、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基を表し、これらの基は置換基を有していてもよい。]
ArY1で表されるアリーレン基は、より好ましくは、式(A-1)、式(A-2)、式(A-6)-(A-10)、式(A-19)又は式(A-20)で表される基であり、更に好ましくは、式(A-1)、式(A-2)、式(A-7)、式(A-9)又は式(A-19)で表される基であり、これらの基は置換基を有していてもよい。
ArY1で表される2価の複素環基は、より好ましくは、式(AA-1)-(AA-4)、式(AA-10)-(AA-15)、式(AA-18)-(AA-21)、式(AA-33)又は式(AA-34)で表される基であり、更に好ましくは、式(AA-4)、式(AA-10)、式(AA-12)、式(AA-14)又は式(AA-33)で表される基であり、これらの基は置換基を有していてもよい。
ArY1で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基における、アリーレン基及び2価の複素環基のより好ましい範囲、更に好ましい範囲は、それぞれ、前述のArY1で表されるアリーレン基及び2価の複素環基のより好ましい範囲、更に好ましい範囲と同様である。
「少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基」としては、例えば、下記式で表される基が挙げられ、これらは置換基を有していてもよい。
Figure 2018198976
[式中、RXXは、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。]
XXは、好ましくは、アルキル基、シクロアルキル基又はアリール基であり、これらの基は置換基を有していてもよい。
ArY1で表される基が有してもよい置換基は、好ましくは、アルキル基、シクロアルキル基又はアリール基であり、これらの基は更に置換基を有していてもよい。
式(Y)で表される構成単位としては、例えば、式(Y-1)-(Y-10)で表される構成単位が挙げられ、発光素子の輝度寿命の観点からは、好ましくは式(Y-1)-(Y-3)で表される構成単位であり、電子輸送性の観点からは、好ましくは式(Y-4)-(Y-7)で表される構成単位であり、正孔輸送性の観点からは、好ましくは式(Y-8)-(Y-10)で表される構成単位である。
Figure 2018198976
[式中、RY1は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRY1は、同一でも異なっていてもよく、隣接するRY1同士は互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよい。]
Y1は、好ましくは、水素原子、アルキル基、シクロアルキル基又はアリール基であり、これらの基は置換基を有していてもよい。
式(Y-1)で表される構成単位は、好ましくは、式(Y-1')で表される構成単位である。
Figure 2018198976
[式中、RY11は、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRY11は、同一でも異なっていてもよい。]
Y11は、好ましくは、アルキル基、シクロアルキル基又はアリール基であり、より好ましくは、アルキル基又はシクロアルキル基であり、これらの基は置換基を有していてもよい。
Figure 2018198976
[式中、
Y1は、前記と同じ意味を表す。
Y1は、−C(RY2)2−、−C(RY2)=C(RY2)−又はC(RY2)2−C(RY2)2−で表される基を表す。RY2は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRY2は、同一でも異なっていてもよく、RY2同士は互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよい。]
Y2は、好ましくは、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくは、アルキル基、シクロアルキル基又はアリール基であり、これらの基は置換基を有していてもよい。
Y1において、−C(RY2)2−で表される基中の2個のRY2の組み合わせは、好ましくは両方がアルキル基、両方がアリール基、両方が1価の複素環基、又は、一方がアルキル基で他方がアリール基若しくは1価の複素環基であり、これらの基は置換基を有していてもよい。2個存在するRY2は互いに結合して、それぞれが結合する原子と共に環を形成していてもよく、RY2が環を形成する場合、−C(RY2)2−で表される基としては、好ましくは式(Y-A1)-(Y-A5)で表される基であり、より好ましくは式(Y-A4)で表される基であり、これらの基は置換基を有していてもよい。
Figure 2018198976
Y1において、−C(RY2)=C(RY2)−で表される基中の2個のRY2の組み合わせは、好ましくは両方がアルキル基もしくはシクロアルキル基、又は、一方がアルキル基もしくはシクロアルキル基で他方がアリール基であり、これらの基は置換基を有していてもよい。
Y1において、−C(RY2)2−C(RY2)2−で表される基中の4個のRY2は、好ましくは置換基を有していてもよいアルキル基又はシクロアルキル基である。複数あるRY2は互いに結合して、それぞれが結合する原子と共に環を形成していてもよく、RY2が環を形成する場合、−C(RY2)2−C(RY2)2−で表される基は、好ましくは式(Y-B1)-(Y-B5)で表される基であり、より好ましくは式(Y-B3)で表される基であり、これらの基は置換基を有していてもよい。
Figure 2018198976
[式中、RY2は前記と同じ意味を表す。]
式(Y-2)で表される構成単位は、式(Y-2')で表される構成単位であることが好ましい。
Figure 2018198976
[式中、RY1及びXY1は前記と同じ意味を表す。]
Figure 2018198976
[式中、RY1及びXY1は前記と同じ意味を表す。]
式(Y-3)で表される構成単位は、式(Y-3')で表される構成単位であることが好ましい。
Figure 2018198976
[式中、RY11及びXY1は前記と同じ意味を表す。]
Figure 2018198976
Figure 2018198976
[式中、RY1は前記と同じ意味を表す。RY3は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。]
Y3は、好ましくはアルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基であり、より好ましくはアリール基であり、これらの基は置換基を有していてもよい。
式(Y-4)で表される構成単位は、式(Y-4')で表される構成単位であることが好ましく、式(Y-6)で表される構成単位は、式(Y-6')で表される構成単位であることが好ましい。
Figure 2018198976
[式中、RY1及びRY3は前記と同じ意味を表す。]
Figure 2018198976
[式中、RY1は前記を同じ意味を表す。RY4は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。]
Y4は、好ましくはアルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基であり、より好ましくはアリール基であり、これらの基は置換基を有していてもよい。
式(Y)で表される構成単位としては、例えば、式(Y-101)-式(Y-121)で表されるアリーレン基からなる構成単位、式(Y-201)-式(Y-206)で表される2価の複素環基からなる構成単位、式(Y-300)-式(Y-304)で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基からなる構成単位が挙げられる。
Figure 2018198976
Figure 2018198976
Figure 2018198976
Figure 2018198976
Figure 2018198976
Figure 2018198976
Figure 2018198976
Figure 2018198976
Figure 2018198976
式(Y)で表される構成単位であって、ArY1がアリーレン基である構成単位は、発光素子の輝度寿命がより優れるので、式(ET−1)で表される構成単位を含む高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.5〜80モル%であり、より好ましくは30〜60モル%である。
式(Y)で表される構成単位であって、ArY1が2価の複素環基、又は、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基である構成単位は、発光素子の電荷輸送性が優れるので、式(ET−1)で表される構成単位を含む高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.5〜30モル%であり、より好ましくは3〜20モル%である。
式(Y)で表される構成単位は、式(ET−1)で表される構成単位を含む高分子化合物中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。
Figure 2018198976
[式中、
X1及びaX2は、それぞれ独立に、0以上の整数を表す。ArX1及びArX3は、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。
ArX2及びArX4は、それぞれ独立に、アリーレン基、2価の複素環基、又は、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基を表し、これらの基は置換基を有していてもよい。ArX2及びArX4が複数存在する場合、それらは同一でも異なっていてもよい。
X1、RX2及びRX3は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。RX2及びRX3が複数存在する場合、それらは同一でも異なっていてもよい。]
X1は、発光素子の輝度寿命がより優れるので、好ましくは2以下であり、より好ましくは1である。
X2は、発光素子の輝度寿命がより優れるので、好ましくは2以下であり、より好ましくは0である。
X1、RX2及びRX3は、好ましくはアルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくはアリール基であり、これらの基は置換基を有していてもよい。
ArX1及びArX3で表されるアリーレン基は、より好ましくは式(A-1)又は式(A-9)で表される基であり、更に好ましくは式(A-1)で表される基であり、これらの基は置換基を有していてもよい。
ArX1及びArX3で表される2価の複素環基は、より好ましくは式(AA-1)、式(AA-2)又は式(AA-7)-(AA-26)で表される基であり、これらの基は置換基を有していてもよい。
ArX1及びArX3は、好ましくは置換基を有していてもよいアリーレン基である。
ArX2及びArX4で表されるアリーレン基としては、より好ましくは式(A-1)、式(A-6)、式(A-7)、式(A-9)-(A-11)又は式(A-19)で表される基であり、これらの基は置換基を有していてもよい。
ArX2及びArX4で表される2価の複素環基のより好ましい範囲は、ArX1及びArX3で表される2価の複素環基のより好ましい範囲と同じである。
ArX2及びArX4で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基における、アリーレン基及び2価の複素環基のより好ましい範囲、更に好ましい範囲は、それぞれ、ArX1及びArX3で表されるアリーレン基及び2価の複素環基のより好ましい範囲、更に好ましい範囲と同様である。
ArX2及びArX4で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基としては、式(Y)のArY1で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基と同様のものが挙げられる。
ArX2及びArX4は、好ましくは置換基を有していてもよいアリーレン基である。
ArX1〜ArX4及びRX1〜RX3で表される基が有してもよい置換基としては、好ましくはアルキル基、シクロアルキル基又はアリール基であり、これらの基は更に置換基を有していてもよい。
式(X)で表される構成単位は、好ましくは式(X-1)-(X-7)で表される構成単位であり、より好ましくは式(X-1)-(X-6)で表される構成単位であり、更に好ましくは式(X-3)-(X-6)で表される構成単位である。
Figure 2018198976
Figure 2018198976
Figure 2018198976
Figure 2018198976
[式中、RX4及びRX5は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、ハロゲン原子、1価の複素環基又はシアノ基を表し、これらの基は置換基を有していてもよい。複数存在するRX4は、同一でも異なっていてもよい。複数存在するRX5は、同一でも異なっていてもよく、隣接するRX5同士は互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよい。]
式(X)で表される構成単位は、発光素子の輝度寿命がより優れるので、式(ET−1)で表される構成単位を含む高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.1〜50モル%であり、より好ましくは1〜40モル%であり、更に好ましくは5〜30モル%である。
式(X)で表される構成単位としては、例えば、式(X1-1)-式(X1-11)で表される構成単位が挙げられ、好ましくは式(X1-3)-式(X1-10)で表される構成単位である。
Figure 2018198976
Figure 2018198976
Figure 2018198976
Figure 2018198976
Figure 2018198976
式(X)で表される構成単位は、式(ET−1)で表される構成単位を含む高分子化合物中に、1種のみ含まれていても、2種以上含まれていてもよい。
式(ET−1)で表される構成単位を含む高分子化合物としては、例えば、高分子化合物P-1〜P-14が挙げられる。ここで、「その他」の構成単位とは、式(ET−1)、式(X)及び式(Y)で表される構成単位以外の構成単位を意味する。
Figure 2018198976

