JPWO2009128289A1 - リチウムイオン電池用正極活物質、二次電池用正極及びリチウムイオン電池 - Google Patents

リチウムイオン電池用正極活物質、二次電池用正極及びリチウムイオン電池 Download PDF

Info

Publication number
JPWO2009128289A1
JPWO2009128289A1 JP2010508129A JP2010508129A JPWO2009128289A1 JP WO2009128289 A1 JPWO2009128289 A1 JP WO2009128289A1 JP 2010508129 A JP2010508129 A JP 2010508129A JP 2010508129 A JP2010508129 A JP 2010508129A JP WO2009128289 A1 JPWO2009128289 A1 JP WO2009128289A1
Authority
JP
Japan
Prior art keywords
positive electrode
plane
lithium ion
active material
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010508129A
Other languages
English (en)
Other versions
JP5669068B2 (ja
Inventor
隆一 長瀬
隆一 長瀬
梶谷 芳男
芳男 梶谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2010508129A priority Critical patent/JP5669068B2/ja
Publication of JPWO2009128289A1 publication Critical patent/JPWO2009128289A1/ja
Application granted granted Critical
Publication of JP5669068B2 publication Critical patent/JP5669068B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

層状構造を有しているLiaNixMnyCozO2(1.0<a<1.3、0.8<x+y+z<1.1)で表されるリチウム含有ニッケルマンガンコバルト複合酸化物からなり、CuKα線を使用した粉末X線回折パターンでの(018)面と(113)面とから計算される格子定数より推定されるモル容積Vmを縦軸とし、金属成分中のCo比率z(モル%)を横軸とした領域において、その関係がVm=21.276−0.0117zを上限とし、Vm=21.164−0.0122zを下限とする範囲内にあり、かつ(018)面と(113)面の半値幅がともに0.200°以下であるリチウムイオン電池正極材用正極活物質。結晶構造に関与すると考えられるコバルト(Co)の比率と格子定数の関係を調べ、これを規定し、これにより、結晶性が高く、高容量かつ高い安全性を有する正極活物質とし、この材料を使用することで、リチウムイオン電池の特性確保、安全性確保が、より可能であるリチウムイオン電池用正極活物質を得ることを課題とする。

