JPWO2013030945A1 - 圧延プラントの省エネ装置 - Google Patents

圧延プラントの省エネ装置 Download PDF

Info

Publication number
JPWO2013030945A1
JPWO2013030945A1 JP2013530926A JP2013530926A JPWO2013030945A1 JP WO2013030945 A1 JPWO2013030945 A1 JP WO2013030945A1 JP 2013530926 A JP2013530926 A JP 2013530926A JP 2013530926 A JP2013530926 A JP 2013530926A JP WO2013030945 A1 JPWO2013030945 A1 JP WO2013030945A1
Authority
JP
Japan
Prior art keywords
rolling
stand
roll
cooling
rolled material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013530926A
Other languages
English (en)
Other versions
JP5713110B2 (ja
Inventor
宏幸 今成
宏幸 今成
馨 久保田
馨 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Publication of JPWO2013030945A1 publication Critical patent/JPWO2013030945A1/ja
Application granted granted Critical
Publication of JP5713110B2 publication Critical patent/JP5713110B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0206Coolants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0218Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes for strips, sheets, or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/06Lubricating, cooling or heating rolls
    • B21B27/10Lubricating, cooling or heating rolls externally
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

この発明は、圧延材を冷却する際に、冷却効率の高いタイミングで冷却水を注水することにより注水量を減らし、消費エネルギーの低減を図ることのできる圧延プラントの制御装置を提供することを目的とする。
圧延ラインにタンデムに配置され、前記圧延ライン上を搬送される金属材料の圧延材12を圧延する複数の圧延スタンド24と、前記複数の圧延スタンド24の間にそれぞれ設けられ、搬送される前記圧延材に冷却水を注水するスタンド間冷却装置50とを備える。前記スタンド間冷却装置50のうち、前記圧延ライン上流側に位置するスタンド間冷却装置50からの注水量ほど多く、下流側に位置するスタンド間冷却装置50からの注水量ほど少なく設定されている。