[表中、p'、q'、r'、s'、t'及びu'は、各構成単位のモル比率を示す。p'+q'+r'+s'+t'+u'=100であり、かつ、100≧p'+q'+r'+s'+t'≧70である。]
式(ET−1)で表される構成単位を含む高分子化合物は、例えば、特開2009−239279号公報、特開2012−033845号公報、特開2012−216821号公報、特開2012−216822号公報、特開2012−216815号公報に記載の方法に従って合成することができる。
[第2の層]
本発明の発光素子が有する第2の層は、輝度寿命がより優れるので、好ましくは、アルカリ金属元素を含む化合物及び第2族元素を含む化合物からなる群から選ばれる少なくとも1種を含有する層であり、より好ましくはアルカリ金属元素を含む化合物を含有する層である。
第2の層において、アルカリ金属元素を含む化合物は、本発明の発光素子の輝度寿命がより優れるので、アルカリ金属元素を含む金属錯体、アルカリ金属元素を含む無機化合物又はアルカリ金属元素を含む高分子化合物であることが好ましい。第2の層において、アルカリ金属元素を含む化合物は、本発明の発光素子を塗布法で作製できるので、アルカリ金属元素を含む高分子化合物であることが好ましい。
第2の層において、第2族元素を含む化合物は、本発明の発光素子の輝度寿命がより優れるので、第2族元素を含む金属錯体、第2族元素を含む無機化合物又は第2族元素を含む高分子化合物であることが好ましい。第2の層において、第2族元素を含む化合物は、本発明の発光素子を塗布法で作製できるので、第2族元素を含む高分子化合物であることが好ましい。
本発明の発光素子の輝度寿命がより優れるので、第2の層は、アルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物からなる群から選ばれる少なくとも1種と、式(H−1)で表される化合物とを含む層(以下、「第2’の層」という。)であることが好ましい。
第2’の層は、本発明の発光素子の輝度寿命が更に優れるので、好ましくは、アルカリ金属元素を含む化合物及び第2族元素を含む化合物からなる群から選ばれる少なくとも1種と、式(H−1)で表される化合物とを含む層であり、より好ましくはアルカリ金属元素を含む化合物と、式(H−1)で表される化合物とを含む層である。
第2’の層において、アルカリ金属元素を含む化合物は、本発明の発光素子の輝度寿命がより優れるので、アルカリ金属元素を含む金属錯体、アルカリ金属元素を含む無機化合物又はアルカリ金属元素を含む高分子化合物であることが好ましく、アルカリ金属元素を含む金属錯体であることがより好ましい。第2’の層において、第2族元素を含む化合物は、本発明の発光素子の輝度寿命がより優れるので、第2族元素を含む金属錯体、第2族元素を含む無機化合物又は第2族元素を含む高分子化合物であることが好ましく、アルカリ金属元素を含む金属錯体であることがより好ましい。
第2’の層は、式(H−1)で表される化合物を1種単独で含有していてもよく、2種以上を含有していてもよい。
第2’の層において、式(H−1)で表される化合物の含有量は、アルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物、並びに、式(H−1)で表される化合物の合計を100質量部とした場合、通常、1〜99質量部であり、好ましくは10〜95質量部であり、より好ましくは50〜90質量部である。
Figure 2018198976
[式中、
ArH1及びArH2は、それぞれ独立に、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。
H1及びnH2は、それぞれ独立に、0又は1を表す。nH1が複数存在する場合、それらは同一でも異なっていてもよい。複数存在するnH2は、同一でも異なっていてもよい。
H3は、0以上の整数を表す。
H1は、アリーレン基、2価の複素環基、又は、−[C(RH112]nH11−で表される基を表し、これらの基は置換基を有していてもよい。LH1が複数存在する場合、それらは同一でも異なっていてもよい。nH11は、1以上10以下の整数を表す。RH11は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRH11は、同一でも異なっていてもよく、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。
H2は、−N(−LH21−RH21)−で表される基を表す。LH2が複数存在する場合、それらは同一でも異なっていてもよい。LH21は、単結合、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。RH21は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。]
ArH1及びArH2は、フェニル基、フルオレニル基、スピロビフルオレニル基、ピリジル基、ピリミジニル基、トリアジニル基、キノリニル基、イソキノリニル基、チエニル基、ベンゾチエニル基、ジベンゾチエニル基、フリル基、ベンゾフリル基、ジベンゾフリル基、ピロリル基、インドリル基、アザインドリル基、カルバゾリル基、アザカルバゾリル基、ジアザカルバゾリル基、フェノキサジニル基又はフェノチアジニル基であることが好ましく、フェニル基、ピリジル基、ピリミジニル基、トリアジニル基、ジベンゾチエニル基、ジベンゾフリル基、カルバゾリル基、アザカルバゾリル基又はジアザカルバゾリル基であることがより好ましく、アザカルバゾリル基又はジアザカルバゾリル基であることが更に好ましく、これらの基は置換基を有していてもよい。
ArH1及びArH2が有していてもよい置換基としては、ハロゲン原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基が好ましく、アルキル基、シクロアルキル基、アルコキシ基又はシクロアルコキシ基がより好ましく、アルキル基又はシクロアルキル基が更に好ましく、これらの基は更に置換基を有していてもよい。
H1は、好ましくは1である。nH2は、好ましくは0である。
H3は、通常、0以上10以下の整数であり、好ましくは0以上5以下の整数であり、更に好ましくは1以上3以下の整数であり、特に好ましくは1である。
H11は、好ましくは1以上5以下の整数であり、より好ましく1以上3以下の整数であり、更に好ましく1である。
H11は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であることが好ましく、水素原子、アルキル基又はシクロアルキル基であることがより好ましく、水素原子又はアルキル基であることが更に好ましく、これらの基は置換基を有していてもよい。
H1は、アリーレン基又は2価の複素環基であることが好ましく、2価の複素環基がより好ましく、これらの基は置換基を有していてもよい。
H1におけるアリーレン基は、好ましくは、式(A−1)〜式(A−3)又は式(A−8)〜式(A−10)で表される基であり、より好ましくは式(A−1)、式(A−2)、式(A−8)又は式(A−9)で表される基であり、更に好ましくは式(A−1)又は式(A−2)で表される基である。
H1における2価の複素環基は、好ましくは、式(AA−1)〜式(AA−6)、式(AA−10)〜式(AA−21)又は式(AA−24)〜式(AA−34)で表される基であり、より好ましくは、式(AA−1)〜式(AA−4)、式(AA−10)〜式(AA−15)又は式(AA−29)〜式(AA−34)で表される基であり、更に好ましく式(AA−2)、式(AA−4)又は式(AA−10)〜式(AA−15)で表される基であり、特に好ましくは、式(AA−12)又は式(AA−14)で表される基である。
H1が有していてもよい置換基としては、ハロゲン原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基が好ましく、アルキル基、アルコキシ基、アリール基又は1価の複素環基がより好ましく、アルキル基、アリール基又は1価の複素環基が更に好ましく、アルキル基が特に好ましく、これらの基は更に置換基を有していてもよい。
H21は、単結合又はアリーレン基であることが好ましく、単結合であることがより好ましく、このアリーレン基は置換基を有していてもよい。
H21で表されるアリーレン基又は2価の複素環基の定義及び例は、LH1で表されるアリーレン基又は2価の複素環基の定義及び例と同様である。
H21は、アリール基又は1価の複素環基であることが好ましく、これらの基は置換基を有していてもよい。
H21で表されるアリール基及び1価の複素環基の定義及び例は、ArH1及びArH2で表されるアリール基及び1価の複素環基の定義及び例と同様である。
H21が有していてもよい置換基の定義及び例は、ArH1及びArH2が有していてもよい置換基の定義及び例と同様である。
式(H−1)で表される化合物は、式(H−2)で表される化合物であることが好ましい。
Figure 2018198976
[式中、ArH1、ArH2、nH3及びLH1は、前記と同じ意味を表す。]
式(H−1)で表される化合物としては、式(H−101)〜式(H−121)で表される化合物が例示される。
Figure 2018198976
Figure 2018198976
Figure 2018198976
Figure 2018198976
Figure 2018198976
・第2の組成物
第2の層は、
アルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物からなる群から選ばれる少なくとも1種と、
式(H−1)で表される化合物、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料及び酸化防止剤からなる群から選ばれる少なくとも1種の材料とを含む組成物(以下、「第2の組成物」ともいう。)を含有する層であってもよい。
第2の組成物において、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料及び発光材料は、それぞれ、アルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、第2族元素を含む化合物、及び、式(H−1)で表される化合物とは異なる。
第2の組成物に含有される正孔輸送材料、電子輸送材料、正孔注入材料、電子注入材料及び発光材料の例及び好ましい範囲は、第1の組成物に含有される正孔輸送材料、電子輸送材料、正孔注入材料、電子注入材料及び発光材料の例及び好ましい範囲と同じである。
第2の組成物において、正孔輸送材料、電子輸送材料、正孔注入材料、電子注入材料及び発光材料の配合量は、各々、アルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物の合計を100質量部とした場合、通常、1〜10000質量部であり、好ましくは10〜1000質量部であり、より好ましくは100〜500質量部である。
第2の組成物に含有される酸化防止剤の例及び好ましい範囲は、第1の組成物に含有される酸化防止剤の例及び好ましい範囲と同じである。第2の組成物において、酸化防止剤の配合量は、アルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物の合計を100質量部とした場合、通常、0.001〜10質量部である。
[第2のインク]
アルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物からなる群から選ばれる少なくとも1種の材料は、例えば、溶媒に溶解させて用いることができる。この材料と、溶媒とを含有する組成物(以下、「第2のインク」ともいう。)は、第1のインクの項で説明した塗布法に好適に使用することができる。第2のインクの粘度の好ましい範囲は、第1のインクの粘度の好ましい範囲と同じである。
第2のインクに含有される溶媒は、好ましくは、インク中の固形分を溶解又は均一に分散できる溶媒である。溶媒としては、下層(例えば、第1の層)の上に溶解性の差を利用して第2の層を積層できるので、水、アルコール、エーテル、エステル、ニトリル化合物、ニトロ化合物、フッ素化アルコール、チオール、スルフィド、スルホキシド、チオケトン、アミド、カルボン酸が好ましい。該溶媒の例としては、メタノール、エタノール、2−プロパノール、1−ブタノール、tert−ブチルアルコール、アセトニトリル、1,2−エタンジオール、N,N−ジメチルホルムアミド、ジメチルスルホキシド、酢酸、ニトロメタン、炭酸プロピレン、ピリジン、二硫化炭素、及び、これらの溶媒の混合溶媒が挙げられる。混合溶媒を用いる場合、水、アルコール、エーテル、エステル、ニトリル化合物、ニトロ化合物、フッ素化アルコール、チオール、スルフィド、スルホキシド、チオケトン、アミド、カルボン酸等のうちの1種以上の溶媒と、塩素系溶媒、芳香族炭化水素系溶媒、脂肪族炭化水素系溶媒及びケトン系溶媒のうちの1種以上の溶媒との混合溶媒であってもよい。
第2のインクにおいて、溶媒の配合量は、アルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物の合計を100質量部とした場合、通常、1000〜100000質量部であり、好ましくは2000〜20000質量部である。
[第3の層]
本発明の発光素子が有する第3の層は、輝度寿命がより優れるので、アルカリ金属元素を含む化合物及び第2族元素のみからなる単体からなる群から選ばれる少なくとも1種を含有する層であることが好ましい。
第3の層において、アルカリ金属元素を含む化合物は、本発明の発光素子の輝度寿命がより優れるので、アルカリ金属元素を含む金属錯体、アルカリ金属元素を含む無機化合物又はアルカリ金属元素を含む高分子化合物であることが好ましく、アルカリ金属元素を含む金属錯体又はアルカリ金属元素を含む無機化合物であることがより好ましく、アルカリ金属元素を含む無機化合物であることが更に好ましい。
第3の層において、第2族元素を含む化合物は、本発明の発光素子の輝度寿命がより優れるので、第2族元素を含む金属錯体、第2族元素を含む無機化合物又は第2族元素を含む高分子化合物であることが好ましく、第2族元素を含む金属錯体又は第2族元素を含む無機化合物であることがより好ましく、第2族元素を含む無機化合物であることが更に好ましい。
第3の層は、
アルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物からなる群から選ばれる少なくとも1種と、
式(H−1)で表される化合物、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料及び酸化防止剤からなる群から選ばれる少なくとも1種の材料とを含む組成物(以下、「第3の組成物」ともいう。)を含有する層であってもよい。
第3の組成物において、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料及び発光材料は、それぞれ、アルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、第2族元素を含む化合物、及び、式(H−1)で表される化合物とは異なる。
第3の組成物に含有される正孔輸送材料、電子輸送材料、正孔注入材料、電子注入材料及び発光材料の例及び好ましい範囲は、第1の組成物に含有される正孔輸送材料、電子輸送材料、正孔注入材料、電子注入材料及び発光材料の例及び好ましい範囲と同じである。
第3の組成物において、正孔輸送材料、電子輸送材料、正孔注入材料、電子注入材料及び発光材料の配合量は、各々、アルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物の合計を100質量部とした場合、通常、1〜10000質量部であり、好ましくは10〜1000質量部であり、より好ましくは100〜500質量部である。
第3の組成物に含有される酸化防止剤の例及び好ましい範囲は、第1の組成物に含有される酸化防止剤の例及び好ましい範囲と同じである。第3の組成物において、酸化防止剤の配合量は、アルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物の合計を100質量部とした場合、通常、0.001〜10質量部である。
第3の層は、本発明の発光素子の輝度寿命が更に優れるので、アルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物からなる群から選ばれる1種又は2種以上のみからなる層であることが好ましく、アルカリ金属元素を含む化合物及び第2族元素のみからなる単体からなる群から選ばれる1種又は2種以上のみからなる層であることがより好ましい。
また、第3の層は、本発明の発光素子を容易に製造できるので、アルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物からなる群から選ばれる1種以上5種以下のみからなる層であることが好ましく、アルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物からなる群から選ばれる1種以上3種以下のみからなる層であることが好ましく、アルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物からなる群から選ばれる1種のみからなる層であることが更に好ましい。
[第3のインク]
アルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物からなる群から選ばれる少なくとも1種の材料は、例えば、溶媒に溶解させて用いることができる。この材料と、溶媒とを含有する組成物(以下、「第3のインク」ともいう。)は、第1のインクの項で説明した塗布法に好適に使用することができる。第3のインクの粘度の好ましい範囲は、第1のインクの粘度の好ましい範囲と同じである。第3のインクに含有される溶媒の例及び好ましい範囲は、第1のインク又は第2のインクに含有される溶媒の例及び好ましい範囲と同じである。
第3のインクにおいて、溶媒の配合量は、アルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物の合計を100質量部とした場合、通常、1000〜100000質量部であり、好ましくは2000〜20000質量部である。
[層構成]
本発明の発光素子は、陽極と、陰極と、陽極及び陰極の間に設けられた第1の層と、第1の層及び陰極の間に設けられた第2の層と、第2の層及び陰極の間に前記陰極に接して設けられた第3の層とを有する。
本発明の発光素子において、第2の層及び第3の層は、それぞれ、1層である。
本発明の発光素子において、第1の層は2層以上設けられていてもよいが、本発明の発光素子の製造が容易になるので、1層であることが好ましい。
本発明の発光素子は、陽極、陰極、第1の層、第2の層及び第3の層以外の層を有していてもよい。
本発明の発光素子において、第1の層は、通常、発光層(以下、「第1の発光層」と言う。)である。
本発明の発光素子において、第2の層は、好ましくは、発光層(第1の発光層とは別個の発光層であり、以下、「第2の発光層」と言う。)、電子輸送層又は電子注入層であり、より好ましくは電子輸送層又は電子注入層であり、更に好ましくは電子輸送層である。
本発明の発光素子において、第3の層は、好ましくは、電子輸送層又は電子注入層であり、より好ましくは電子注入層ある。
本発明の発光素子において、好ましくは、第1の層は発光層であり、第2の層は電子輸送層であり、且つ、第3の層は電子注入層である。
本発明の発光素子において、第1の層と第2の層とは、本発明の発光素子の輝度寿命がより優れるので、隣接していることが好ましい。
本発明の発光素子において、第2の層と第3の層とは、本発明の発光素子の輝度寿命がより優れるので、隣接していることが好ましい。
本発明の発光素子において、第1の層と第2の層と第3の層とは、本発明の発光素子の輝度寿命が更に優れるので、隣接していることが好ましい。
本発明の発光素子において、第2の層は、本発明の発光素子の輝度寿命がより優れるので、陰極及び第1の層の間に設けられた電子輸送層又は電子注入層であることが好ましく、陰極及び第1の層の間に設けられた電子輸送層であることがより好ましい。
本発明の発光素子において、第3の層は、本発明の発光素子の輝度寿命がより優れるので、陰極及び第2の層の間に陰極に隣接して設けられた電子注入層であることが好ましい。
本発明の発光素子は、輝度寿命がより優れるので、陽極と第1の層との間に、正孔注入層及び正孔輸送層のうちの少なくとも1つの層を更に有することが好ましく、正孔注入層及び正孔輸送層の両方を更に有することがより好ましい。
本発明の発光素子が陽極と第1の層との間に正孔注入層を有する場合、本発明の発光素子の輝度寿命がより優れるので、陽極と正孔注入層とは隣接していることが好ましい。本発明の発光素子が陽極と第1の層との間に正孔輸送層を有する場合、本発明の発光素子の輝度寿命がより優れるので、第1の層と正孔輸送層とは隣接していることが好ましい。本発明の発光素子が陽極と第1の層との間に正孔注入層及び正孔輸送層を有する場合、本発明の発光素子の輝度寿命がより優れるので、正孔注入層は、陽極と正孔輸送層との間に設けられた層であることが好ましく、陽極と正孔輸送層との間に、陽極又は正孔輸送層に隣接して設けられた層であることがより好ましく、陽極と正孔輸送層との間に、陽極及び正孔輸送層に隣接して設けられた層であることが更に好ましい。
本発明の発光素子は、発光色を調整することできるので、第2の発光層を有することが好ましい。
本発明の発光素子が第2の発光層を有する場合、輝度寿命がより優れるので、第1の発光層と第2の発光層とは隣接していることが好ましい。
本発明の発光素子が第2の発光層を有する場合、輝度寿命がより優れるので、第2の発光層は、陽極及び第1の層の間に設けられた層であることが好ましく、陽極及び第1の層の間に、第1の層に隣接して設けられた層であることがより好ましい。
本発明の発光素子が第2の発光層を有し、且つ、第2の発光層が陰極及び第1の層の間に設けられた層である場合、輝度寿命がより優れるので、陽極と第1の層との間に、正孔注入層及び正孔輸送層のうちの少なくとも1つの層を更に有することが好ましく、正孔注入層及び正孔輸送層の両方を更に有することがより好ましい。
本発明の発光素子が第2の発光層を有し、且つ、第2の発光層が陽極及び第1の層の間に設けられた層である場合、輝度寿命がより優れるので、陽極と第2の発光層との間に、正孔注入層及び正孔輸送層のうちの少なくとも1つの層を更に有することが好ましく、正孔注入層を更に有することがより好ましい。
本発明の発光素子が第2の発光層を有し、第2の発光層が陽極及び第1の層の間に設けられた層であり、且つ、陽極と第2の発光層との間に正孔注入層を有する場合、輝度寿命がより優れるので、正孔注入層は、陽極又は第2の発光層と隣接して設けられた層であることが好ましく、陽極と隣接して設けられた層であることが好ましい。本発明の発光素子が第2の発光層を有し、第2の発光層が陽極及び第1の層の間に設けられた層であり、且つ、陽極と第2の発光層との間に正孔輸送層を有する場合、輝度寿命がより優れるので、正孔輸送層は、陽極又は第2の発光層と隣接して設けられた層であることが好ましく、第2の発光層と隣接して設けられた層であることが好ましい。本発明の発光素子が第2の発光層を有し、第2の発光層が陽極及び第1の層の間に設けられた層であり、且つ、陽極と第2の発光層との間に正孔注入層及び正孔輸送層を有する場合、輝度寿命がより優れるので、正孔注入層は、陽極と正孔輸送層との間に設けられた層であることが好ましく、陽極と正孔輸送層との間に、陽極又は正孔輸送層に隣接して設けられた層であることがより好ましく、陽極と正孔輸送層との間に、陽極及び正孔輸送層に隣接して設けられた層であることが更に好ましい。
本発明の発光素子の層構成としては、例えば、(D1)〜(D9)で表される層構成が挙げられ、好ましくは、(D3)〜(D6)で表される層構成である。本発明の発光素子は、通常、基板を有するが、基板上に陽極から積層されていてもよく、基板上に陰極から積層されていてもよい。
(D1)陽極/第1の発光層(第1の層)/第2の発光層(第2の層)/電子輸送層(第3の層)/陰極
(D2)陽極/第1の発光層(第1の層)/電子輸送層(第2の層)/電子注入層(第3の層)/陰極
(D3)陽極/正孔注入層/第2の発光層/第1の発光層(第1の層)/電子輸送層(第2の層)/電子注入層(第3の層)/陰極
(D4)陽極/正孔輸送層/第2の発光層/第1の発光層(第1の層)/電子輸送層(第2の層)/電子注入層(第3の層)/陰極
(D5)陽極/正孔注入層/正孔輸送層/第1の発光層(第1の層)/電子輸送層(第2の層)/電子注入層(第3の層)/陰極
(D6)陽極/正孔注入層/正孔輸送層/第2の発光層/第1の発光層(第1の層)/電子輸送層(第2の層)/電子注入層(第3の層)/陰極
(D7)陽極/正孔注入層/正孔輸送層/第1の発光層(第1の層)/第2の発光層/電子輸送層(第2の層)/電子注入層(第3の層)/陰極
(D8)陽極/正孔注入層/正孔輸送層/第1の発光層(第1の層)/電子輸送層(第2の層)/電子輸送層/電子注入層(第3の層)/陰極
(D9)陽極/正孔注入層/正孔輸送層/第1の発光層(第1の層)/電子輸送層(第2の層)/電子注入層/電子注入層(第3の層)/陰極
(D1)〜(D9)中、「/」は、その前後の層が隣接して積層していることを意味する。具体的には、「第1の発光層(第1の層)/電子輸送層(第2の層)/電子注入層(第3の層)」とは、第1の発光層(第1の層)と電子輸送層(第2の層)と電子注入層(第3の層)とが隣接して積層していることを意味する。
本発明の発光素子において、陽極、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層及び陰極は、それぞれ、必要に応じて、2層以上設けられていてもよいが、本発明の発光素子の製造が容易になるので、陽極、正孔注入層、正孔輸送層、電子輸送層、電子注入層及び陰極は、それぞれ、1層であることが好ましい。
陽極、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層及び陰極が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。
陽極、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層及び陰極の厚さは、通常、1nm〜1μmであり、好ましくは2nm〜500nmであり、更に好ましくは5nm〜150nmである。
本発明の発光素子において、積層する層の順番、数、及び厚さは、発光素子の輝度寿命、駆動電圧及び素子寿命を勘案して調整すればよい。
[第2の発光層]
第2の発光層は、通常、第2の層又は発光材料を含有する層であり、好ましくは、発光材料を含有する層である。第2の発光層が発光材料を含有する層である場合、第2の発光層に含有される発光材料としては、例えば、前述の第1の組成物が含有していてもよい発光材料及び燐光発光性化合物が挙げられる。第2の発光層に含有される発光材料は、1種単独で含有されていてもよく、2種以上が含有されていてもよい。
本発明の発光素子が第2の発光層を有し、且つ、第2の層が電子輸送層及び電子注入層ではない場合、第2の発光層は第2の層であることが好ましい。
[正孔輸送層]
正孔輸送層は、通常、正孔輸送材料を含有する層である。正孔輸送層が正孔輸送材料を含有する層である場合、正孔輸送材料としては、例えば、前述の第1の組成物が含有していてもよい正孔輸送材料が挙げられる。正孔輸送層に含有される正孔輸送材料は、1種単独で含有されていてもよく、2種以上が含有されていてもよい。
[電子輸送層]
電子輸送層は、通常、第2の層、第3の層又は電子輸送材料を含有する層であり、好ましくは第2の層又は第3の層であり、より好ましくは第2の層である。電子輸送層が電子輸送材料を含有する層である場合、電子輸送層に含有される電子輸送材料としては、例えば、前述の第1の組成物が含有していてもよい電子輸送材料が挙げられる。電子輸送層に含有される電子輸送材料は、1種単独で含有されていてもよく、2種以上が含有されていてもよい。
本発明の発光素子が電子輸送層を有し、且つ、第2の層が第2の発光層及び電子注入層ではない場合、電子輸送層は第2の層であることが好ましい。
本発明の発光素子が電子輸送層を有し、且つ、第3の層が電子注入層である場合、電子輸送層は第2の層であることが好ましい。
本発明の発光素子が電子輸送層を有し、且つ、第3の層が電子注入層ではない場合、電子輸送層は第3の層であることが好ましい。
本発明の発光素子が電子輸送層を有し、且つ、第2の層が第2の発光層である場合、電子輸送層は第3の層であることが好ましい。
[正孔注入層及び電子注入層]
正孔注入層は、通常、正孔注入材料を含有する層である。正孔注入層に含有される正孔注入材料としては、例えば、前述の第1の組成物が含有していてもよい正孔注入材料が挙げられる。正孔注入層に含有される正孔注入材料は、1種単独で含有されていてもよく、2種以上が含有されていてもよい。
電子注入層は、通常、第2の層、第3の層又は電子注入材料を含有する層であり、好ましくは第2の層又は第3の層であり、より好ましくは第3の層である。電子注入層に含有される電子注入材料としては、例えば、前述の第1の組成物が含有していてもよい電子注入材料が挙げられる。電子注入層に含有される電子注入材料は、1種単独で含有されていてもよく、2種以上が含有されていてもよい。