Description

本発明は、リチウムイオン電池用の正極活物質に関するもので、結晶性が高く、高容量を確保しつつ、安全性の高い正極活物質及び二次電池用正極並びにリチウムイオン電池に関する。
近年、高エネルギー密度電池として、非水系のリチウム二次電池の需要が急速に高まっている。このリチウム二次電池は、正極及び負極並びに、これらの電極間に介在する電解質を保持したセパレータの、3つの基本要素から構成されている。
正極及び負極として、活物質、導電材、結合材及び、必要に応じて可塑剤を分散媒に混合分散させたスラリーを金属箔や金属メッシュ等の集電体に担持させて使用されている。
このような中で、正極活物質としてはリチウムと遷移金属との複合酸化物、特にコバルト系複合酸化物、ニッケル系複合酸化物、マンガン系複合酸化物が代表的なものである。これらのリチウム複合酸化物は、一般に主体となる元素の化合物(Mn、Fe、Co、Ni等の炭酸塩、酸化物)とリチウム化合物(炭酸リチウム等)を、所定の割合で混合し、それを熱処理(酸化処理)することにより合成されている(特許文献1、特許文献2、特許文献3参照)。
このような中で、特にNi:Mn:Co=1:1:1組成の三元系正極材料が提案されている(特許文献4参照)。この特許文献4の場合、Li/金属比が0.97〜1.03であり、放電容量200mAh/gを得ることができると記載されている。しかしこの場合、充電終止電圧が4.7Vと高電圧であることによるもので4.3Vで電圧をカットすれば、初期放電容量は150mAh/g程度である。
一般に、電池の初期特性やサイクル特性あるいは内部抵抗は、材料の結晶構造により大きく異なる。層状構造を有していても、局部的に混在するスピネル構造等により電池特性の劣化につながるという問題を有している。
このため、結晶構造の同定が重要となるが、この結晶構造の同定には、従来XRD(X線回折法)が主に用いられてきた。しかし、ピーク位置が近い等の理由で、相の混在を見極めることが困難であった。
このようなことから、正極活物質をラマン分光による規定をおこなう提案がある(特許文献5参照)。この特許文献5では、化学式LiCoMA2(0.95≦Li≦1.0、AにはO、F、S、Pを含む)のラマンスペクトル分析において、スピネル構造と六方晶構造のピーク強度比を規定しているが、メインピークがスピネル構造のピークとなっており、層状構造ではないので、十分な特性が得られているとは言いがたい。
上記の通り、リチウム二次電池材料は、従来技術に比べて優れた特性を有するものであるが、焼結性及び電池特性については、さらに改善が求められるものである。
また、リチウムイオン電池用正極活物質として層状のリチウムニッケルマンガンコバルト複合酸化物は、コバルト酸リチウムやマンガン酸リチウムと比較して高容量で安全性が高いことから有望視されている。しかしながら、その組成と結晶性についての記述は少なく、特に格子定数については、おおよその幅で記載されているのみである。
LiaNixMnyCozO2組成のリチウムイオン電池用正極活物質において、格子定数を規定したものには、以下の特許文献(特許文献6−9参照)が存在する。
例えば、特許文献6では、リチウム二次電池正極材料用リチウムニッケルマンガンコバルト系複合酸化物で、格子定数が2.855Å≦a≦2.870Å、14.235Å≦c≦14.265Åの範囲にあることが記載されている。特許文献7では、層状リチウムニッケル系複合酸化物において、かさ密度が2.0g/cc以上で、二次粒子のメジアン径が9-20um、BET比表面積が0.5〜1m2/gであることが記載されている。特許文献8では、リチウム含有遷移金属複合酸化物において、a軸の格子定数が2.895〜2.925Å、c軸の格子定数が14.28〜14.38Åであることが記載されている。さらに、特許文献9では、リチウム含有遷移金属複合酸化物において、a軸の格子定数が2.830〜2.890Å、c軸の格子定数が14.150〜14.290Åであることが記載されている。
しかしながら、これらはa軸の格子定数、c軸の格子定数を規定する記載はあるが、さらに組成とモル容積まで踏み込んだ記載はないので、リチウムイオン電池の特性確保、安全性確保の面では、十分ではないという問題がある。
特開平1−294364号公報 特開平11−307094号公報 特開2005−285572号公報 特開2003−59490号公報 特開2005−44785号公報 特開2006−253119号公報 特許4003759号公報 特開2002−145623号公報 特開2003−068298号公報
上記の通り、リチウムイオン電池用正極活物質として層状のリチウムニッケルマンガンコバルト複合酸化物は、コバルト酸リチウムやマンガン酸リチウムと比較して高容量で安全性が高いことから有望視されている物質ではあるが、その組成と結晶性について、十分は解明がなされていない。この点に鑑み、本発明は、上記組成において、主に結晶構造に関与すると考えられるコバルト(Co)の比率と格子定数の関係を調べ、これを規定し、これにより、結晶性が高く、高容量かつ高い安全性を有する正極活物質を提供し、この材料を使用することで、リチウムイオン電池の特性確保、安全性確保が、より可能であるリチウムイオン電池用正極を得ることを課題とするものである。
上記の課題に鑑み、本発明は以下の発明を提供するものである。
1)層状構造を有しているLiaNixMnyCozO2(1.0<a<1.3、0.8<x+y+z<1.1)で表されるリチウム含有ニッケルマンガンコバルト複合酸化物からなり、CuKα線を使用した粉末X線回折パターンでの(018)面と(113)面とから計算される格子定数より推定されるモル容積Vmを縦軸とし、金属成分中のCo比率z(モル%)を横軸とした領域において、その関係がVm=21.276−0.0117zを上限とし、Vm=21.164−0.0122zを下限とする範囲内にあり、かつ(018)面と(113)面の半値幅がともに0.200°(度)以下であることを特徴とするリチウムイオン電池正極材用正極活物質。
2)前記酸化物粉体の平均粒径が5μm以上10μm以下であり、比表面積が1.0m2/g以上1.6m2/g以下であり、タップ密度が1.5以上2.0以下であることを特徴とする請求項1記載のリチウムイオン電池正極材用正極活物質。
3)上記1)又は2)記載の正極活物質を用いたリチウムイオン二次電池用正極。
4)上記3)の正極を用いたリチウムイオン二次電池。
本発明は、上記組成において、主に結晶構造に関与すると考えられるコバルト(Co)の比率と格子定数の関係を規定することにより、結晶性が高く、高容量かつ高い安全性を有する正極活物質を得ることができ、この正極活物質を使用することで、リチウムイオン電池の特性及び安全性を、より効果的に確保できるという優れた効果を有する。
リチウムイオン電池の正極活物質として、リチウム含有遷移金属酸化物が用いる。具体的には、コバルト酸リチウム(LiNiO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn2O4)等であり、特性改善(高容量化、サイクル特性、保存特性、内部抵抗低減、充放電特性)や安全性を高めるためにこれらを複合化する。
本願発明のリチウムイオン電池の正極活物質として、層状構造を有する三元系材料LiaNixMnyCozO2(1.0<a<1.3、0.8<x+y+z<1.0)を使用するものである。
発明者らは、この層状構造を有する材料について、CuKα線を使用したX線回折パターンを詳細に検討した結果、高容量で安全性に優れる材料が得られた場合には、(018)面と(113)面とから計算される格子定数より推定されるモル容積と三元系材料のCo比率に一定の相関があること、さらに平均粒径、比表面積、タップ密度を所定の範囲とすべきことを見出した。
具体的には、結晶構造は層状R3mに帰属する構造である。また、全金属に対するLiの比率を表すa値は1.0を超え1.3未満である。1.0以下では安定した結晶構造を保持しにくく、1.3以上では高容量が確保できなくなるからである。
さらに、全金属のモル比を表す(x+y+z)値は0.8を超え、1.1未満の範囲とする。0.8以下では酸素量が多く容量確保が困難となり、1.1以上では酸素欠損が生じて安全性を確保しにくくなるからである。
この結晶構造におけるモル容積(Vm)は、CuKα線を使用して得られるX線回折パターンから、以下の式を活用して計算できる。ここで、aはa軸の格子定数、cはc軸の格子定数を示す。
Vm=0.17906×a×a×c
また、格子定数(a、c)は六方晶系の面間隔と格子定数との関係式から求めることができる。より詳細な格子定数は高角側のデータを使用するが、ここでは(018)面と(113)面のデータを用いる。なお、(018)面は2θ=64.0〜64.4°に位置し、(113)面は2θ=67.8〜68.2°に位置するものである。
金属成分中のCo比率zは上記化学式のx、y、zを用いると以下の計算式で表すことができる。
z=z×100/(x+y+z)
このVmとzとをプロットすると、高容量と高い安全性が確保できる材料である場合には、Vmとzに相関関係が見出され、Vmを縦軸に、zを横軸にとった領域内で下記の式で定義される範囲になることが分かった。
Vm=21.276−0.0117z (上限)
Vm=21.164−0.0122z (下限)
上限を超える領域では容量の確保が困難となり、下限を下回る領域では安全性の確保が困難となる。したがって、上記の範囲は、重要な意味を持つものである。
結晶性に関して、(018)面と(113)面の半値幅がどちらも0.200°以下であることが望ましい。好ましくは0.180°以下である。範囲外では結晶性が悪く、高容量を確保することが困難となる。
さらに、粉体特性において、平均粒径が5μm以上10μm以下であり、比表面積が1.0m2/g以上1.8m2/g以下であり、タップ密度が1.5以上2.0以下であることが好ましい。望ましくは、平均粒径が6μm以上9μm以下であり、比表面積が1.1m2/g以上1.6m2/g以下であり、タップ密度が1.6以上2.0以下である。これらの範囲を逸脱すると、塗布性が悪化し、高容量を確保しにくくなるとともに、安全性にも影響を与える。
さらに、これらの正極活物質を用いて、リチウムイオン電池用の正極を作製できる。また、この正極を用いてリチウムイオン電池を得ることができる。
