JPWO2003075266A1 - 光ヘッド及びそれを用いた光記録再生装置、並びに収差補正方法 - Google Patents

光ヘッド及びそれを用いた光記録再生装置、並びに収差補正方法 Download PDF

Info

Publication number
JPWO2003075266A1
JPWO2003075266A1 JP2003573639A JP2003573639A JPWO2003075266A1 JP WO2003075266 A1 JPWO2003075266 A1 JP WO2003075266A1 JP 2003573639 A JP2003573639 A JP 2003573639A JP 2003573639 A JP2003573639 A JP 2003573639A JP WO2003075266 A1 JPWO2003075266 A1 JP WO2003075266A1
Authority
JP
Japan
Prior art keywords
recording medium
optical recording
optical
tilt
objective lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003573639A
Other languages
English (en)
Other versions
JP4256788B2 (ja
Inventor
和田 秀彦
秀彦 和田
金馬 慶明
慶明 金馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Publication of JPWO2003075266A1 publication Critical patent/JPWO2003075266A1/ja
Application granted granted Critical
Publication of JP4256788B2 publication Critical patent/JP4256788B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/095Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following specially adapted for discs, e.g. for compensation of eccentricity or wobble
    • G11B7/0956Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following specially adapted for discs, e.g. for compensation of eccentricity or wobble to compensate for tilt, skew, warp or inclination of the disc, i.e. maintain the optical axis at right angles to the disc
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1365Separate or integrated refractive elements, e.g. wave plates
    • G11B7/1369Active plates, e.g. liquid crystal panels or electrostrictive elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/139Numerical aperture control means
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1392Means for controlling the beam wavefront, e.g. for correction of aberration
    • G11B7/13925Means for controlling the beam wavefront, e.g. for correction of aberration active, e.g. controlled by electrical or mechanical means
    • G11B7/13927Means for controlling the beam wavefront, e.g. for correction of aberration active, e.g. controlled by electrical or mechanical means during transducing, e.g. to correct for variation of the spherical aberration due to disc tilt or irregularities in the cover layer thickness
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0006Recording, reproducing or erasing systems characterised by the structure or type of the carrier adapted for scanning different types of carrier, e.g. CD & DVD
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0009Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage
    • G11B2007/0013Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage for carriers having multiple discrete layers

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Head (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

高密度の多層光記録媒体に対して信号の記録再生を行う光ヘッドであって、当該光記録媒体が傾いた場合にも、各層での収差を小さくして、安定な記録及び再生を行うことのできる光ヘッドを提供する。光源(1)と、光源(1)から出射された光を光記録媒体(8)に集光する対物レンズ(7)と、光記録媒体(8)が傾いたときに発生する収差を補正する対物レンズ傾け手段(13)とを備える。そして、光記録媒体(8)の傾きに関する情報と光記録媒体(8)の基材厚に関する情報とに応じて対物レンズ傾け手段(13)の対物レンズ傾け量を変える。

Description

技術分野
本発明は、光記録媒体に信号を記録し、又は前記光記録媒体に記録された信号を再生するために用いられる光ヘッド及びそれを用いた光記録再生装置、並びに光記録媒体が傾いたときに発生する収差の補正方法に関する。
背景技術
近年、ディジタルバーサタイルディスク(DVD)は、ディジタル情報をコンパクトディスク(CD)に対して約6倍の記録密度で記録できることから、大容量の光記録媒体として注目されている。また、情報の大容量化に伴い、さらに高密度の光記録媒体が要望されている。ここで、DVD(DVDシステムにおける光源の波長は660nm、対物レンズの開口数(NA)は0.6)よりも高密度化を達成するためには、光源の波長をより短く、対物レンズのNAをより大きくすることが必要となる。例えば、波長405nmの青色レーザとNAが0.85の対物レンズを使用すれば、DVDの5倍の記録密度が達成される。
しかし、上記した青色レーザを用いた高密度光記録媒体の光記録再生装置においては、記録及び再生のマージンが非常に厳しいために、光記録媒体の傾きによる収差の発生が問題となる。そこで、光記録媒体の傾き量に応じて発生する収差を小さくするように対物レンズを傾けて、記録及び再生を行うようにした光ヘッドが特開平11−312327号公報に提案されている。
ここで、図面を参照しながら、上記した従来の光ヘッドの一例について説明する。図11は従来技術における光ヘッドの構成を示す模式図である。図11において、111は光源であり、光源111としては、例えば半導体レーザ素子が用いられる。この光源111は、光記録媒体116の記録層に対して記録再生用のコヒーレント光を出射する。112はコリメータレンズであり、このコリメータレンズ112は、光源111から出射された発散光を平行光に変換するためのレンズである。113はビームスプリッタであり、このビームスプリッタ113は、入射する光を分離するための光学素子である。114はミラーであり、このミラー114は、入射する光を反射して光記録媒体116の方向に向かわせるための光学素子である。115は対物レンズであり、この対物レンズ115は、光記録媒体116の記録層に光を集光するためのレンズである。118は対物レンズ115を保持するためのレンズ保持部材であり、このレンズ保持部材118は、対物レンズ115を傾ける対物レンズ傾け手段としても機能する。119は傾きセンサーであり、この傾きセンサー119は、光記録媒体116の傾き量を検出するためのものである。また、123は傾き検出回路、125は傾き制御回路をそれぞれ示している。そして、これら傾きセンサー119、傾き検出回路123及び傾き制御回路125と、対物レンズ傾け手段として機能するレンズ保持部材118とにより、光記録媒体116と対物レンズ115との相対的な傾きがなくなるように、対物レンズ115の傾け制御が行われる。また、117は検出光学系、120はフォーカス誤差信号検出回路、121はトラッキング誤差信号検出回路、122は再生信号検出回路、124はコントローラをそれぞれ示している。
次に、以上のような構成を有する光ヘッドの動作について、図11を参照しながら説明する。
光源111から出射された直線偏光の光は、コリメータレンズ112によって平行光に変換される。平行光に変換された光は、ビームスプリッタ113を透過した後、ミラー114で反射され、対物レンズ115によって光記録媒体116の記録層上に集光される。
光記録媒体116で反射された光は、対物レンズ115を透過し、ミラー114とビームスプリッタ113で順次反射された後、検出光学系117からフォーカス誤差信号検出回路120、トラッキング誤差信号検出回路121、再生信号検出回路122に導かれ、ここでフォーカス誤差信号とトラッキング誤差信号と再生信号が検出される。フォーカス誤差信号とトラッキング誤差信号は、例えば、非点収差法、プッシュプル法等の周知の技術を用いて検出される。検出されたフォーカス誤差信号及びトラッキング誤差信号には、必要に応じて、コントローラ124からオフセット量が加えられる。