Description

本発明は、圧延プラントの省エネ装置に関する。
熱間薄板圧延や厚板圧延においては、金属材料の圧延材に冷却水を注水して、与えられた目標温度に温度制御することが一般に行われる。また、1000℃前後の高温の圧延材に圧延ロールや搬送のためのテーブルロールが接するため、圧延ロールやテーブルロールを冷却水で冷却することも一般に行われる。後者の冷却水は、熱間薄板圧延や厚板圧延など高温材料を対象とする圧延だけでなく、冷間圧延等、常温の圧延材を対象とする場合にも使用される。
圧延プラントは、冷却水の循環経路を備えており、冷却水は、一旦高所のタンクに揚水されてから使用されることが多い。水の移動には、必ずポンプとそのポンプを駆動する電動機、そのドライブ装置が使用される。したがって、水の循環を減らすことができれば、ポンプの駆動に要するエネルギーを減らすことができる。
例えば、特許文献1(日本特開2006−272339号公報)「圧延ロールの冷却方法および装置」においては、圧延材がないときに、冷却水を送出するポンプを低速運転する方法が開示されている。
日本特開2006−272339号公報 日本特開2005−313202号公報 日本特開2008−260047号公報
しかしながら、上述した従来の温度制御や、特許文献1に開示された冷却方法においては、圧延材、圧延ロール、テーブルロールを如何に効率よく冷却するかという観点は考慮されていない。そのため、冷却水の注水量は多く、上述したポンプの駆動に要するエネルギーも十分に低減されない。よって、その省エネ効果は十分とは言えない。
この発明は、上述のような課題を解決するためになされたもので、圧延材を冷却する際に、冷却効率の高いタイミングで冷却水を注水することにより注水量を減らし、消費エネルギーの低減を図ることのできる圧延プラントの制御装置を提供することを目的とする。
また、この発明は、上述のような課題を解決するためになされたもので、圧延材が圧延されていない、いわゆるアイドリング状態においてテーブルロールや圧延ロールを冷却する際に、冷却効率の高いタイミングで冷却水を注水することにより注水量を減らし、消費エネルギーの低減を図ることのできる圧延プラントの制御装置を提供することを目的とする。
第1の発明は、上記の目的を達成するため、圧延プラントの省エネ装置であって、
圧延ラインにタンデムに配置され、前記圧延ライン上を搬送される金属材料の圧延材を圧延する複数の圧延スタンドと、
前記複数の圧延スタンドの間にそれぞれ設けられ、搬送される前記圧延材に冷却水を注水するスタンド間冷却装置と、を備え、
前記スタンド間冷却装置のうち、前記圧延ライン上流側に位置するスタンド間冷却装置からの注水量ほど多く、下流側に位置するスタンド間冷却装置からの注水量ほど少なく設定されていること、を特徴とする。
また第2の発明は、上記の目的を達成するため、圧延プラントの省エネ装置であって、
圧延ライン上を搬送される金属材料の圧延材を圧延する第1圧延スタンドと、
前記第1圧延スタンドの下流に配置された第2圧延スタンドと、
前記第2圧延スタンドの下流に配置された第3圧延スタンドと、
前記第1圧延スタンドと前記第2圧延スタンドとの間に設けられ、搬送される前記圧延材に冷却水を注水する第1スタンド間冷却装置と、
前記第2圧延スタンドと前記第3圧延スタンドとの間に設けられ、搬送される前記圧延材に冷却水を注水する第2スタンド間冷却装置と、
前記第2圧延スタンドが前記圧延材を圧延する状態と、前記圧延材を圧延しない状態とを切替可能な使用状態切替手段と、
前記第1圧延スタンドが前記圧延材を圧延し、かつ、前記第2圧延スタンドが前記圧延材を圧延しない状態において、前記第1スタンド間冷却装置からの注水を禁止し、前記第2圧延スタンド間冷却装置からの注水を許可する注水箇所設定手段と、を備えることを特徴とする。
また第3の発明は、上記の目的を達成するため、圧延プラントの省エネ装置であって、
圧延ラインにタンデムに配置され、前記圧延ライン上を搬送される金属材料の圧延材を圧延する複数の圧延スタンドと、
前記複数の圧延スタンドの間にそれぞれ設けられ、搬送される前記圧延材に冷却水を注水するスタンド間冷却装置と、を備え、
前記スタンド間冷却装置は、その上流側の圧延スタンド出側よりも、下流側の圧延スタンド入側に近い位置に設けられること、を特徴とする。
また第4の発明は、上記の目的を達成するため、圧延プラントの省エネ装置であって、
最終圧延スタンドの下流に配置され、搬送される圧延材に冷却水を注水する複数の注水装置と、
前記複数の注水装置のうち、連続して配置された各注水装置から注水しなければならない制約があるか否かを判定する制約判定手段と、
前記制約がない場合に、前記複数の注水装置のうち、冷却水を注水させる注水装置を、1つ以上の間隔を開けて設定する注水装置間隔設定手段と、を備えることを特徴とする。
また第5の発明は、上記の目的を達成するため、圧延プラントの省エネ装置であって、
圧延ラインに設けられ、圧延材を搬送するテーブルロールと、
前記テーブルロールに向けて冷却水を注水する複数の注水装置と、
前記テーブルロールが前記圧延材を搬送していないアイドリング状態であるか否かを判定する判定手段と、
前記アイドリング状態である場合に、前記複数の注水装置に前記テーブルロールに向けて間歇的に冷却水を注水させるアイドリング時注水手段と、を備えることを特徴とする。
また第6の発明は、上記の目的を達成するため、圧延プラントの省エネ装置であって、
圧延スタンドに設けられ、金属材料の圧延材を圧延する圧延ロールと、
前記圧延ロールに冷却水を注水するロール冷却装置と、
前記圧延ロールが前記圧延材を圧延していないアイドリング状態であるか否かを判定する判定手段と、
前記アイドリング状態において、低速回転領域における複数の運転点で、前記圧延ロールを駆動させるための消費電力量をそれぞれ取得する圧延ロール消費電力量取得手段と、
前記アイドリング状態において、前記複数の運転点で、前記ロール冷却装置に冷却水を供給するポンプを駆動させるための消費電力量をそれぞれ取得するポンプ消費電力量取得手段と、
前記アイドリング状態において、前記複数の運転点のうち、前記圧延ロールを駆動させるための消費電力量と、前記ポンプを駆動させるための消費電力量との和が最小となる運転点を選択する運転点選択手段と、を備えることを特徴とする。
これらの発明によれば、被冷却体である圧延材や圧延設備(圧延ロールやテーブルロール)の内部の熱が熱伝導によって表面に伝わり、被冷却体の表面温度が高まったタイミングで冷却水が注水される。表面温度と冷却水の温度差が大きいほど冷却効率は高まる。そのため、本発明によれば、冷却水の注水量を減らすことができ、冷却水の循環のためのポンプ等の消費エネルギーの低減を図ることができる。
熱間薄板圧延機と、これを対象とした冷却水の循環経路の概要を説明するための図である。 被冷却体の熱伝導の計算方法を説明するための図である。 時刻t1及び時刻t2において被冷却体に冷却水を注水する場合における被冷却体の中心温度と表面温度の温度変化を説明するための図である。 時刻t1及び時刻t3において被冷却体に冷却水を注水する場合における被冷却体の中心温度と表面温度の温度変化を説明するための図である。 本発明の実施の形態1における特徴的構成を説明するための図である。 本発明の実施の形態2における特徴的構成を説明するための図である。 本発明の実施の形態2において、制御装置が実行する制御ルーチンのフローチャートである。 本発明の実施の形態3における特徴的構成を説明するための図である。 本発明の実施の形態4における特徴的構成を説明するための図である。 本発明の実施の形態4における別の態様を説明するための図である。 本発明の実施の形態4において、制御装置が実行する制御ルーチンのフローチャートである。 本発明の実施の形態5における特徴的構成を説明するための図である。 本発明の実施の形態5において、制御装置が実行する制御ルーチンのフローチャートである。 本発明の実施の形態5における別の態様を説明するための図である。 本発明の実施の形態6における特徴的構成を説明するための図である。 ワークロール表面の所定部分についてのロール表面温度の変化について説明するための図である。 本発明の実施の形態6における特徴的構成を説明するための図である。 本発明の実施の形態6において、制御装置が実行する制御ルーチンのフローチャートである。
以下、図面を参照して本発明の実施の形態について詳細に説明する。尚、各図において共通する要素には、同一の符号を付して重複する説明を省略する。
[圧延プラントの基本的構成]
図1は、圧延プラントの基本的構成を説明するための図である。図1には、圧延プラントの一例として熱間薄板圧延機10と、これを対象とした冷却水の循環経路の概要が表されている。説明の都合上、図1では熱間薄板圧延機としたが、本発明が適用される圧延プラントはこれに限定されるものではない。本発明は、ほぼ同様の循環系を構成する厚板圧延機等にも適用することができる。また、図1は、循環系を簡略化して表したものであり、実際にはより多くのタンクやピット、ポンプや電動機が配置されている。