以下、実施例及び比較例に基づいて説明する。なお、本実施例はあくまで一例であり、この例のみに制限されるものではない。すなわち、本発明の技術思想に含まれる他の態様または変形を包含するものである。
(実施例1−8)
Ni、Mn、Coの金属塩溶液と炭酸リチウムを使用した湿式法によって前駆体である炭酸塩を作製した。これを乾燥後、酸化処理して、表1の組成の正極材料を作製した。この表1において、試料No.1から試料No.8まで、それぞれ実施例1から8までを示す。
Li、Ni、Mn、Co含有量はICPで測定し、Co比率はLiを除く各金属含有量の合計に対するCo含有量で求めた。格子定数はCuKα線を使用した粉末X線回折パターンにおける(018)面と(113)面での面間隔から求め、モル容積を計算した。また、(018)面と(113)面での半値幅を測定し、これらの結果を、同様に表1に示した。
表1の試料No.1から試料No.8までに示す条件は、本願請求項1に記載する「Vm=21.276−0.0117zを上限とし、Vm=21.164−0.0122zを下限とする範囲内にあり、かつ(018)面と(113)面の半値幅がともに0.200°以下である」という条件を満たすものである。上記の「Vm=21.276−0.0117zを上限とし、Vm=21.164−0.0122zを下限とする範囲」については、分かり易くするために、図1にその範囲を示した。図1の横軸は、Z:Co比率(モル%)であり、縦軸は、Vm:モル容積(CC/モル)である。図1における上下の2本の線内が、本願発明の条件の範囲であり、実施例1から実施例8に相当する8個の〇がプロットされているのが分かる。
さらに、平均粒径は、レーザー回折法による粒度分布における50%径とし、比表面積はBET値を、タップ密度は200回タップ後の密度とした。この正極材料と導電材及びバインダーを85:8:7の割合で秤量し、バインダーを有機溶媒(N-メチルピロリドン)に溶解したものに、材料と導電材を混合してスラリー化し、Al箔上に塗布して乾燥後にプレスして正極とした。なお、導電材及びバインダーは、公知の一般的な材料を使用することができるので、特にここでは表示しない。
次に、対極をLiとした評価用の2032型コインセルを作製し、電解液に1M−LiPF6をEC-DMC(1:1)に溶解したものを用いて、充電条件を4.3V、放電条件を3.0Vで充放電を行った。初期容量の確認は、0.1Cでの充放電で確認した。
この結果を、表2にまとめた。表2に示す安全性については、上記のとおり作製したコインセルを4.3Vまで充電した後、セルから正極材を取り出し、DSC(示差走査熱量計)による分析を行い、発熱開始温度を比較して、安全性を評価したものである。
従来の層状構造を有するLiCoO2と比較した場合の結果を、同様に表1に示す。表1に示す評価結果は、○(より安全)、△(従来と同等)、×(それ以下)とした。
表2に示す結果から明らかなように、実施例1から実施例8(試料No.1から試料No.8)については、いずれも安全性は○であり、安全性が従来に比べて向上していた。また、容量については、いずれも148mAh/g以上であり、190mAh/gに達するものもあった。このような場合でも、従来に比べて安全性は向上していた。したがって、実施例に示すものは、いずれもリチウムイオン電池正極材用正極活物質として優れた物質であることが分かる。
なお、表2に示す試料については、平均粒径、比表面積、タップ密度はいずれも、本願請求項2に記載する条件を満たしているものを選択したが、請求項2の条件から、±20%程度の逸脱であれば、容量と安全性の変化はそれほど大きくはなかった。すなわち、充放電容量は140mAh/gを超えており、安全性は、従来よりも向上した(○)か、又は従来と同等(△)であった。
以上から、本願請求項1の発明において記載する「Vm=21.276−0.0117zを上限とし、Vm=21.164−0.0122zを下限とする範囲内にあり、かつ(018)面と(113)面の半値幅がともに0.200°以下である」という条件を満たすことが、第一義的な要件であることが分かる。
しかし、本願の請求項2の発明において記載する、酸化物粉体の平均粒径が5μm以上10μm以下であり、比表面積が1.0m2/g以上1.6m2/g以下であり、タップ密度が1.5以上2.0以下である条件は、より望ましい条件であることは言うまでもない。
(比較例1−9)
Ni、Mn、Coの酸化物と炭酸リチウムを使用して、各原料を混合し粉砕した後、噴霧乾燥して酸化処理し正極材料を得た。この正極材料を実施例と同様に処理し、同様の評価を行った。モル容積、半値幅(018)、半値幅(113)を表3に示す。表3に記載する条件は、いずれも実施例1−8に記載する条件と同様のものである。
表3と後述する表4に示す試料No.9から試料No.17に示すものは、それぞれ比較例1から比較例9に対応するものである。
また、表4には、試料No.9から試料No.17の平均粒径、比表面積、タップ密度を示す。また、容量と安全性についても、同様に示す。
なお、図1に示す「Vm=21.276−0.0117zを上限とし、Vm=21.164−0.0122zを下限とする範囲」の外側に、比較例1−9(試料No.9から試料No.17)が存在し、比較例1から比較例9に相当する9個の□がプロットされているのが分かる。
上記表3、表4及び図1から明らかなように、充放電容量は高いもので150mAh/g(試料No.11)と145mAh/g (試料No.12)が存在するが、この場合は、安全性がいずれも劣っている。それ以外は、いずれも140mAh/g以下で、容量が低く、また安全性は従来並かさらに劣っていることが分かる。
以上から、比較例1から比較例9(試料No.9からNo.17)については、いずれも安全性は△か×であり、安全性が従来と同等か又は劣っていた。また、容量についても従来並か又は劣っていた。
以上の実施例と比較例の対比から、本願発明の実施例に示すものは、いずれもリチウムイオン電池正極材用正極活物質として優れた物質であることが分かる。
本発明リチウムイオン電池正極材用正極活物質は、CuKα線を使用した粉末X線回折パターンでの(018)面と(113)面とから計算される格子定数より推定されるモル容積Vmを縦軸とし、金属成分中のCo比率z(モル%)を横軸とした領域において、その関係がVm=21.276−0.0117zを上限とし、Vm=21.164−0.0122zを下限とする範囲内にあり、かつ(018)面と(113)面の半値幅がともに0.200°以下とすることにより、結晶性が高く、高容量かつ高い安全性を有する正極活物質を得ることができるという優れた効果を有するので、リチウム二次電池用材料として有用である。
モル容積Vmを縦軸とし、Co比率z(モル%)を横軸とした領域において、Vm=21.276−0.0117zを上限とし、Vm=21.164−0.0122zを下限とする範囲を示し、かつ実施例及び比較例の条件をプロットした図である。
【0003】
保、安全性確保の面では、十分ではないという問題がある。
特許文献1:特開平1−294364号公報
特許文献2:特開平11−307094号公報
特許文献3:特開2005−285572号公報
特許文献4:特開2003−59490号公報
特許文献5:特開2005−44785号公報
特許文献6:特開2006−253119号公報
特許文献7:特許4003759号公報
特許文献8:特開2002−145623号公報
特許文献9:特開2003−068298号公報
発明の開示
発明が解決しようとする課題
[0007]
上記の通り、リチウムイオン電池用正極活物質として層状のリチウムニッケルマンガンコバルト複合酸化物は、コバルト酸リチウムやマンガン酸リチウムと比較して高容量で安全性が高いことから有望視されている物質ではあるが、その組成と結晶性について、十分は解明がなされていない。この点に鑑み、本発明は、上記組成において、主に結晶構造に関与すると考えられるコバルト(Co)の比率と格子定数の関係を調べ、これを規定し、これにより、結晶性が高く、高容量かつ高い安全性を有する正極活物質を提供し、この材料を使用することで、リチウムイオン電池の特性確保、安全性確保が、より可能であるリチウムイオン電池用正極活物質を得ることを課題とするものである。
課題を解決するための手段
[0008]
上記の課題に鑑み、本発明は以下の発明を提供するものである。
1)層状構造を有しているLiaNixMnyCozO(1.0<a<1.3、0.8<x+y+z<1.1)で表されるリチウム含有ニッケルマンガンコバルト複合酸化物からなり、CuKα線を使用した粉末X線回折パターンでの(018)面と(113)面とから計算される格子定数より推定されるモル容積Vmを縦軸とし、金属成分中のCo比率n(モル%)を横軸とした領域において、その関係がVm=21.276−0.0117nを上限とし、Vm=21.164−0.0122nを下限とする範囲内にあり、かつ(018)面と(113)面の半値幅がともに0.200°(度)以下
【0004】
であることを特徴とするリチウムイオン電池正極材用正極活物質。
2)前記酸化物粉体の平均粒径が5μm以上10μm以下であり、比表面積が1.0m/g以上1.6m/g以下であり、タップ密度が1.5以上2.0以下であることを特徴とする上記1)記載のリチウムイオン電池正極材用正極活物質。
3)上記1)又は2)記載の正極活物質を用いたリチウムイオン二次電池用正極。
4)上記3)の正極を用いたリチウムイオン二次電池。
発明の効果
[0009]
本発明は、上記組成において、主に結晶構造に関与すると考えられるコバルト(Co)の比率と格子定数の関係を規定することにより、結晶性が高く、高容量かつ高い安全性を有する正極活物質を得ることができ、この正極活物質を使用することで、リチウムイオン電池の特性及び安全性を、より効果的に確保できるという優れた効果を有する。
発明を実施するための最良の形態
[0010]
リチウムイオン電池の正極活物質として、リチウム含有遷移金属酸化物が用いる。具体的には、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)等であり、特性改善(高容量化、サイクル特性、保存特性、内部抵抗低減、充放電特性)や安全性を高めるためにこれらを複合化する。
本願発明のリチウムイオン電池の正極活物質として、層状構造を有する三元系材料LiaNixMnyCozO(1.0<a<1.3、0.8<x+y+z<1.1)を使用するものである。