フォーカス制御手段(図示せず)は、フォーカス誤差信号に基づき、光が常に合焦状態で光記録媒体116の記録層上に集光されるように、対物レンズ115の位置をその光軸方向に制御する。また、トラッキング制御手段(図示せず)は、トラッキング誤差信号に基づき、光が光記録媒体116上の所望のトラックに集光されるように、対物レンズ115の位置を光記録媒体116の半径方向に制御する。
光記録媒体116と対物レンズ115との相対的な傾きは、対物レンズ115の横に設けられた傾きセンサー119を介して傾き検出回路123により検出される。そして、傾き制御回路125は、傾き検出回路123からの傾き信号に基づき、レンズ保持部材118に対して対物レンズ115を傾けるための信号を出力する。これにより、対物レンズ115は、光記録媒体116との相対的な傾きがなくなるように傾けられる。
以上のような構成にすれば、光記録媒体116が対物レンズ115に対して相対的に傾いていても、その傾き量を検出して対物レンズ115を傾けることにより、収差を小さくすることが可能となるので、安定な記録及び再生を行うことができる。
しかし、上記のような構成の光ヘッドでは、DVDよりも高密度に記録された多層光記録媒体に対しては対応することができない。例えば、光源の波長が405nm、対物レンズのNAが0.85のシステムを用いて、基材厚が0.1mmの単層光記録媒体と、第一層目の基材厚が0.08mmで、第二層目の基材厚が0.12mmの多層光記録媒体とに対して記録及び再生を行う場合について考える。ここで、対物レンズは、単層光記録媒体の基材厚に対して球面収差が発生しないように設計されている。図3に、単層光記録媒体と多層光記録媒体(二層光記録媒体)の各層での、光記録媒体の傾き量と、発生するコマ収差との関係を示す。図3に示すように、光記録媒体の傾き量が同じであっても、各基材厚に対して発生するコマ収差の量は異なっている。このことは、光記録媒体の傾き量が同じであっても、対物レンズを傾けてコマ収差を補正する場合の、対物レンズの傾け量が各層ごとに異なることを意味している。このため、光記録媒体の傾きに起因して発生する収差を検出するのではなく、光記録媒体の傾きを検出し、この傾きに応じて対物レンズを傾けるようなオープンループ制御の場合に問題が生じる。
発明の開示
本発明は、かかる従来の問題点に鑑みてなされたものであり、より高密度の多層光記録媒体に対して信号の記録再生を行う光ヘッドであって、当該光記録媒体が傾いた場合にも、各層での収差を小さくして、安定な記録及び再生を行うことのできる光ヘッド及びそれを用いた光記録再生装置、並びに光記録媒体が傾いたときに発生する収差の補正方法を提供することを目的とする。
前記目的を達成するため、本発明に係る光ヘッドの構成は、光記録媒体に信号を記録し、又は前記光記録媒体に記録された信号を再生する光ヘッドであって、光源と、前記光源から出射された光を前記光記録媒体に集光する対物レンズと、前記光記録媒体が傾いたときに発生する収差を補正する傾き起因収差補正手段とを備え、前記光記録媒体の傾きに関する情報と前記光記録媒体の基材厚に関する情報とに応じて前記傾き起因収差補正手段の駆動量を変えることを特徴とする。
この光ヘッドの構成によれば、基材厚が異なる光記録媒体、例えば、多層光記録媒体の各層、異なる種類の光記録媒体、基材厚にばらつきのある単層光記録媒体に対して記録及び再生を行う場合にも、光記録媒体が傾いたことによって発生する収差を正確に補正することができるので、安定な記録及び再生を行うことが可能となる。
前記本発明の光ヘッドの構成においては、前記傾き起因収差補正手段が、前記対物レンズを傾ける手段であるのが好ましい。この好ましい例によれば、光記録媒体の偏心に伴う対物レンズの移動に対しては影響がなく、さらに、往路は当然として復路においても収差を補正することができるので、安定した記録を行うことができると共に、安定した制御信号や再生信号を得ることもできる。また、この場合には、前記対物レンズが或る一定の開口数(NA)を有し、前記光記録媒体の基材厚に応じて前記対物レンズの傾け量を変えるのが好ましい。この好ましい例によれば、
また、前記本発明の光ヘッドの構成においては、前記対物レンズのNAが0.7以上であるのが好ましい。この好ましい例によれば、記録や再生に対する収差マージンの厳しい高密度化に対して、光記録媒体の傾きに対する許容度を広げることが可能となる。従って、記録密度の高密度化に適したものとなる。
また、前記本発明の光ヘッドの構成においては、前記光記録媒体の傾きに関する情報と前記光記録媒体の基材厚に関する情報とにより決定される、前記光記録媒体が傾いたことによって発生する収差を補正するために必要な前記傾き起因収差補正手段の駆動量に関する情報が記憶されたメモリをさらに備え、前記光記録媒体の傾きに関する情報と前記光記録媒体の基材厚に関する情報とに応じて、前記メモリに記憶された前記傾き起因収差補正手段の駆動量に関する情報を呼び出し、呼び出された情報に応じて前記傾き起因収差補正手段を駆動するのが好ましい。この好ましい例によれば、傾き起因収差補正手段の駆動量を瞬時に決定することが可能となる。
また、前記本発明の光ヘッドの構成においては、前記光記録媒体の傾きに関する情報を検出する傾き検出手段をさらに備えているのが好ましい。この好ましい例によれば、光記録媒体の傾きに関する情報を正確に検出することができる。また、この場合には、前記傾き検出手段が、前記光源と異なる第2の光源と、前記第2の光源から出射された光を前記光記録媒体に集光する集光レンズと、前記光記録媒体で反射された光を検出する光検出器とを備えているのが好ましい。この好ましい例によれば、光記録媒体の傾きに起因して発生する収差を、記録再生用の光学系とは別の光学系で検出することとなるため、記録時もしくは再生時に同時に光記録媒体の傾きに起因して発生する収差を検出することができる。また、この場合には、前記傾き検出手段が、前記光記録媒体の半径方向の任意の二点でのフォーカスゼロクロス位置を検出し、前記フォーカスゼロクロス位置を検出するためのフォーカスサーチ電圧の、前記二点での差に基づいて、前記光記録媒体の傾き量を検出するのが好ましい。この好ましい例によれば、光記録媒体の傾きを検出するための光学系を別に設ける必要がないので、光ヘッドの小型化を図ることができる。
また、前記本発明の光ヘッドの構成においては、前記光記録媒体の基材厚に関する情報が記憶されたメモリをさらに備えているのが好ましい。この好ましい例によれば、光記録媒体の基材厚に関する情報を検出する手段を設ける必要がないので、光ヘッドの小型化を図ることができる。
また、前記本発明の光ヘッドの構成においては、前記光記録媒体の基材厚に関する情報を検出する基材厚検出手段をさらに備えているのが好ましい。この好ましい例によれば、光記録媒体の基材厚に関する情報を正確に検出することができる。また、この場合には、前記基材厚検出手段が、前記光源と異なる第2の光源と、前記第2の光源から出射された光を前記光記録媒体に集光する集光レンズと、前記光記録媒体で反射された光を検出する光検出器とを備えているのが好ましい。この好ましい例によれば、光記録媒体の基材厚に起因して発生する収差を、記録再生用の光学系とは別の光学系で検出することとなるため、記録時もしくは再生時に同時に光記録媒体の基材厚に起因して発生する収差を検出することができる。また、この場合には、前記基材厚検出手段が、光軸に近い側の第1の光ビームと前記第1の光ビームよりも外側の第2の光ビームの2つの光ビームの焦点位置に基づいて、前記光記録媒体の基材厚に関する情報を検出するのが好ましい。この好ましい例によれば、光記録媒体の基材厚を検出するための光学系を別に設ける必要がないので、光ヘッドの小型化を図ることができる。
また、前記本発明の光ヘッドの構成においては、前記傾き起因収差補正手段が、透明な導電性薄膜を有する一対の基板と、前記一対の基板間に配置された位相変化層とを備えた光学素子からなり、前記一方の導電性薄膜に、前記光記録媒体の傾きに起因して発生する収差を補正することのできるパターンが形成されているのが好ましい。この好ましい例によれば、対物レンズを傾けるために必要な部材を全てなくすことが可能となるので、光ヘッドの小型化を図ることができる。さらに、この方式を用いれば、対物レンズを傾ける場合と異なり、コマ収差しか発生しないので、収差を良好に補正することができる。この場合にはさらに、前記位相変化層が液晶であるのが好ましい。この好ましい例によれば、収差を補正するために外部から印加する電圧を小さくすることができるので、光ヘッドの省電力化を図ることができる。
また、前記本発明の光ヘッドの構成においては、前記光記録媒体の基材厚が標準値からずれたことに起因して発生する収差を補正する基材厚起因収差補正手段をさらに備えているのが好ましい。また、この場合には、前記基材厚起因収差補正手段が、光路中に配置された正レンズ群及び負レンズ群と、前記正レンズ群と前記負レンズ群とのレンズ間隔を変える手段とを備えているのが好ましい。この好ましい例によれば、往路は当然として復路においても光記録媒体の基材厚に起因して発生する収差を補正することが可能となるため、安定した記録を行うことができると共に、安定した制御信号や再生信号を得ることもできる。また、この場合には、前記基材厚起因収差補正手段が、透明な導電性薄膜を有する一対の基板と、前記一対の基板間に配置された位相変化層とを備えた光学素子からなり、前記一方の導電性薄膜に、前記光記録媒体の基材厚に起因して発生する収差を補正することのできるパターンが形成されているのが好ましい。この好ましい例によれば、正レンズ群、負レンズ群、及び前記正レンズ群と前記負レンズ群とのレンズ間隔を変える手段を全てなくすことが可能となるので、光ヘッドの小型化を図ることができる。この場合にはさらに、前記位相変化層が液晶であるのが好ましい。また、この場合には、前記傾き起因収差補正手段及び前記基材厚起因収差補正手段が、透明な導電性薄膜を有する一対の基板と、前記一対の基板間に配置された位相変化層とを備えた1つの光学素子からなり、前記一方の導電性薄膜に、前記光記録媒体の傾きに起因して発生する収差を補正することのできるパターンが形成され、前記他方の導電性薄膜に、前記光記録媒体の基材厚に起因して発生する収差を補正することのできるパターンが形成されているのが好ましい。この好ましい例によれば、1つの光学素子を用いて、光記録媒体の傾きに起因して発生するコマ収差と光記録媒体の基材厚に起因して発生する球面収差を同時に補正することが可能となる。従って、この光学素子を光ヘッドに搭載することにより、光ヘッドの小型化を図ることができる。この場合にはさらに、前記位相変化層が液晶であるのが好ましい。