本発明の発光素子が電子注入層を有し、且つ、第2の層が第2の発光層及び電子輸送層ではない場合、電子注入層は第2の層であることが好ましい。
本発明の発光素子が電子注入層を有し、且つ、第3の層が電子輸送層ではない場合、電子注入層は第3の層であることが好ましい。
本発明の発光素子が電子注入層を有し、且つ、第2の層が第2の発光層又は電子輸送層である場合、電子注入層は第3の層であることが好ましい。
[基板/電極]
発光素子における基板は、電極を形成することができ、かつ、有機層を形成する際に化学的に変化しない基板であればよく、例えば、ガラス、プラスチック、シリコン等の材料からなる基板である。不透明な基板を使用する場合には、基板から最も遠くにある電極が透明又は半透明であることが好ましい。
陽極の材料としては、例えば、導電性の金属酸化物、半透明の金属が挙げられ、好ましくは、酸化インジウム、酸化亜鉛、酸化スズ;インジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド等の導電性化合物;銀とパラジウムと銅との複合体(APC);NESA、金、白金、銀、銅である。
陰極の材料としては、例えば、アルミニウム、亜鉛、インジウム等の金属;それらのうち2種以上の合金;それらのうち1種以上と、銀、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫のうち1種以上との合金;並びに、グラファイト及びグラファイト層間化合物が挙げられる。合金としては、例えば、インジウム−銀合金が挙げられる。
本発明の発光素子において、陽極及び陰極の少なくとも一方は、通常、透明又は半透明であるが、陽極が透明又は半透明であることが好ましい。
陽極及び陰極の形成方法としては、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法及びラミネート法が挙げられる。
[製造方法]
本発明の発光素子において、第1の層、第2の層、第3の層、及び、その他の層の形成方法としては、低分子化合物を用いる場合、例えば、粉末からの真空蒸着法、溶液又は溶融状態からの成膜による方法が挙げられ、高分子化合物を用いる場合、例えば、溶液又は溶融状態からの成膜による方法が挙げられる。第1の層、第2の層、第3の層、及び、その他の層は、上述した各種インク、各種材料を含むインクを用いて、前述の第1のインクの項で説明した塗布法により形成してもよいし、真空蒸着法等の乾式法により形成してもよい。
第1の層を塗布法により形成する場合、第1のインクを用いることが好ましい。第1の層は、本発明の発光素子の製造が容易になるので、塗布法により形成することが好ましい。
第2の層を塗布法により形成する場合、第2のインクを用いることが好ましい。第2の層は、本発明の発光素子の製造が容易になるので、塗布法により形成することが好ましい。
第3の層を塗布法により形成する場合、第3のインクを用いることが好ましい。
第3の層は、本発明の発光素子の輝度寿命がより優れるので、乾式法により形成することが好ましい。
本実施形態の発光素子は、例えば、基板上に各層を順次積層することにより製造することができる。具体的には、基板上に陽極を設け、その上に正孔注入層、正孔輸送層等の層を設け、その上に発光層を設け、その上に電子輸送層、電子注入層等の層を設け、更にその上に、陰極を積層することにより、発光素子を製造することができる。他の製造方法としては、基板上に陰極を設け、その上に電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層等の層を設け、更にその上に、陽極を積層することにより、発光素子を製造することができる。更に他の製造方法としては、陽極または陽極上に各層を積層した陽極側基材と陰極または陰極上に各層を積層させた陰極側基材とを、対向させて接合することにより製造することができる。
[用途]
発光素子を用いて面状の発光を得るためには、面状の陽極と陰極が重なり合うように配置すればよい。パターン状の発光を得るためには、面状の発光素子の表面にパターン状の窓を設けたマスクを設置する方法、非発光部にしたい層を極端に厚く形成し実質的に非発光とする方法、陽極若しくは陰極、又は両方の電極をパターン状に形成する方法がある。これらのいずれかの方法でパターンを形成し、いくつかの電極を独立にON/OFFできるように配置することにより、数字、文字等を表示できるセグメントタイプの表示装置が得られる。ドットマトリックス表示装置とするためには、陽極と陰極を共にストライプ状に形成して直交するように配置すればよい。複数の種類の発光色の異なる高分子化合物を塗り分ける方法、カラーフィルター又は蛍光変換フィルターを用いる方法により、部分カラー表示、マルチカラー表示が可能となる。ドットマトリックス表示装置は、パッシブ駆動も可能であるし、TFT等と組み合わせてアクティブ駆動も可能である。これらの表示装置は、コンピュータ、テレビ、携帯端末等のディスプレイに用いることができる。面状の発光素子は、液晶表示装置のバックライト用の面状光源、又は、面状の照明用光源として好適に用いることができる。フレキシブルな基板を用いれば、曲面状の光源及び表示装置としても使用できる。
以下、実施例によって本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
実施例において、高分子化合物のポリスチレン換算の数平均分子量(Mn)及びポリスチレン換算の重量平均分子量(Mw)は、移動相にテトラヒドロフランを用い、下記のサイズエクスクルージョンクロマトグラフィー(SEC)により求めた。
測定する高分子化合物を約0.05質量%の濃度でテトラヒドロフランに溶解させ、SECに10μL注入した。移動相は、1.0mL/分の流量で流した。カラムとして、PLgel MIXED−B(ポリマーラボラトリーズ製)を用いた。検出器にはUV−VIS検出器(東ソー製、商品名:UV−8320GPC)を用いた。
NMRは、下記の方法で測定した。
5〜10mgの測定試料を約0.5mLの重クロロホルム(CDCl3)、重テトラヒドロフラン、重ジメチルスルホキシド、重アセトン、重N,N-ジメチルホルムアミド、重トルエン、重メタノール、重エタノール、重2−プロパノール又は重塩化メチレンに溶解させ、NMR装置(JEOL RESONANCE製、商品名:JNM−ECZ400S/L1)を用いて測定した。
化合物の純度の指標として、高速液体クロマトグラフィー(HPLC)面積百分率の値を用いた。この値は、特に記載がない限り、HPLC(島津製作所製、商品名:LC−20A)でのUV=254nmにおける値とする。この際、測定する化合物は、0.01〜0.2質量%の濃度になるようにテトラヒドロフラン又はクロロホルムに溶解させ、濃度に応じてHPLCに1〜10μL注入した。HPLCの移動相には、アセトニトリル/テトラヒドロフランの比率を100/0〜0/100(容積比)まで変化させながら用い、1.0mL/分の流量で流した。カラムは、SUMIPAX ODS Z−CLUE(住化分析センター製、内径:4.6mm、長さ:250mm、粒径3μm)又は同等の性能を有するODSカラムを用いた。検出器には、フォトダイオードアレイ検出器(島津製作所製、商品名:SPD−M20A)を用いた。
本実施例において、化合物の発光スペクトルの最大ピーク波長は、分光光度計(日本分光株式会社製、FP−6500)により室温にて測定した。化合物をキシレンに、約0.8×10-4質量%の濃度で溶解させたキシレン溶液を試料として用いた。励起光としては、波長325nmのUV光を用いた。
<合成例M1> 化合物M1〜M9及び金属錯体RM1の合成
化合物M1、M2及びM3は、国際公開第2013/146806号に記載の方法に従って合成した。
化合物M4は、特開2012−33845号公報に記載の方法に従って合成した。
化合物M5は、特開2010−189630号公報に記載の方法に従って合成した。
化合物M6は特開2011―174062号公報に記載の方法に従って合成した。
化合物M7は国際公開第2002/045184号に記載の方法に従って合成した。
化合物M8は国際公開第2005/049546号に記載の方法に従って合成した
化合物M9は特開2008−106241号公報に記載の方法に従って合成した。
金属錯体RM1は、国際公開第2009/157424号に記載の方法に従って合成した。
Figure 2018198976
Figure 2018198976
Figure 2018198976
<合成例HTL1> 高分子化合物HTL−1の合成
反応容器内を不活性ガス雰囲気とした後、化合物M1(2.52g)、化合物M2(0.470g)、化合物M3(4.90g)、金属錯体RM1(0.530g)、ジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(4.2mg)及びトルエン(158mL)を加え、100℃に加熱した。その後、そこに、20質量%水酸化テトラエチルアンモニウム水溶液(16mL)を滴下し、8時間還流させた。その後、そこに、フェニルボロン酸(116mg)及びジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(4.2mg)を加え、15時間還流させた。その後、そこに、ジエチルジチアカルバミン酸ナトリウム水溶液を加え、85℃で2時間撹拌した。得られた反応易を冷却した後、3.6質量%塩酸、2.5質量%アンモニア水、水でそれぞれ洗浄した。得られた溶液をメタノールに滴下したところ、沈殿が生じた。得られた沈殿物をトルエンに溶解させ、アルミナカラム、シリカゲルカラムの順番で通すことにより精製した。得られた溶液をメタノールに滴下し、撹拌した後、得られた沈殿物をろ取し、乾燥させることにより、高分子化合物HTL−1を6.02g得た。高分子化合物HTL−1のMnは3.8×104であり、Mwは4.5×105であった。
高分子化合物HTL−1は、仕込み原料の量から求めた理論値では、化合物M1から誘導される構成単位と、化合物M2から誘導される構成単位と、化合物M3から誘導される構成単位と、金属錯体RM1から誘導される構成単位とが、40:10:47:3のモル比で構成されてなる共重合体である。
高分子化合物HTL−1の発光スペクトルは404nm及び600nmに極大波長を有し、高分子化合物HTL−1の発光スペクトルの最大ピーク波長は404nmであった。
<合成例HTL2> 高分子化合物HTL−2の合成
高分子化合物HTL−2は、化合物M6、化合物M7、化合物M8及び化合物M9を用いて、特開2011―174062号公報に記載の方法に従って合成した。高分子化合物HTL−2のMnは7.8×104であり、Mwは2.6×105であった。
高分子化合物HTL−2は、仕込み原料の量から求めた理論値では、化合物M6から誘導される構成単位と、化合物M7から誘導される構成単位と、化合物M8から誘導される構成単位と、化合物M9から誘導される構成単位とが、50:12.5:30:7.5のモル比で構成される共重合体である。
<合成例HTL3> 高分子化合物HTL−3の合成
反応容器内を不活性ガス雰囲気とした後、化合物M1(0.800g)、化合物M2(0.149g)、化合物M3(1.66g)、ジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(1.4mg)及びトルエン(45mL)を加え、100℃に加熱した。その後、そこに、20質量%水酸化テトラエチルアンモニウム水溶液(16mL)を滴下し、7時間還流させた。その後、そこに、2-エチルフェニルボロン酸(90mg)及びジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(1.3mg)を加え、17.5時間還流させた。その後、そこに、ジエチルジチアカルバミン酸ナトリウム水溶液を加え、85℃で2時間撹拌した。得られた反応液を冷却した後、3.6質量%塩酸、2.5質量%アンモニア水、水でそれぞれ洗浄した。得られた溶液をメタノールに滴下したところ、沈殿が生じた。得られた沈殿物をトルエンに溶解させ、アルミナカラム、シリカゲルカラムの順番で通すことにより精製した。得られた溶液をメタノールに滴下し、撹拌した後、得られた沈殿物をろ取し、乾燥させることにより、高分子化合物HTL−1を1.64g得た。高分子化合物HTL−3のMnは3.5×104であり、Mwは2.2×105であった。
高分子化合物HTL−3は、仕込み原料の量から求めた理論値では、化合物M1から誘導される構成単位と、化合物M2から誘導される構成単位と、化合物M3から誘導される構成単位とが、40:10:50のモル比で構成されてなる共重合体である。
<合成例B1、B3、B4、G1〜G4及びR1〜R4> 燐光発光性化合物B1、B3、B4、G1〜G4及びR1〜R4の合成
燐光発光性化合物B1は、国際公開第2006/121811号及び特開2013−048190号公報に記載の方法に準じて合成した。
燐光発光性化合物B3は、国際公開第2016/185183号公報に記載の方法に準じて合成した。
燐光発光性化合物B4は、国際公開第2006/121811号に記載の方法に準じて合成した。
燐光発光性化合物G1は、国際公開第2009/131255号に記載の方法に準じて合成した。
燐光発光性化合物G2は、特開2013−237789号公報に記載の方法に従って合成した。
燐光発光性化合物G3及びG4は、特開2014−224101号公報に記載の方法に従って合成した。
燐光発光性化合物R1は、特開2006−188673号公報に記載の方法に準じて合成した。
燐光発光性化合物R2は、特開2008−179617号公報に記載の方法に従って合成した。
燐光発光性化合物R3は、国際公開第2002/044189号に記載の方法に準じて合成した。
燐光発光性化合物R4は、特開2011−105701号公報に記載の方法に従って合成した。
Figure 2018198976
Figure 2018198976
Figure 2018198976
Figure 2018198976
Figure 2018198976
燐光発光性化合物B1の発光スペクトルの最大ピーク波長は471nmであった。
燐光発光性化合物B3の発光スペクトルの最大ピーク波長は476nmであった。
燐光発光性化合物B4の発光スペクトルの最大ピーク波長は469nmであった。
燐光発光性化合物G1の発光スペクトルの最大ピーク波長は514nmであった。
燐光発光性化合物G2の発光スペクトルの最大ピーク波長は508nmであった。
燐光発光性化合物G3の発光スペクトルの最大ピーク波長は545nmであった。
燐光発光性化合物G4の発光スペクトルの最大ピーク波長は514nmであった。
燐光発光性化合物R1の発光スペクトルの最大ピーク波長は619nmであった。
燐光発光性化合物R2の発光スペクトルの最大ピーク波長は594nmであった。
燐光発光性化合物R3の発光スペクトルの最大ピーク波長は617nmであった。
燐光発光性化合物R4の発光スペクトルの最大ピーク波長は611nmであった。
<合成例B2> 燐光発光性化合物B2の合成
Figure 2018198976
(化合物L2−3の合成)
反応容器内を窒素ガス雰囲気とした後、化合物L2−1(21.4g)、トリエチルアミン(13.0mL)及びテトラヒドロフラン(300mL)を加え、0℃に冷却した。その後、そこへ、化合物L2−2(12.8mL)を滴下し、室温で16時間撹拌した。その後、そこへ、イオン交換水(100mL)を加えたところ、沈殿物が生じた。得られた沈殿物を含む反応液をろ過することにより、残渣L2−3−1及びろ液L2−3−2を得た。
得られた残渣L2−3−1をトルエンで洗浄した後、減圧乾燥させることにより、固体L2−3’(24.5g)を得た。
得られたろ液L2−3−2から水層を除去し、得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過した。得られたろ液を減圧濃縮した後、トルエン及びヘプタンの混合溶媒で晶析を行った。得られた固体を減圧乾燥することにより、固体L2−3’’(3.9g)を得た。
得られた固体L2−3’と固体L2−3’’とを合一した後、トルエン及びヘプタンの混合溶媒を用いて晶析した。得られた固体を減圧乾燥させることにより、化合物L2−3(27.8g、白色固体)を得た。化合物L2−3のHPLC面積百分率値は98.9%であった。
化合物L2−3の分析結果は以下のとおりであった。
H−NMR(600MHz,THF−d):δ(ppm)=7.57(d,2H),7.43(t,2H),7.35(s,2H),7.34(t,1H),6.82(brs,1H),3.08(septet,2H),1.73(q,2H),1.34(s,6H),1.25(d,12H),1.00(t,3H).
(化合物L2−5の合成)
化合物L2−5は、化合物L2−3(19.1g)、化合物L2−4(9.0g)、クロロベンゼン(150mL)、2−フルオロピリジン(5.15mL)及びトリフルオロメタンスルホン酸無水物(10.0mL)を用いて、Organic Letters,17巻,1184−1187頁,2015年に記載の方法に準じて合成した。
化合物L2−5の分析結果は以下のとおりであった。
H−NMR(600MHz,CDCl):δ(ppm)=7.68(d,2H),7.52(t,2H),7.50(s,2H),7.43(t,1H),7.26(s,1H),7.05−6.98(m,3H),2.53(septet,2H),2.15(s,3H),1.88(q,2H),1.28(d,6H),1.23(s,6H),0.89(t,3H),0.77(d,6H).
(燐光発光性化合物B2の合成)
反応容器内を窒素ガス雰囲気とした後、トリス(アセチルアセトナト)イリジウム(III)(0.72g)、化合物L2−5(2.8g)及びペンタデカン(2mL)を加え、300℃で24時間撹拌した。得られた反応液を室温まで冷却した後、シリカゲルカラムクロマトグラフィー(塩化メチレン及び酢酸エチルの混合溶媒)により精製し、次いで、アセトニトリル及びトルエンの混合溶媒、トルエン及びメタノールの混合溶媒、並びに、塩化メチレン及びアセトニトリルの混合溶媒を用いて順次晶析を行った。得られた固体を塩化メチレンで洗浄後、減圧乾燥させることにより、燐光発光性化合物B2(0.82g)を得た。燐光発光性化合物B2のHPLC面積百分率値は98.8%であった。
燐光発光性化合物B2の分析結果は以下のとおりであった。
H−NMR(600MHz,THF−d):δ(ppm)=7.74(d,6H),7.64(dd,6H),7.48(t,6H),7.38(t,3H),6.68(d,3H),6.30(d,3H),5.62(s,3H),2.94(septet,3H),2.37(septet,3H),1.75(s,9H),1.71−1.64(m,6H),1.34(d,9H),1.22−1.17(m,27H),0.98(d,9H),0.90(d,9H),0.81(d,9H).
燐光発光性化合物B2の発光スペクトルの最大ピーク波長は474nmであった。
<合成例B5> 燐光発光性化合物B5の合成
Figure 2018198976
(化合物L5−2の合成)
反応容器内を窒素ガス雰囲気とした後、化合物L5−1(50g)及びN−メチル−2−ピロリドン(200mL)を加え、0℃で撹拌した。その後、そこへ、N−メチル−2−ピロリドン(40mL)に溶解させた化合物L5−1’(40g)を滴下し、室温で18時間撹拌した。得られた反応液をイオン交換水(1.2L)に注いだところ、沈殿物が生じた。得られた沈殿物をろ取した後、1M塩酸水溶液、イオン交換水及びヘプタンで順次洗浄した。得られた固体を減圧乾燥させることにより、化合物L5−2(43g、白色固体)を得た。
化合物L5−2の分析結果は以下のとおりであった。
1H−NMR(600MHz、CDCl3)δ(ppm)=9.64(br,1H),8.90(br,1H),7.86(d,2H),7.56(t,1H),7.45(t,2H),7.02−7.08(m,3H),2.41(s,6H).
(化合物L5−3の合成)
反応容器内を窒素ガス雰囲気とした後、化合物L5−2(43g)及びトルエン(740mL)を加え、室温で撹拌した。その後、そこへ、五塩化リン(67g)を加えた後、110℃で21時間撹拌した。得られた反応液を室温まで冷却した後、氷水(500mL)に注ぎ、2時間撹拌した後、水層を除去した。得られた有機層をイオン交換水及び10質量%炭酸水素ナトリウム水溶液でそれぞれ洗浄した。得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過した。得られたろ液を減圧濃縮することにより、化合物L5−3(40g)を得た。
(化合物L5−5の合成)
反応容器内を窒素ガス雰囲気とした後、化合物L5−3(40g)、化合物L5−4(32g)及びキシレン(800mL)を加え、室温で撹拌した。その後、そこへ、p−トルエンスルホン酸(3g)を加え、120℃で116時間撹拌した。得られた反応液を室温まで冷却した後、イオン交換水(800mL)を加え、室温で1時間撹拌した。得られた反応液から水層を除去した後、得られた有機層を5質量%炭酸水素ナトリウム水溶液で洗浄した。得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過した。得られたろ液を減圧濃縮することにより、粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘプタン及び酢酸エチルの混合溶媒)及びシリカゲルカラムクロマトグラフィー(アセトニトリル及びテトラヒドロフラン)により順次精製することにより、化合物L4−5(1.3g、白色固体)を得た。化合物L5−5のHPLC面積百分率値は99.5%以上であった。上記操作を繰り返し行うことにより、必要量の化合物L4−5を得た。
化合物L5−5の分析結果は以下のとおりであった。
1H−NMR(600MHz、THF−d8)δ(ppm)=7.42(d,2H),7.30(t,1H),7.24(t,2H),7.15(t,1H),6.98(d,2H),6.85(s,2H),2.51(t,2H),2.07(s,6H),1.81(s,6H),1.56(m,2H),1.26−1.32(m,6H),0.88(t,3H).
(燐光発光性化合物B5の合成)
反応容器内を窒素ガス雰囲気とした後、トリス(アセチルアセトナト)イリジウム(III)(0.6g)、化合物L5−5(2.0g)及びトリデカン(2mL)を加え、250℃で120時間攪拌した。得られた反応液を室温まで冷却した後、シリカゲルカラムクロマトグラフィー(ヘプタン及び酢酸エチルの混合溶媒)により精製した後、塩化メチレン及びアセトニトリルの混合溶媒を用いて晶析を行った。得られた固体を減圧乾燥させることにより、燐光発光性化合物B5(0.6g、黄色固体)を得た。燐光発光性化合物B5のHPLC面積百分率値は99.2%であった。
燐光発光性化合物B5の分析結果は以下のとおりであった。
1H−NMR(600MHz、THF−d8)δ(ppm)=7.04−7.08(m, 6H),6.93(s,3H),6.92(s,3H),6.88(d,3H),6.84(d,3H),6.61(t,3H),6.43(t,3H),6.29(d,3H),2.57(t,6H),2.12(s,9H),1.95(s,9H),1.82(s,9H),1.70(s,9H),1.62(m,6H),1.28−1.36(m,18H),0.89(t,9H).
燐光発光性化合物B5の発光スペクトルの最大ピーク波長は468nmであった。
<合成例B6> 燐光発光性化合物B6の合成
Figure 2018198976
(反応混合物L6−1’の合成)
反応容器内を窒素ガス雰囲気とした後、化合物L6−1(50g)及び塩化チオニル(100mL)を加え、還流下で3時間撹拌した。得られた反応混合物を室温まで冷却した後、塩化チオニルを減圧留去することにより、反応混合物L6−1’を得た。
(化合物L6−2の合成)
反応容器内を窒素ガス雰囲気とした後、化合物L5−1(47g)及びテトラヒドロフラン(1L)を加え、0℃に冷却した。その後、そこへ、トリエチルアミン(54mL)を加え、0℃で45分間撹拌した。その後、そこへ、(反応混合物L6−1’の合成)で得られた反応混合物L6−1’(全量)を加え、室温で16時間撹拌した。得られた反応液をろ過した後、得られたろ液を減圧濃縮することにより、粗生成物を得た。得られた粗生成物を、酢酸エチル及びヘキサンの混合溶媒で洗浄した後、減圧乾燥させることにより、化合物L6−2(50g)を得た。化合物L6−2のHPLC面積百分率値は95.2%であった。上記操作を繰り返し行うことにより、必要量の化合物L6−2を得た。
化合物L6−2の分析結果は以下のとおりであった。
LC−MS(APCI,positive):m/z=263[M+H]+
1H−NMR(300MHz,CDCl3):δ(ppm)=0.84(t,9H),1.64(q,6H),7.39−7.54(m,3H),7.81−7.84(m,2H),8.72−8.74(m,1H),9.66−9.68(m,1H).
(化合物L6−3の合成)
反応容器内を窒素ガス雰囲気とした後、化合物L6−2(58g)及びトルエン(600mL)を加え、室温で撹拌した。その後、そこへ、五塩化リン(92g)を加えた後、110℃で3時間撹拌した。得られた反応液を室温まで冷却した後、化合物L6−4(78.2g)及びp−トルエンスルホン酸(3g)を加え、130℃で4日間撹拌した。得られた反応液を室温まで冷却し、減圧濃縮した後、酢酸エチル(2L)を加え、10質量%炭酸水素ナトリウム水溶液で洗浄した。得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過し、得られたろ液を減圧濃縮することにより、粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(メタノール及びクロロホルムの混合溶媒)により精製した後、アセトニトリルを用いて晶析を行った後、減圧乾燥させることにより、化合物L6−3(6g)を得た。化合物L6−3のHPLC面積百分率値は99.1%であった。
化合物L6−3の分析結果は以下のとおりであった。
LC−MS(APCI,positive):m/z=404[M+H]+
1H−NMR(400MHz,CDCl3):δ(ppm)=0.83(t,9H),1.34(s,9H),1.64(q,6H),1.96(s,6H),7.12(s,2H),7.20−7.23(m,2H),7.28−7.34(m,3H).
(燐光発光性化合物B6の合成)
反応容器内を窒素ガス雰囲気とした後、トリス(アセチルアセトナト)イリジウム(III)(1.4g)、化合物L6−3(4.6g)及びペンタデカン(2mL)を加え、300℃で18時間撹拌した。得られた反応液を室温まで冷却し、トルエンに溶解させた後、減圧濃縮させることにより、粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘプタン及び酢酸エチルの混合溶媒)により精製した後、アセトニトリル及びトルエンの混合溶媒を用いて晶析を行った。得られた固体を減圧乾燥させることにより、燐光発光性化合物B5(2.8g)を得た。燐光発光性化合物B6のHPLC面積百分率値は99.5%以上であった。
燐光発光性化合物B6の分析結果は以下のとおりであった。
1H−NMR(600MHz,THF−d8):δ(ppm)=7.30(s,6H),6.90(d,3H),6.44−6.48(m,3H),6.22−6.26(m,3H),5.77(d,3H),2.10(s,9H),1.89(s,9H),1.56(s,18H),1.38(s,27H),0.73(t,27H).
燐光発光性化合物B6の発光スペクトルの最大ピーク波長は464nmであった。
<化合物HM−1、化合物EM−1、化合物EM−3、化合物EM−4及び化合物EM−5の入手>
化合物HM−1、化合物EM−1、化合物EM−3、化合物EM−4及び化合物EM−5は、Luminescence Technology社より購入した。
Figure 2018198976
Figure 2018198976
<合成例HM−2> 化合物HM−2の合成
Figure 2018198976
反応容器内を窒素ガス雰囲気とした後、化合物HM−2a(15.6g)、化合物HM−2b(10.3g)、トルエン(390mL)、テトラキス(トリフェニルホスフィン)パラジウム(0)(2.2g)及び20質量%水酸化テトラブチルアンモニウム水溶液(194g)を加え、90℃で4時間撹拌した。得られた反応液を室温まで冷却した後、セライトを敷いたろ過器でろ過した。得られたろ液をイオン交換水で洗浄した後、得られた有機層を無水硫酸ナトリウムで乾燥させ、ろ過した。得られたろ液を減圧濃縮することにより、固体を得た。得られた固体をトルエン及び2−プロパノールの混合溶媒を用いて晶析した後、50℃で減圧乾燥させることにより、化合物HM−2(15.2g)を得た。化合物HM−2のHPLC面積百分率値は99.5%以上であった。
化合物HM−2の分析結果は以下のとおりであった。
1H-NMR(CD2Cl2、400MHz):δ(ppm)=6.70-6.83(4H、m)、7.15(3H、t)、7.39(3H、t)、7.48(3H、t)、7.59(2H、t)、7.83-7.93(4H、m)、8.18-8.23(3H、m).
<合成例HM−3> 化合物HM−3の合成
Figure 2018198976