発明者らは、この層状構造を有する材料について、CuKα線を使用したX線回折パターンを詳細に検討した結果、高容量で安全性に優れる材料が得られた場合には、(018)面と(113)面とから計算される格子定数より推定されるモル容積と三元系材料のCo比率に一定の相関があること、さらに平均粒径、比表面積、タップ密度を所定の範囲とすべきことを見出した。
[0011]
具体的には、結晶構造は層状R3mに帰属する構造である。また、全金属に対するLiの比率を表すa値は1.0を超え1.3未満である。1.0以下では安定した結晶構造を保持しにくく、1.3以上では高容量が確保できなくなるからである。
さらに、全金属のモル比を表す(x+y+z)値は0.8を超え、1.1未満の範囲とする。
【0005】
0.8以下では酸素量が多く容量確保が困難となり、1.1以上では酸素欠損が生じて安全性を確保しにくくなるからである。
この結晶構造におけるモル容積(Vm)は、CuKα線を使用して得られるX線回折パターンから、以下の式を活用して計算できる。ここで、aはa軸の格子定数、cはc軸の格子定数を示す。
Vm=0.17906×a×a×c
[0012]
また、格子定数(a、c)は六方晶系の面間隔と格子定数との関係式から求めることができる。より詳細な格子定数は高角側のデータを使用するが、ここでは(018)面と(113)面のデータを用いる。なお、(018)面は2θ=64.0〜64.4°に位置し、(113)面は2θ=67.8〜68.2°に位置するものである。
金属成分中のCo比率nは上記化学式のx、y、zを用いると以下の計算式で表すことができる。
n=z×100/(x+y+z)
このVmとnとをプロットすると、高容量と高い安全性が確保できる材料である場合には、Vmとnに相関関係が見出され、Vmを縦軸に、nを横軸にとった領域内で下記の式で定義される範囲になることが分かった。
Vm=21.276−0.0117n(上限)
Vm=21.164−0.0122n(下限)
上限を超える領域では容量の確保が困難となり、下限を下回る領域では安全性の確保が困難となる。したがって、上記の範囲は、重要な意味を持つものである。
[0013]
結晶性に関して、(018)面と(113)面の半値幅がどちらも0.200°以下であることが望ましい。好ましくは0.180°以下である。範囲外では結晶性が悪く、高容量を確保することが困難となる。
さらに、粉体特性において、平均粒径が5μm以上10μm以下であり、比表面積が1.0m/g以上1.8m/g以下であり、タップ密度が1.5以上2.0以下であることが好ましい。望ましくは、平均粒径が6μm以上9μm以下であり、比表面積が1.1m/g以上1.6m/g以下であり、タップ密度が1.6以上2.0以下である。これらの範囲を逸脱すると、塗布性が悪化し、高容量を確保しにくくなるとともに、安全性にも影響を与える。
【0006】
さらに、これらの正極活物質を用いて、リチウムイオン電池用の正極を作製できる。また、この正極を用いてリチウムイオン電池を得ることができる。
実施例
[0014]
以下、実施例及び比較例に基づいて説明する。なお、本実施例はあくまで一例であり、この例のみに制限されるものではない。すなわち、本発明の技術思想に含まれる他の態様または変形を包含するものである。
[0015]
(実施例1−8)
Ni、Mn、Coの塩化物溶液と炭酸リチウムを使用した湿式法によって前駆体である炭酸塩を作製した。これを乾燥後、酸化処理して、表1の組成の正極材料を作製した。この表1において、試料No.1から試料No.8まで、それぞれ実施例1から8までを示す。
Li、Ni、Mn、Co含有量はICPで測定し、Co比率はLiを除く各金属含有量の合計に対するCo含有量で求めた。格子定数はCuKα線を使用した粉末X線回折パターンにおける(018)面と(113)面での面間隔から求め、モル容積を計算した。また、(018)面と(113)面での半値幅を測定し、これらの結果を、同様に表1に示した。
表1の試料No.1から試料No.8までに示す条件は、本願請求項1に記載する「Vm=21.276−0.0117nを上限とし、Vm=21.164−0.0122nを下限とする範囲内にあり、かつ(018)面と(113)面の半値幅がともに0.200°以下である」という条件を満たすものである。上記の「Vm=21.276−0.0117nを上限とし、Vm=21.164−0.0122nを下限とする範囲」については、分かり易くするために、図1にその範囲を示した。図1の横軸は、n:Co比率(モル%)であり、縦軸は、Vm:モル容積(CC/モル)である。図1における上下の2本の線内が、本願発明の条件の範囲であり、実施例1から実施例8に相当する8個の○がプロットされているのが分かる。
[0016]
[表1]
【0007】
[0017]
さらに、平均粒径は、レーザー回折法による粒度分布における50%径とし、比表面積はBET値を、タップ密度は200回タップ後の密度とした。この正極材料と導電材及びバインダーを85:8:7の割合で秤量し、バインダーを有機溶媒(N−メチルピロリドン)に溶解したものに、材料と導電材を混合してスラリー化し、Al箔上に塗布して乾燥後にプレスして正極とした。なお、導電材及びバインダーは、公知の一般的な材料を使用することができるので、特にここでは表示しない。
次に、対極をLiとした評価用の2032型コインセルを作製し、電解液に1M−LiPF6をEC−DMC(1:1)に溶解したものを用いて、充電条件を4.3V、放電条件を3.0Vで充放電を行った。初期容量の確認は、0.1Cでの充放電で確認した。
この結果を、表2にまとめた。表2に示す安全性については、上記のとおり作製したコインセルを4.3Vまで充電した後、セルから正極材を取り出し、DSC(示差走査熱量計)による分析を行い、発熱開始温度を比較して、安全性を評価したものである。
従来の層状構造を有するLiCoOと比較した場合の結果を、同様に表1に示す。表2に示す評価結果は、○(より安全)、△(従来と同等)、×(それ以下)とした。
[0018]
[表2]
【0008】
[0019]
表2に示す結果から明らかなように、実施例1から実施例8(試料No.1から試料No.8)については、いずれも安全性は○であり、安全性が従来に比べて向上していた。また、容量については、いずれも148mAh/g以上であり、190mAh/gに達するものもあった。このような場合でも、従来に比べて安全性は向上していた。したがって、実施例に示すものは、いずれもリチウムイオン電池正極材用正極活物質として優れた物質であることが分かる。
なお、表2に示す試料については、平均粒径、比表面積、タップ密度はいずれも、本願請求項2に記載する条件を満たしているものを選択したが、請求項2の条件から、±20%程度の逸脱であれば、容量と安全性の変化はそれほど大きくはなかった。すなわち、充放電容量は140mAh/gを超えており、安全性は、従来よりも向上した(○)か、又は従来と同等(△)であった。
[0020]
以上から、本願請求項1の発明において記載する「Vm=21.276−0.0117nを上限とし、Vm=21.164−0.0122nを下限とする範囲内にあり、かつ(018)面と(113)面の半値幅がともに0.200°以下である」という条件を満たすことが、第一義的な要件であることが分かる。
しかし、本願の請求項2の発明において記載する、酸化物粉体の平均粒径が5μm以上10μm以下であり、比表面積が1.0m/g以上1.6m/g以下であり、タップ密度が1.5以上2.0以下である条件は、より望ましい条件であることは言うまでもない。
[0021]
(比較例1−9)
Ni、Mn、Coの酸化物と炭酸リチウムを使用して、各原料を混合し粉砕した後、噴霧乾燥して酸化処理し正極材料を得た。この正極材料を実施例と同様に処理し、同様
【0009】
の評価を行った。モル容積、半値幅(018)、半値幅(113)を表3に示す。表3に記載する条件は、いずれも実施例1−8に記載する条件と同様のものである。
表3と後述する表4に示す試料No.9から試料No.17に示すものは、それぞれ比較例1から比較例9に対応するものである。
また、表4には、試料No.9から試料No.17の平均粒径、比表面積、タップ密度を示す。また、容量と安全性についても、同様に示す。
なお、図1に示す「Vm=21.276−0.0117nを上限とし、Vm=21.164−0.0122nを下限とする範囲」の外側に、比較例1−9(試料No.9から試料No.17)が存在し、比較例1から比較例9に相当する9個の□がプロットされているのが分かる。
[0022]
[表3]
[0023]
[表4]
[0024]
上記表3、表4及び図1から明らかなように、充放電容量は高いもので150mAh/g(試料No.11)と145mAh/g(試料No.12)が存在するが、この場合は、安全性がいずれも
【0010】
劣っている。それ以外は、いずれも140mAh/g以下で、容量が低く、また安全性は従来並かさらに劣っていることが分かる。
以上から、比較例1から比較例9(試料No.9からNo.17)については、いずれも安全性は△か×であり、安全性が従来と同等か又は劣っていた。また、容量についても従来並か又は劣っていた。
以上の実施例と比較例の対比から、本願発明の実施例に示すものは、いずれもリチウムイオン電池正極材用正極活物質として優れた物質であることが分かる。
産業上の利用可能性
[0025]
本発明リチウムイオン電池正極材用正極活物質は、CuKα線を使用した粉末X線回折パターンでの(018)面と(113)面とから計算される格子定数より推定されるモル容積Vmを縦軸とし、金属成分中のCo比率n(モル%)を横軸とした領域において、その関係がVm=21.276−0.0117nを上限とし、Vm=21.164−0.0122nを下限とする範囲内にあり、かつ(018)面と(113)面の半値幅がともに0.200°以下とすることにより、結晶性が高く、高容量かつ高い安全性を有する正極活物質を得ることができるという優れた効果を有するので、リチウム二次電池用材料として有用である。
図面の簡単な説明
[0026]
[図1]モル容積Vmを縦軸とし、Co比率n(モル%)を横軸とした領域において、Vm=21.276−0.0117nを上限とし、Vm=21.164−0.0122nを下限とする範囲を示し、かつ実施例及び比較例の条件をプロットした図である。