図1に示す熱間薄板圧延機10の圧延ライン上流には、金属材料の圧延材12を加熱する加熱炉14が設けられている。圧延材12は、テーブルロールにより圧延ライン上流(図1の左側)から下流(図1の右側)へ搬送される。加熱炉14の下流には、圧延材12の表面のスケールを除去するためのスケールブレーカ16が設けられている。スケールブレーカ16の下流には、圧延材12を圧延する粗圧延機18が設けられている。粗圧延機18の下流には、スケールブレーカ20が設けられている。スケールブレーカ20の下流には、圧延材12を最終板厚まで圧延する仕上圧延機22が設けられている。
仕上圧延機22は、タンデムに配置された複数の圧延スタンド24を備えている。各圧延スタンド24は、圧延材12と接触しながら回転して圧延材12を薄く引き延ばす圧延ロールであるワークロール26と、ワークロール26の回転軸方向のたわみを矯正するためのバックアップロール28とを備えている。ワークロール26には、それを駆動する電動機及びそのドライブ装置が設けられている。バックアップロール28は、ワークロール26との間の摩擦により、ワークロール26の回転につれて回転させられる。
図1に示す仕上圧延機22の下流には、仕上圧延機出側の圧延材12の温度(FDT:Finisher Delivery Temperature)を測定する仕上出側温度計30が設けられている。仕上出側温度計30の下流には、ランアウトテーブル(ROT:Run Out Table)32が設けられている。ROT32の下流には、巻き取り機前の圧延材12の温度(CT:Coiling Temperature)を測定する巻き取り温度計34が設けられている。巻き取り温度計34の下流には、圧延材12をコイル状に巻き取る巻き取り機36が設けられている。このように、熱間薄板圧延機10は、上流から下流に向かって、加熱炉14、粗圧延機18、仕上圧延機22、ROT32、巻き取り機36等で構成される。
次に、熱間薄板圧延機10を対象とした冷却水の循環経路の概要について説明する。図1の破線矢印は、循環する冷却水の流れを表している。熱間薄板圧延機10には、冷却水を蓄積するタンク38が、粗圧延機18、仕上圧延機22、ROT32よりも高い位置に設けられている。また、粗圧延機18、仕上圧延機22、ROT32よりも低い位置には、冷却水の回収経路が構成され、浄化・冷却プロセス40に接続されている。浄化・冷却プロセス40は、冷却水ピット42に配管で接続されている。冷却水ピット42は、タンク38に配管で接続されている。これらの配管にはポンプ44が設けられている。ポンプ44には、それを駆動する電動機46及びそのドライブ装置が設けられている。
圧延材12に直接注水して冷却するための冷却水を、直接冷却水と呼ぶことがある。また圧延設備(例えば、ワークロール26、バックアップロール28、ROT32等)の冷却ために注水する冷却水を、間接冷却水と呼ぶことがある。以下において、冷却水の種類を区別する場合は、直接冷却水、間接冷却水と記す。
図1に示す圧延スタンド24の入側及び出側の少なくとも一方には、ロール冷却装置48が設けられている。ロール冷却装置48は、タンク38から冷却水が供給され、ワークロール26やバックアップロール28に間接冷却水を注水することができる。また、隣り合う圧延スタンド24の間には、スタンド間冷却装置(ISC:Inter Stand Coolant)50が設けられている。仕上圧延機22の圧延スタンド24は通常5〜7個あるため、スタンド間冷却装置50は4〜6個備えられている。スタンド間冷却装置50は、タンク38から冷却水が供給され、テーブルロール上の圧延材12に直接冷却水を注水することができる。また、ROT32には、冷却バンク52が設けられている。冷却バンク52には、複数のROT注水装置54が設けられている。ROT注水装置54は、タンク38から冷却水が供給され、ROT32のテーブルロール上の圧延材12に直接冷却水を注水することができる。
直接冷却水、間接冷却水とも、冷却に使用された後は回収され再利用される。しかし、使用された冷却水は、その中に鉄粉等の異物が含まれていたり、高温になっていたりする。そのため、冷却水は一旦、浄化・冷却プロセス40に戻される。その後、再び冷却水として利用するために、冷却水ピット42に戻され、注水されるときに所望の圧力を付加するために、高所のタンク38に揚水され、冷却水として使用される。これらの水の移動には、ポンプ44とそれを駆動する電動機46及びそのドライブ装置が使用される。
また、図1に示す熱間薄板圧延機10は、制御装置60を備えている。制御装置60の入力側には、上述の仕上出側温度計30、巻き取り温度計34の他、圧延材12や圧延設備の状態を検出するための各種センサが接続されている。制御装置60の出力側には、上述のロール冷却装置48、スタンド間冷却装置50、ROT注水装置54、ポンプ44のドライブ装置、ワークロール26の回転速度(圧延速度)を変更可能なドライブ装置の他、圧延材12や圧延設備の状態を制御するための各種アクチュエータが接続されている。また、制御装置60は、圧延材12の材質や製品仕様に応じて各種制御情報(例えば、圧延材12の目標温度)等を設定する設定機能を備えている。
制御装置60は、上述した各種制御情報、及び各種センサの出力に基づき、所定のプログラムに従って各種アクチュエータを作動させることにより、圧延材12や圧延設備の状態を制御する。
上述のような圧延プラントにおいては、圧延材に冷却水を注水して、所望の温度に制御することが一般に行われる。高温の圧延材に冷却水を注水し冷却する場合、冷却後の目標温度が与えられ、その目標温度を達成するために各種アクチュエータが制御される。図1に示す熱間薄板圧延機10では、仕上圧延機22出側の圧延材12の温度(FDT)の目標が制御装置60に与えられ、制御装置60は、そのFDT目標温度を達成するために仕上出側温度制御(FDTC:FDT Control)を実行する。FDTCの操作端は、圧延速度および圧延スタンド24間に設置されたスタンド間冷却装置50である。
また、図1に示す熱間薄板圧延機10では、巻き取り機36前の圧延材12の温度(CT)の目標が制御装置60に与えられ、制御装置60は、そのCT目標温度を達成するためにCTを制御する巻き取り温度制御(CTC:CT Control)を実行する。CTCの操作端は、仕上圧延機22と巻き取り機36の間のROT32に設置されるROT注水装置54である。
[本発明の着想]
次に、各実施の形態に共通する本発明の基本的な考えについて説明する。本発明の基本的な考えは、以下の式に基づく。(1)式は、水冷の熱伝達を表す式である。本説明において、熱伝達とは、被冷却体の表面と冷却水との間における熱エネルギーの移動を意味する。熱伝導とは、被冷却体の内部における熱エネルギーの移動を意味する。
Figure 2013030945
ここで、
:被冷却体の表面の熱流 [W]
ただし、被冷却体から熱が奪われる場合をQ<0とする。
:被冷却体と冷却水の間の熱伝達係数 [W/mm2/K]
:被冷却体の表面積 [mm2]
surf :被冷却体の表面温度 [K]
:冷却水温度 [K]
被冷却体が冷却水より高温である場合、(1)式による熱流の絶対値が大きいことは、被冷却体が冷却され易いことを意味する。被冷却体は体積を持つものなので、その体積を微小なものに分け、そのi番目の微小体積部分の温度変化Tを考えると、以下の式で表される。
Figure 2013030945
ここで、
ρ :被冷却体の密度 [kg/mm3]
:被冷却体の比熱 [J/kg/deg]
:i番目の微小体積 [mm3]
Δt :時間変化 [s]
ΣQ :熱流の和。熱流には(1)式のQ以外にも、放射、空冷対流、熱伝導によるものなどがあり、それらをすべて考慮したもの。ただし、被冷却体から熱が奪われる場合をQ<0とする。
ここで、図2に被冷却体の厚み方向に5分割した例を示す。上表面から順に1、・・・、5と番号を振り、これをi番目と一般的に表す。熱の計算に用いられる差分法(微分方程式を解く数値解析の方法のひとつ)では、図2の上図に示す分割した微小体積を、図2の下図に示すノード(点)で代表させ、ノード間の熱の出入りを(2)式のように記述することが一般的に行われる。本発明の説明でも、これに従うことにする。
(1)式(2)式から、被冷却体の物性値である密度、比熱、および微小体積は変更できないものであるので、被冷却体の温度を下げるためには、ΣQを大きくすればよい。そのためには以下の方法が考えられる。
(A)被冷却体の表面温度Tsurfと冷却水の温度Tの差を大きくする。
(B)被冷却体と冷却水の間の熱伝達係数hを大きくする。
(C)被冷却体の表面積Aを大きくする。
(B)については、表面温度、および、金属材料の表面に付着する酸化膜など、表面状態に依存することが知られている。(C)は、被冷却体の表面が滑らかでない場合に表面積は大きくなる。しかし(B)(C)とも制御可能な量ではない。
(A)の中で、冷却水の温度は、上述の図1での説明のように、冷却プロセスの結果として冷却水の温度が実現されるので、容易に変更できるものではない。しかし、被冷却体の表面温度は、工夫により変更することが可能である。