また、本発明に係る収差補正方法は、光源と、前記光源から出射された光を光記録媒体に集光する対物レンズと、前記光記録媒体が傾いたときに発生する収差を補正する傾き起因収差補正手段とを備え、前記光記録媒体に信号を記録し、又は前記光記録媒体に記録された信号を再生する光ヘッドを用いて、前記光記録媒体が傾いたときに発生する収差を補正する方法であって、前記光記録媒体の傾きに関する情報と前記光記録媒体の基材厚に関する情報とに応じて前記傾き起因収差補正手段を駆動することを特徴とする。
また、本発明に係る光記録再生装置の構成は、光記録媒体に信号を記録し、又は前記光記録媒体に記録された信号を再生する光ヘッドを備えた光記録再生装置であって、前記光ヘッドとして、前記本発明の光ヘッドを用いることを特徴とする。
発明を実施するための最良の形態
以下、実施の形態を用いて本発明をさらに具体的に説明する。
[第1の実施の形態]
図1は本発明の第1の実施の形態における光ヘッドを示す模式図である。
図1において、1は光源であり、光源1としては、例えばGaN系の半導体レーザ素子(波長405nm)が用いられる。この光源1は、光記録媒体8の記録層に対して記録再生用のコヒーレント光を出射する。2はコリメータレンズであり、このコリメータレンズ2は、光源1から出射された発散光を平行光に変換するためのレンズである。3はビームスプリッタであり、このビームスプリッタ3は、入射する光のほぼ50%を透過させ、ほぼ50%を反射させる光学素子である。4は負レンズ群としての凹レンズであり、この凹レンズ4は、コリメータレンズ2によって一旦平行光に変換された光を再び発散光に変換するためのレンズである。5は正レンズ群としての凸レンズであり、この凸レンズ5は、凹レンズ4によって発散光に変換された光を再び平行光に変換するためのレンズである。15は凹レンズ4をその光軸方向に移動させるための手段であり、凹レンズ4をその光軸方向に移動させることにより、凹レンズ4と凸レンズ5とのレンズ間隔を変えることができる。6はミラーであり、このミラー6は、入射する光を反射して光記録媒体8の方向(入射する光の進行方向から90°曲げられた方向)に向かわせるための光学素子である。7は対物レンズであり、この対物レンズ7は、光記録媒体8の記録層に光を集光するためのレンズである。13は光記録媒体8の傾きに起因して発生するコマ収差を補正する傾き起因収差補正手段としての対物レンズ傾け手段である。11は傾き検出手段としての傾きセンサーであり、この傾きセンサー11は、光記録媒体8の傾き量を検出するためのものである。12はメモリであり、このメモリ12には、光記録媒体8が傾いたことによって発生する収差を補正するために必要な対物レンズ傾け手段13の駆動量に関する情報が記憶されている。具体的には、メモリ12に、光記録媒体8が傾いたことによって発生する収差を補正するために必要な対物レンズ7の傾け量が各層に対して(単層光記録媒体や多層光記録媒体の各層に対して)記憶されている。尚、メモリ12としては、ROMが用いられている。
本実施の形態においては、凹レンズ4と、凸レンズ5と、凹レンズ4と凸レンズ5とのレンズ間隔を変えるための手段(凹レンズ4をその光軸方向に移動させるための手段15)とにより、基材厚が標準値からずれたことに起因して発生する球面収差を補正する基材厚起因収差補正手段が構成されている。
また、9は集光レンズを、10は光検出器をそれぞれ示している。光記録媒体8で反射された光は、ビームスプリッタ3で反射された後、集光レンズ9によって光検出器10に集光され、光検出器10によって電気信号に変換される。
次に、以上のような構成を有する光ヘッド14の動作について、図1を参照しながら説明する。
光源1から出射された直線偏光の光は、コリメータレンズ2によって平行光に変換される。平行光に変換された光は、ビームスプリッタ3を透過した後、凹レンズ4によって発散光に変換され、凸レンズ5によって再び平行光に変換される。凸レンズ5によって平行光に変換された光は、ミラー6で反射された後、対物レンズ7によって光記録媒体8の記録層上に集光される。
光記録媒体8で反射された光は、対物レンズ7を透過した後、ミラー6で反射される。ミラー6で反射された光は、凸レンズ5、凹レンズ4を順次透過した後、ビームスプリッタ3で反射され、集光レンズ9によって光検出器10に集光される。光検出器10は、集光された光に応じて、光記録媒体8の記録層上における光の合焦状態を示すフォーカス誤差信号と光の照射位置を示すトラッキング誤差信号を出力する。ここで、フォーカス誤差信号とトラッキング誤差信号は、例えば、非点収差法とプッシュプル法等の周知の技術を用いて検出される。
フォーカス制御手段(図示せず)は、フォーカス誤差信号に基づき、光が常に合焦状態で光記録媒体8の記録層上に集光されるように、対物レンズ7の位置をその光軸方向に制御する。また、トラッキング制御手段(図示せず)は、トラッキング誤差信号に基づき、光が光記録媒体8上の所望のトラックに集光されるように、対物レンズ7の位置を光記録媒体8の半径方向に制御する。また、光検出器10からは、光記録媒体8に記録された情報も得られる。
次に、対物レンズ7の傾き制御を行う傾き起因収差補正手段としての対物レンズ傾け手段13の具体的構成及びその動作について説明する。図4は対物レンズ傾け手段の構成を示す斜視図である。これは、特開平11−312327号公報に開示されているものであり、40はサスペンション取り付け基板、41a〜41dはサスペンション、43a〜43dは磁石、44a、44bは小基板、45a、45bフォーカスコイル、46はレンズ保持部材、47はトラッキングコイル、48はヨークをそれぞれ示している。尚、図4において、Z軸方向はフォーカス方向を、Y軸方向はトラッキング方向をそれぞれ示している。このように構成された対物レンズ傾け手段13において、フォーカスコイル45a、45bに電流が流れると、磁石43a〜43dによって発生する磁束との関係でフォーカスコイル45a、45bに対する駆動力が発生し(フレミングの左手の法則)、対物レンズ7が傾く。従って、フォーカスコイル45a、45bに流す電流を変えることにより、対物レンズ7の傾き方向と傾き量を変えることができる。
光記録媒体8の傾き量は、対物レンズ7の横に設けられた傾きセンサー11によって検出される。傾きセンサー11は、LED等の光源と、前記光源から出射された光を光記録媒体8に集光する集光レンズと、光記録媒体8で反射された光を検出(受光)する光検出器とを備えた周知のものである。この傾きセンサー11は、例えば、光検出器の受光部が二分割されており、光記録媒体8が傾いていないときに各受光部から出力される信号の差が『0』となるようにセットされている。そして、光記録媒体8が傾いているときには、各受光部から出力される信号の差が『0』ではなくなり、この値と符号に基づいて、光記録媒体8がどの方向にどれくらい傾いているかが検出される。傾きセンサー11によって検出された信号はメモリ12に入力される。メモリ12は、この光記録媒体8の傾き量及び光記録媒体8の記録もしくは再生される層の基材厚に応じて、対物レンズ7が必要とする傾け量に対応する信号を出力する。対物レンズ傾け手段13は、この信号に応じて対物レンズ7を必要量だけ傾ける。
次に、対物レンズの傾け量について説明する。
まず、光源の波長が660nm、対物レンズのNAが0.6であるDVDシステムの場合について考える。DVDシステムの場合には、二層光記録媒体の再生も考えられる。図2に、DVDシステムにおける単層光記録媒体と二層光記録媒体の各層での、光記録媒体の傾き量と、発生するコマ収差の量との関係を示す。ここで、単層光記録媒体の基材厚は0.6mm、二層光記録媒体の第一層目の基材厚は0.55mm、第二層目の基材厚は0.64mmである。また、対物レンズは、単層光記録媒体の基材厚に対して球面収差が発生しないように設計されている。
図2に示すように、DVDシステムにおいては、各基材厚に対して発生するコマ収差の量が若干異なっている。しかし、DVDシステムにおいては、二層光記録媒体については再生のみであり、収差に対するマージンが広いため、対物レンズを傾けることによってコマ収差を補正する場合には、各基材厚(各層)に対して同じ量だけ対物レンズを傾ければよいことになる。
次に、DVDよりも高密度の多層光記録媒体に対して記録もしくは再生を行う場合について考える。例えば、光源1の波長が405nm、対物レンズ7のNAが0.85のシステムを用いて、基材厚が0.1mmの単層光記録媒体と、第一層目の基材厚が0.08mmで、第二層目の基材厚が0.12mmの多層光記録媒体とに対して記録もしくは再生を行う場合について考える。ここで、対物レンズ7は、単層光記録媒体の基材厚に対して球面収差が発生しないように設計されている。図3に、このシステムにおける単層光記録媒体と多層光記録媒体(二層光記録媒体)の各層での、光記録媒体の傾き量と、発生するコマ収差の量との関係を示す。
図3に示すように、このシステムにおいては、光記録媒体8の傾き量が同じであっても、各基材厚に対して発生するコマ収差の量が異なる。このことは、光記録媒体8の傾き量が同じであっても、対物レンズ7を傾けてコマ収差を補正する場合の、対物レンズ7の傾け量が各層ごとに異なることを意味している。
次に、二層光記録媒体の基材厚を、第一層目で0.08mm、第二層目で単層光記録媒体の基材厚と同じ0.1mmにした場合について考える。この場合には、図3に示すように、光記録媒体8の傾き量が同じである場合の、各基材厚に対して発生するコマ収差の量は、DVDシステムの場合と比較して若干大きいだけである。しかし、記録密度がDVDよりも大きく、また、多層光記録媒体に対しても記録を行うために、DVDシステムの場合よりも収差に対するマージンが厳しくなる。従って、光記録媒体8の傾き量が同じであっても、各層ごとに対物レンズ7の傾け量を変える必要がある。このことは、記録や再生に対する収差マージンが厳しくなる、対物レンズ7のNAが0.7以上のシステムにおいて、特に有効である。
次に、CDとDVDのどちらの光記録媒体に対しても記録再生が可能な光ヘッドについて考える。CDシステムにおいては、対物レンズのNAが0.45と小さいために、光記録媒体(CD)の傾きに対する収差の発生量が小さく、光記録媒体(CD)が例えば0.5°傾いても、対物レンズを傾けずに再生することが可能である。しかし、DVDシステムにおいては、対物レンズのNAが0.6であるために、光記録媒体(DVD)の傾きに対する収差の発生量が大きく、光記録媒体(DVD)が例えば0.5°傾いた場合には、対物レンズも或る角度だけ傾ける必要がある。従って、CDとDVDのどちらの光記録媒体に対しても記録再生が可能な光ヘッドの場合、光記録媒体の傾き量が同じであっても、収差を補正するための対物レンズの傾け量は、CDの場合とDVDの場合とで異なることになる。本実施の形態の光ヘッド14がこの光ヘッドと異なる点は、対物レンズ7が或る一定のNAを有する場合において、光記録媒体8の傾き量が同じであっても、基材厚の大きさに応じて、収差を補正するための対物レンズ7の傾け量を変える点にある。従って、本実施の形態の光ヘッド14は、光記録媒体の傾き量が同じであっても、収差を補正するための対物レンズの傾け量がNAごとに異なる光ヘッドとは全く相違するものである。