Claims (4)

  1. 層状構造を有しているLiaNixMnyCozO2(1.0<a<1.3、0.8<x+y+z<1.1)で表されるリチウム含有ニッケルマンガンコバルト複合酸化物からなり、CuKα線を使用した粉末X線回折パターンでの(018)面と(113)面とから計算される格子定数より推定されるモル容積Vmを縦軸とし、金属成分中のCo比率z(モル%)を横軸とした領域において、その関係がVm=21.276−0.0117zを上限とし、Vm=21.164−0.0122zを下限とする範囲内にあり、かつ(018)面と(113)面の半値幅がともに0.200°以下であることを特徴とするリチウムイオン電池正極材用正極活物質。
  2. 前記酸化物粉体の平均粒径が5μm以上10μm以下であり、比表面積が1.0m2/g以上1.6m2/g以下であり、タップ密度が1.5以上2.0以下であることを特徴とする請求項1記載のリチウムイオン電池正極材用正極活物質。
  3. 請求項1又は2記載の正極活物質を用いたリチウムイオン二次電池用正極。
  4. 請求項3の正極を用いたリチウムイオン二次電池
JP2010508129A 2008-04-17 2009-02-20 リチウムイオン電池用正極活物質、二次電池用正極及びリチウムイオン電池 Active JP5669068B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010508129A JP5669068B2 (ja) 2008-04-17 2009-02-20 リチウムイオン電池用正極活物質、二次電池用正極及びリチウムイオン電池

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008107374 2008-04-17
JP2008107374 2008-04-17
PCT/JP2009/052976 WO2009128289A1 (ja) 2008-04-17 2009-02-20 リチウムイオン電池用正極活物質、二次電池用正極及びリチウムイオン電池
JP2010508129A JP5669068B2 (ja) 2008-04-17 2009-02-20 リチウムイオン電池用正極活物質、二次電池用正極及びリチウムイオン電池

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013196940A Division JP2014041831A (ja) 2008-04-17 2013-09-24 リチウムイオン電池用正極活物質、二次電池用正極及びリチウムイオン電池

Publications (2)

Publication Number Publication Date
JPWO2009128289A1 true JPWO2009128289A1 (ja) 2011-08-04
JP5669068B2 JP5669068B2 (ja) 2015-02-12

Family

ID=41198990

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2010508129A Active JP5669068B2 (ja) 2008-04-17 2009-02-20 リチウムイオン電池用正極活物質、二次電池用正極及びリチウムイオン電池
JP2013196940A Withdrawn JP2014041831A (ja) 2008-04-17 2013-09-24 リチウムイオン電池用正極活物質、二次電池用正極及びリチウムイオン電池

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2013196940A Withdrawn JP2014041831A (ja) 2008-04-17 2013-09-24 リチウムイオン電池用正極活物質、二次電池用正極及びリチウムイオン電池

Country Status (7)