被冷却体は単位長さ、単位幅を取った場合、必ず厚みがあるものであり、厚み方向に温度分布を持つ。一般には表面から先に冷却されるので、厚み方向の内部では、表面より高い温度を持つ。内部の熱が表面に出てくることは、被冷却体の熱伝導に依存する。熱伝導は、物性値の一つである熱伝導率(熱伝達とは異なる物性値)によって表される。
被冷却体の表面温度を高くするには、冷却後ある時間をおいて内部の高温部分からの熱伝導により、表面に熱が伝わるのを待つことが必要である。
以下、被冷却体は、圧延機による加工を受けた金属材料、すなわち圧延材である場合と、圧延ロール等の圧延設備である場合とがある。
本発明では、上述の考えに基づいて、被冷却体が金属材料である場合に、その内部からの熱によって表面温度を高めるように、冷却水を注水するタイミングを決める。そのタイミングで注水することにより、冷却効率を高め、省エネ効果を高める。
また本発明では、被冷却体が圧延設備である場合に、圧延加工をしていない状態や圧延材を搬送していない状態といった、いわゆるアイドリング状態において、圧延設備の内部からの熱によって表面温度を高めるように、冷却水を注水するタイミングを決める。そのタイミングで注水することにより、冷却効率を高め、省エネ効果を高める。
上記の考え方をあてはめた場合の冷却方法を図3及び図4を用いて説明する。図3及び図4において、被冷却体が、時刻t1の状態、時刻t2の状態、時刻t3の状態の順で、直線的に、または回転方向に移動するものとする。図3は、時刻t1及び時刻t2において被冷却体に冷却水を注水する場合における被冷却体の中心温度(ノード3)と表面温度(ノード1)の温度変化を表している。図4は、時刻t1及び時刻t3において被冷却体に冷却水を注水する場合における被冷却体の中心温度(ノード3)と表面温度(ノード1)の温度変化を表している。
図3に示すように、被冷却体を冷却水で冷やす場合、時刻t1で注水した直後は、被冷却体の表面温度が急激に下がる。図3では、時刻t1直後の時刻t2のタイミングで冷却水が注水されるため、被冷却体は、内部に持つ熱が十分表面まで出てくる前に冷却されることになる。そのため、(1)式の熱流が小さくなり、冷却効率が良くない。
一方、図4に示すように、時刻t1で注水した後、時刻t2で注水しない場合には、被冷却体の内部の熱が表面に出てくるので表面温度が高くなる。図4に示す時刻t3のタイミングでは、図3に示す時刻t2のタイミングに比して被冷却体の表面温度が高まっている。そのため、図4に示す時刻t3のタイミングで注水すると、(1)式の熱流が大きくなり、冷却効率が高まる。
以下、上述した本発明の基本的な考えに基づく各実施の形態について説明する。
実施の形態1乃至4では、被冷却体が圧延材12である場合について説明する。特に、実施の形態1乃至3では、スタンド間冷却装置50による圧延材12の冷却について説明する。実施の形態4では、ROT注水装置54による圧延材の冷却について説明する。
実施の形態5では、被冷却体がテーブルロールの場合について説明する。
実施の形態6では、被冷却体が圧延ロールの場合について説明する。
実施の形態1.
従来のFDTCにおいては、スタンド間冷却装置50を操作する場合、冷却効率を考慮したり省エネ効果を考慮したりすることなく、FDT目標温度に制御するためのスタンド間冷却装置50からの注水量が決められている。これに対し、本発明の実施の形態1は、スタンド間冷却装置による圧延材の冷却時において、冷却効率の高いタイミングで冷却水を注水することにより、注水量を減らし、冷却水の循環のための消費エネルギーの低減を図るものである。
図5は、本発明の実施の形態1における特徴的構成を説明するための図である。図5は、図1に示す仕上圧延機22の拡大図である。仕上圧延機22には、複数の圧延スタンド24a〜24dがタンデムに設けられている。図5中、圧延材12は左から右に圧延される。各圧延スタンドの間には、スタンド間冷却装置(ISC)50a〜50cが設けられており、搬送される圧延材12に直接冷却水を注水する。そのため、圧延材12は、右側(下流側)に搬送される過程で温度が下がっていく。圧延材12の表面温度が高いのは、左側(上流側)であり、このときにスタンド間冷却装置50から注水して温度を下げる方が、同じ水量であれば冷却効率は高い。
以下の各図の説明において、圧延スタンド24a〜24dを特に区別しない場合には、単に圧延スタンド24と記す。スタンド間冷却装置50a〜50cを特に区別しない場合には、スタンド間冷却装置50と記す。また、これらの装置の数は、各図に示される数に限定されるものではない。
本実施の形態においては、上述の冷却効率に鑑みて、スタンド間冷却装置50からの注水量を上流側ほど多く、下流側ほど少なくすることとする。すなわち、本実施の形態においては、制御装置60は、圧延材12の材質等に応じて決定されるFDT目標温度を満たす制御範囲内で、圧延ライン上流に位置するスタンド間冷却装置50からの注水量ほど多く、下流に位置するスタンド間冷却装置50からの注水量ほど少なく設定する。図5においては、スタンド間冷却装置から圧延材に向けられた矢印が、冷却水の流れを示しており、矢印の太さが流量の大小を表している。図5に示すように、制御装置60は、上流に位置するスタンド間冷却装置50aからの注水量を最も多く、下流に配置されたスタンド間冷却装置50b、50cほど注水量を少なく設定する。
このような構成によれば、全てのスタンド間冷却装置50からの水量を一定とする場合に比して、圧延材をFDT目標温度まで冷却するために要する冷却水流量を低減することができる。このように冷却効率を高めて、注水量を低減することにより、冷却水の循環のためのポンプ等の電力量を低減できる。そのため、圧延における消費エネルギーを低減することができる。
実施の形態2.
図6は、本発明の実施の形態2における特徴的構成を説明するための図である。図6は、図1に示す仕上圧延機22の拡大図である。仕上圧延機22には、複数の圧延スタンド24がタンデムに設けられている。以下の説明において、複数の圧延スタンド24を、圧延ライン上流側から順に、第1圧延スタンド24a、第2圧延スタンド24b、第3圧延スタンド24c、・・・と記す。ここでは説明容易のため、仕上圧延機22の最上流に位置する圧延スタンド24を、第1圧延スタンド24aとしているが、本発明はこれに限定されるものでない。例えば、最上流以外に位置する圧延スタンド24を、第1圧延スタンド24aとするものであってもよい。第1圧延スタンド24aにはワークロール26aが、第2圧延スタンド24bにはワークロール26bが、第3圧延スタンド24cにはワークロール26cが設けられている。以下の説明において、ワークロール26a〜26cを特に区別しない場合には、単にワークロール26と記す。
各圧延スタンド24は、ワークロール26を圧延材12に接触させて、圧延に使用する運転モードと、ワークロール26を圧延材12に接触させず、圧延に使用しない運転モードとを切り替えることが可能である。各圧延スタンド24をいずれの運転モードで動作させるかは、圧延材12の材質や製品仕様等に応じて制御装置60が決定する。また、隣り合う圧延スタンド24の間には、スタンド間冷却装置(ISC)50が設けられている。図6においては、第1圧延スタンド24aと第2圧延スタンド24bとの間には第1スタンド間冷却装置50aが、第2圧延スタンド24bと第3圧延スタンド24cとの間には第2スタンド間冷却装置50bが設けられている。
図6には、第2圧延スタンド24bがダミー、すなわち、圧延に使用しない運転モードである場合が表されている。ダミーであるのはどの圧延スタンドでもよいが、ここでは第2圧延スタンド24bとする。圧延材12は、圧延スタンド24aにより圧延された場合、ワークロール26aによっても抜熱されている。そのため、圧延スタンド24aの直後は、圧延材12の表面温度は下がっている。復熱効果により、圧延スタンド24b、24cと進むにつれて、表面温度が高くなる。従って、第1スタンド間冷却装置50aよりも、第2スタンド間冷却装置50bを使用した方が、同じ注水量なら冷却効果は高くなる。
そこで、本実施の形態においては、第1圧延スタンド24aが圧延に使用され、かつ、第2圧延スタンド24bが圧延に使用されない状態において、第1スタンド間冷却装置50aからは冷却水を注水させずに、第2スタンド間冷却装置50bから冷却水を注水させることとする。
図7は、上述の動作を実現するために、制御装置60が実行する制御ルーチンのフローチャートである。前提として、制御装置60は、圧延材12の材質や製品仕様に応じて、圧延スタンドの全てを圧延に使用するか、一部を圧延に使用するかを決定することができる。ここでは、圧延スタンド24aまたは24bのいずれか一方を圧延に使用する場合には、圧延スタンド24aを圧延に使用するものとする。また、FDTCが実行され、図7に示すルーチンは、FDT目標温度を達成できる制御範囲内で実行される。
図7に示すルーチンでは、まず、第1圧延スタンド24aが圧延に使用される運転モードであるか否かが判定される(ステップS100)。第1圧延スタンド24aが圧延に使用される運転モードである場合には、次に、第2圧延スタンド24bが圧延に使用されない運転モードであるか否かが判定される(ステップS110)。第2圧延スタンド24bが圧延に使用されない運転モードである場合には、制御装置60は、第1スタンド間冷却装置50aから圧延材12への注水を禁止する(ステップS120)。併せて、制御装置60は、第2スタンド間冷却装置50bから圧延材12への注水を許可する(ステップS130)。