次に、基材厚起因収差補正手段の動作について説明する。上記したDVDよりも高密度の光記録媒体8の場合には、0.08mmの基材厚に対して200mλの球面収差が発生するため、このままでは記録及び再生を行うことができなくなる。そこで、この球面収差を補正する必要があるが、特開2000−131603号公報に、平行光中に正レンズ群と負レンズ群の2つのレンズを挿入し、2つのレンズの光軸方向のレンズ間隔を変えることにより、平行光を発散光もしくは収束光に変換して球面収差を補正する方式が提案されている。
本実施の形態においては、凹レンズ4と凸レンズ5とのレンズ間隔を各層に対して変えることにより、球面収差の補正を行っている。また、メモリ12には、各層に対する凹レンズ4と凸レンズ5とのレンズ間隔が記憶されており、或る層に対して記録もしくは再生を行う場合には、メモリ12に記憶されたレンズ間隔が得られるように、凹レンズ4がその光軸方向に移動させられる。
以上説明したように、より高密度の多層光記録媒体に対して記録及び再生を行う場合には、各層ごとに光記録媒体の傾き量に対して対物レンズの傾け量を変えることにより、光記録媒体が傾いたことによって発生する収差を正確に補正することが可能となり、安定な記録及び再生を行うことが可能となる。
[第2の実施の形態]
図5は本発明の第2の実施の形態における光ヘッドを示す模式図である。
図1、図5に示すように、本実施の形態の光ヘッド16(図5)が上記第1の実施の形態の光ヘッド14(図1)と異なる点は、光記録媒体8の基材厚に関する情報を検出する基材厚検出手段が含まれている点のみであり、それ以外の構成は上記第1の実施の形態と同様である。従って、本実施の形態において、特に説明のないものについては上記第1の実施の形態と同じであるとし、上記第1の実施の形態と同一の符号を付している構成部材については、特に説明のない限り、上記第1の実施の形態と同様の機能を有するものとする。
図5において、51はビームスプリッタ3と集光レンズ9との間に配置されたホログラムであり、このホログラム51は、内周部と外周部でパターンが異なっている。
次に、以上のような構成を有する光ヘッド16の動作について、図5を参照しながら説明する。
光源1から出射された直線偏光の光が対物レンズ7によって光記録媒体8の記録層上に集光するまで、及び光記録媒体8で反射された光がビームスプリッタ3で反射されるまでについては、上記第1の実施の形態で説明した動作と同じであるため、その説明は省略する。
ビームスプリッタ3で反射された光は、ホログラム51に入射し、内周部分と外周部分の2つの光ビームに分割される。この分割された光は、集光レンズ9によって光検出器10に集光される。光検出器10は、集光された光に応じて、光記録媒体8の記録層上における光の合焦状態を示すフォーカス誤差信号と光の照射位置を示すトラッキング誤差信号を出力する。ここで、フォーカス誤差信号とトラッキング誤差信号は、例えば、非点収差法とプッシュプル法等の周知の技術を用いて検出される。
フォーカス制御手段(図示せず)は、フォーカス誤差信号に基づき、光が常に合焦状態で光記録媒体8の記録層上に集光されるように、対物レンズ7の位置をその光軸方向に制御する。また、トラッキング制御手段(図示せず)は、トラッキング誤差信号に基づき、光が光記録媒体8上の所望のトラックに集光されるように、対物レンズ7の位置を光記録媒体8の半径方向に制御する。また、光検出器10からは、光記録媒体8の基材厚に関する情報と光記録媒体8に記録された情報も得られる。
次に、基材厚検出手段について説明する。本実施の形態で用いられている基材厚検出手段は、特開2000−171346号公報に開示されているものである。この基材厚検出手段は、光記録媒体8からの反射光を、ホログラム51を用いて、光軸に近い側の第1の光ビームと、前記第1の光ビームよりも外側の第2の光ビームとに分割し、当該2つの光ビームの対物レンズ出射光の焦点位置に基づいて、球面収差を検出する方式のものである(球面収差が分かれば、光記録媒体8の基材厚に換算することができる)。この検出された信号はメモリ12に入力され、対物レンズ傾け手段13は、この信号に応じて対物レンズ7を必要量だけ傾ける。
次に、対物レンズの傾け量について説明する。
各層ごとの対物レンズ7の傾け量は、メモリ12に予め記憶されている。しかし、各層においても、基材厚は光記録媒体8の作製誤差等によって変動している。例えば、二層光記録媒体の第一層目の標準の基材厚が0.08mmであり、それが作製誤差のために0.07mmになっていたとする。この場合、光記録媒体8が0.5°傾いたときに発生するコマ収差は、0.08mmの基材厚に対しては44mλであるが、0.07mmの基材厚に対しては38mλとなる。このため、対物レンズ7の傾け量を基材厚に応じて補正しなければ、コマ収差のキャンセル量が不十分になるか、もしくは過補正になる。特に、高密度光記録媒体の場合には、許容される収差に対するマージンが厳しいため、このキャンセル不足や過補正が大きな問題となる。
そこで、本実施の形態においては、光記録媒体8の各層の基材厚をモニターし、この基材厚に応じて対物レンズ7の傾け量を補正するように構成されており、これにより対物レンズ7を傾けることによる収差の補正を正確に行うことが可能となる。さらに、単層の光記録媒体8であっても、上記したように基材厚に作製誤差があるため、基材厚を検出し、検出された基材厚の量に応じて対物レンズ7の傾け量を変えることにより、安定した再生信号を得ることが可能となる。また、この方法を用いれば、安定した記録を行うことも可能となる。また、本実施の形態の光ヘッド16においては、メモリ12に、各層ごとの対物レンズ7の傾け量が記憶されているが、基材厚に対する対物レンズ7の傾け量が記憶されていても何ら問題はない。
また、メモリ12には、光記録媒体8の傾き量と、基材厚が単層の標準値である光記録媒体8がその傾き量だけ傾いたときに発生する収差を補正するのに必要な対物レンズ7の傾け量に対応する電圧のみが記憶されていてもよい。この場合には、以下のような方法を用いることにより、上記と同様の効果を得ることができる。まず、傾きセンサー11によって検出された信号がメモリ12に入力されると、メモリ12から対物レンズ7を傾けるのに必要な電圧が出力される。次に、この電圧は可変抵抗を含む回路に入力され、可変抵抗の抵抗値によって分圧される。そして、可変抵抗の抵抗値が基材厚検出手段によって検出された信号に応じて変えられると、対物レンズ傾け手段13に入力される電圧が変化し、光記録媒体8の傾き量が同じであっても、基材厚に関する情報に応じて対物レンズ7の傾け量が変えられる。このようにすれば、メモリ12には或る基材厚に対する情報が記憶されているだけで、上記と同様の効果を得ることができるので、メモリ12の回路規模を小さくすることができる。
また、本実施の形態の光ヘッド16においては、光記録媒体8の傾き量と、その傾きに起因して発生する収差を補正するための傾き起因収差補正手段の駆動量(例えば、対物レンズ傾け手段13の対物レンズ7の傾け量)がメモリ12に記憶されているが、メモリ12を用いる代わりに、光記録媒体8の基材厚に関する情報(電圧)と光記録媒体8の傾きに関する情報(電圧)とを入力したときに、出力される電圧が変わるような回路を用いることもできる。この場合には、光記録媒体8の傾き量と、傾き起因収差補正手段の駆動量との関係を数式で表し、この数式に基づいて傾き起因収差補正手段の駆動量を変えることと同等になり、多層光記録媒体の各層や基材厚に応じてこの数式の比例係数を変えることになる。また、上記関係の係数は非線形であってもよく、この非線形の係数を変えても何ら問題はない。
また、本実施の形態の光ヘッド16においては、メモリ12としてROMを用いて、光記録媒体8の傾きと基材厚に関する情報に対する対物レンズ7の傾け量の値が記憶されているが、光ヘッドごとの最適なデータを当該光ヘッドの組み立て時に求めて記憶するために、不揮発性メモリを搭載することもできる。このような構成にすれば、光ヘッドの製造ばらつきをも考慮したものとなるので、収差補正の精度を向上させることができる。また、さらに書き換え可能なメモリを搭載し、光記録媒体ごとに学習をして、その情報を記憶してもよい。この場合には、光記録媒体のばらつきをも考慮したものとなるので、収差補正の精度をさらに向上させることができる。
以上説明したように、より高密度の多層光記録媒体の場合には、各層の基材厚を検出し、その基材厚分だけ対物レンズ7の傾け量を補正することにより、収差を正確に補正することが可能となり、安定な記録及び再生を行うことが可能となる。
尚、本実施の形態においては、基材厚に関する情報の検出を、ホログラム51を用いて行っているが、他の方式を用いて行っても何ら問題はない。例えば、他の基材厚検出手段が特開平10−334575号公報に開示されている。この公報に開示された基材厚検出手段は、光源と、光源から出射された光を光記録媒体(測定対象物)に集光(照射)する第1の光学系と、光記録媒体で反射された光を光検出器(受光素子)に導く第2の光学系とからなる。ここで、光源は、レーザ、LEDあるいはランプからなり、第1及び第2の光学系は、凸レンズ、あるいは凸レンズと凹レンズとの組み合わせにより構成されている。この構成においては、基材厚に応じて受光素子から出力される信号が異なる。本実施の形態で説明した上記方法は、ホログラム51を搭載するだけで実現可能であり、光記録媒体8の基材厚を検出するための光学系を別に設ける必要はないので、光ヘッド16の小型化を図るのに好都合である。一方、ここで説明した方法の場合には、光記録媒体の基材厚に起因して発生する収差を、記録再生用の光学系とは別の光学系で検出することとなるため、記録時もしくは再生時に同時に光記録媒体の基材厚に起因して発生する収差を検出することが可能となる。
また、特開平11−110802号公報に、2つの誤差に起因して発生する収差を、1つの光学素子を用いて補正するようにした技術が開示されている。この技術を用いれば、光記録媒体の傾きに起因して発生する収差と光記録媒体の基材厚に起因して発生する収差を、1つの光学素子を用いて補正することが可能となる。図6に、この光学素子の断面図を示す。