Country Link
US (1) US9059465B2 (ja)
EP (1) EP2264814A4 (ja)
JP (2) JP5669068B2 (ja)
KR (1) KR101257585B1 (ja)
CN (1) CN102007626B (ja)
TW (1) TWI443900B (ja)
WO (1) WO2009128289A1 (ja)

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007083457A1 (ja) 2006-01-20 2009-06-11 日鉱金属株式会社 リチウムニッケルマンガンコバルト複合酸化物及びリチウム二次電池
US8062486B2 (en) * 2006-07-27 2011-11-22 Jx Nippon Mining & Metals Corporation Lithium-containing transition metal oxide target, process for producing the same and lithium ion thin film secondary battery
WO2009128289A1 (ja) * 2008-04-17 2009-10-22 日鉱金属株式会社 リチウムイオン電池用正極活物質、二次電池用正極及びリチウムイオン電池
JP2012504316A (ja) 2008-09-30 2012-02-16 エンビア・システムズ・インコーポレイテッド 高い比容量を有するフッ素をドープされたリチウムリッチ金属酸化物からなる正極電池材料およびそれに対応する電池
US8389160B2 (en) 2008-10-07 2013-03-05 Envia Systems, Inc. Positive electrode materials for lithium ion batteries having a high specific discharge capacity and processes for the synthesis of these materials
US8465873B2 (en) 2008-12-11 2013-06-18 Envia Systems, Inc. Positive electrode materials for high discharge capacity lithium ion batteries
CN102341941B (zh) 2009-03-31 2014-10-15 Jx日矿日石金属株式会社 锂离子电池用正极活性物质
WO2011031546A2 (en) 2009-08-27 2011-03-17 Envia Systems, Inc. Layer-layer lithium rich complex metal oxides with high specific capacity and excellent cycling
US8535832B2 (en) 2009-08-27 2013-09-17 Envia Systems, Inc. Metal oxide coated positive electrode materials for lithium-based batteries
US9843041B2 (en) 2009-11-11 2017-12-12 Zenlabs Energy, Inc. Coated positive electrode materials for lithium ion batteries
WO2011074431A1 (ja) 2009-12-18 2011-06-23 Jx日鉱日石金属株式会社 リチウムイオン電池用正極及びその製造方法、並びに、リチウムイオン電池
EP2518802B1 (en) 2009-12-22 2020-11-25 JX Nippon Mining & Metals Corporation Positive electrode active material for a lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
CN102792496B (zh) 2010-02-05 2016-03-23 Jx日矿日石金属株式会社 锂离子电池用正极活性物质、锂离子电池用正极和锂离子电池
WO2011096522A1 (ja) 2010-02-05 2011-08-11 Jx日鉱日石金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
KR101445954B1 (ko) 2010-03-04 2014-09-29 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 리튬 이온 전지용 정극 활물질, 리튬 이온 전지용 정극, 및 리튬 이온 전지
US9090481B2 (en) 2010-03-04 2015-07-28 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
US9225020B2 (en) 2010-03-04 2015-12-29 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US20120231342A1 (en) * 2010-03-04 2012-09-13 Jx Nippon Mining & Metals Corporation Positive Electrode Active Material For Lithium-Ion Battery, Positive Electrode For Lithium-Ion Battery, And Lithium-Ion Battery
KR101450422B1 (ko) 2010-03-04 2014-10-13 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 리튬 이온 전지용 정극 활물질, 리튬 이온 전지용 정극, 및 리튬 이온 전지
EP2544280B1 (en) 2010-03-05 2018-06-06 JX Nippon Mining & Metals Corporation Positive-electrode active material for lithium ion battery, positive electrode for lithium battery, and lithium ion battery
US8741484B2 (en) 2010-04-02 2014-06-03 Envia Systems, Inc. Doped positive electrode active materials and lithium ion secondary battery constructed therefrom
KR101330613B1 (ko) * 2010-06-13 2013-11-18 삼성에스디아이 주식회사 리튬 이차전지용 양극 활물질의 제조 방법
JP5682172B2 (ja) * 2010-08-06 2015-03-11 Tdk株式会社 活物質、活物質の製造方法及びリチウムイオン二次電池
US8928286B2 (en) 2010-09-03 2015-01-06 Envia Systems, Inc. Very long cycling of lithium ion batteries with lithium rich cathode materials
US8663849B2 (en) 2010-09-22 2014-03-04 Envia Systems, Inc. Metal halide coatings on lithium ion battery positive electrode materials and corresponding batteries
JP5368627B2 (ja) 2010-12-03 2013-12-18 Jx日鉱日石金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
KR20120099411A (ko) 2011-01-21 2012-09-10 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 리튬 이온 전지용 정극 활물질의 제조 방법 및 리튬 이온 전지용 정극 활물질
JP2012178267A (ja) 2011-02-25 2012-09-13 Hitachi Vehicle Energy Ltd リチウムイオン二次電池
US9221693B2 (en) 2011-03-29 2015-12-29 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
KR101539154B1 (ko) 2011-03-31 2015-07-23 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 리튬 이온 전지용 정극 활물질, 리튬 이온 전지용 정극, 및 리튬 이온 전지
JP5316726B2 (ja) * 2011-06-07 2013-10-16 住友金属鉱山株式会社 ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および、非水系電解質二次電池
JP5760871B2 (ja) 2011-09-05 2015-08-12 昭栄化学工業株式会社 リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極部材、リチウムイオン二次電池、及びリチウムイオン二次電池用正極材料の製造方法
US10170762B2 (en) 2011-12-12 2019-01-01 Zenlabs Energy, Inc. Lithium metal oxides with multiple phases and stable high energy electrochemical cycling
JP6292739B2 (ja) 2012-01-26 2018-03-14 Jx金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
JP6292738B2 (ja) 2012-01-26 2018-03-14 Jx金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
US9070489B2 (en) 2012-02-07 2015-06-30 Envia Systems, Inc. Mixed phase lithium metal oxide compositions with desirable battery performance
US9559352B2 (en) * 2012-03-27 2017-01-31 Tdk Corporation Active material, electrode using same, and lithium ion secondary battery
JPWO2013154142A1 (ja) * 2012-04-11 2015-12-17 旭硝子株式会社 リチウムイオン二次電池用正極活物質
US9552901B2 (en) 2012-08-17 2017-01-24 Envia Systems, Inc. Lithium ion batteries with high energy density, excellent cycling capability and low internal impedance
WO2014051148A1 (ja) 2012-09-28 2014-04-03 Jx日鉱日石金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
US10115962B2 (en) 2012-12-20 2018-10-30 Envia Systems, Inc. High capacity cathode material with stabilizing nanocoatings
WO2014164927A1 (en) 2013-03-12 2014-10-09 Apple Inc. High voltage, high volumetric energy density li-ion battery using advanced cathode materials
KR101724011B1 (ko) 2013-03-28 2017-04-06 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질의 제조 방법 및 상기 양극 활물질을 포함하는 리튬 이차 전지
JP2014003030A (ja) * 2013-08-26 2014-01-09 Hitachi Vehicle Energy Ltd リチウムイオン二次電池
KR20160124200A (ko) 2014-03-26 2016-10-26 제이엑스금속주식회사 LiCoO2 스퍼터링 타깃 및 그 제조 방법, 그리고 정극재 박막
US9716265B2 (en) 2014-08-01 2017-07-25 Apple Inc. High-density precursor for manufacture of composite metal oxide cathodes for Li-ion batteries
JP2016136489A (ja) * 2015-01-23 2016-07-28 株式会社豊田自動織機 正極電極、及びリチウムイオン二次電池
US10297821B2 (en) 2015-09-30 2019-05-21 Apple Inc. Cathode-active materials, their precursors, and methods of forming
CN109328409A (zh) 2016-03-14 2019-02-12 苹果公司 用于锂离子电池的阴极活性材料
JP6430427B2 (ja) * 2016-03-17 2018-11-28 Jx金属株式会社 コバルト酸リチウム焼結体及び該焼結体を用いて作製されるスパッタリングターゲット及びコバルト酸リチウム焼結体の製造方法並びにコバルト酸リチウムからなる薄膜
JP7043076B2 (ja) * 2016-08-30 2022-03-29 国立研究開発法人産業技術総合研究所 リチウムニッケル系複合酸化物及びその製造方法
WO2018057584A1 (en) 2016-09-20 2018-03-29 Apple Inc. Cathode active materials having improved particle morphologies
JP2019530630A (ja) 2016-09-21 2019-10-24 アップル インコーポレイテッドApple Inc. リチウムイオン電池用の表面安定化カソード材料及びその合成方法
JP7272345B2 (ja) * 2018-03-07 2023-05-12 株式会社プロテリアル リチウムイオン二次電池用正極活物質及びリチウムイオン二次電池
US11695108B2 (en) 2018-08-02 2023-07-04 Apple Inc. Oxide mixture and complex oxide coatings for cathode materials
US11749799B2 (en) 2018-08-17 2023-09-05 Apple Inc. Coatings for cathode active materials
KR20200061234A (ko) 2018-11-23 2020-06-02 삼성전자주식회사 복합양극활물질, 그 제조방법, 이를 포함하는 양극 및 리튬전지
US11757096B2 (en) 2019-08-21 2023-09-12 Apple Inc. Aluminum-doped lithium cobalt manganese oxide batteries
CN112151790B (zh) * 2020-08-26 2022-03-08 万华化学集团股份有限公司 高镍三元正极材料前驱体及其晶面可控生长的方法、三元正极材料及锂离子电池
CN112268916B (zh) * 2020-10-23 2023-08-15 湖南桑瑞新材料有限公司 一种快速表征锂离子电池用二元正极材料性能的方法