一方、ステップS110の処理において、第1圧延スタンド24aが圧延に使用される運転モードである場合には、次に、制御装置60は、第1スタンド間冷却装置50aから圧延材12への注水と、第2スタンド間冷却装置50bから圧延材12への注水の両方を許可する(ステップS140−S150)。
このような構成によれば、圧延に使用しない圧延スタンドがある場合において、冷却効率が高いタイミングで注水することができるため、圧延材をFDT目標温度まで冷却するために要する冷却水流量を低減することができる。このように冷却効率を高めて、注水量を低減することにより、冷却水の循環のためのポンプ等の電力量を低減できる。そのため、圧延における消費エネルギーを低減することができる。
なお、上述した実施の形態1の構成に、実施の形態2の制御を適用することも可能である。すなわち、制御装置60は、第1圧延スタンド24a及び第2圧延スタンド24bが圧延材12を圧延する状態において、第1スタンド間冷却装置50a及び第2スタンド間冷却装置50bからの注水を許可すると共に、第2スタンド間冷却装置50bからの注水量を、第1スタンド間冷却装置50aからの注水量よりも少なく設定する注水割合設定手段を更に備えることとしてもよい。
実施の形態3.
図8は、本発明の実施の形態3における特徴的構成を説明するための図である。図8は、図1に示す仕上圧延機22の拡大図である。図8に示す構成は、図5又は図6で述べた構成と基本的に同様であるが、スタンド間冷却装置50の配置を工夫している点で相違する。例えば、圧延材12が圧延スタンド24aにより圧延された場合、ワークロール26aによっても抜熱されている。そのため、圧延スタンド24aの直後は、圧延材12の表面温度は下がっている。ワークロール26aに接して下がった圧延材12の表面温度が復熱により上昇した後に注水すれば、冷却効率を高めることができる。
そこで、本実施の形態においては、スタンド間冷却装置50aを、その上流側の圧延スタンド24a出側よりも、下流側の圧延スタンド24b入側に近い位置に設けることとする。他のスタンド間冷却装置50についても同様とする。
図5又は図6に示すように、一般に、スタンド間冷却装置50は圧延スタンド24の出側直後(すぐ下流)に設定されるが、本実施の形態では、スタンド間冷却装置50は下流側の圧延スタンド24入側に設定される。ワークロール26に接して下がった圧延材12の表面温度が復熱により上昇した後で冷却水が注水されることとなるため、冷却効率を高めることができる。冷却効率が高まることで、注水量を低減することができ、冷却水の循環のためのポンプ等の電力量を低減できる。そのため、圧延における消費エネルギーを低減することができる。
なお、上述した実施の形態1又は実施の形態2の構成に、実施の形態3の構成を適用することも可能である。すなわち、実施の形態1又は実施の形態2の構成において、各スタンド間冷却装置50を、その上流側の圧延スタンド24出側よりも、下流側の圧延スタンド24入側に近い位置に設けることとしてもよい。
実施の形態4.
CTCにおいては、ROT32のROT注水装置54を操作する場合、圧延材12の冷却パターンが、強度や延性などの材質確保の観点から決められている場合がある。例えば、ROT32の上流側で注水し冷却する前段冷却や、下流側で注水する後段冷却などがある。いわゆる材質厳格材においては、冷却パターンを管理し冷却途中の温度履歴も制御する必要があるが、材質の規格が厳しくない場合も多い。この場合、従来はROT32の出側の温度であるCTの目標値だけが管理されている。これに対し、本実施の形態では、ROT注水装置54による非材質厳格材の冷却時において、冷却効率の高いタイミングで冷却水を注水することにより、注水量を減らし、冷却水の循環のための消費エネルギーの低減を図るものである。
図9は、本発明の実施の形態4における特徴的構成を説明するための図である。図9は、図1に示すROT32の拡大図である。ROT32には、複数のROT注水装置54a、54b、54c、・・・が仕上圧延機22の最終圧延スタンド24の出側から、巻き取り機36(図9では図示省略)に向かって連続して配置されている。以下の説明において、ROT注水装置54a、54b、54c、・・・を特に区別しない場合には、単にROT注水装置54と記す。
上述したFDTCでは仕上出側温度計30で計測した温度を目標値(FDT目標温度)に一致させるように、上述のスタンド間冷却装置50を操作する。CTCでは巻き取り温度計34で計測した温度を目標値(CT目標温度)に一致させるように、ROT注水装置54を操作する。しかしながら、CTCによるROT注水装置54の操作方法は、例えば、ROT注水装置54a、54b、54c、54d、54e、・・・と連続して注水すると、圧延材12の表面温度が復熱により上昇しきらず、54b、54c、・・・と続く冷却水の冷却効果が小さくなる。
そこで、本実施の形態においては、連続する複数のROT注水装置54のうち、冷却水を注水させるROT注水装置54を、1つ以上の間隔を開けて設定することとする。
図9に示すように、ROT注水装置54a、54c、54e、・・・と間隔を開けて冷却することで、54aから54cに至る間に復熱し圧延材12の表面温度が上昇し、同じ水量なら冷却効果は高まる。図10は、本発明の実施の形態4における別の態様を示す図である。さらに、図10に示すように、ROT注水装置54a、54d、・・・と間隔を開けると、さらに冷却効率は高まる。
実際の冷却装置による実験でも、54a、54b、54c、・・・と連続して注水した場合の冷却効率を1とすると、図9のように54a、54c、54e、・・・と1つおきの場合は1.5、図10のように54a、54d、・・・の2つおきの場合は1.8となる。ただし、圧延材12の材質上、連続して配置された各ROT注水装置54から、冷却水を注水させなければならない等の制約がある場合は、省エネより品質を優先させる必要がある。
図11は、上述の動作を実現するために、制御装置60が実行する制御ルーチンのフローチャートである。図7に示すルーチンでは、まず、制御装置60は、連続して配置された各ROT注水装置54a、54b、54c、・・・から冷却水を注水しなければならない等の制約が設定されているか否かを判定する(ステップS200)。制御装置60は、圧延プラントの稼働開始時に、圧延材12の材質等に応じて制約設定フラグを設定する。例えば、圧延材12が材質厳密材である場合には制約設定フラグをONに設定する。ステップS200では、制約設定フラグのON/OFF状態に基づいて、上記制約の有無を判定することができる。
連続して配置された各ROT注水装置54から冷却水を注水しなければならない制約が設定されている場合には、次に、制御装置60は、連続して配置された各ROT注水装置54から冷却水を注水させるように設定する(ステップS210)。
一方、ステップS200において、上記制約が設定されていないと判定された場合には、次に、制御装置60は、各ROT注水装置54のうち、冷却に使用するROT注水装置を、1つ以上の間隔を開けて設定する(ステップS220)。
このような構成によれば、圧延材12が材質厳密材でない場合において、圧延材12をCT目標温度に冷却するために要する冷却水流量を低減することができる。このように冷却効率を高めて、注水量を低減することにより、冷却水の循環のためのポンプ等の電力量を低減できる。そのため、圧延における消費エネルギーを低減することができる。
実施の形態5.
実施の形態5では、テーブルロールを冷却する制御について説明する。高温の圧延材を搬送するテーブルロールには、ロールが高温になり変形することなどを防ぐため、間接冷却水が注水され冷却されている。確かに、圧延材を搬送している状態では、常時注水が必要である。しかしながら、圧延材を搬送していない、いわゆるアイドリング状態の場合においても、従来は、ロールを如何に効率よく冷却するかを考慮することなく、一定の水量で冷却されていた。これに対し、本実施の形態の制御は、アイドリング状態において、冷却効率の高いタイミングでROT注水装置54に間接冷却水を注水させることにより、注水量を減らし、冷却水の循環のための消費エネルギーの低減を図るものである。
図12は、本発明の実施の形態5における特徴的構成を説明するための図である。図12は、図1に示すROT32の拡大図である。図12に示す構成は、図9、図10で述べた構成と基本的に同様であるが、図12では、さらに、圧延材12を圧延ラインの上流側(図12の左側)から下流側(図12の右側)に搬送するためのテーブルロール62が示されている。なお、図12は、テーブルロール62が圧延材12を搬送していないアイドリング状態を表している。ROT32には、圧延材12を搬送するためのテーブルロール62が多数設けられている。また、ROT注水装置54は、圧延材12がテーブルロール62上を搬送されていない状態において、テーブルロール62に向けて冷却水を注水可能に配置されている。