図6において、60は第1のガラス基板、61は第1のITO膜(インジウム−錫−酸化物合金)、62は第1のポリビニルアルコール膜、63はエポキシ樹脂層、64は第2のポリビニルアルコール膜、65は第2のITO膜、66は第2のガラス基板、67は液晶をそれぞれ示している。ここで、第1のITO膜61と第2のITO膜65は、それぞれ第1のガラス基板60の内面と第2のガラス基板66の内面に蒸着されており、これら第1及び第2のITO膜61、65は、外部からの信号を液晶67に印加すると共に、光を透過させる透明電極である。第1のポリビニルアルコール膜62と第2のポリビニルアルコール膜64は、それぞれ第1のITO膜61上と第2のITO膜65上に蒸着されている。これら第1及び第2のポリビニルアルコール膜62、64は、液晶67の配向を制御する配向膜であり、ナイロン等の高分子布でこすられている。エポキシ樹脂層63は、液晶67が外に漏れないようにするための封止層として機能する。第1のITO膜61は、光記録媒体8の傾きに起因して発生するコマ収差を補正するために、図7に示すようなパターンにパターニングされて3つの領域に分割されている。また、第2のITO膜65は、光記録媒体8の基材厚に起因して発生する球面収差を補正するために、図8に示すようなパターンにパターニングされて4つの領域に分割されている。
尚、本実施の形態の光学素子は、収差補正素子として機能するものである。この場合、光記録媒体8の傾きに起因して発生する収差を補正することのできるパターンが形成された第1のITO膜61が、第1の収差補正電極として機能し、光記録媒体8の基材厚に起因して発生する収差を補正することのできるパターンが形成された第2のITO膜65が、第2の収差補正用電極として機能する。また、液晶67が、本発明の位相変化層に対応している。そして、第1のITO膜61と第2のITO膜65に所望の電圧を印加することにより、光記録媒体8の傾きに起因して発生するコマ収差と光記録媒体8の基材厚に起因して発生する球面収差を同時に補正することができる。従って、この光学素子を光ヘッドに搭載することにより、凹レンズ4、凸レンズ5、凹レンズ4と凸レンズ5とのレンズ間隔を変えるための手段(凹レンズ4をその光軸方向に移動させるための手段15)、及び対物レンズ7を傾けるために必要な部材を全てなくすことが可能となるので、光ヘッド16の小型化を図ることができる。
尚、上記第1及び第2の実施の形態においては、凹レンズ4と、凸レンズ5と、凹レンズ4と凸レンズ5とのレンズ間隔を変えるための手段(凹レンズ4をその光軸方向に移動させるための手段15)とを用いて、基材厚起因収差補正手段を構成しているが、この基材厚起因収差補正手段は、正レンズ群及び負レンズ群と、前記正レンズ群と前記負レンズ群とのレンズ間隔を変える手段とを用いて構成されていればよい。また、別の方式を用いて、基材厚起因収差補正手段を構成することもできる。例えば、上記したような液晶を用いた方式であってもよい。具体的には、図6に示した光学素子において、第1のITO膜61のパターンをなくしたものにすればよい。上記第1及び第2の実施の形態において説明した基材厚起因収差補正手段は、レンズを用いて構成されているため、往路は当然として復路においても光記録媒体8の基材厚に起因して発生する収差を補正することができる。その結果、安定した記録を行うことができると共に、安定した制御信号や再生信号を得ることもできる。一方、ここで説明した方式を用いて光記録媒体8の基材厚に起因して発生する収差を補正するようにすれば、凹レンズ4、凸レンズ5、及び凹レンズ4と凸レンズ5とのレンズ間隔を変えるための手段(凹レンズ4をその光軸方向に移動させるための手段15)を全てなくすことが可能となるので、光ヘッドの小型化を図ることができる。
また、上記第1及び第2の実施の形態においては、傾き起因収差補正手段として対物レンズ傾け手段13を用いているが、別の方式を用いて、傾き起因収差補正手段を構成することもできる。例えば、上記したような液晶を用いた方式であってもよい。具体的には、図6に示した光学素子において、第2のITO膜65のパターンをなくしたものにすればよい。上記第1及び第2の実施の形態において説明した傾き起因収差補正手段は、対物レンズ7を傾けるものであるため、光記録媒体8の偏心に伴う対物レンズ7の移動に対しては影響がなく、さらに、往路は当然として復路においても収差を補正することができるので、安定した記録を行うことができると共に、安定した制御信号や再生信号を得ることもできる。一方、ここで説明した方式を用いて光記録媒体8の傾きに起因して発生する収差を補正するようにすれば、対物レンズ7を傾けるために必要な部材を全てなくすことが可能となるので、光ヘッドの小型化を図ることができる。さらに、この方式を用いた場合には、対物レンズ7を傾ける場合と異なり、コマ収差しか発生しないので、収差を良好に補正することができる。
また、位相変化層である液晶を用いた収差の補正に関しては特開2001−84631号公報にも開示されており、この公報に開示された光学素子は、ITO電極が領域分割されないので、収差の補正に有利である。
また、上記第1及び第2の実施の形態においては、対物レンズ7を傾けることにより、光記録媒体8の傾きに起因して発生するコマ収差を、当該コマ収差が最小となるように補正しているが、対物レンズ7を傾けるとコマ収差以外の収差(例えば、非点収差や高次収差)も発生するので、トータル収差が最小になる位置をあらかじめ求めておき、それを参照しながら補正するようにしてもよい。
また、上記第1及び第2の実施の形態においては、対物レンズ7として単レンズを用いているが、高いNAを有する組レンズであっても何ら問題はない。
また、上記第1及び第2の実施の形態においては、無限系の光ヘッドを用いて説明したが、本発明は、コリメータレンズ2を用いない有限系の光ヘッドにも適用することができる。
また、上記第1及び第2の実施の形態においては、無偏光光学系の光ヘッドを用いて説明したが、本発明は、偏光光学系の光ヘッドにも適用することができる。
また、上記第1及び第2の実施の形態においては、傾き起因収差補正手段13の駆動方向については言及していないが、例えば、対物レンズ7を傾ける方向により、ラジアル方向あるいはタンジェンシャル方向のいずれか、もしくは両方を補正することができる。また、位相変化層を備えた光学素子を用いて、光記録媒体の傾きに起因して発生する収差を補正する場合にあっては、図7に示すように、ラジアル方向の傾きに起因して発生する収差を補正しているが、パターンを変更することによってタンジェンシャル方向の傾きに起因して発生する収差を補正することもできる。また、二種類のパターンを組み合わせれば、両方の傾きに起因して発生する収差を補正することもできる。
また、上記第1及び第2の実施の形態においては、傾き検出手段として傾きセンサー11が用いられているが、他の方式を用いて光記録媒体8の傾き量を検出するようにしても何ら問題はない。他の方式の傾き検出手段としては、例えば、特開2000−348362号公報に開示されたものが知られている。この方式においては、光記録媒体の内周と外周で対物レンズを光軸方向に動かしながら、フォーカスが最も良好に合焦される位置であるフォーカスゼロクロス位置が検出される。そして、フォーカスゼロクロス位置を検出するためのフォーカスサーチ電圧の、光記録媒体の内周と外周での差に基づいて、光記録媒体の傾き量と傾きの方向が求められる。この構成によれば、光記録媒体の傾きを検出するための光学系を別途設ける必要がないので、光ヘッドの小型化を図ることができる。一方、上記第1又は第2の実施の形態のように傾き検出手段として傾きセンサー11を用いる構成によれば、記録又は再生のための光学系と別個の光学系が用いられることとなるので、記録又は再生と同時に光記録媒体8の傾き量を検出することができる。
また、本発明は、種類の異なる光記録媒体に対して記録もしくは再生を行う光ヘッドにも適用することができる。図9に、種類の異なる光記録媒体に対して記録もしくは再生を行う光ヘッドの模式図を示す。
図9において、91は第1の光源、92は第2の光源、93は波長選択プリズムをそれぞれ示している。第1の光源91は、その波長が405nmであり、標準の基材厚が0.1mmの光記録媒体8に対して記録もしくは再生を行うためのものである(第1の光源91から出射される光の光路を、図9に実線で示している)。また、第2の光源92は、その波長が660nmであり、標準の基材厚が0.6mmの光記録媒体8(DVD)に対して記録もしくは再生を行うためのものである(第2の光源9から出射される光の光路を、図9に破線で示している)。他の構成は上記第1の実施の形態と同様である。従って、特に説明のないものについては上記第1の実施の形態と同じであるとし、上記第1の実施の形態と同一の符号を付している構成部材については、特に説明のない限り、上記第1の実施の形態と同様の機能を有するものとする。
次に、以上のような構成を有する光ヘッド17の動作について、図9を参照しながら説明する。
第1の光源91から出射された光は、上記第1の実施の形態と同様にして、対物レンズ7により光記録媒体8の記録層上に集光される。また、光記録媒体8で反射された光は、集光レンズ9によって光検出器10に集光される。そして、光検出器10からは、制御信号及び再生信号が得られる。
第2の光源92から出射された光は、波長選択プリズム93で反射された後、対物レンズ7により光記録媒体8(DVD)の記録層上に集光される。また、光記録媒体8(DVD)で反射された光は、集光レンズ9によって光検出器10に集光される。そして、光検出器10からは、制御信号及び再生信号が得られる。尚、基材厚が異なることによる焦点位置の違いのため、及び球面収差を補正するために、第2の光源92から出射された光は、発散光のまま対物レンズ7に入射されている。
上記したように基材厚が異なっているため、光記録媒体8の傾き量が同じであっても、光記録媒体8の種類が異なれば傾きに起因して発生する収差も異なり、対物レンズ7の傾け量も異なることになる。従って、光記録媒体8の傾き量が同じであっても、光記録媒体8の種類に応じて対物レンズ傾け手段13の傾け量を変えることにより、安定した記録を行うことができると共に、安定した制御信号や再生信号を得ることもできる。
[第3の実施の形態]
図10は本発明の第3の実施の形態における光記録再生装置を示す模式図である。
本実施の形態の光記録再生装置は、単層もしくは多層の光記録媒体に対して信号の記録及び再生を行う装置である。図10に示すように、本実施の形態における光記録再生装置100は、上記第1の実施の形態で説明した光ヘッド14と、光記録媒体8を回転させるモータ102と、処理回路103とを備えている。ここでは、光ヘッドとして上記第1の実施の形態で説明したものが用いられているが、上記第2の実施の形態で説明したものを用いてもよい。尚、光ヘッドは、上記第1の実施の形態で説明したものと同じであるため、重複する説明は省略する。