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6141595A (ja) 1984-08-02 1986-02-27 Kanzaki Paper Mfg Co Ltd 感熱記録体
JP2699176B2 (ja) 1988-05-20 1998-01-19 日立マクセル 株式会社 リチウム二次電池
JPH08329938A (ja) 1995-03-31 1996-12-13 Yuasa Corp アルカリ蓄電池用ニッケル電極及びアルカリ蓄電池
TW363940B (en) 1996-08-12 1999-07-11 Toda Kogyo Corp A lithium-nickle-cobalt compound oxide, process thereof and anode active substance for storage battery
JPH10228905A (ja) 1997-02-14 1998-08-25 Ise Kagaku Kogyo Kk リチウム二次電池用水酸化物
JPH11307094A (ja) 1998-04-20 1999-11-05 Chuo Denki Kogyo Co Ltd リチウム二次電池用正極活物質とリチウム二次電池
TW496008B (en) 1999-06-21 2002-07-21 Toshiba Corp Active material for anode of secondary cell and method for production thereof and non-aqueous electrolyte secondary cell, and recycled electrical functional material and regenerative method of electrical functional material
JP4830136B2 (ja) 2000-05-08 2011-12-07 国立大学法人佐賀大学 リチウム二次電池用スピネル系マンガン酸化物およびこれを用いたリチウム二次電池
US6677082B2 (en) 2000-06-22 2004-01-13 The University Of Chicago Lithium metal oxide electrodes for lithium cells and batteries
JP2002145623A (ja) 2000-11-06 2002-05-22 Seimi Chem Co Ltd リチウム含有遷移金属複合酸化物およびその製造方法
JP4592931B2 (ja) 2000-11-30 2010-12-08 Jx日鉱日石金属株式会社 リチウム二次電池用正極材料及び及びその製造方法
EP1225650A3 (en) 2001-01-23 2003-08-27 Kabushiki Kaisha Toshiba Positive electrode active material and lithium ion secondary battery
DE60237441D1 (de) 2001-04-20 2010-10-07 Gs Yuasa Corp Ür, anode zur benutzung in einer sekundärbatterie mit wasserfreiem elektrolyt und sekundärbatterie mit wasserfreiem elektrolyt
US6964828B2 (en) 2001-04-27 2005-11-15 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
JP2003059490A (ja) 2001-08-17 2003-02-28 Tanaka Chemical Corp 非水電解質二次電池用正極活物質及びその製造方法
JP4109847B2 (ja) 2001-08-24 2008-07-02 Agcセイミケミカル株式会社 リチウム含有遷移金属複合酸化物およびその製造方法
JP2003089526A (ja) 2001-09-12 2003-03-28 Mitsubishi Chemicals Corp リチウムニッケルマンガン複合酸化物、並びにこれを用いたリチウム二次電池用正極材料、リチウム二次電池用正極及びリチウム二次電池
JP4077647B2 (ja) 2002-04-08 2008-04-16 日鉱金属株式会社 酸化マンガンの製造方法
JP4172622B2 (ja) 2002-04-11 2008-10-29 日鉱金属株式会社 リチウム含有複合酸化物並びにその製造方法
JP4292761B2 (ja) 2002-07-23 2009-07-08 日鉱金属株式会社 リチウム二次電池用正極材料の製造方法
TWI279019B (en) 2003-01-08 2007-04-11 Nikko Materials Co Ltd Material for lithium secondary battery positive electrode and manufacturing method thereof
WO2004102702A1 (ja) 2003-05-13 2004-11-25 Mitsubishi Chemical Corporation 層状リチウムニッケル系複合酸化物粉体及びその製造方法
KR100560540B1 (ko) * 2003-07-18 2006-03-15 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질, 그의 제조 방법 및 그를포함하는 리튬 이차 전지
KR100563047B1 (ko) 2003-07-24 2006-03-24 삼성에스디아이 주식회사 양극 활물질 및 이를 이용한 리튬 2차 전지
JP4216669B2 (ja) * 2003-08-07 2009-01-28 日鉱金属株式会社 リチウム・ニッケル・マンガン・コバルト複合酸化物並びにそれを正極活物質として用いたリチウムイオン二次電池
JP4528975B2 (ja) 2003-11-17 2010-08-25 独立行政法人産業技術総合研究所 ナノサイズ微結晶酸化物−ガラス複合メソポーラス粉末又は薄膜、これらの製造方法、リチウム電池又はリチウムインタカレーション電気デバイス、光触媒デバイス、太陽電池、エネルギー貯蔵デバイス及び二次電池
JP2005197002A (ja) 2003-12-26 2005-07-21 Hitachi Ltd リチウムイオン二次電池
JP4900888B2 (ja) * 2004-03-10 2012-03-21 三井金属鉱業株式会社 リチウム電池用リチウム遷移金属酸化物
JP4916094B2 (ja) 2004-03-30 2012-04-11 Jx日鉱日石金属株式会社 リチウムイオン二次電池正極材料用前駆体とその製造方法並びにそれを用いた正極材料の製造方法
JP4602689B2 (ja) 2004-04-19 2010-12-22 Jx日鉱日石金属株式会社 リチウムイオン二次電池用正極材料
EP1742281B1 (en) * 2004-04-27 2011-09-07 Mitsubishi Chemical Corporation Layered lithium nickel manganese cobalt composite oxide powder for material of positive electrode of lithium secondary battery, process for producing the same, positive electrode of lithium secondary battery therefrom, and lithium secondary battery
EP1808918B1 (en) 2004-11-02 2011-10-12 JX Nippon Mining & Metals Corporation Positive electrode material for lithium secondary battery and method for producing same
JP4432910B2 (ja) 2005-02-08 2010-03-17 三菱化学株式会社 リチウム二次電池正極材料用リチウムニッケルマンガンコバルト系複合酸化物粉体及びその製造方法、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
CN101151748B (zh) 2005-02-08 2010-10-06 三菱化学株式会社 锂二次电池及其正极材料
JP2006273620A (ja) * 2005-03-28 2006-10-12 Mitsubishi Chemicals Corp リチウム遷移金属複合酸化物及びその製造方法、リチウム遷移金属複合酸化物用焼成前駆体、並びにリチウム二次電池
JPWO2007083457A1 (ja) * 2006-01-20 2009-06-11 日鉱金属株式会社 リチウムニッケルマンガンコバルト複合酸化物及びリチウム二次電池
CN100389069C (zh) * 2006-06-29 2008-05-21 个旧圣比和实业有限公司 二次球镍锰钴氧化物及其制备方法
US8062486B2 (en) 2006-07-27 2011-11-22 Jx Nippon Mining & Metals Corporation Lithium-containing transition metal oxide target, process for producing the same and lithium ion thin film secondary battery
JP5428251B2 (ja) * 2007-09-04 2014-02-26 三菱化学株式会社 リチウム遷移金属系化合物粉体、それを用いたリチウム二次電池用正極及びリチウム二次電池
WO2009031619A1 (ja) 2007-09-04 2009-03-12 Mitsubishi Chemical Corporation リチウム遷移金属系化合物粉体、その製造方法及びその焼成前駆体となる噴霧乾燥体、並びに、それを用いたリチウム二次電池用正極及びリチウム二次電池
WO2009128289A1 (ja) * 2008-04-17 2009-10-22 日鉱金属株式会社 リチウムイオン電池用正極活物質、二次電池用正極及びリチウムイオン電池
EP2365565A4 (en) 2008-12-05 2013-07-03 Jx Nippon Mining & Metals Corp POSITIVE ACTIVE ELECTRODE MATERIAL FOR A LITHIUM ION BATTERY, POSITIVE ELECTRODE FOR A SECONDARY BATTERY WITH THE POSITIVELY ACTIVE ELECTRODE MATERIAL, AND A LITHIUM CERTAIN BATTERY WITH THE POSITIVE ELECTRODE FOR A SECONDARY BATTERY