反応容器内を窒素ガス雰囲気とした後、化合物HM−3a(13.5g)、化合物HM−2b(8.9g)、トルエン(404mL)、テトラキス(トリフェニルホスフィン)パラジウム(0)(2.0g)及び20質量%水酸化テトラブチルアンモニウム水溶液(166g)を加え、90℃で3時間撹拌した。得られた反応液を室温まで冷却した後、セライトを敷いたろ過器でろ過した。得られたろ液をイオン交換水で洗浄した後、得られた有機層を無水硫酸ナトリウムで乾燥させ、ろ過した。得られたろ液を減圧濃縮することにより、固体を得た。得られた固体を、シリカゲルカラムクロマトグラフィー(ヘキサン及びクロロホルムの混合溶媒)により精製し、更に、トルエン及びメタノールの混合溶媒を用いて晶析した後、50℃で減圧乾燥させることにより、化合物HM−3(10.5g)を得た。化合物HM−3のHPLC面積百分率値は99.5%以上であった。
化合物HM−3の分析結果は以下のとおりであった。
1H-NMR(CD2Cl2、400MHz):δ(ppm)=6.51(1H、d)、6.60(1H、d)、6.80(4H、m)、6.92(1H、t)、7.21(3H、m)、7.34(1H、d)、7.39-7.50(4H、m)、7.65(1H、d)、7.71(1H、t)、7.81(1H、d)、7.88(2H、d)、8.28-8.35(2H、m).
<合成例HM−4> 化合物HM−4の合成
Figure 2018198976
反応容器内を窒素ガス雰囲気とした後、化合物HM−4a(1.6g)、化合物HM−4b(1.3g)、キシレン(63mL)、酢酸パラジウム(II)(22mg)、トリ−tert−ブチルホスホニウムテトラフルオロボラート(63mg)及びナトリウムtert−ブトキシド(1.9g)を加え、加熱還流下で54時間撹拌した。得られた反応液を室温まで冷却した後、シリカゲル及びセライトを敷いたろ過器でろ過した。得られたろ液をイオン交換水で洗浄した後、得られた有機層を無水硫酸ナトリウムで乾燥させ、ろ過した。得られたろ液を減圧濃縮することにより、固体を得た。得られた固体を、シリカゲルカラムクロマトグラフィー(ヘキサン及びクロロホルムの混合溶媒)により精製し、更に、クロロホルム及び2−プロパノールの混合溶媒を用いて晶析した後、50℃で減圧乾燥させることにより、化合物HM−4(1.0g)を得た。化合物HM−4のHPLC面積百分率値は99.5%以上であった。
化合物HM−4の分析結果は以下のとおりであった。
1H-NMR(CD2Cl2、400MHz):δ(ppm)=7.08(4H、t)、7.34(6H、m)、7.47-7.57(12H、m)、8.02(2H、d)、8.12(2H、s)、8.22(4H、d).
<合成例HM−5、化合物HM−6、化合物HM−8及び化合物HM−9> 化合物HM−5、化合物HM−6、化合物HM−8及び化合物HM−9の合成
化合物HM−5は、国際公開第2014/023388号に記載の方法に準じて合成した。
化合物HM−及6び化合物HM−8は、国際公開第2012/048820号に記載の方法に準じて合成した。
化合物HM−9は、国際公開第2013/045411号に記載の方法に準じて合成した。
Figure 2018198976
<合成例HM−7> 化合物HM−7の合成
Figure 2018198976
反応容器内を窒素ガス雰囲気とした後、化合物HM−2a(1.64g)、化合物HM−7b(1.00g)、トルエン(40mL)、テトラキス(トリフェニルホスフィン)パラジウム(0)(0.24g)及び20質量%水酸化テトラブチルアンモニウム水溶液(20g)を加え、90℃で3時間撹拌した。得られた反応液を室温まで冷却した後、トルエンを加え、イオン交換水で洗浄した。得られた有機層を無水硫酸マグネシウムで乾燥させた後、シリカゲル及びセライトを敷いたろ過器でろ過した。得られたろ液を減圧濃縮することにより、固体を得た。得られた固体をトルエン及び2−プロパノールの混合溶媒を用いて晶析した後、50℃で減圧乾燥させることにより、化合物HM−7(1.7g)を得た。化合物HM−7のHPLC面積百分率値は99.5%以上であった。
化合物HM−7の分析結果は以下のとおりであった。
H−NMR(CDCl、400MHz):δ(ppm)=8.36(d,1H),8.03−7.99(m,1H),7.98−7.93(m,2H),7.89−7.86(m,2H),7.70−7.60(m,3H),7.51−7.35(m,6H),7.17−7.12(m,3H),6.89(d,1H),6.86−6.82(m,2H),6.78(d,1H).
<合成例HM−10> 化合物HM−10の合成
Figure 2018198976
反応容器内を窒素ガス雰囲気とした後、化合物HM−10a(2.0g)、化合物HM−10b(1.2g)、トルエン(50mL)、テトラキス(トリフェニルホスフィン)パラジウム(0)(0.29g)及び20質量%水酸化テトラブチルアンモニウム水溶液(20g)を加え、90℃で3時間撹拌した。得られた反応液を室温まで冷却した後、トルエン及びイオン交換水を加え、セライトを敷いたろ過器でろ過した。得られたろ液から水層を除去した後、得られた有機層をイオン交換水で洗浄した。得られた有機層を無水硫酸ナトリウムで乾燥させ、ろ過した。得られたろ液に活性炭を加えて、撹拌した後、セライト及びシリカゲルを敷いたろ過器でろ過した。得られたろ液を減圧濃縮することにより、固体を得た。得られた固体をトルエン及び2−プロパノールの混合溶媒を用いて晶析した後、50℃で減圧乾燥させることにより、化合物HM−10(1.9g)を得た。化合物HM−10のHPLC面積百分率値は99.5%以上であった。
化合物HM−10の分析結果は以下のとおりであった。
1H-NMR(CD2Cl2、400MHz):δ(ppm)= 6.65(1H、d)、6.74(2H、d)、7.01(1H、s)、7.12(3H、m)、7.28-7.53(8H、m)、7.73(1H、d)、7.87-7.99(6H、m).
<合成例HM−11> 化合物HM−11の合成
Figure 2018198976
反応容器内を窒素ガス雰囲気とした後、化合物HM−10a(5.0g)、化合物HM−11b(3.3g)、トルエン(125mL)、テトラキス(トリフェニルホスフィン)パラジウム(0)(0.73g)及び20質量%水酸化テトラブチルアンモニウム水溶液(49g)を加え、90℃で3時間撹拌した。得られた反応液を室温まで冷却した後、トルエン及びイオン交換水を加え、セライトを敷いたろ過器でろ過した。得られたろ液から水層を除去した後、得られた有機層をイオン交換水で洗浄した。得られた有機層を無水硫酸ナトリウムで乾燥させ、ろ過した。得られたろ液に活性炭を加えて、撹拌した後、セライト及びシリカゲルを敷いたろ過器でろ過した。得られたろ液を減圧濃縮することにより、固体を得た。得られた固体をトルエン及び2−プロパノールの混合溶媒を用いて晶析した後、50℃で減圧乾燥させることにより、化合物HM−11(5.0g)を得た。化合物HM−11のHPLC面積百分率値は99.5%以上であった。
化合物HM−11の分析結果は以下のとおりであった。
H−NMR(CDCl,400MHz):δ(ppm)= 6.66(1H、d)、6.74(2H、d)、7.13(4H、m)、7.37-7.52(6H、m)、7.76-7.99(7H、m)、8.12(1H、d)、8.19(1H、s).
<化合物EM−2> 化合物EM−2の合成
Figure 2018198976
反応容器内を不活性ガス雰囲気とした後、化合物EM−2a(8.7g)、化合物EM−2b(8.1g)、ジメチルスルホキシド(218mL)、酸化銅(I)(Cu2O)(1.3g)、リン酸三カリウム(K3PO4)(16.7g)及びジピバロイルメタン(3.2g)を加え、150℃で10時間撹拌した。得られた反応液を室温まで冷却した後、トルエン及びイオン交換水を加え、セライトを敷いたグラスフィルターでろ過した。得られたろ液をイオン交換水で洗浄した後、得られた有機層を濃縮することにより、粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン及び酢酸エチルの混合溶媒)により精製し、次いで、アセトニトリル及びトルエンの混合溶媒を用いて晶析を行った。得られた固体を50℃で減圧乾燥させることにより、化合物EM−2(8.0g)を得た。化合物EM−2のHPLC面積百分率値は99.5%以上であった。
化合物EM−2の分析結果は以下のとおりであった。
LC−MS(ESI,positive):m/z=573[M+H]+
1H−NMR(400MHz,THF−d8):δ(ppm)=1.01(t,3H),1.58−1.68(m,2H),1.95−2.05(m,2H),3.14−3.19(m,2H),7.32−7.39(m,4H),7.49−7.57(m,4H),7.72(s,1H),7.79−7.88(m,3H),8.34−8.42(m,3H),8.55−8.68(m,4H).
<合成例ETL1> 高分子化合物ETL−1の合成
反応容器内を不活性ガス雰囲気とした後、化合物M4(9.23g)、化合物M5(4.58g)、ジクロロビス(トリス−o−メトキシフェニルホスフィン)パラジウム(8.6mg)、メチルトリオクチルアンモニウムクロライド(シグマアルドリッチ社製、商品名Aliquat336(登録商標))(0.098g)及びトルエン(175mL)を加え、105℃に加熱した。その後、そこに、12質量%炭酸ナトリウム水溶液(40.3mL)を滴下し、29時間還流させた。その後、そこに、フェニルボロン酸(0.47g)及びジクロロビス(トリス−o−メトキシフェニルホスフィン)パラジウム(8.7mg)を加え、14時間還流させた。その後、そこに、ジエチルジチアカルバミン酸ナトリウム水溶液を加え、80℃で2時間撹拌した。得られた反応液を冷却後、メタノールに滴下したところ、沈殿が生じた。得られた沈殿物をろ取し、メタノール、水でそれぞれ洗浄後、乾燥させた。得られた固体をクロロホルムに溶解させ、予めクロロホルムを通液したアルミナカラム及びシリカゲルカラムに順番に通すことにより精製した。得られた精製液をメタノールに滴下し、撹拌したところ、沈殿が生じた。得られた沈殿物をろ取し、乾燥させることにより、高分子化合物ETL−1a(7.15g)を得た。高分子化合物ETL−1aのMnは3.2×104、Mwは6.0×104であった。
高分子化合物ETL−1aは、仕込み原料の量から求めた理論値では、化合物M4から誘導される構成単位と、化合物M5から誘導される構成単位とが、50:50のモル比で構成されてなる共重合体である。
反応容器内をアルゴンガス雰囲気下とした後、高分子化合物ETL−1a(3.1g)、テトラヒドロフラン(130mL)、メタノール(66mL)、水酸化セシウム一水和物(2.1g)及び水(12.5mL)を加え、60℃で3時間撹拌した。その後、そこに、メタノール(220mL)を加え、2時間撹拌した。得られた反応混合物を濃縮した後、イソプロピルアルコールに滴下し、撹拌したところ、沈殿が生じた。得られた沈殿物をろ取し、乾燥させることにより、高分子化合物ETL−1(3.5g)を得た。高分子化合物ETL−1の1H−NMR解析により、高分子化合物ETL−1中のエチルエステル部位のシグナルが消失し、反応が完結したことを確認した。
高分子化合物ETL−1は、高分子化合物ETL−1aの仕込み原料の量から求めた理論値では、下記式で表される構成単位と、化合物M5から誘導される構成単位とが、50:50のモル比で構成されてなる共重合体である。
Figure 2018198976
<実施例D1> 発光素子D1の作製と評価
(陽極及び正孔注入層の形成)
ガラス基板にスパッタ法により45nmの厚みでITO膜を付けることにより陽極を形成した。該陽極上に、正孔注入材料であるND−3202(日産化学工業製)をスピンコート法により35nmの厚さで成膜した。大気雰囲気下において、ホットプレート上で50℃、3分間加熱し、更に230℃、15分間加熱することにより正孔注入層を形成した。
(第2の発光層の形成)
キシレンに高分子化合物HTL−1を0.7質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔注入層の上にスピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で180℃、60分間加熱させることにより第2の発光層を形成した。この加熱により、高分子化合物HTL−1は、架橋体となった。
(第1の層の形成)
トルエンに、化合物HM−2、燐光発光性化合物B1及び燐光発光性化合物G1(化合物HM−2/燐光発光性化合物B1/燐光発光性化合物G1=74質量%/25質量%/1質量%)を2.0質量%の濃度で溶解させた。得られたトルエン溶液を用いて、第2の発光層の上にスピンコート法により75nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより第1の層(第1の発光層)を形成した。
(第2の層の形成)
2,2,3,3,4,4,5,5−オクタフルオロ−1−ペンタノールに、高分子化合物ETL−1を0.25質量%の濃度で溶解させた。得られた2,2,3,3,4,4,5,5−オクタフルオロ−1−ペンタノール溶液を用いて、第1の層の上にスピンコート法により10nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより第2の層(電子輸送層)を形成した。
(第3の層の形成)
第2の層を形成した基板を蒸着機内において、1.0×10-4Pa以下にまで減圧した後、第3の層(電子注入層)として、第2の層の上にフッ化ナトリウム(NaF)を4nm蒸着した。
(陰極の形成)
第3の層を形成した基板を蒸着機内において、1.0×10-4Pa以下にまで減圧した後、陰極として、アルミニウムを約80nm蒸着した。蒸着後、ガラス基板を用いて封止することにより、発光素子D1を作製した。
(発光素子の評価)
発光素子D1に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.44,0.47)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
<実施例D2> 発光素子D2の作製と評価
実施例D1において、(第1の層の形成)の「化合物HM−2」に代えて、「化合物HM−3」を用いた以外は、実施例D1と同様にして、発光素子D2を作製した。
発光素子D2に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.43,0.45)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
<実施例D3> 発光素子D3の作製と評価
実施例D1において、(第3の層の形成)の「フッ化ナトリウム」に代えて、「バリウム(Ba)」を用いた以外は、実施例D1と同様にして、発光素子D3を作製した。
発光素子D3に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.44,0.47)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
<実施例D4> 発光素子D4の作製と評価
実施例D2において、(第3の層の形成)の「フッ化ナトリウム」に代えて、「バリウム(Ba)」を用いた以外は、実施例D2と同様にして、発光素子D4を作製した。
発光素子D4に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.42,0.46)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
<実施例D5> 発光素子D5の作製と評価
実施例D1において、(第3の層の形成)の「フッ化ナトリウム(NaF)を4nm蒸着した。」に代えて、「カルシウム(Ca)を5nm蒸着した」とする以外は、実施例D1と同様にして、発光素子D5を作製した。
発光素子D5に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.44,0.47)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
<実施例D6> 発光素子D6の作製と評価
実施例D2において、(第3の層の形成)の「フッ化ナトリウム(NaF)を4nm蒸着した。」に代えて、「カルシウムを5nm蒸着した」とする以外は、実施例D2と同様にして、発光素子D6を作製した。
発光素子D6に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.42,0.46)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
<比較例CD1> 発光素子CD1の作製と評価
実施例D1において、(第1の層の形成)の「化合物HM−2」に代えて、「化合物HM−1」を用いた以外は、実施例D1と同様にして、発光素子CD1を作製した。
発光素子CD1に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.43,0.47)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
<比較例CD2> 発光素子CD2の作製と評価
比較例CD1において、(第3の層の形成)の「フッ化ナトリウム」に代えて、「バリウム(Ba)」を用いた以外は、比較例CD1と同様にして、発光素子CD2を作製した。
発光素子CD2に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.44,0.46)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
<比較例CD3> 発光素子CD3の作製と評価
比較例CD1において、(第3の層の形成)の「フッ化ナトリウム(NaF)を4nm蒸着した。」に代えて、「カルシウム(Ca)を5nm蒸着した」とする以外は、実施例D1と同様にして、発光素子CD3を作製した。
発光素子CD3に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.43,0.46)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
<比較例CD4> 発光素子CD4の作製と評価
実施例D2において、(第2の層の形成)を行わなかった以外は、実施例D2と同様にして、発光素子CD4を作製した。
発光素子CD4に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.37,0.47)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
<比較例CD5> 発光素子CD5の作製と評価
実施例D4において、(第2の層の形成)を行わなかった以外は、実施例D4と同様にして、発光素子CD5を作製した。
発光素子CD5に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.37,0.47)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
<比較例CD6> 発光素子CD6の作製と評価
実施例D6において、(第2の層の形成)を行わなかった以外は、実施例D6と同様にして、発光素子CD6を作製した。
発光素子CD6に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.36,0.47)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
実施例D1〜D6及び比較例CD1〜CD6の結果を表2に示す。発光素子CD1の輝度が初期輝度の80%となるまでの時間(輝度寿命)を1.0としたときの発光素子D1〜D6及び発光素子CD2〜CD6の輝度が初期輝度の80%となるまでの時間(輝度寿命)の相対値を示す。
Figure 2018198976
<実施例D7> 発光素子D7の作製と評価
実施例D1において、(第3の層の形成)の「フッ化ナトリウム(NaF)を4nm蒸着した。」に代えて、「フッ化リチウム(LiF)を1.8nm蒸着した。」とする以外は、実施例D1と同様にして、発光素子D7を作製した。
発光素子D7に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.43,0.47)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
<実施例D8> 発光素子D8の作製と評価
実施例D2において、(第3の層の形成)の「フッ化ナトリウム(NaF)を4nm蒸着した。」に代えて、「フッ化リチウム(LiF)を1.8nm蒸着した。」とする以外は、実施例D2と同様にして、発光素子D8を作製した。
発光素子D8に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.41,0.47)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
<実施例D9> 発光素子D9の作製と評価
実施例D7において、(第1の層の形成)の「化合物HM−2」に代えて、「化合物HM−4」を用いた以外は、実施例D7と同様にして、発光素子D9を作製した。
発光素子D9に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.33,0.50)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
<実施例D10> 発光素子D10の作製と評価
実施例D1の(第2の層の形成)を下記(第2の層の形成−D10)に変更し、更に、実施例D1の(第3の層の形成)を下記(第3の層の形成−D10)に変更したこと以外は、実施例D1と同様にして、発光素子D10を作製した。
(第2の層の形成−D10)
第1の層を形成した基板を蒸着機内において1.0×10-4Pa以下にまで減圧した後、第2の層(電子輸送層)として、第1の層の上にフッ化ナトリウムを4nm蒸着した。
(第3の層の形成−D10)
第2の層を形成した基板を蒸着機内において、1.0×10-4Pa以下にまで減圧した後、第3の層(電子注入層)として、第2の層の上にバリウムを1nm蒸着した。
発光素子D10に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.38,0.49)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
<実施例D11> 発光素子D11の作製と評価
実施例D10において、(第1の層の形成)の「化合物HM−2」に代えて、「化合物HM−3」を用いた以外は、実施例D10と同様にして、発光素子D11を作製した。
発光素子D11に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.37,0.48)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
<実施例D12> 発光素子D12の作製と評価
実施例D10において、(第2の層の形成−D10)の「フッ化ナトリウムを4nm蒸着した。」に代えて、「フッ化リチウムを1.8nm蒸着した。」とし、更に、(第3の層の形成−D10)の「バリウムを1nm蒸着した。」に代えて、「カルシウムを5nm蒸着した。」とする以外は、実施例D10と同様にして、発光素子D12を作製した。
発光素子D12に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.39,0.47)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
<実施例D13> 発光素子D13の作製と評価
実施例D12において、(第1の層の形成)の「化合物HM−2」に代えて、「化合物HM−3」を用いた以外は、実施例D12と同様にして、発光素子D13を作製した。
発光素子D13に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.38,0.47)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
<実施例D14> 発光素子D14の作製と評価
実施例D12において、(第1の層の形成)の「化合物HM−2」に代えて、「化合物HM−4」を用いた以外は、実施例D12と同様にして、発光素子D14を作製した。
発光素子D14に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.33,0.48)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
<比較例CD7> 発光素子CD7の作製と評価
実施例D8において、(第2の層の形成)を行わなかった以外は、実施例D7と同様にして、発光素子CD7を作成した。
発光素子CD7に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.37,0.47)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
実施例D7〜D14及び比較例CD7の結果を表3に示す。発光素子CD7の輝度が初期輝度の80%となるまでの時間(輝度寿命)を1としたときの発光素子D7〜D14の輝度が初期輝度の80%となるまでの時間(輝度寿命)の相対値を示す。
Figure 2018198976
<実施例D15> 発光素子D15の作製と評価
実施例D1と同様にして、発光素子D1を作製した(本実施例では、「発光素子D15」と称する。)。
発光素子D15に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.44,0.47)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の95%となるまでの時間を測定した。
<実施例D16> 発光素子D16の作製と評価
実施例D1において、(第1の層の形成)の「燐光発光性化合物B1」に代えて、「燐光発光性化合物B4」を用いた以外は、実施例D1と同様にして、発光素子D16を作製した。
発光素子D16に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.47,0.46)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の95%となるまでの時間を測定した。
<実施例D17> 発光素子D17の作製と評価
実施例D1において、(第1の層の形成)の「化合物HM−2」に代えて、「化合物HM−7」を用いた以外は、実施例D1と同様にして、発光素子D17を作製した。
発光素子D17に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.46,0.46)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の95%となるまでの時間を測定した。
<実施例D18> 発光素子D18の作製と評価
実施例D1において、(第1の層の形成)の「化合物HM−2」に代えて、「化合物HM−5」を用いた以外は、実施例D1と同様にして、発光素子D18を作製した。
発光素子D18に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.42,0.46)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の95%となるまでの時間を測定した。
<実施例D19> 発光素子D19の作製と評価
実施例D1において、(第1の層の形成)の「化合物HM−2」に代えて、「化合物HM−3」を用いた以外は、実施例D1と同様にして、発光素子D19を作製した。
発光素子D19に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.43,0.45)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の95%となるまでの時間を測定した。
<実施例D20> 発光素子D20の作製と評価
実施例D1において、(第1の層の形成)の「化合物HM−2」に代えて、「化合物HM−8」を用いた以外は、実施例D1と同様にして、発光素子D20を作製した。
発光素子D20に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.46,0.46)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の95%となるまでの時間を測定した。
<実施例D21> 発光素子D21の作製と評価
実施例D1において、(第1の層の形成)の「化合物HM−2」に代えて、「化合物HM−6」を用いた以外は、実施例D1と同様にして、発光素子D21を作製した。
発光素子D21に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.44,0.47)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の95%となるまでの時間を測定した。
<比較例CD8> 発光素子CD8の作製と評価
実施例D1において、(第1の層の形成)の「化合物HM−2」に代えて、「化合物HM−1」を用いた以外は、実施例D1と同様にして、発光素子CD8を作製した。