制御装置60は、高温の圧延材12を搬送するために、テーブルロール62自体の保護と、次回冷却される圧延材12の温度に影響を及ぼさないように、圧延材12が通過した後、ROT注水装置54から一斉に注水して、テーブルロール62を冷やす場合がある。このとき、たとえば、ROT注水装置54から一斉に注水する時間を5秒間継続とするのはなく、まず2秒間一斉に注水し、n秒間止め、また2秒間一斉に注水することとする。n秒間止める間に、ロールの内部に貯まった熱がロール表面に出てきて表面温度が上がり、そこに注水することで冷却効率が高まり、結果的にトータルの注水時間を5秒から4秒に減らすという方法である。なお、止めるn秒間は、次材が来るまでの時間を見ながら、できるだけ長く取るものとする。
すなわち、本実施の形態においては、テーブルロール62が圧延材を搬送していないアイドリング状態である場合に、各ROT注水装置54にテーブルロール62に向けて間歇的に冷却水を注水させることとした。
図13は、上述の動作を実現するために、制御装置60が実行する制御ルーチンのフローチャートである。図13に示すルーチンでは、まず、テーブルロール62上が圧延材12を搬送していないアイドリング状態であるか否かが判定される(ステップS300)。
テーブルロール62が圧延材12を搬送していないアイドリング状態である場合には、制御装置60は、各ROT注水装置54に間歇的に冷却水を注水させる(ステップS310)。具体的には、上述のように、まず2秒間一斉に注水し、n秒間止め、また2秒間一斉に注水させることとする。
一方、アイドリング状態でない場合、すなわち、テーブルロールが圧延材12を搬送している状態である場合は、制御装置60は、ROT注水装置54に冷却水を常時注水させる(ステップS320)。
図14は、本発明の実施の形態5における別の態様を説明するための図である。一般に圧延ラインには、図12に示したROT32のみならず、多くの場所で材料を搬送するためのテーブルロール64が設置されている。図14はそれを一般化して描いたものであり、テーブルロール64の間にテーブルロール冷却装置66が配置されており、圧延材の搬送中および圧延材の搬送を行った後の一定の期間、テーブルロール冷却装置66からの注水により、テーブルロール64を冷却する。テーブルロール冷却装置66は、制御装置60の出力側に接続されている。
この場合も、図12と同様に、圧延材12の搬送を行った後に対して、継続して注水するのではなく、一定時間をおいて注水することと、注水しないことを繰り返すことにより、冷却効率を高める。なお、圧延材12の搬送中は圧延材から受ける熱量が大きいため、冷却水が常時注水される。
本実施の形態の構成によれば、テーブルロール62又は64が圧延材12を搬送していない場合において、テーブルロール62、64を冷却するために要する冷却水流量を低減することができる。このように冷却効率を高めて、注水量を低減することにより、冷却水の循環のためのポンプ等の電力量を低減できる。そのため、圧延における消費エネルギーを低減することができる。
実施の形態6.
実施の形態6では、圧延ロールを冷却する制御について説明する。一般に、高温の圧延材を圧延ロールで圧延する場合、圧延材からの熱によりロール温度が上昇し、熱膨張が起こるため、熱膨張を抑えるべく、またロールを保護するためにロールを冷却する。圧延中は常時、冷却水が注水される必要がある。一方、圧延をしていない、いわゆるアイドリング状態では、圧延間隔によって、冷却水の注水量が増減されることもある。
本発明の実施の形態6においては、アイドリング状態において、圧延ロールの温度上限以内に冷却するための冷却水量の制約を考慮しつつ、圧延ロールを回転させるための消費エネルギーと、圧延ロールを冷却するための冷却水注水のための消費エネルギーの和が最小になるように、圧延ロールの回転数と圧延ロールの冷却水量を決める。圧延ロールの内部に存在する熱を表面に出しやすくするために、ロールをゆっくり回転させ、冷却水による冷却の時間間隔を空けることと、ロールの回転速度による効率の適切な按分を行うものである。
図15は、本発明の実施の形態6における特徴的構成を説明するための図である。図15は、図1に示す圧延スタンド24の拡大図である。圧延スタンド24は、上述したように、圧延ロールであるワークロール(WR:Work Roll)26と、バックアップロール(BUR:Back Up Roll)28と、ロール冷却装置48を備えている。ロール冷却装置48は、圧延スタンド24の入側、出側にそれぞれ設置されている。具体的には、ロール冷却装置48は、ワークロール26に間接冷却水を注水するWR冷却装置48aと、バックアップロール28に間接冷却水を注水するBUR冷却装置48bで構成される。以下の説明において、冷却装置48a、48bを特に区別しない場合には、単にロール冷却装置48という。また、ロール冷却装置48から注水される間接冷却水をロール冷却水ともいう。
図16は、ワークロール26表面の所定部分におけるロール表面温度の変化について説明するための図である。図15に示すように、ワークロール26は、2箇所に設けられたWR冷却装置48aから注水されている。そのため、上記所定部分はロール1回転で2回冷却されている。図16の上図は、ワークロール26の低速回転時において冷却水がワークロール26に当たる時間とロール表面温度の変化の概略を示している。図16の下図は、ワークロール26の高速回転時において冷却水がワークロール26に当たる時間とロール表面温度の変化の概略を示している。
図16に示すように、低速回転時は、高速回転時に比して冷却水がロール表面に当たっている時間が長くなり、次の冷却水が当たるまでの時間も長くなる。このためワークロール内部に持つ熱が表面に出てくる時間的余裕ができる。その結果、ロール表面温度が高くなり、より効率的に冷却することが可能となる。
図17は、本発明の実施の形態6における特徴的構成を説明するための図である。図16の上記説明により、低速回転が好ましいが、ロールを回転させる電動機の効率や、ロール機械系のロス分等も考慮して、低速であればあるほど省エネになるというものではない。図17はロールの回転数と消費電力との関係を簡単に説明するものである。一般に電動機は回転数が小さければ効率は悪くなり、また電動機と結合されるロール機械系はベアリングがグリス等の固体油脂である場合は、低速回転では粘着性による抵抗が大きくなる。このため図17に示すような消費電力曲線が得られることがある。このとき点A、B、Cの条件で、ロールを駆動する電動機の消費電力量と、それぞれの3点でロール冷却水を供給するポンプの電力量を予測計算し、ロールを駆動する電動機の消費電力量とロール冷却水を供給するポンプの消費電力量との和が最小になる場合の運転点を点A、B、Cのいずれかから選択し、その点で運転するものとする。
図18は、上述の動作を実現するために、制御装置60が実行する制御ルーチンのフローチャートである。図18に示すルーチンでは、まず、圧延ロールであるワークロール26が圧延材12を圧延していないアイドリング状態であるか否かが判定される(ステップS400)。
ワークロール26が圧延材12を圧延していないアイドリング状態である場合には、制御装置60は、ワークロール26を低回転領域で運転させる。加えて、低回転領域における複数の運転点(例えば、図17に点A、B、Cで示す3つの異なるロール回転数)において、ワークロール26を駆動させる電動機の消費電力量と、ロール冷却水を供給するポンプを駆動させる電動機の消費電力量とを計算する(ステップS410)。なお、予め複数の運転点における上記電力量を計測し記憶しておくこととしても良い。
次に、制御装置60は、ワークロール26を駆動させる電動機の消費電力量と、ロール冷却水を供給するポンプの消費電力量との和が最小となる運転点を選択する(ステップS420)。その後、制御装置60は、選択された運転点(ロール回転数)でワークロール26を動作させる。
一方、ステップS400において、アイドリング状態でないと判定された場合には、制御装置60は、ロール冷却装置48に必要な水量の冷却水を常時注水させる(ステップS430)。
このような構成によれば、圧延ロールが圧延材を圧延していない場合において、冷却効率を高めつつ、圧延ロールを駆動させる電動機の消費電力量と、ロール冷却水を供給するポンプを駆動させる電動機の消費電力量との和を最小にすることができる。圧延ロールを回転させるエネルギーをも考慮して、効率のよい冷却を行うことができるため、総消費エネルギーを低減することができる。
10 熱間薄板圧延機
12 圧延材
14 加熱炉
16、20 スケールブレーカ
18 粗圧延機
22 仕上圧延機
24、24a−24d 圧延スタンド
26、26a−26d ワークロール
28 バックアップロール
30 仕上出側温度計
32 ランアウトテーブル(ROT:Run Out Table)
34 巻き取り温度計
36 巻き取り機
38 タンク
40 浄化・冷却プロセス
42 冷却水ピット
44 ポンプ
46 電動機
48 ロール冷却装置
48a WR冷却装置
48b BUR冷却装置
50、50a−50c スタンド間冷却装置(ISC)
52 冷却バンク
54、54a−54e ROT注水装置
60 制御装置
62、64 テーブルロール
66 テーブルロール冷却装置