次に、以上のような構成を有する光記録再生装置100の動作について、図10を参照しながら説明する。
まず、光記録再生装置100に光記録媒体8がセットされると、処理回路103がモータ102を回転させる信号を出力し、モータ102を回転させる。次に、処理回路103が、光源1を駆動して光を出射させる。光源1から出射された光は、対物レンズ7によって光記録媒体8の記録層上に集光され、光記録媒体8で反射された光は、集光レンズ9によって光検出器10に集光される。光検出器10は、集光された光に応じて、光記録媒体8の記録層上における光の合焦状態を示すフォーカス誤差信号と光の照射位置を示すトラッキング誤差信号を、処理回路103に対して出力する。処理回路103は、これらの信号に基づき、対物レンズ傾け手段13に対して対物レンズ7を制御する信号を出力し、これによって光源1から出射された光を光記録媒体8の所望のトラック上に集光させる。また、処理回路103は、光検出器10から出力される信号に基づいて、光記録媒体8に記録されている情報を再生する。また、傾きセンサー11は光記録媒体8の傾き量を検出し、その検出信号は処理回路103に入力される。そして、処理回路103は、記録もしくは再生を行っている光記録媒体8が単層か多層の何層目かを判断し、光記録媒体8の傾き量を補正するのに必要な対物レンズ7の傾け量をメモリ12から呼び出して、対物レンズ傾け手段13に対物レンズ7を必要量だけ傾けるための信号を出力する。
以上のように光ヘッドとして上記第1の実施の形態の光ヘッド14を用いているため、単層もしくは多層の光記録媒体8のどの記録層であっても、光記録媒体8が傾いたときに発生する収差を正確に補正することができ、その結果、安定した記録を行うことができると共に、安定した制御信号や再生信号を得ることもできる。
尚、上記実施の形態においては、多層光記録媒体として二層光記録媒体を例に挙げて説明したが、二層よりも層数の多い多層光記録媒体は基材厚がより大きくなるので、特にかかる多層光記録媒体に対して本発明を適用すれば、優れた効果を得ることができる。
また、上記実施の形態においては、光のみによって情報を記録する光記録媒体を例に挙げて説明したが、光及び磁気によって情報を記録する光記録媒体についても同様の効果が得られる。
また、上記実施の形態においては、光記録媒体が光ディスクである場合を例に挙げて説明したが、光ディスクの代わりに光カードを用いた場合であっても、光ディスクを用いた場合と同等の効果を得ることができる。
【図面の簡単な説明】
図1は本発明の第1の実施の形態における光ヘッドを示す模式図、
図2はDVDシステムにおける単層光記録媒体と二層光記録媒体の各層での、光記録媒体の傾き量と、発生するコマ収差の量との関係を示すグラフ、
図3はDVDよりも高密度化された単層光記録媒体と多層光記録媒体(二層光記録媒体)の各層での、光記録媒体の傾き量と、発生するコマ収差の量との関係を示すグラフ、
図4は本発明の第1の実施の形態における光ヘッドに用いられる傾き起因収差補正手段としての対物レンズ傾け手段の構成を示す斜視図、
図5は本発明の第2の実施の形態における光ヘッドを示す模式図、
図6は本発明の第2の実施の形態における光記録媒体の傾きに起因して発生する収差と光記録媒体の基材厚に起因して発生する収差を補正する光学素子を示す断面図、
図7は本発明の第2の実施の形態における光記録媒体の傾きに起因して発生する収差を補正するために用いられる電極パターンを示す図、
図8は本発明の第2の実施の形態における光記録媒体の基材厚に起因して発生する収差を補正するために用いられる電極パターンを示す図、
図9は本発明の第2の実施の形態における光ヘッドの他の例を示す模式図、
図10は本発明の第3の実施の形態における光記録再生装置を示す模式図、
図11は従来技術における光ヘッドの構成を示す模式図である。
本発明は、光記録媒体に信号を記録し、又は前記光記録媒体に記録された信号を再生するために用いられる光ヘッド及びそれを用いた光記録再生装置、並びに光記録媒体が傾いたときに発生する収差の補正方法に関する。
近年、ディジタルバーサタイルディスク(DVD)は、ディジタル情報をコンパクトディスク(CD)に対して約6倍の記録密度で記録できることから、大容量の光記録媒体として注目されている。また、情報の大容量化に伴い、さらに高密度の光記録媒体が要望されている。ここで、DVD(DVDシステムにおける光源の波長は660nm、対物レンズの開口数(NA)は0.6)よりも高密度化を達成するためには、光源の波長をより短く、対物レンズのNAをより大きくすることが必要となる。例えば、波長405nmの青色レーザとNAが0.85の対物レンズを使用すれば、DVDの5倍の記録密度が達成される。
しかし、上記した青色レーザを用いた高密度光記録媒体の光記録再生装置においては、記録及び再生のマージンが非常に厳しいために、光記録媒体の傾きによる収差の発生が問題となる。そこで、光記録媒体の傾き量に応じて発生する収差を小さくするように対物レンズを傾けて、記録及び再生を行うようにした光ヘッドが提案されている(例えば、特許文献1参照)。
ここで、図面を参照しながら、上記した従来の光ヘッドの一例について説明する。図11は従来技術における光ヘッドの構成を示す模式図である。図11において、111は光源であり、光源111としては、例えば半導体レーザ素子が用いられる。この光源111は、光記録媒体116の記録層に対して記録再生用のコヒーレント光を出射する。112はコリメータレンズであり、このコリメータレンズ112は、光源111から出射された発散光を平行光に変換するためのレンズである。113はビームスプリッタであり、このビームスプリッタ113は、入射する光を分離するための光学素子である。114はミラーであり、このミラー114は、入射する光を反射して光記録媒体116の方向に向かわせるための光学素子である。115は対物レンズであり、この対物レンズ115は、光記録媒体116の記録層に光を集光するためのレンズである。118は対物レンズ115を保持するためのレンズ保持部材であり、このレンズ保持部材118は、対物レンズ115を傾ける対物レンズ傾け手段としても機能する。119は傾きセンサーであり、この傾きセンサー119は、光記録媒体116の傾き量を検出するためのものである。また、123は傾き検出回路、125は傾き制御回路をそれぞれ示している。そして、これら傾きセンサー119、傾き検出回路123及び傾き制御回路125と、対物レンズ傾け手段として機能するレンズ保持部材118とにより、光記録媒体116と対物レンズ115との相対的な傾きがなくなるように、対物レンズ115の傾け制御が行われる。また、117は検出光学系、120はフォーカス誤差信号検出回路、121はトラッキング誤差信号検出回路、122は再生信号検出回路、124はコントローラをそれぞれ示している。
次に、以上のような構成を有する光ヘッドの動作について、図11を参照しながら説明する。
光源111から出射された直線偏光の光は、コリメータレンズ112によって平行光に変換される。平行光に変換された光は、ビームスプリッタ113を透過した後、ミラー114で反射され、対物レンズ115によって光記録媒体116の記録層上に集光される。
光記録媒体116で反射された光は、対物レンズ115を透過し、ミラー114とビームスプリッタ113で順次反射された後、検出光学系117からフォーカス誤差信号検出回路120、トラッキング誤差信号検出回路121、再生信号検出回路122に導かれ、ここでフォーカス誤差信号とトラッキング誤差信号と再生信号が検出される。フォーカス誤差信号とトラッキング誤差信号は、例えば、非点収差法、プッシュプル法等の周知の技術を用いて検出される。検出されたフォーカス誤差信号及びトラッキング誤差信号には、必要に応じて、コントローラ124からオフセット量が加えられる。
フォーカス制御手段(図示せず)は、フォーカス誤差信号に基づき、光が常に合焦状態で光記録媒体116の記録層上に集光されるように、対物レンズ115の位置をその光軸方向に制御する。また、トラッキング制御手段(図示せず)は、トラッキング誤差信号に基づき、光が光記録媒体116上の所望のトラックに集光されるように、対物レンズ115の位置を光記録媒体116の半径方向に制御する。
光記録媒体116と対物レンズ115との相対的な傾きは、対物レンズ115の横に設けられた傾きセンサー119を介して傾き検出回路123により検出される。そして、傾き制御回路125は、傾き検出回路123からの傾き信号に基づき、レンズ保持部材118に対して対物レンズ115を傾けるための信号を出力する。これにより、対物レンズ115は、光記録媒体116との相対的な傾きがなくなるように傾けられる。
以上のような構成にすれば、光記録媒体116が対物レンズ115に対して相対的に傾いていても、その傾き量を検出して対物レンズ115を傾けることにより、収差を小さくすることが可能となるので、安定な記録及び再生を行うことができる。
特開平11−312327号公報
しかし、上記のような構成の光ヘッドでは、DVDよりも高密度に記録された多層光記録媒体に対しては対応することができない。例えば、光源の波長が405nm、対物レンズのNAが0.85のシステムを用いて、基材厚が0.1mmの単層光記録媒体と、第一層目の基材厚が0.08mmで、第二層目の基材厚が0.12mmの多層光記録媒体とに対して記録及び再生を行う場合について考える。ここで、対物レンズは、単層光記録媒体の基材厚に対して球面収差が発生しないように設計されている。図3に、単層光記録媒体と多層光記録媒体(二層光記録媒体)の各層での、光記録媒体の傾き量と、発生するコマ収差との関係を示す。図3に示すように、光記録媒体の傾き量が同じであっても、各基材厚に対して発生するコマ収差の量は異なっている。このことは、光記録媒体の傾き量が同じであっても、対物レンズを傾けてコマ収差を補正する場合の、対物レンズの傾け量が各層ごとに異なることを意味している。このため、光記録媒体の傾きに起因して発生する収差を検出するのではなく、光記録媒体の傾きを検出し、この傾きに応じて対物レンズを傾けるようなオープンループ制御の場合に問題が生じる。
本発明は、かかる従来の問題点に鑑みてなされたものであり、より高密度の多層光記録媒体に対して信号の記録再生を行う光ヘッドであって、当該光記録媒体が傾いた場合にも、各層での収差を小さくして、安定な記録及び再生を行うことのできる光ヘッド及びそれを用いた光記録再生装置、並びに光記録媒体が傾いたときに発生する収差の補正方法を提供することを目的とする。
前記目的を達成するため、本発明に係る光ヘッドの構成は、光記録媒体に信号を記録し、又は前記光記録媒体に記録された信号を再生する光ヘッドであって、
光源と、
前記光源から出射された光を前記光記録媒体に集光する対物レンズと、