発光素子CD8に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.43,0.47)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の95%となるまでの時間を測定した。
実施例D15〜D21及び比較例CD8の結果を表4に示す。発光素子CD8の輝度が初期輝度の95%となるまでの時間(輝度寿命)を1.0としたときの発光素子D15〜D21の輝度が初期輝度の95%となるまでの時間(輝度寿命)の相対値を示す。
Figure 2018198976
<実施例D22> 発光素子D22の作製と評価
実施例D1において、(第1の層の形成)を下記(第1の層の形成―D22)とした以外は、実施例D1と同様にして、発光素子D22を作製した。
(第1の層の形成―D22)
キシレンに、化合物HM−2、燐光発光性化合物B3及び燐光発光性化合物G1(化合物HM−2/燐光発光性化合物B3/燐光発光性化合物G1=74質量%/25質量%/1質量%)を2.0質量%の濃度で溶解させた。得られたキシレン溶液を用いて、第2の発光層の上にスピンコート法により75nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより第1の層(第1の発光層)を形成した。
発光素子D22に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.41,0.46)であった。初期輝度6000cd/mで定電流駆動させ、輝度が初期輝度の70%となるまでの時間を測定した。
<比較例CD9> 発光素子CD9の作製と評価
実施例D22において、(第1の層の形成―D22)の「化合物HM−2」に代えて、「化合物HM−1」を用いた以外は、実施例D22と同様にして、発光素子CD9を作製した。
発光素子CD9に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.41,0.44)であった。初期輝度6000cd/mで定電流駆動させ、輝度が初期輝度の70%となるまでの時間を測定した。
実施例D22及び比較例CD9の結果を表5に示す。発光素子CD9の輝度が初期輝度の70%となるまでの時間(輝度寿命)を1.0としたときの発光素子D22の輝度が初期輝度の70%となるまでの時間(輝度寿命)の相対値を示す。
Figure 2018198976
<実施例D23> 発光素子D23の作製と評価
実施例D1において、(第1の層の形成)の「燐光発光性化合物B1」に代えて、「燐光発光性化合物B2」を用いた以外は、実施例D1と同様にして、発光素子D23を作製した。
発光素子D23に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.46,0.45)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の75%となるまでの時間を測定した。
<実施例D24> 発光素子D24の作製と評価
実施例D23において、(第1の層の形成)の「化合物HM−2」に代えて、「化合物HM−3」を用いた以外は、実施例D23と同様にして、発光素子D24を作製した。
発光素子D24に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.45,0.46)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の75%となるまでの時間を測定した。
<実施例D25> 発光素子D25の作製と評価
実施例D23において、(第1の層の形成)の「化合物HM−2」に代えて、「化合物HM−6」を用いた以外は、実施例D23と同様にして、発光素子D25を作製した。
発光素子D25に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.45,0.46)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の75%となるまでの時間を測定した。
<実施例D26> 発光素子D26の作製と評価
実施例D23において、(第1の層の形成)の「化合物HM−2」に代えて、「化合物HM−7」を用いた以外は、実施例D23と同様にして、発光素子D26を作製した。
発光素子D26に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.47,0.46)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の75%となるまでの時間を測定した。
<実施例D27> 発光素子D27の作製と評価
実施例D23において、(第1の層の形成)の「化合物HM−2」に代えて、「化合物HM−8」を用いた以外は、実施例D23と同様にして、発光素子D27を作製した。
発光素子D27に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.46,0.46)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の75%となるまでの時間を測定した。
<比較例CD10> 発光素子CD10の作製と評価
実施例D23において、(第1の層の形成)の「化合物HM−2」に代えて、「化合物HM−1」を用いた以外は、実施例D23と同様にして、発光素子CD10を作製した。
発光素子CD10に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.48,0.45)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の75%となるまでの時間を測定した。
実施例D23〜D27及び比較例CD10の結果を表6に示す。発光素子CD10の輝度が初期輝度の75%となるまでの時間(輝度寿命)を1.00としたときの発光素子D23〜D27の輝度が初期輝度の75%となるまでの時間(輝度寿命)の相対値を示す。
Figure 2018198976
<実施例D28> 発光素子D28の作製と評価
(陽極及び正孔注入層の形成)
ガラス基板にスパッタ法により45nmの厚みでITO膜を付けることにより陽極を形成した。該陽極上に、正孔注入材料であるND−3202(日産化学工業製)をスピンコート法により35nmの厚さで成膜した。大気雰囲気下において、ホットプレート上で50℃、3分間加熱し、更に230℃、15分間加熱することにより正孔注入層を形成した。
(第2の発光層の形成)
キシレンに高分子化合物HTL−1を0.7質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔注入層の上にスピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で180℃、60分間加熱させることにより第2の発光層を形成した。この加熱により、高分子化合物HTL−1は、架橋体となった。
(第1の層の形成)
トルエンに、化合物HM−2及び燐光発光性化合物B1(化合物HM−2/燐光発光性化合物B1=75質量%/25質量%)を2.0質量%の濃度で溶解させた。得られたトルエン溶液を用いて、第2の発光層の上にスピンコート法により75nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより第1の層(第1の発光層)を形成した。
(第2の層の形成)
第1の有機層を形成した基板を蒸着機内において3.0×10-4Pa以下にまで減圧した後、第2の層(電子輸送層)として、第1の層の上に、化合物EM−1及び化合物EM−2(化合物EM−1/化合物EM−2=25質量%/75質量%)を10nm共蒸着した。
(第3の層の形成)
第2の層を形成した基板を蒸着機内において、1.0×10-4Pa以下にまで減圧した後、第3の層(電子注入層)として、第2の層の上にバリウムを4nm蒸着した。
(陰極の形成)
第3の層を形成した基板を蒸着機内において、1.0×10-4Pa以下にまで減圧した後、陰極として、アルミニウムを約80nm蒸着した。蒸着後、ガラス基板を用いて封止することにより、発光素子D28を作製した。
(発光素子の評価)
発光素子D28に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.32,0.42)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
<比較例CD11> 発光素子CD11の作製と評価
実施例D28において、(第1の層の形成)の「化合物HM−2」に代えて、「化合物HM−1」を用いた以外は、実施例D28と同様にして、発光素子CD11を作製した。
発光素子CD11に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.34,0.41)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
<比較例CD12> 発光素子CD12の作製と評価
実施例D28の(第3の層の形成)の(第3の層の形成)を下記(第3の層の形成−CD12)に変更したこと以外は、実施例D28と同様にして、発光素子CD12を作製した。
(第3の層の形成−CD12)
第2の層を形成した基板を蒸着機内において、3.0×10-4Pa以下にまで減圧した後、第3の層(電子注入層)として、第2の層の上に化合物EM−1を4nm蒸着した。
(発光素子の評価)
発光素子CD12に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.31,0.42)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
<比較例CD13> 発光素子CD13の作製と評価
実施例D28において、(第2の層の形成)を行わなかった以外は、実施例D28と同様にして、発光素子CD13を作成した。
発光素子CD13に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.34,0.42)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
実施例D28及び比較例CD11〜CD13の結果を表7に示す。発光素子CD12の輝度が初期輝度の80%となるまでの時間(輝度寿命)を1.0としたときの発光素子D28、びCD11及びCD13の輝度が初期輝度の80%となるまでの時間(輝度寿命)の相対値を示す。
Figure 2018198976
<実施例D29> 発光素子D29の作製と評価
実施例D10の(第1の層の形成)における、「化合物HM−2、燐光発光性化合物B1及び燐光発光性化合物G1(化合物HM−2/燐光発光性化合物B1/燐光発光性化合物G1=74質量%/25質量%/1質量%)」に代えて、「化合物HM−2、燐光発光性化合物B1(化合物HM−2/燐光発光性化合物B1=75質量%/25質量%)」を用いた以外は、実施例D10と同様にして、発光素子D29を作製した。
発光素子D29に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.39,0.41)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の50%となるまでの時間を測定した。
<比較例CD14> 発光素子CD14の作製と評価
実施例D29において、(第1の層の形成)の「化合物HM−2」に代えて、「化合物HM−1」を用いた以外は、実施例D29と同様にして、発光素子CD14を作製した。
発光素子CD14に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.40,0.42)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の50%となるまでの時間を測定した。
実施例D29及び比較例CD14の結果を表8に示す。発光素子CD14の輝度が初期輝度の50%となるまでの時間(輝度寿命)を1.0としたときの発光素子D29の輝度が初期輝度の50%となるまでの時間(輝度寿命)の相対値を示す。
Figure 2018198976
<実施例D30> 発光素子D30の作製と評価
実施例D3の(第1の層の形成)における、「化合物HM−2、燐光発光性化合物B1及び燐光発光性化合物G1(化合物HM−2/燐光発光性化合物B1/燐光発光性化合物G1=74質量%/25質量%/1質量%)」に代えて、「化合物HM−2、燐光発光性化合物B1(化合物HM−2/燐光発光性化合物B1=75質量%/25質量%)」を用いた以外は、実施例D3と同様にして、発光素子D30を作製した。
発光素子D30に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.47,0.41)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の60%となるまでの時間を測定した。
<実施例D31> 発光素子D31の作製と評価
実施例D30の(第2の層の形成)を下記(第2の層の形成―D31)とした以外は、実施例D30と同様にして、発光素子D31を作成した。
(第2の層の形成―D31)
第1の有機層を形成した基板を蒸着機内において3.0×10-4Pa以下にまで減圧した後、第2の層(電子輸送層)として、第1の層の上に、化合物EM−1を4nm蒸着した。
発光素子D31に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.33,0.41)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の60%となるまでの時間を測定した。
<実施例D32> 発光素子D32の作製と評価
実施例D31において、(第2の層の形成―D31)の「化合物EM−1」に代えて、「化合物EM−3」を用いた以外は、実施例D31と同様にして、発光素子D32を作製した。
発光素子D32に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.33,0.41)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の60%となるまでの時間を測定した。
<実施例D33> 発光素子D33の作製と評価
実施例D31において、(第2の層の形成―D31)の「化合物EM−1」に代えて、「化合物EM−4」を用いた以外は、実施例D31と同様にして、発光素子D33を作製した。
発光素子D33に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.35,0.41)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の60%となるまでの時間を測定した。
<実施例D34> 発光素子D34の作製と評価
実施例D31において、(第2の層の形成―D31)の「化合物EM−1」に代えて、「化合物EM−5」を用いた以外は、実施例D31と同様にして、発光素子D34を作製した。
発光素子D34に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.34,0.40)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の60%となるまでの時間を測定した。
<比較例CD15> 発光素子CD15の作製と評価
実施例D31において、(第3の層の形成)を行わなかったこと以外は、実施例D31と同様にして、発光素子CD15を作製した。
発光素子CD15に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.33,0.40)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の60%となるまでの時間を測定した。
<比較例CD16> 発光素子CD16の作製と評価
実施例D33において、(第3の層の形成)を行わなかったこと以外は、実施例D33と同様にして、発光素子CD16を作製した。
発光素子CD16に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.32,0.40)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の60%となるまでの時間を測定した。
実施例D30〜D34及び比較例CD15〜CD16の結果を表9に示す。発光素子CD16の輝度が初期輝度の60%となるまでの時間(輝度寿命)を1.0としたときの発光素子D30〜D34および発光素子CD15の輝度が初期輝度の60%となるまでの時間(輝度寿命)の相対値を示す。
Figure 2018198976
<実施例D35> 発光素子D35の作製と評価
実施例D33の(第3の層の形成)を下記(第3の層の形成―D35)とした以外は、実施例D33と同様にして、発光素子D35を作成した。
(第3の層の形成―D35)
第2の層を形成した基板を蒸着機内において1.0×10-4Pa以下にまで減圧した後、第3の層として、第2の層の上に、フッ化ナトリウム(NaF)を4nm蒸着した。
発光素子D35に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.38,0.40)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の65%となるまでの時間を測定した。
<実施例D36> 発光素子D36の作製と評価
実施例D35の(第2の層の形成)を下記(第2の層の形成―D36)とした以外は、実施例D35と同様にして、発光素子D35を作成した。
(第2の層の形成―D36)
2,2,3,3,4,4,5,5−オクタフルオロ−1−ペンタノールに、化合物EM−5を0.1質量%の濃度で溶解させた。得られた2,2,3,3,4,4,5,5−オクタフルオロ−1−ペンタノール溶液を用いて、第1の層の上にスピンコート法により4nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより第2の層を形成した。
発光素子D36に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.31,0.40)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の65%となるまでの時間を測定した。
<比較例CD17> 発光素子CD17の作製と評価
実施例D36の(第3の層の形成)を下記(第3の層の形成―CD17)とした以外は、実施例D36と同様にして、発光素子CD17を作成した。
(第3の層の形成―CD17)
第2の層を形成した基板を蒸着機内において3.0×10-4Pa以下にまで減圧した後、第3の層として、第2の層の上に、化合物EM−5を4nm蒸着した。
発光素子CD17に電圧を印加することによりEL発光が観測された。電流値1mAで定電流駆動させ、輝度が初期輝度の65%となるまでの時間を測定した。
実施例D35〜D36及び比較例CD17の結果を表10に示す。発光素子CD17の輝度が初期輝度の65%となるまでの時間(輝度寿命)を1.0としたときの発光素子D35〜D36の輝度が初期輝度の65%となるまでの時間(輝度寿命)の相対値を示す。
Figure 2018198976
<実施例D37> 発光素子D37の作製と評価
実施例D30の(第3の層の形成)を下記(第3の層の形成―D37)とした以外は、実施例D30と同様にして、発光素子D37を作成した。
(第3の層の形成―D37)
第2の層を形成した基板を蒸着機内において3.0×10-4Pa以下にまで減圧した後、第3の層として、第2の層の上に、化合物EM−1を4nm蒸着した。
発光素子D37に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.37,0.41)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の70%となるまでの時間を測定した。
<実施例D38> 発光素子D38の作製と評価
実施例D37において、(第3の層の形成―D37)の「化合物EM−1」に代えて、「化合物EM−3」を用いた以外は、実施例D37と同様にして、発光素子D38を作製した。
発光素子D38に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.40,0.41)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の70%となるまでの時間を測定した。
<実施例D39> 発光素子D39の作製と評価
実施例D37において、(第3の層の形成―D37)の「化合物EM−1」に代えて、「化合物EM−5」を用いた以外は、実施例D37と同様にして、発光素子D39を作製した。
発光素子D39に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.34,0.41)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の70%となるまでの時間を測定した。
<比較例CD18> 発光素子CD18の作製と評価
実施例D30の(第3の層の形成)を行わなかったこと以外は、実施例D30と同様にして、発光素子CD18を作成した。
発光素子CD18に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.34,0.41)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の70%となるまでの時間を測定した。
実施例D37〜D39及び比較例CD18の結果を表11に示す。発光素子CD18の輝度が初期輝度の70%となるまでの時間(輝度寿命)を1.0としたときの発光素子D37〜D39の輝度が初期輝度の70%となるまでの時間(輝度寿命)の相対値を示す。
Figure 2018198976
<実施例D40> 発光素子D40の作製と評価
実施例D1の(第1の層の形成)における、「化合物HM−2、燐光発光性化合物B1及び燐光発光性化合物G1(化合物HM−2/燐光発光性化合物B1/燐光発光性化合物G1=74質量%/25質量%/1質量%)」に代えて、「化合物HM−2、燐光発光性化合物B1(化合物HM−2/燐光発光性化合物B1=75質量%/25質量%)」を用いた以外は、実施例D1と同様にして、発光素子D40を作製した。
発光素子D40に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.47,0.41)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の75%となるまでの時間を測定した。
<実施例D41> 発光素子D41の作製と評価
実施例D40において、(第1の層の形成)の「化合物HM−2」に代えて、「化合物HM−3」を用いた以外は、実施例D40と同様にして、発光素子D41を作製した。
発光素子D41に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.45,0.41)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の75%となるまでの時間を測定した。
<比較例CD19> 発光素子CD19の作製と評価
実施例D40の(第2の層の形成)を行わなかったこと以外は、実施例D40と同様にして、発光素子CD19を作成した。
発光素子CD19に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.37,0.41)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の75%となるまでの時間を測定した。
<比較例CD20> 発光素子CD20の作製と評価
実施例D40において、(第1の層の形成)の「化合物HM−2」に代えて、「化合物HM−1」を用いた以外は、実施例D40と同様にして、発光素子CD20を作製した。
発光素子CD20に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.45,0.41)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の75%となるまでの時間を測定した。
実施例D40〜D41及び比較例CD19〜CD20の結果を表12に示す。発光素子CD20の輝度が初期輝度の75%となるまでの時間(輝度寿命)を1.0としたときの発光素子D40〜D41および発光素子CD19の輝度が初期輝度の75%となるまでの時間(輝度寿命)の相対値を示す。
Figure 2018198976
<実施例D42> 発光素子D42の作製と評価
(陽極及び正孔注入層の形成)
ガラス基板にスパッタ法により45nmの厚みでITO膜を付けることにより陽極を形成した。該陽極上に、正孔注入材料であるND−3202(日産化学工業製)をスピンコート法により35nmの厚さで成膜した。大気雰囲気下において、ホットプレート上で50℃、3分間加熱し、更に230℃、15分間加熱することにより正孔注入層を形成した。
(正孔輸送層の形成)
キシレンに高分子化合物HTL−3を0.7質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔注入層の上にスピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で180℃、60分間加熱させることにより正孔輸送層を形成した。この加熱により、高分子化合物HTL−3は、架橋体となった。
(第1の層の形成)
トルエンに、化合物HM−2、燐光発光性化合物B1及び燐光発光性化合物R2(化合物HM−2/燐光発光性化合物B1/燐光発光性化合物R2=74.9質量%/25質量%/0.1質量%)を2.0質量%の濃度で溶解させた。得られたトルエン溶液を用いて、正孔輸送層の上にスピンコート法により75nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより第1の層(発光層)を形成した。
(第2の層の形成)
2,2,3,3,4,4,5,5−オクタフルオロ−1−ペンタノールに、高分子化合物ETL−1を0.25質量%の濃度で溶解させた。得られた2,2,3,3,4,4,5,5−オクタフルオロ−1−ペンタノール溶液を用いて、第1の層の上にスピンコート法により10nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより第2の層(電子輸送層)を形成した。
(第3の層の形成)
第2の層を形成した基板を蒸着機内において、1.0×10-4Pa以下にまで減圧した後、第3の層(電子注入層)として、第2の層の上にフッ化ナトリウム(NaF)を4nm蒸着した。
(陰極の形成)
第3の層を形成した基板を蒸着機内において、1.0×10-4Pa以下にまで減圧した後、陰極として、アルミニウムを約80nm蒸着した。蒸着後、ガラス基板を用いて封止することにより、発光素子D42を作製した。
(発光素子の評価)
発光素子D42に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.35,0.43)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の90%となるまでの時間を測定した。
<比較例CD21> 発光素子CD21の作製と評価
実施例D42において、(第1の層の形成)の「化合物HM−2」に代えて、「化合物HM−1」を用いた以外は、実施例D42と同様にして、発光素子CD21を作製した。
発光素子CD21に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.31,0.42)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の90%となるまでの時間を測定した。
実施例D42及び比較例CD21の結果を表13に示す。発光素子CD21の輝度が初期輝度の90%となるまでの時間(輝度寿命)を1.0としたときの発光素子D42の輝度が初期輝度の90%となるまでの時間(輝度寿命)の相対値を示す。
Figure 2018198976
<実施例D43> 発光素子D43の作製と評価
実施例D42の(第1の層の形成)における、「化合物HM−2、燐光発光性化合物B1及び燐光発光性化合物R2(化合物HM−2/燐光発光性化合物B1/燐光発光性化合物R2=74.9質量%/25質量%/0.1質量%)」に代えて、「化合物HM−3、燐光発光性化合物B1及び燐光発光性化合物R1(化合物HM−3/燐光発光性化合物B1/燐光発光性化合物R1=74.9質量%/25質量%/0.1質量%)」を用いた以外は、実施例D42と同様にして、発光素子D43を作製した。
発光素子D43に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.35,0.42)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
<実施例D44> 発光素子D44の作製と評価