Claims (6)

  1. 圧延ラインにタンデムに配置され、前記圧延ライン上を搬送される金属材料の圧延材を圧延する複数の圧延スタンドと、
    前記複数の圧延スタンドの間にそれぞれ設けられ、搬送される前記圧延材に冷却水を注水するスタンド間冷却装置と、を備え、
    前記スタンド間冷却装置のうち、前記圧延ライン上流側に位置するスタンド間冷却装置からの注水量ほど多く、下流側に位置するスタンド間冷却装置からの注水量ほど少なく設定されていること、
    を特徴とする圧延プラントの省エネ装置。
  2. 圧延ライン上を搬送される金属材料の圧延材を圧延する第1圧延スタンドと、
    前記第1圧延スタンドの下流に配置された第2圧延スタンドと、
    前記第2圧延スタンドの下流に配置された第3圧延スタンドと、
    前記第1圧延スタンドと前記第2圧延スタンドとの間に設けられ、搬送される前記圧延材に冷却水を注水する第1スタンド間冷却装置と、
    前記第2圧延スタンドと前記第3圧延スタンドとの間に設けられ、搬送される前記圧延材に冷却水を注水する第2スタンド間冷却装置と、
    前記第2圧延スタンドが前記圧延材を圧延する状態と、前記圧延材を圧延しない状態とを切替可能な使用状態切替手段と、
    前記第1圧延スタンドが前記圧延材を圧延し、かつ、前記第2圧延スタンドが前記圧延材を圧延しない状態において、前記第1スタンド間冷却装置からの注水を禁止し、前記第2圧延スタンド間冷却装置からの注水を許可する注水箇所設定手段と、
    を備えることを特徴とする圧延プラントの省エネ装置。
  3. 圧延ラインにタンデムに配置され、前記圧延ライン上を搬送される金属材料の圧延材を圧延する複数の圧延スタンドと、
    前記複数の圧延スタンドの間にそれぞれ設けられ、搬送される前記圧延材に冷却水を注水するスタンド間冷却装置と、を備え、
    前記スタンド間冷却装置は、その上流側の圧延スタンド出側よりも、下流側の圧延スタンド入側に近い位置に設けられること、
    を特徴とする圧延プラントの省エネ装置。
  4. 最終圧延スタンドの下流に配置され、搬送される圧延材に冷却水を注水する複数の注水装置と、
    前記複数の注水装置のうち、連続して配置された各注水装置から注水しなければならない制約があるか否かを判定する制約判定手段と、
    前記制約がない場合に、前記複数の注水装置のうち、冷却水を注水させる注水装置を、1つ以上の間隔を開けて設定する注水装置間隔設定手段と、
    を備えることを特徴とする圧延プラントの省エネ装置。
  5. 圧延ラインに設けられ、圧延材を搬送するテーブルロールと、
    前記テーブルロールに向けて冷却水を注水する複数の注水装置と、
    前記テーブルロールが前記圧延材を搬送していないアイドリング状態であるか否かを判定する判定手段と、
    前記アイドリング状態である場合に、前記複数の注水装置に前記テーブルロールに向けて間歇的に冷却水を注水させるアイドリング時注水手段と、
    を備えることを特徴とする圧延プラントの省エネ装置。
  6. 圧延スタンドに設けられ、金属材料の圧延材を圧延する圧延ロールと、
    前記圧延ロールに冷却水を注水するロール冷却装置と、
    前記圧延ロールが前記圧延材を圧延していないアイドリング状態であるか否かを判定する判定手段と、
    前記アイドリング状態において、低速回転領域における複数の運転点で、前記圧延ロールを駆動させるための消費電力量をそれぞれ取得する圧延ロール消費電力量取得手段と、
    前記アイドリング状態において、前記複数の運転点で、前記ロール冷却装置に冷却水を供給するポンプを駆動させるための消費電力量をそれぞれ取得するポンプ消費電力量取得手段と、
    前記アイドリング状態において、前記複数の運転点のうち、前記圧延ロールを駆動させるための消費電力量と、前記ポンプを駆動させるための消費電力量との和が最小となる運転点を選択する運転点選択手段と、
    を備えることを特徴とする圧延プラントの省エネ装置。
JP2013530926A 2011-08-30 2011-08-30 圧延プラントの省エネ装置 Active JP5713110B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/069571 WO2013030945A1 (ja) 2011-08-30 2011-08-30 圧延プラントの省エネ装置