前記光記録媒体が傾いたときに発生する収差を補正する傾き起因収差補正手段と、
前記傾き起因収差補正手段に必要な駆動量を決定する駆動量決定手段とを備え、
前記光記録媒体の傾きに関する情報と前記光記録媒体の基材厚に関する情報とに応じて前記駆動量決定手段で決定された駆動量が前記傾き起因収差補正手段に与えられることを特徴とする。
この光ヘッドの構成によれば、基材厚が異なる光記録媒体、例えば、多層光記録媒体の各層、異なる種類の光記録媒体、基材厚にばらつきのある単層光記録媒体に対して記録及び再生を行う場合にも、光記録媒体が傾いたことによって発生する収差を正確に補正することができるので、安定な記録及び再生を行うことが可能となる。
前記本発明の光ヘッドの構成においては、前記傾き起因収差補正手段が、前記対物レンズを傾ける手段であるのが好ましい。この好ましい例によれば、光記録媒体の偏心に伴う対物レンズの移動に対しては影響がなく、さらに、往路は当然として復路においても収差を補正することができるので、安定した記録を行うことができると共に、安定した制御信号や再生信号を得ることもできる。また、この場合には、前記対物レンズが或る一定の開口数(NA)を有し、前記光記録媒体の基材厚に応じて前記対物レンズの傾け量を変えるのが好ましい。この好ましい例によれば、
また、前記本発明の光ヘッドの構成においては、前記対物レンズのNAが0.7以上であるのが好ましい。この好ましい例によれば、記録や再生に対する収差マージンの厳しい高密度化に対して、光記録媒体の傾きに対する許容度を広げることが可能となる。従って、記録密度の高密度化に適したものとなる。
また、前記本発明の光ヘッドの構成においては、前記駆動量決定手段が、前記光記録媒体の傾きに関する情報と前記光記録媒体の基材厚に関する情報とにより決定される、前記光記録媒体が傾いたことによって発生する収差を補正するために必要な前記傾き起因収差補正手段の駆動量に関する情報が記憶されたメモリであるのが好ましい。この好ましい例によれば、傾き起因収差補正手段の駆動量を瞬時に決定することが可能となる。
また、前記本発明の光ヘッドの構成においては、前記光記録媒体の傾きに関する情報を検出する傾き検出手段をさらに備えているのが好ましい。この好ましい例によれば、光記録媒体の傾きに関する情報を正確に検出することができる。また、この場合には、前記傾き検出手段が、前記光源と異なる第2の光源と、前記第2の光源から出射された光を前記光記録媒体に集光する集光レンズと、前記光記録媒体で反射された光を検出する光検出器とを備えているのが好ましい。この好ましい例によれば、光記録媒体の傾きに起因して発生する収差を、記録再生用の光学系とは別の光学系で検出することとなるため、記録時もしくは再生時に同時に光記録媒体の傾きに起因して発生する収差を検出することができる。また、この場合には、前記傾き検出手段が、前記光記録媒体の半径方向の任意の二点でのフォーカスゼロクロス位置を検出し、前記フォーカスゼロクロス位置を検出するためのフォーカスサーチ電圧の、前記二点での差に基づいて、前記光記録媒体の傾き量を検出するのが好ましい。この好ましい例によれば、光記録媒体の傾きを検出するための光学系を別に設ける必要がないので、光ヘッドの小型化を図ることができる。
また、前記本発明の光ヘッドの構成においては、前記光記録媒体の基材厚に関する情報が記憶されたメモリをさらに備えているのが好ましい。この好ましい例によれば、光記録媒体の基材厚に関する情報を検出する手段を設ける必要がないので、光ヘッドの小型化を図ることができる。
また、前記本発明の光ヘッドの構成においては、前記光記録媒体の基材厚に関する情報を検出する基材厚検出手段をさらに備えているのが好ましい。この好ましい例によれば、光記録媒体の基材厚に関する情報を正確に検出することができる。また、この場合には、前記基材厚検出手段が、前記光源と異なる第2の光源と、前記第2の光源から出射された光を前記光記録媒体に集光する集光レンズと、前記光記録媒体で反射された光を検出する光検出器とを備えているのが好ましい。この好ましい例によれば、光記録媒体の基材厚に起因して発生する収差を、記録再生用の光学系とは別の光学系で検出することとなるため、記録時もしくは再生時に同時に光記録媒体の基材厚に起因して発生する収差を検出することができる。また、この場合には、前記基材厚検出手段が、光軸に近い側の第1の光ビームと前記第1の光ビームよりも外側の第2の光ビームの2つの光ビームの焦点位置に基づいて、前記光記録媒体の基材厚に関する情報を検出するのが好ましい。この好ましい例によれば、光記録媒体の基材厚を検出するための光学系を別に設ける必要がないので、光ヘッドの小型化を図ることができる。
また、前記本発明の光ヘッドの構成においては、前記傾き起因収差補正手段が、透明な導電性薄膜を有する一対の基板と、前記一対の基板間に配置された位相変化層とを備えた光学素子からなり、前記一方の導電性薄膜に、前記光記録媒体の傾きに起因して発生する収差を補正することのできるパターンが形成されているのが好ましい。この好ましい例によれば、対物レンズを傾けるために必要な部材を全てなくすことが可能となるので、光ヘッドの小型化を図ることができる。さらに、この方式を用いれば、対物レンズを傾ける場合と異なり、コマ収差しか発生しないので、収差を良好に補正することができる。この場合にはさらに、前記位相変化層が液晶であるのが好ましい。この好ましい例によれば、収差を補正するために外部から印加する電圧を小さくすることができるので、光ヘッドの省電力化を図ることができる。
また、前記本発明の光ヘッドの構成においては、前記光記録媒体の基材厚が標準値からずれたことに起因して発生する収差を補正する基材厚起因収差補正手段をさらに備えているのが好ましい。また、この場合には、前記基材厚起因収差補正手段が、光路中に配置された正レンズ群及び負レンズ群と、前記正レンズ群と前記負レンズ群とのレンズ間隔を変える手段とを備えているのが好ましい。この好ましい例によれば、往路は当然として復路においても光記録媒体の基材厚に起因して発生する収差を補正することが可能となるため、安定した記録を行うことができると共に、安定した制御信号や再生信号を得ることもできる。また、この場合には、前記基材厚起因収差補正手段が、透明な導電性薄膜を有する一対の基板と、前記一対の基板間に配置された位相変化層とを備えた光学素子からなり、前記一方の導電性薄膜に、前記光記録媒体の基材厚に起因して発生する収差を補正することのできるパターンが形成されているのが好ましい。この好ましい例によれば、正レンズ群、負レンズ群、及び前記正レンズ群と前記負レンズ群とのレンズ間隔を変える手段を全てなくすことが可能となるので、光ヘッドの小型化を図ることができる。この場合にはさらに、前記位相変化層が液晶であるのが好ましい。また、この場合には、前記傾き起因収差補正手段及び前記基材厚起因収差補正手段が、透明な導電性薄膜を有する一対の基板と、前記一対の基板間に配置された位相変化層とを備えた1つの光学素子からなり、前記一方の導電性薄膜に、前記光記録媒体の傾きに起因して発生する収差を補正することのできるパターンが形成され、前記他方の導電性薄膜に、前記光記録媒体の基材厚に起因して発生する収差を補正することのできるパターンが形成されているのが好ましい。この好ましい例によれば、1つの光学素子を用いて、光記録媒体の傾きに起因して発生するコマ収差と光記録媒体の基材厚に起因して発生する球面収差を同時に補正することが可能となる。従って、この光学素子を光ヘッドに搭載することにより、光ヘッドの小型化を図ることができる。この場合にはさらに、前記位相変化層が液晶であるのが好ましい。
また、本発明に係る収差補正方法は、光源と、前記光源から出射された光を光記録媒体に集光する対物レンズと、前記光記録媒体が傾いたときに発生する収差を補正する傾き起因収差補正手段と、前記傾き起因収差補正手段に必要な駆動量を決定する駆動量決定手段とを備え、前記光記録媒体に信号を記録し、又は前記光記録媒体に記録された信号を再生する光ヘッドを用いて、前記光記録媒体が傾いたときに発生する収差を補正する方法であって、
前記光記録媒体の傾きに関する情報と前記光記録媒体の基材厚に関する情報とに応じて前記駆動量決定手段で決定された駆動量を前記傾き起因収差補正手段に与えることを特徴とする。
また、本発明に係る光記録再生装置の構成は、光記録媒体に信号を記録し、又は前記光記録媒体に記録された信号を再生する光ヘッドを備えた光記録再生装置であって、前記光ヘッドとして、前記本発明の光ヘッドを用いることを特徴とする。
以下、実施の形態を用いて本発明をさらに具体的に説明する。
[第1の実施の形態]
図1は本発明の第1の実施の形態における光ヘッドを示す模式図である。
図1において、1は光源であり、光源1としては、例えばGaN系の半導体レーザ素子(波長405nm)が用いられる。この光源1は、光記録媒体8の記録層に対して記録再生用のコヒーレント光を出射する。2はコリメータレンズであり、このコリメータレンズ2は、光源1から出射された発散光を平行光に変換するためのレンズである。3はビームスプリッタであり、このビームスプリッタ3は、入射する光のほぼ50%を透過させ、ほぼ50%を反射させる光学素子である。4は負レンズ群としての凹レンズであり、この凹レンズ4は、コリメータレンズ2によって一旦平行光に変換された光を再び発散光に変換するためのレンズである。5は正レンズ群としての凸レンズであり、この凸レンズ5は、凹レンズ4によって発散光に変換された光を再び平行光に変換するためのレンズである。15は凹レンズ4をその光軸方向に移動させるための手段であり、凹レンズ4をその光軸方向に移動させることにより、凹レンズ4と凸レンズ5とのレンズ間隔を変えることができる。6はミラーであり、このミラー6は、入射する光を反射して光記録媒体8の方向(入射する光の進行方向から90゜曲げられた方向)に向かわせるための光学素子である。7は対物レンズであり、この対物レンズ7は、光記録媒体8の記録層に光を集光するためのレンズである。13は光記録媒体8の傾きに起因して発生するコマ収差を補正する傾き起因収差補正手段としての対物レンズ傾け手段である。11は傾き検出手段としての傾きセンサーであり、この傾きセンサー11は、光記録媒体8の傾き量を検出するためのものである。12はメモリであり、このメモリ12には、光記録媒体8が傾いたことによって発生する収差を補正するために必要な対物レンズ傾け手段13の駆動量に関する情報が記憶されている。具体的には、メモリ12に、光記録媒体8が傾いたことによって発生する収差を補正するために必要な対物レンズ7の傾け量が各層に対して(単層光記録媒体や多層光記録媒体の各層に対して)記憶されている。尚、メモリ12としては、ROMが用いられている。