Also Published As

Publication number Publication date
US20110031437A1 (en) 2011-02-10
TW200945652A (en) 2009-11-01
TWI443900B (zh) 2014-07-01
CN102007626B (zh) 2014-10-15
US9059465B2 (en) 2015-06-16
WO2009128289A1 (ja) 2009-10-22
KR20100133421A (ko) 2010-12-21
CN102007626A (zh) 2011-04-06
JP2014041831A (ja) 2014-03-06
KR101257585B1 (ko) 2013-04-23
EP2264814A4 (en) 2016-08-17
JP5669068B2 (ja) 2015-02-12
EP2264814A1 (en) 2010-12-22

Similar Documents

Publication Publication Date Title
JP5669068B2 (ja) リチウムイオン電池用正極活物質、二次電池用正極及びリチウムイオン電池
KR101765406B1 (ko) 나트륨 이온 배터리용 도핑된 나트륨 망간 산화물 캐소드 물질
TWI423508B (zh) A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery
TWI423507B (zh) A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery
TWI549343B (zh) A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery
JP5076448B2 (ja) 非水系電解質二次電池用正極活物質、その製造方法及びそれを用いた非水系電解質二次電池
KR101463881B1 (ko) 망간계 스피넬형 리튬 천이 금속 산화물
US20120074351A1 (en) Positive Electrode Materials Combining High Safety and High Power in a Li Rechargeable Battery
KR20160006172A (ko) 전이 금속 복합 수산화물 입자와 그의 제조 방법, 비수전해질 이차 전지용 정극 활물질과 그의 제조 방법, 및 비수전해질 이차 전지
JP2003142101A (ja) 二次電池用正極およびそれを用いた二次電池
US10505189B2 (en) Cathode material and lithium secondary battery using same as cathode
JP2008123787A (ja) 非水電解質電池、リチウムチタン複合酸化物および電池パック
JP6650956B2 (ja) リチウムイオン電池用正極活物質、リチウムイオン電池及びリチウムイオン電池用正極活物質の製造方法
JP6438297B2 (ja) リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
US9786914B2 (en) Spinel-type lithium cobalt manganese-containing complex oxide
JP5109447B2 (ja) 非水系電解質二次電池用正極活物質、その製造方法及びそれを用いた非水系電解質二次電池
EP2922121B1 (en) Lithium-manganate-particle powder for use in non-aqueous electrolyte secondary battery, method for producing same, and non-aqueous electrolyte secondary battery
JP6191351B2 (ja) 非水電解液二次電池用正極活物質及びそれを用いた非水電解液二次電池
KR102533325B1 (ko) 리튬 전이 금속 복합 산화물 및 제조 방법
US10305103B2 (en) Stabilized electrodes for lithium batteries
JP4805691B2 (ja) 非水電解質電池用活物質、非水電解質電池および電池パック
JP6754891B2 (ja) スピネル型リチウムニッケルマンガン含有複合酸化物
JP2015228353A (ja) リチウムイオン二次電池用正極活物質、その製造方法及びリチウムイオン二次電池用正極
WO2016080518A1 (ja) 非水電解質二次電池用正極活物質粒子粉末とその製造方法、および非水電解質二次電池
JP2022054292A (ja) リチウムイオン二次電池用正極活物質およびその製造方法、リチウムイオン二次電池

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130924

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131007

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20131213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141208

R150 Certificate of patent or registration of utility model

Ref document number: 5669068

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250