Publications (2)

Publication Number Publication Date
JPWO2013030945A1 true JPWO2013030945A1 (ja) 2015-03-23
JP5713110B2 JP5713110B2 (ja) 2015-05-07

Family

ID=47755498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013530926A Active JP5713110B2 (ja) 2011-08-30 2011-08-30 圧延プラントの省エネ装置

Country Status (5)

Country Link
US (1) US9511401B2 (ja)
EP (1) EP2752254B1 (ja)
JP (1) JP5713110B2 (ja)
CN (1) CN103764306B (ja)
WO (1) WO2013030945A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013107010A1 (de) 2013-07-03 2015-01-22 Thyssenkrupp Steel Europe Ag Anlage und Verfahren zum Warmwalzen von Stahlband
CN105032958B (zh) * 2015-08-24 2018-04-20 东北大学 应用道次间冷却工艺控制轧制的即时冷却系统及冷却方法
WO2020179019A1 (ja) * 2019-03-06 2020-09-10 東芝三菱電機産業システム株式会社 圧延機の冷却水注水制御装置および冷却水注水制御方法
CN113198844B (zh) * 2021-05-06 2022-06-03 金鼎重工有限公司 一种节能环保型轧机

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH035013A (ja) * 1989-05-31 1991-01-10 Kobe Steel Ltd 熱延鋼板の冷却制御方法
JPH05317946A (ja) * 1992-05-22 1993-12-03 Nkk Corp ストリップの表面温度測定装置
JP2002143918A (ja) * 2000-11-14 2002-05-21 Kawasaki Steel Corp 熱間圧延ラインの水冷ゾーンにおける冷却方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54125161A (en) 1978-03-24 1979-09-28 Sumitomo Metal Ind Ltd Improving method for passableness of strip in hot run table
JPS63235013A (ja) 1987-03-23 1988-09-30 Nkk Corp 静圧冷却制御方式
JP2642834B2 (ja) 1992-06-11 1997-08-20 川崎製鉄株式会社 熱間圧延方法
JPH06142733A (ja) 1992-11-11 1994-05-24 Nkk Corp 熱延ストリップの走間板厚変更圧延方法
JPH09329558A (ja) 1996-06-07 1997-12-22 Furukawa Electric Co Ltd:The 被圧延材・クーラント液間の熱伝達率の同定方法
JPH11267730A (ja) 1998-03-24 1999-10-05 Kawasaki Steel Corp 熱延鋼板の温度制御装置及びその方法
JP3584923B2 (ja) 2001-10-31 2004-11-04 Jfeスチール株式会社 熱延鋼板の製造方法
JP2004298888A (ja) 2003-03-28 2004-10-28 Jfe Steel Kk 熱延鋼帯の製造方法および製造装置
JP2005313202A (ja) 2004-04-28 2005-11-10 Nisshin Steel Co Ltd 圧延機のクーラント装置
JP2006272339A (ja) 2005-03-28 2006-10-12 Nisshin Steel Co Ltd 圧延ロールの冷却方法及び装置
JP4425978B2 (ja) * 2007-01-30 2010-03-03 東芝三菱電機産業システム株式会社 熱間圧延機の温度制御装置
JP4874156B2 (ja) 2007-04-12 2012-02-15 新日本製鐵株式会社 圧延機用ロールの冷却装置及び冷却方法
DE102007058709A1 (de) * 2007-08-04 2009-02-05 Sms Demag Ag Verfahren zum Herstellen eines Bandes aus Stahl
JP5028310B2 (ja) 2008-03-21 2012-09-19 株式会社日立製作所 熱間圧延機のスタンド間冷却制御装置および制御方法
JP5146062B2 (ja) 2008-04-10 2013-02-20 新日鐵住金株式会社 鋼板圧延方法及びその設備

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH035013A (ja) * 1989-05-31 1991-01-10 Kobe Steel Ltd 熱延鋼板の冷却制御方法
JPH05317946A (ja) * 1992-05-22 1993-12-03 Nkk Corp ストリップの表面温度測定装置
JP2002143918A (ja) * 2000-11-14 2002-05-21 Kawasaki Steel Corp 熱間圧延ラインの水冷ゾーンにおける冷却方法

Also Published As

Publication number Publication date
EP2752254B1 (en) 2017-10-04
CN103764306A (zh) 2014-04-30
US9511401B2 (en) 2016-12-06
EP2752254A1 (en) 2014-07-09
EP2752254A4 (en) 2015-07-29
US20140202224A1 (en) 2014-07-24
WO2013030945A1 (ja) 2013-03-07
JP5713110B2 (ja) 2015-05-07
CN103764306B (zh) 2015-12-16

Similar Documents

Publication Publication Date Title
JP5713110B2 (ja) 圧延プラントの省エネ装置
US7958931B2 (en) Method of casting rolling with increased casting speed and subsequent hot rolling of relatively thin metal strands, particularly steel material strands and casting rolling apparatus
JP6447710B2 (ja) 温度計算方法、温度計算装置、加熱制御方法、及び加熱制御装置
JP2008212966A (ja) 熱間圧延設備およびそれを用いた熱間圧延方法
US10464112B2 (en) Energy-saving control device for rolling line
JP5750826B2 (ja) 厚鋼板の製造方法および水冷パス数の決定方法
JP4289062B2 (ja) 熱間圧延における被圧延材幅の制御方法
JP2006055884A (ja) 熱延鋼板の製造方法及び圧延制御装置
JP2005270982A (ja) 熱間圧延における被圧延材の冷却制御方法
JP2009028747A (ja) 厚鋼板の圧延方法
JP4079098B2 (ja) 熱延鋼板の製造方法及び製造装置
JP6611194B2 (ja) 電動機可変速駆動装置用冷却システム
JP6447836B2 (ja) 熱延鋼帯の製造方法および熱延鋼帯の製造設備
JP4885040B2 (ja) 圧延材の圧延方法
JP3620464B2 (ja) 熱延鋼板の製造方法および製造装置
JP5910712B2 (ja) 厚鋼板の製造方法
JP2006281280A (ja) スラブ加熱炉の操業方法
CN104998916A (zh) 轧制设备的节能装置
JP5741634B2 (ja) 熱延鋼板の冷却制御方法及び装置
JP4352951B2 (ja) 高炭素鋼又は高炭素合金鋼からなる熱延鋼板の製造方法
JP2006051512A (ja) 熱間圧延における被圧延材幅の制御方法及び熱延金属板の製造方法
JP2002143918A (ja) 熱間圧延ラインの水冷ゾーンにおける冷却方法
JP5741039B2 (ja) 熱間圧延ラインにおける圧延材の搬送制御方法
JP2004195496A (ja) 熱間圧延ラインにおける鋼材加熱方法
JPH10156404A (ja) 熱延鋼帯の圧延方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150223

R150 Certificate of patent or registration of utility model

Ref document number: 5713110

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250