実施例D43の(第1の層の形成)における、「燐光発光性化合物R1」に代えて、「燐光発光性化合物R3」を用いた以外は、実施例D43と同様にして、発光素子D44を作製した。
発光素子D44に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.31,0.41)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
<実施例D45> 発光素子D45の作製と評価
実施例D43の(第1の層の形成)における、「化合物HM−3」に代えて、「化合物HM−4」を用いた以外は、実施例D43と同様にして、発光素子D45を作製した。
発光素子D45に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.33,0.43)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
実施例D43〜D45の結果を表14に示す。発光素子D45の輝度が初期輝度の80%となるまでの時間(輝度寿命)を1.0としたときの発光素子D43〜D44の輝度が初期輝度の80%となるまでの時間(輝度寿命)の相対値を示す。
Figure 2018198976
<実施例D46> 発光素子D46の作製と評価
実施例D42の(第1の層の形成)における、「化合物HM−2、燐光発光性化合物B1及び燐光発光性化合物R2(化合物HM−2/燐光発光性化合物B1/燐光発光性化合物R2=74.9質量%/25質量%/0.1質量%)」に代えて、「化合物HM−2、燐光発光性化合物B1、燐光発光性化合物G1及び燐光発光性化合物R1(化合物HM−2/燐光発光性化合物B1/燐光発光性化合物G1/燐光発光性化合物R1=73.9質量%/25質量%/1質量%/0.1質量%)」を用いた以外は、実施例D42と同様にして、発光素子D46を作製した。
発光素子D46に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.32,0.52)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の70%となるまでの時間を測定した。
<実施例D47> 発光素子D47の作製と評価
実施例D46の(第1の層の形成)における、「化合物HM−2」に代えて、「化合物HM−7」を用いた以外は、実施例D46と同様にして、発光素子D47を作製した。
発光素子D47に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.32,0.52)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の70%となるまでの時間を測定した。
<実施例D48> 発光素子D48の作製と評価
実施例D46の(第1の層の形成)における、「化合物HM−2」に代えて、「化合物HM−8」を用いた以外は、実施例D46と同様にして、発光素子D48を作製した。
発光素子D48に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.32,0.52)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の70%となるまでの時間を測定した。
<実施例D49> 発光素子D49の作製と評価
実施例D46の(第1の層の形成)における、「化合物HM−2」に代えて、「化合物HM−6」を用いた以外は、実施例D46と同様にして、発光素子D49を作製した。
発光素子D49に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.31,0.51)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の70%となるまでの時間を測定した。
<実施例D50> 発光素子D50の作製と評価
実施例D46の(第1の層の形成)における、「燐光発光性化合物G1」に代えて、「燐光発光性化合物G3」を用いた以外は、実施例D46と同様にして、発光素子D50を作製した。
発光素子D50に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.38,0.51)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の70%となるまでの時間を測定した。
<実施例D51> 発光素子D51の作製と評価
実施例D46の(第1の層の形成)における、「燐光発光性化合物G1」に代えて、「燐光発光性化合物G4」を用いた以外は、実施例D46と同様にして、発光素子D51を作製した。
発光素子D51に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.31,0.48)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の70%となるまでの時間を測定した。
<実施例D52> 発光素子D52の作製と評価
実施例D46の(第1の層の形成)における、「燐光発光性化合物B1」に代えて、「燐光発光性化合物B4」を用いた以外は、実施例D46と同様にして、発光素子D52を作製した。
発光素子D52に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.32,0.52)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の70%となるまでの時間を測定した。
<実施例D53> 発光素子D53の作製と評価
実施例D46の(第1の層の形成)における、「化合物HM−2」に代えて、「化合物HM−9」を用いた以外は、実施例D46と同様にして、発光素子D53を作製した。
発光素子D53に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.31,0.50)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の70%となるまでの時間を測定した。
<実施例D54> 発光素子D54の作製と評価
実施例D46の(第1の層の形成)における、「化合物HM−2」に代えて、「化合物HM−4」を用いた以外は、実施例D46と同様にして、発光素子D54を作製した。
発光素子D53に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.36,0.50)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の70%となるまでの時間を測定した。
<実施例D55> 発光素子D55の作製と評価
実施例D42の(第1の層の形成)における、「化合物HM−2、燐光発光性化合物B1及び燐光発光性化合物R2(化合物HM−2/燐光発光性化合物B1/燐光発光性化合物R2=74.9質量%/25質量%/0.1質量%)」に代えて、「化合物HM−4、燐光発光性化合物B1、燐光発光性化合物G2及び燐光発光性化合物R3(化合物HM−4/燐光発光性化合物B1/燐光発光性化合物G2/燐光発光性化合物R3=73.9質量%/25質量%/1質量%/0.1質量%)」を用いた以外は、実施例D42と同様にして、発光素子D55を作製した。
発光素子D55に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.31,0.53)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の70%となるまでの時間を測定した。
実施例D46〜D55の結果を表15に示す。発光素子D55の輝度が初期輝度の70%となるまでの時間(輝度寿命)を1.0としたときの発光素子D46〜D54の輝度が初期輝度の70%となるまでの時間(輝度寿命)の相対値を示す。
Figure 2018198976
<実施例D56> 発光素子D56の作製と評価
実施例D42の(第1の層の形成)における、「化合物HM−2、燐光発光性化合物B1及び燐光発光性化合物R2(化合物HM−2/燐光発光性化合物B1/燐光発光性化合物R2=74.9質量%/25質量%/0.1質量%)」に代えて、「化合物HM−2、燐光発光性化合物B1、燐光発光性化合物G2及び燐光発光性化合物R3(化合物HM−2/燐光発光性化合物B1/燐光発光性化合物G2/燐光発光性化合物R3=73.9質量%/25質量%/1質量%/0.1質量%)」を用いた以外は、実施例D42と同様にして、発光素子D56を作製した。
発光素子D56に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.34,0.51)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
<実施例D57> 発光素子D57の作製と評価
実施例D42の(第1の層の形成)における、「化合物HM−2、燐光発光性化合物B1及び燐光発光性化合物R2(化合物HM−2/燐光発光性化合物B1/燐光発光性化合物R2=74.9質量%/25質量%/0.1質量%)」に代えて、「化合物HM−2、燐光発光性化合物B1、燐光発光性化合物G1及び燐光発光性化合物R2(化合物HM−2/燐光発光性化合物B1/燐光発光性化合物G1/燐光発光性化合物R2=73.9質量%/25質量%/1質量%/0.1質量%)」を用いた以外は、実施例D42と同様にして、発光素子D57を作製した。
発光素子D57に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.38,0.49)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
<実施例D58> 発光素子D58の作製と評価
実施例D42の(第1の層の形成)における、「化合物HM−2、燐光発光性化合物B1及び燐光発光性化合物R2(化合物HM−2/燐光発光性化合物B1/燐光発光性化合物R2=74.9質量%/25質量%/0.1質量%)」に代えて、「化合物HM−2、燐光発光性化合物B1、燐光発光性化合物G1及び燐光発光性化合物R4(化合物HM−2/燐光発光性化合物B1/燐光発光性化合物G1/燐光発光性化合物R4=73.9質量%/25質量%/1質量%/0.1質量%)」を用いた以外は、実施例D42と同様にして、発光素子D58を作製した。
発光素子D58に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.36,0.50)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
<実施例D59> 発光素子D59の作製と評価
実施例D42の(第1の層の形成)における、「化合物HM−2、燐光発光性化合物B1及び燐光発光性化合物R2(化合物HM−2/燐光発光性化合物B1/燐光発光性化合物R2=74.9質量%/25質量%/0.1質量%)」に代えて、「化合物HM−3、燐光発光性化合物B1、燐光発光性化合物G1及び燐光発光性化合物R1(化合物HM−3/燐光発光性化合物B1/燐光発光性化合物G1/燐光発光性化合物R1=73.9質量%/25質量%/1質量%/0.1質量%)」を用いた以外は、実施例D42と同様にして、発光素子D59を作製した。
発光素子D59に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.39,0.49)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
<実施例D60> 発光素子D60の作製と評価
実施例D42の(第1の層の形成)における、「化合物HM−2、燐光発光性化合物B1及び燐光発光性化合物R2(化合物HM−2/燐光発光性化合物B1/燐光発光性化合物R2=74.9質量%/25質量%/0.1質量%)」に代えて、「化合物HM−5、燐光発光性化合物B1、燐光発光性化合物G1及び燐光発光性化合物R1(化合物HM−5/燐光発光性化合物B1/燐光発光性化合物G1/燐光発光性化合物R1=73.9質量%/25質量%/1質量%/0.1質量%)」を用いた以外は、実施例D42と同様にして、発光素子D59を作製した。
発光素子D60に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.31,0.51)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
<比較例CD22> 発光素子CD22の作製と評価
実施例D42の(第1の層の形成)における、「化合物HM−2、燐光発光性化合物B1及び燐光発光性化合物R2(化合物HM−2/燐光発光性化合物B1/燐光発光性化合物R2=74.9質量%/25質量%/0.1質量%)」に代えて、「化合物HM−1、燐光発光性化合物B1、燐光発光性化合物G2及び燐光発光性化合物R3(化合物HM−1/燐光発光性化合物B1/燐光発光性化合物G2/燐光発光性化合物R3=73.9質量%/25質量%/1質量%/0.1質量%)」を用いた以外は、実施例D42と同様にして、発光素子CD22を作製した。
発光素子CD22に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.30,0.51)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
<比較例CD23> 発光素子CD23の作製と評価
実施例D42の(第1の層の形成)における、「化合物HM−2、燐光発光性化合物B1及び燐光発光性化合物R2(化合物HM−2/燐光発光性化合物B1/燐光発光性化合物R2=74.9質量%/25質量%/0.1質量%)」に代えて、「化合物HM−1、燐光発光性化合物B1、燐光発光性化合物G1及び燐光発光性化合物R2(化合物HM−1/燐光発光性化合物B1/燐光発光性化合物G1/燐光発光性化合物R2=73.9質量%/25質量%/1質量%/0.1質量%)」を用いた以外は、実施例D42と同様にして、発光素子CD23を作製した。
発光素子CD23に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.38,0.49)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
実施例D56〜D60及び比較例CD22〜CD23の結果を表16に示す。発光素子CD22の輝度が初期輝度の80%となるまでの時間(輝度寿命)を1.0としたときの発光素子D56〜D60及びCD23の輝度が初期輝度の80%となるまでの時間(輝度寿命)の相対値を示す。
Figure 2018198976
<実施例D61> 発光素子D61の作製と評価
実施例D42の(第1の層の形成)における、「化合物HM−2、燐光発光性化合物B1及び燐光発光性化合物R2(化合物HM−2/燐光発光性化合物B1/燐光発光性化合物R2=74.9質量%/25質量%/0.1質量%)」に代えて、「化合物HM−3及び燐光発光性化合物B5(化合物HM−3/燐光発光性化合物B5=75質量%/25質量%)」を用いた以外は、実施例D42と同様にして、発光素子D61を作製した。
発光素子D61に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.19,0.41)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の70%となるまでの時間を測定した。
<比較例CD24> 発光素子CD24の作製と評価
実施例D61の(第1の層の形成)における、「化合物HM−3」に代えて、「化合物HM−1」を用いた以外は、実施例D61と同様にして、発光素子CD24を作製した。
発光素子CD24に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.19,0.41)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の70%となるまでの時間を測定した。
実施例D61及び比較例CD24の結果を表17に示す。発光素子CD24の輝度が初期輝度の70%となるまでの時間(輝度寿命)を1.0としたときの発光素子D61の輝度が初期輝度の70%となるまでの時間(輝度寿命)の相対値を示す。
Figure 2018198976
<実施例D62> 発光素子D62の作製と評価
実施例D61の(第1の層の形成)における、「化合物HM−3及び燐光発光性化合物B5(化合物HM−3/燐光発光性化合物B5=75質量%/25質量%)」に代えて、「化合物HM−2及び燐光発光性化合物B1(化合物HM−2/燐光発光性化合物B1=75質量%/25質量%)」を用いた以外は、実施例D61と同様にして、発光素子D62を作製した。
発光素子D62に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.20,0.43)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の95%となるまでの時間を測定した。
<比較例CD25> 発光素子CD25の作製と評価
実施例D61の(第1の層の形成)における、「化合物HM−2」に代えて、「化合物HM−1」を用いた以外は、実施例D61と同様にして、発光素子CD25を作製した。
発光素子CD25に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.20,0.46)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の95%となるまでの時間を測定した。
実施例D62及び比較例CD25の結果を表18に示す。発光素子CD25の輝度が初期輝度の95%となるまでの時間(輝度寿命)を1.0としたときの発光素子D62の輝度が初期輝度の95%となるまでの時間(輝度寿命)の相対値を示す。
Figure 2018198976
<実施例D63> 発光素子D63の作製と評価
実施例D61の(第1の層の形成)における、「燐光発光性化合物B5」に代えて、「燐光発光性化合物B6」を用いた以外は、実施例D61と同様にして、発光素子D63を作製した。
発光素子D63に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.19,0.39)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の95%となるまでの時間を測定した。
<比較例CD26> 発光素子CD26の作製と評価
実施例D63の(第1の層の形成)における、「化合物HM−3」に代えて、「化合物HM−1」を用いた以外は、実施例D63と同様にして、発光素子CD26を作製した。
発光素子CD26に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.19,0.40)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の95%となるまでの時間を測定した。
実施例D63及び比較例CD26の結果を表19に示す。発光素子CD26の輝度が初期輝度の95%となるまでの時間(輝度寿命)を1.0としたときの発光素子D63の輝度が初期輝度の95%となるまでの時間(輝度寿命)の相対値を示す。
Figure 2018198976
<実施例D64> 発光素子D64の作製と評価
(陽極及び正孔注入層の形成)
ガラス基板にスパッタ法により45nmの厚みでITO膜を付けることにより陽極を形成した。該陽極上に、正孔注入材料であるND−3202(日産化学工業製)をスピンコート法により35nmの厚さで成膜した。大気雰囲気下において、ホットプレート上で50℃、3分間加熱し、更に230℃、15分間加熱することにより正孔注入層を形成した。
(正孔輸送層の形成)
キシレンに高分子化合物HTL−2を0.7質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔注入層の上にスピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で180℃、60分間加熱させることにより正孔輸送層を形成した。この加熱により、高分子化合物HTL−2は、架橋体となった。
(第1の層の形成)
トルエンに、化合物HM−2及び燐光発光性化合物G1(化合物HM−2/燐光発光性化合物G1=70質量%/30質量%)を2.0質量%の濃度で溶解させた。得られたトルエン溶液を用いて、正孔輸送層の上にスピンコート法により75nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより第1の層(第1の発光層)を形成した。
(第2の層の形成)
2,2,3,3,4,4,5,5−オクタフルオロ−1−ペンタノールに、高分子化合物ETL−1を0.25質量%の濃度で溶解させた。得られた2,2,3,3,4,4,5,5−オクタフルオロ−1−ペンタノール溶液を用いて、第1の層の上にスピンコート法により10nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより第2の層(電子輸送層)を形成した。
(第3の層の形成)
第2の層を形成した基板を蒸着機内において、1.0×10-4Pa以下にまで減圧した後、第3の層(電子注入層)として、第2の層の上にフッ化ナトリウム(NaF)を4nm蒸着した。
(陰極の形成)
第3の層を形成した基板を蒸着機内において、1.0×10-4Pa以下にまで減圧した後、陰極として、アルミニウムを約80nm蒸着した。蒸着後、ガラス基板を用いて封止することにより、発光素子D64を作製した。
(発光素子の評価)
発光素子D64に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.31,0.63)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の95%となるまでの時間を測定した。
<実施例D65> 発光素子D15の作製と評価
実施例D64において、(第1の層の形成)の「化合物HM−2」に代えて、「化合物HM−3」を用いた以外は、実施例D64と同様にして、発光素子D65を作製した。
発光素子D65に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.30,0.63)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の95%となるまでの時間を測定した。
<実施例D66> 発光素子D66の作製と評価
実施例D64において、(第1の層の形成)の「化合物HM−2」に代えて、「化合物HM−5」を用いた以外は、実施例D64と同様にして、発光素子D66を作製した。
発光素子D66に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.30,0.64)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の95%となるまでの時間を測定した。
<実施例D67> 発光素子D67の作製と評価
実施例D64において、(第1の層の形成)の「化合物HM−2」に代えて、「化合物HM−8」を用いた以外は、実施例D64と同様にして、発光素子D67を作製した。
発光素子D67に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.31,0.63)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の95%となるまでの時間を測定した。
<実施例D68> 発光素子D68の作製と評価
実施例D64において、(第1の層の形成)の「化合物HM−2」に代えて、「化合物HM−7」を用いた以外は、実施例D64と同様にして、発光素子D68を作製した。
発光素子D68に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.31,0.63)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の95%となるまでの時間を測定した。
<実施例D69> 発光素子D69の作製と評価
実施例D64において、(第1の層の形成)の「化合物HM−2」に代えて、「化合物HM−6」を用いた以外は、実施例D64と同様にして、発光素子D69を作製した。
発光素子D69に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.30,0.64)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の95%となるまでの時間を測定した。
<実施例D70> 発光素子D70の作製と評価
実施例D64において、(第1の層の形成)の「化合物HM−2」に代えて、「化合物HM−10」を用いた以外は、実施例D64と同様にして、発光素子D70を作製した。
発光素子D70に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.31,0.63)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の95%となるまでの時間を測定した。
実施例D64〜D70の結果を表20に示す。発光素子D70の輝度が初期輝度の95%となるまでの時間(輝度寿命)を1.0としたときの発光素子D64〜D69の輝度が初期輝度の95%となるまでの時間(輝度寿命)の相対値を示す。
Figure 2018198976
<実施例D71> 発光素子D71の作製と評価
実施例D64において、(第1の層の形成)の「化合物HM−2及び燐光発光性化合物G1(化合物HM−2/燐光発光性化合物G1=70質量%/30質量%)」に代えて、「化合物HM−2及び燐光発光性化合物R1(化合物HM−2/燐光発光性化合物R1=90質量%/10質量%)」を用いた以外は、実施例D64と同様にして、発光素子D71を作製した。
発光素子D71に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.67,0.32)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の75%となるまでの時間を測定した。
<実施例D72> 発光素子D72の作製と評価
実施例D71において、(第1の層の形成)の「化合物HM−2」に代えて、「化合物HM−3」を用いた以外は、実施例D71と同様にして、発光素子D72を作製した。
発光素子D72に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.67,0.33)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の75%となるまでの時間を測定した。
<実施例D73> 発光素子D73の作製と評価
実施例D71において、(第1の層の形成)の「化合物HM−2」に代えて、「化合物HM−11」を用いた以外は、実施例D71と同様にして、発光素子D73を作製した。
発光素子D73に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.67,0.32)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の75%となるまでの時間を測定した。
<実施例D74> 発光素子D74の作製と評価
実施例D71において、(第1の層の形成)の「化合物HM−2」に代えて、「化合物HM−7」を用いた以外は、実施例D71と同様にして、発光素子D74を作製した。
発光素子D74に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.67,0.32)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の75%となるまでの時間を測定した。
<実施例D75> 発光素子D75の作製と評価
実施例D71において、(第1の層の形成)の「化合物HM−2」に代えて、「化合物HM−6」を用いた以外は、実施例D71と同様にして、発光素子D75を作製した。
発光素子D75に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.67,0.32)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の75%となるまでの時間を測定した。
<実施例D76> 発光素子D76の作製と評価
実施例D71において、(第1の層の形成)の「化合物HM−2」に代えて、「化合物HM−10」を用いた以外は、実施例D71と同様にして、発光素子D76を作製した。
発光素子D76に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.67,0.32)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の75%となるまでの時間を測定した。
実施例D71〜D76の結果を表21に示す。発光素子D76の輝度が初期輝度の75%となるまでの時間(輝度寿命)を1.0としたときの発光素子D71〜D75の輝度が初期輝度の75%となるまでの時間(輝度寿命)の相対値を示す。
Figure 2018198976
本発明によれば、輝度寿命に優れる発光素子を提供することができる。

Claims (13)

  1. 陽極と、
    陰極と、
    陽極及び陰極の間に設けられており、式(C−1)で表される化合物を含有する第1の層と、
    第1の層及び陰極の間に設けられており、アルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物からなる群から選ばれる少なくとも1種を含有する第2の層と、
    第2の層及び陰極の間に陰極に接して設けられており、アルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物からなる群から選ばれる少なくとも1種を含有する第3の層とを有する発光素子であって、
    第2の層に含有されるアルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物からなる群から選ばれる少なくとも1種と、第3の層に含有されるアルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物からなる群から選ばれる少なくとも1種とが互いに異なる、発光素子。
    Figure 2018198976
    [式中、
    環R1C、環R2C、環R3C及び環R4Cは、それぞれ独立に、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
    Cは、炭素原子、ケイ素原子、ゲルマニウム原子、スズ原子又は鉛原子を表す。]
  2. 前記環R1C、前記環R2C、前記環R3C及び前記環R4Cのうちの少なくとも1つが、置換基として式(D−1)で表される基を有する、請求項1に記載の発光素子。
    Figure 2018198976
    [式中、
    環RDは、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
    D1及びXD2は、それぞれ独立に、単結合、酸素原子、硫黄原子、−N(RXD1)−で表される基、又は、−C(RXD2)2−で表される基を表す。RXD1及びRXD2は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。複数存在するRXD2は、同一でも異なっていてもよく、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。
    1D、E2D及びE3Dは、それぞれ独立に、窒素原子又は炭素原子を表す。
    1D、R2D及びR3Dは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。
    1Dが窒素原子の場合、R1Dは存在しない。E2Dが窒素原子の場合、R2Dは存在しない。E3Dが窒素原子の場合、R3Dは存在しない。
    1DとR2Dとは、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。R2DとR3Dとは、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。R1DとRXD1とは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。R1DとRXD2とは、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。環RDが有していてもよい置換基とRXD1とは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環RDが有していてもよい置換基とRXD2とは、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。]
  3. 前記式(D−1)で表される基が、式(D−2)で表される基である、請求項2に記載の発光素子。
    Figure 2018198976
    [式中、
    D1、XD2、E1D、E2D、E3D、R1D、R2D及びR3Dは、前記と同じ意味を表す。
    4D、E5D、E6D及びE7Dは、それぞれ独立に、窒素原子又は炭素原子を表す。
    4D、R5D、R6D及びR7Dは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。
    4Dが窒素原子の場合、R4Dは存在しない。E5Dが窒素原子の場合、R5Dは存在しない。E6Dが窒素原子の場合、R6Dは存在しない。E7Dが窒素原子の場合、R7Dは存在しない。
    4DとR5D、R5DとR6D、R6DとR7D、R4DとRXD1、R4DとRXD2、R7DとRXD1、及び、R7DとRXD2は、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。]
  4. 前記式(C−1)で表される化合物が、式(C−2)で表される化合物である、請求項1〜3のいずれか一項に記載の発光素子。
    Figure 2018198976
    [式中、
    Cは、前記と同じ意味を表す。
    11C、E12C、E13C、E14C、E21C、E22C、E23C、E24C、E31C、E32C、E33C、E34C、E41C、E42C、E43C及びE44Cは、それぞれ独立に、窒素原子又は炭素原子を表す。
    環R1C'、環R2C'、環R3C'及び環R4C'は、それぞれ独立に、ベンゼン環、ピリジン環又はジアザベンゼン環を表す。
    11C、R12C、R13C、R14C、R21C、R22C、R23C、R24C、R31C、R32C、R33C、R34C、R41C、R42C、R43C及びR44Cは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。
    11Cが窒素原子の場合、R11Cは存在しない。E12Cが窒素原子の場合、R12Cは存在しない。E13Cが窒素原子の場合、R13Cは存在しない。E14Cが窒素原子の場合、R14Cは存在しない。E21Cが窒素原子の場合、R21Cは存在しない。E22Cが窒素原子の場合、R22Cは存在しない。E23Cが窒素原子の場合、R23Cは存在しない。E24Cが窒素原子の場合、R24Cは存在しない。E31Cが窒素原子の場合、R31Cは存在しない。E32Cが窒素原子の場合、R32Cは存在しない。E33Cが窒素原子の場合、R33Cは存在しない。E34Cが窒素原子の場合、R34Cは存在しない。E41Cが窒素原子の場合、R41Cは存在しない。E42Cが窒素原子の場合、R42Cは存在しない。E43Cが窒素原子の場合、R43Cは存在しない。E44Cが窒素原子の場合、R44Cは存在しない。
    11CとR12C、R12CとR13C、R13CとR14C、R14CとR34C、R34CとR33C、R33CとR32C、R32CとR31C、R31CとR41C、R41CとR42C、R42CとR43C、R43CとR44C、R44CとR24C、R24CとR23C、R23CとR22C、R22CとR21C、及び、R21CとR11Cは、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。]
  5. 前記式(C−2)で表される化合物が、式(C−3)で表される化合物である、請求項4に記載の発光素子。
    Figure 2018198976
    [式中、RC、R11C、R12C、R13C、R14C、R21C、R22C、R23C、R24C、R31C、R32C、R33C、R34C、R41C、R42C、R43C及びR44Cは、前記と同じ意味を表す。]
  6. 前記R11C、前記R12C、前記R14C、前記R21C、前記R22C、前記R24C、前記R31C、前記R32C、前記R34C、前記R41C、前記R42C及び前記R44Cのうちの少なくとも一つが、前記式(D−1)で表される基である、請求項4又は5に記載の発光素子。
  7. 前記第1の層が、更に燐光発光性化合物を含む、請求項1〜6のいずれか一項に記載の発光素子。
  8. 前記燐光発光性化合物が、式(1)で表される燐光発光性化合物である、請求項7に記載の発光素子。
    Figure 2018198976
    [式中、
    Mは、ルテニウム原子、ロジウム原子、パラジウム原子、イリジウム原子又は白金原子を表す。
    1は1以上の整数を表し、n2は0以上の整数を表す。但し、Mがルテニウム原子、ロジウム原子又はイリジウム原子の場合、n1+n2は3であり、Mがパラジウム原子又は白金原子の場合、n1+n2は2である。
    1及びE2は、それぞれ独立に、炭素原子又は窒素原子を表す。但し、E1及びE2の少なくとも一方は炭素原子である。E1及びE2が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。
    環L1は、置換基を有していてもよい芳香族複素環を表す。該置換基が複数存在する場合、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環L1が複数存在する場合、それらは同一でも異なっていてもよい。
    環L2は、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環L2が複数存在する場合、それらは同一でも異なっていてもよい。
    環L1が有していてもよい置換基と、環L2が有していてもよい置換基とは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
    1−G1−A2は、アニオン性の2座配位子を表す。A1及びA2は、それぞれ独立に、炭素原子、酸素原子又は窒素原子を表し、これらの原子は環を構成する原子であってもよい。G1は、単結合、又は、A1及びA2とともに2座配位子を構成する原子団を表す。A1−G1−A2が複数存在する場合、それらは同一でも異なっていてもよい。]
  9. 前記式(1)で表される燐光発光性化合物が、式(1−A)で表される燐光発光性化合物又は式(1−B)で表される燐光発光性化合物である、請求項8に記載の発光素子。
    Figure 2018198976
    [式中、
    M、n1、n2、E1及びA1−G1−A2は、前記と同じ意味を表す。
    11A、E12A、E13A、E21A、E22A、E23A及びE24Aは、それぞれ独立に、窒素原子又は炭素原子を表す。E11A、E12A、E13A、E21A、E22A、E23A及びE24Aが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。E11Aが窒素原子の場合、R11Aは存在しても存在しなくてもよい。E12Aが窒素原子の場合、R12Aは存在しても存在しなくてもよい。E13Aが窒素原子の場合、R13Aは存在しても存在しなくてもよい。E21Aが窒素原子の場合、R21Aは存在しない。E22Aが窒素原子の場合、R22Aは存在しない。E23Aが窒素原子の場合、R23Aは存在しない。E24Aが窒素原子の場合、R24Aは存在しない。
    11A、R12A、R13A、R21A、R22A、R23A及びR24Aは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、アルケニル基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。R11A、R12A、R13A、R21A、R22A、R23A及びR24Aが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。R11AとR12A、R12AとR13A、R11AとR21A、R21AとR22A、R22AとR23A、及び、R23AとR24Aは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
    環L1Aは、トリアゾール環又はジアゾール環を表す。
    環L2Aは、ベンゼン環、ピリジン環又はジアザベンゼン環を表す。]
    Figure 2018198976
    [式中、
    M、n1、n2及びA1−G1−A2は、前記と同じ意味を表す。
    11B、E12B、E13B、E14B、E21B、E22B、E23B及びE24Bは、それぞれ独立に、窒素原子又は炭素原子を表す。E11B、E12B、E13B、E14B、E21B、E22B、E23B及びE24Bが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。E11Bが窒素原子の場合、R11Bは存在しない。E12Bが窒素原子の場合、R12Bは存在しない。E13Bが窒素原子の場合、R13Bは存在しない。E14Bが窒素原子の場合、R14Bは存在しない。E21Bが窒素原子の場合、R21Bは存在しない。E22Bが窒素原子の場合、R22Bは存在しない。E23Bが窒素原子の場合、R23Bは存在しない。E24Bが窒素原子の場合、R24Bは存在しない。
    11B、R12B、R13B、R14B、R21B、R22B、R23B及びR24Bは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、アルケニル基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。R11B、R12B、R13B、R14B、R21B、R22B、R23B及びR24Bが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。R11BとR12B、R12BとR13B、R13BとR14B、R11BとR21B、R21BとR22B、R22BとR23B、及び、R23BとR24Bは、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。
    環L1Bは、ピリジン環又はジアザベンゼン環を表す。
    環L2Bは、ベンゼン環、ピリジン環又はジアザベンゼン環を表す。]
  10. 前記第2の層が、前記アルカリ金属元素を含む化合物及び前記第2族元素を含む化合物からなる群から選ばれる少なくとも1種を含有する層である、請求項1〜9のいずれか一項に記載の発光素子。
  11. 前記第3の層が、前記アルカリ金属元素を含む化合物及び前記第2族元素のみからなる単体からなる群から選ばれる少なくとも1種を含有する層である、請求項1〜10のいずれか一項に記載の発光素子。
  12. 前記第2の層と前記第3の層とが隣接している、請求項1〜11のいずれか一項に記載の発光素子。
  13. 前記第1の層と前記第2の層とが隣接している、請求項1〜12のいずれか一項に記載の発光素子。
JP2018568975A 2017-04-27 2018-04-20 発光素子 Active JP6642743B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017088012 2017-04-27
JP2017088012 2017-04-27
PCT/JP2018/016311 WO2018198976A1 (ja) 2017-04-27 2018-04-20 発光素子

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019232426A Division JP2020065068A (ja) 2017-04-27 2019-12-24 発光素子

Publications (2)

Publication Number Publication Date
JPWO2018198976A1 true JPWO2018198976A1 (ja) 2019-06-27
JP6642743B2 JP6642743B2 (ja) 2020-02-12

Family

ID=63919712

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018568975A Active JP6642743B2 (ja) 2017-04-27 2018-04-20 発光素子
JP2019232426A Pending JP2020065068A (ja) 2017-04-27 2019-12-24 発光素子

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2019232426A Pending JP2020065068A (ja) 2017-04-27 2019-12-24 発光素子

Country Status (6)

Country Link
US (1) US20200091438A1 (ja)
EP (1) EP3618133A4 (ja)
JP (2) JP6642743B2 (ja)
KR (1) KR20190141210A (ja)
CN (1) CN110574181A (ja)
WO (1) WO2018198976A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11588119B2 (en) * 2017-04-27 2023-02-21 Sumitomo Chemical Company, Limited Light emitting device
CN113874467A (zh) * 2019-05-20 2021-12-31 三菱化学株式会社 有机电致发光元件用组合物、有机电致发光元件及其制造方法、以及显示装置
JPWO2022018572A1 (ja) * 2020-07-24 2022-01-27

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011111438A1 (ja) * 2010-03-09 2011-09-15 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス部材及び有機エレクトロルミネッセンス素子の製造方法
JP2012209464A (ja) * 2011-03-30 2012-10-25 Toppan Printing Co Ltd 有機エレクトロルミネッセンス素子及びその製造方法
CN102911145A (zh) * 2012-09-20 2013-02-06 苏州大学 一种二苯并杂环连螺双芴化合物及其制备方法以及一种有机电致磷光器件
WO2015159932A1 (ja) * 2014-04-18 2015-10-22 住友化学株式会社 発光素子およびそれに用いる高分子化合物
JP2016523273A (ja) * 2013-07-02 2016-08-08 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH 多環式化合物
CN106221691A (zh) * 2016-04-25 2016-12-14 中节能万润股份有限公司 一种含有氮杂苯基类化合物的有机电致发光器件及其应用

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0028867D0 (en) 2000-11-28 2001-01-10 Avecia Ltd Field effect translators,methods for the manufacture thereof and materials therefor
KR100750756B1 (ko) 2000-11-30 2007-08-20 캐논 가부시끼가이샤 발광 소자 및 표시 장치
US7651746B2 (en) 2003-11-14 2010-01-26 Sumitomo Chemical Company, Limited Halogenated bisdiarylaminopolycyclic aromatic compounds and polymers thereof
TWI385193B (zh) 2004-12-07 2013-02-11 Sumitomo Chemical Co 高分子材料及使用該高分子材料之元件
US9051344B2 (en) 2005-05-06 2015-06-09 Universal Display Corporation Stability OLED materials and devices
JP5446079B2 (ja) 2006-09-25 2014-03-19 住友化学株式会社 高分子化合物及びそれを用いた高分子発光素子
JP5262104B2 (ja) 2006-12-27 2013-08-14 住友化学株式会社 金属錯体、高分子化合物及びこれらを含む素子
US8951646B2 (en) 2008-03-07 2015-02-10 Sumitomo Chemical Company, Limited Layered structure comprising a layer containing a conjugated polymer compound
WO2009131255A1 (ja) 2008-04-25 2009-10-29 住友化学株式会社 含窒素複素環式化合物の残基を有する高分子化合物
JP5609022B2 (ja) 2008-06-23 2014-10-22 住友化学株式会社 金属錯体の残基を含む高分子化合物及びそれを用いた素子
JP5720097B2 (ja) 2009-01-20 2015-05-20 住友化学株式会社 メタフェニレン系高分子化合物及びそれを用いた発光素子
DE102009032922B4 (de) 2009-07-14 2024-04-25 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen, Verfahren zu deren Herstellung, deren Verwendung sowie elektronische Vorrichtung
WO2011040388A1 (ja) 2009-09-30 2011-04-07 住友化学株式会社 積層構造体、重合体、電界発光素子及び光電変換素子
JP5742160B2 (ja) 2009-10-19 2015-07-01 住友化学株式会社 金属錯体、高分子化合物及びそれを用いた素子
WO2011093428A1 (ja) 2010-01-28 2011-08-04 住友化学株式会社 高分子化合物及びそれを用いてなる発光素子
US8835962B2 (en) * 2010-05-13 2014-09-16 Sri International Cavity electroluminescent devices with integrated microlenses
US9203037B2 (en) * 2010-06-18 2015-12-01 Basf Se Organic electronic devices comprising a layer of a dibenzofurane compound and a 8-hydroxypquinolinolato earth alkaline metal, or alkali metal complex
EP2627731A1 (en) 2010-10-11 2013-08-21 Solvay Sa Novel spirobifluorene compounds
CN106008319B (zh) 2010-10-11 2019-04-02 住友化学株式会社 用于发光装置的螺二芴化合物
TWI545143B (zh) 2011-03-28 2016-08-11 住友化學股份有限公司 電子裝置、高分子化合物
TW201307424A (zh) 2011-03-28 2013-02-16 Sumitomo Chemical Co 電子裝置及高分子化合物
JP2012216822A (ja) 2011-03-28 2012-11-08 Sumitomo Chemical Co Ltd 電子デバイス、高分子化合物
JP2013048190A (ja) 2011-08-29 2013-03-07 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子および照明装置
JP6129846B2 (ja) 2011-09-28 2017-05-17 住友化学株式会社 発光素子用のスピロビフルオレン化合物
JP6182145B2 (ja) 2011-09-28 2017-08-16 住友化学株式会社 発光素子用のスピロビフルオレン化合物
JP5955946B2 (ja) 2012-03-27 2016-07-20 住友化学株式会社 高分子化合物およびそれを用いた発光素子
JP5970952B2 (ja) 2012-05-16 2016-08-17 住友化学株式会社 高分子化合物およびそれを用いた発光素子
KR101693127B1 (ko) 2012-08-10 2017-01-04 메르크 파텐트 게엠베하 유기 전계발광 소자용 물질
JP6331617B2 (ja) 2013-04-15 2018-05-30 住友化学株式会社 金属錯体およびそれを用いた発光素子
JP5867580B2 (ja) * 2014-06-04 2016-02-24 住友化学株式会社 発光素子
GB2538500A (en) 2015-05-15 2016-11-23 Cambridge Display Tech Ltd Light-emitting compound
CN107068887B (zh) * 2016-04-25 2018-10-02 中节能万润股份有限公司 一种有机电致发光器件及其应用
KR20180032294A (ko) * 2016-09-22 2018-03-30 엘지디스플레이 주식회사 인광 화합물과 이를 이용한 발광다이오드 및 유기발광다이오드 표시장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011111438A1 (ja) * 2010-03-09 2011-09-15 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス部材及び有機エレクトロルミネッセンス素子の製造方法
JP2012209464A (ja) * 2011-03-30 2012-10-25 Toppan Printing Co Ltd 有機エレクトロルミネッセンス素子及びその製造方法
CN102911145A (zh) * 2012-09-20 2013-02-06 苏州大学 一种二苯并杂环连螺双芴化合物及其制备方法以及一种有机电致磷光器件
JP2016523273A (ja) * 2013-07-02 2016-08-08 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH 多環式化合物
WO2015159932A1 (ja) * 2014-04-18 2015-10-22 住友化学株式会社 発光素子およびそれに用いる高分子化合物
CN106221691A (zh) * 2016-04-25 2016-12-14 中节能万润股份有限公司 一种含有氮杂苯基类化合物的有机电致发光器件及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHANG ET AL.: "ITO-free large-area top-emission organic light-emitting diode by blade coating", SYNTHETIC METALS, vol. 2016/212, JPN6019010236, 11 December 2015 (2015-12-11), pages 19 - 24, ISSN: 0004004114 *

Also Published As

Publication number Publication date
EP3618133A1 (en) 2020-03-04
JP6642743B2 (ja) 2020-02-12
WO2018198976A1 (ja) 2018-11-01
US20200091438A1 (en) 2020-03-19
JP2020065068A (ja) 2020-04-23
KR20190141210A (ko) 2019-12-23
EP3618133A4 (en) 2021-01-13
CN110574181A (zh) 2019-12-13

Similar Documents

Publication Publication Date Title
JP6519719B2 (ja) 発光素子
KR102513175B1 (ko) 조성물 및 그것을 사용한 발광 소자
KR102558986B1 (ko) 조성물 및 그것을 사용한 발광 소자
JP2020065068A (ja) 発光素子
JP6519718B2 (ja) 組成物及びそれを用いた発光素子
JPWO2018062276A1 (ja) 発光素子
JP5880679B2 (ja) 発光素子の製造方法
JP6573041B2 (ja) 発光素子
JP6531386B2 (ja) 発光素子およびそれに用いる高分子化合物
JP2019050371A (ja) 発光素子
JP7194072B2 (ja) 発光素子
JP6399243B2 (ja) 発光素子
JP6708214B2 (ja) 組成物及びそれを用いた発光素子
JP7319251B2 (ja) 発光素子
JP6543902B2 (ja) 金属錯体およびそれを用いた発光素子
JP6943241B2 (ja) 発光素子
JP2019050370A (ja) 発光素子
WO2017099013A1 (ja) 組成物及びそれを用いた発光素子
JP2016129140A (ja) 発光素子の製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181227

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181227

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191216

R151 Written notification of patent or utility model registration

Ref document number: 6642743

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350