本実施の形態においては、凹レンズ4と、凸レンズ5と、凹レンズ4と凸レンズ5とのレンズ間隔を変えるための手段(凹レンズ4をその光軸方向に移動させるための手段15)とにより、基材厚が標準値からずれたことに起因して発生する球面収差を補正する基材厚起因収差補正手段が構成されている。
また、9は集光レンズを、10は光検出器をそれぞれ示している。光記録媒体8で反射された光は、ビームスプリッタ3で反射された後、集光レンズ9によって光検出器10に集光され、光検出器10によって電気信号に変換される。
次に、以上のような構成を有する光ヘッド14の動作について、図1を参照しながら説明する。
光源1から出射された直線偏光の光は、コリメータレンズ2によって平行光に変換される。平行光に変換された光は、ビームスプリッタ3を透過した後、凹レンズ4によって発散光に変換され、凸レンズ5によって再び平行光に変換される。凸レンズ5によって平行光に変換された光は、ミラー6で反射された後、対物レンズ7によって光記録媒体8の記録層上に集光される。
光記録媒体8で反射された光は、対物レンズ7を透過した後、ミラー6で反射される。ミラー6で反射された光は、凸レンズ5、凹レンズ4を順次透過した後、ビームスプリッタ3で反射され、集光レンズ9によって光検出器10に集光される。光検出器10は、集光された光に応じて、光記録媒体8の記録層上における光の合焦状態を示すフォーカス誤差信号と光の照射位置を示すトラッキング誤差信号を出力する。ここで、フォーカス誤差信号とトラッキング誤差信号は、例えば、非点収差法とプッシュプル法等の周知の技術を用いて検出される。
フォーカス制御手段(図示せず)は、フォーカス誤差信号に基づき、光が常に合焦状態で光記録媒体8の記録層上に集光されるように、対物レンズ7の位置をその光軸方向に制御する。また、トラッキング制御手段(図示せず)は、トラッキング誤差信号に基づき、光が光記録媒体8上の所望のトラックに集光されるように、対物レンズ7の位置を光記録媒体8の半径方向に制御する。また、光検出器10からは、光記録媒体8に記録された情報も得られる。
次に、対物レンズ7の傾き制御を行う傾き起因収差補正手段としての対物レンズ傾け手段13の具体的構成及びその動作について説明する。図4は対物レンズ傾け手段の構成を示す斜視図である。これは、特開平11−312327号公報に開示されているものであり、40はサスペンション取り付け基板、41a〜41dはサスペンション、43a〜43dは磁石、44a、44bは小基板、45a、45bフォーカスコイル、46はレンズ保持部材、47はトラッキングコイル、48はヨークをそれぞれ示している。尚、図4において、Z軸方向はフォーカス方向を、Y軸方向はトラッキング方向をそれぞれ示している。このように構成された対物レンズ傾け手段13において、フォーカスコイル45a、45bに電流が流れると、磁石43a〜43dによって発生する磁束との関係でフォーカスコイル45a、45bに対する駆動力が発生し(フレミングの左手の法則)、対物レンズ7が傾く。従って、フォーカスコイル45a、45bに流す電流を変えることにより、対物レンズ7の傾き方向と傾き量を変えることができる。
光記録媒体8の傾き量は、対物レンズ7の横に設けられた傾きセンサー11によって検出される。傾きセンサー11は、LED等の光源と、前記光源から出射された光を光記録媒体8に集光する集光レンズと、光記録媒体8で反射された光を検出(受光)する光検出器とを備えた周知のものである。この傾きセンサー11は、例えば、光検出器の受光部が二分割されており、光記録媒体8が傾いていないときに各受光部から出力される信号の差が『0』となるようにセットされている。そして、光記録媒体8が傾いているときには、各受光部から出力される信号の差が『0』ではなくなり、この値と符号に基づいて、光記録媒体8がどの方向にどれくらい傾いているかが検出される。傾きセンサー11によって検出された信号はメモリ12に入力される。メモリ12は、この光記録媒体8の傾き量及び光記録媒体8の記録もしくは再生される層の基材厚に応じて、対物レンズ7が必要とする傾け量に対応する信号を出力する。対物レンズ傾け手段13は、この信号に応じて対物レンズ7を必要量だけ傾ける。
次に、対物レンズの傾け量について説明する。
まず、光源の波長が660nm、対物レンズのNAが0.6であるDVDシステムの場合について考える。DVDシステムの場合には、二層光記録媒体の再生も考えられる。図2に、DVDシステムにおける単層光記録媒体と二層光記録媒体の各層での、光記録媒体の傾き量と、発生するコマ収差の量との関係を示す。ここで、単層光記録媒体の基材厚は0.6mm、二層光記録媒体の第一層目の基材厚は0.55mm、第二層目の基材厚は0.64mmである。また、対物レンズは、単層光記録媒体の基材厚に対して球面収差が発生しないように設計されている。
図2に示すように、DVDシステムにおいては、各基材厚に対して発生するコマ収差の量が若干異なっている。しかし、DVDシステムにおいては、二層光記録媒体については再生のみであり、収差に対するマージンが広いため、対物レンズを傾けることによってコマ収差を補正する場合には、各基材厚(各層)に対して同じ量だけ対物レンズを傾ければよいことになる。
次に、DVDよりも高密度の多層光記録媒体に対して記録もしくは再生を行う場合について考える。例えば、光源1の波長が405nm、対物レンズ7のNAが0.85のシステムを用いて、基材厚が0.1mmの単層光記録媒体と、第一層目の基材厚が0.08mmで、第二層目の基材厚が0.12mmの多層光記録媒体とに対して記録もしくは再生を行う場合について考える。ここで、対物レンズ7は、単層光記録媒体の基材厚に対して球面収差が発生しないように設計されている。図3に、このシステムにおける単層光記録媒体と多層光記録媒体(二層光記録媒体)の各層での、光記録媒体の傾き量と、発生するコマ収差の量との関係を示す。
図3に示すように、このシステムにおいては、光記録媒体8の傾き量が同じであっても、各基材厚に対して発生するコマ収差の量が異なる。このことは、光記録媒体8の傾き量が同じであっても、対物レンズ7を傾けてコマ収差を補正する場合の、対物レンズ7の傾け量が各層ごとに異なることを意味している。
次に、二層光記録媒体の基材厚を、第一層目で0.08mm、第二層目で単層光記録媒体の基材厚と同じ0.1mmにした場合について考える。この場合には、図3に示すように、光記録媒体8の傾き量が同じである場合の、各基材厚に対して発生するコマ収差の量は、DVDシステムの場合と比較して若干大きいだけである。しかし、記録密度がDVDよりも大きく、また、多層光記録媒体に対しても記録を行うために、DVDシステムの場合よりも収差に対するマージンが厳しくなる。従って、光記録媒体8の傾き量が同じであっても、各層ごとに対物レンズ7の傾け量を変える必要がある。このことは、記録や再生に対する収差マージンが厳しくなる、対物レンズ7のNAが0.7以上のシステムにおいて、特に有効である。
次に、CDとDVDのどちらの光記録媒体に対しても記録再生が可能な光ヘッドについて考える。CDシステムにおいては、対物レンズのNAが0.45と小さいために、光記録媒体(CD)の傾きに対する収差の発生量が小さく、光記録媒体(CD)が例えば0.5゜傾いても、対物レンズを傾けずに再生することが可能である。しかし、DVDシステムにおいては、対物レンズのNAが0.6であるために、光記録媒体(DVD)の傾きに対する収差の発生量が大きく、光記録媒体(DVD)が例えば0.5゜傾いた場合には、対物レンズも或る角度だけ傾ける必要がある。従って、CDとDVDのどちらの光記録媒体に対しても記録再生が可能な光ヘッドの場合、光記録媒体の傾き量が同じであっても、収差を補正するための対物レンズの傾け量は、CDの場合とDVDの場合とで異なることになる。本実施の形態の光ヘッド14がこの光ヘッドと異なる点は、対物レンズ7が或る一定のNAを有する場合において、光記録媒体8の傾き量が同じであっても、基材厚の大きさに応じて、収差を補正するための対物レンズ7の傾け量を変える点にある。従って、本実施の形態の光ヘッド14は、光記録媒体の傾き量が同じであっても、収差を補正するための対物レンズの傾け量がNAごとに異なる光ヘッドとは全く相違するものである。
次に、基材厚起因収差補正手段の動作について説明する。上記したDVDよりも高密度の光記録媒体8の場合には、0.08mmの基材厚に対して200mλの球面収差が発生するため、このままでは記録及び再生を行うことができなくなる。そこで、この球面収差を補正する必要があるが、特開2000−131603号公報に、平行光中に正レンズ群と負レンズ群の2つのレンズを挿入し、2つのレンズの光軸方向のレンズ間隔を変えることにより、平行光を発散光もしくは収束光に変換して球面収差を補正する方式が提案されている。
本実施の形態においては、凹レンズ4と凸レンズ5とのレンズ間隔を各層に対して変えることにより、球面収差の補正を行っている。また、メモリ12には、各層に対する凹レンズ4と凸レンズ5とのレンズ間隔が記憶されており、或る層に対して記録もしくは再生を行う場合には、メモリ12に記憶されたレンズ間隔が得られるように、凹レンズ4がその光軸方向に移動させられる。
以上説明したように、より高密度の多層光記録媒体に対して記録及び再生を行う場合には、各層ごとに光記録媒体の傾き量に対して対物レンズの傾け量を変えることにより、光記録媒体が傾いたことによって発生する収差を正確に補正することが可能となり、安定な記録及び再生を行うことが可能となる。
[第2の実施の形態]
図5は本発明の第2の実施の形態における光ヘッドを示す模式図である。
図1、図5に示すように、本実施の形態の光ヘッド16(図5)が上記第1の実施の形態の光ヘッド14(図1)と異なる点は、光記録媒体8の基材厚に関する情報を検出する基材厚検出手段が含まれている点のみであり、それ以外の構成は上記第1の実施の形態と同様である。従って、本実施の形態において、特に説明のないものについては上記第1の実施の形態と同じであるとし、上記第1の実施の形態と同一の符号を付している構成部材については、特に説明のない限り、上記第1の実施の形態と同様の機能を有するものとする。
図5において、51はビームスプリッタ3と集光レンズ9との間に配置されたホログラムであり、このホログラム51は、内周部と外周部でパターンが異なっている。
次に、以上のような構成を有する光ヘッド16の動作について、図5を参照しながら説明する。
光源1から出射された直線偏光の光が対物レンズ7によって光記録媒体8の記録層上に集光するまで、及び光記録媒体8で反射された光がビームスプリッタ3で反射されるまでについては、上記第1の実施の形態で説明した動作と同じであるため、その説明は省略する。
ビームスプリッタ3で反射された光は、ホログラム51に入射し、内周部分と外周部分の2つの光ビームに分割される。この分割された光は、集光レンズ9によって光検出器10に集光される。光検出器10は、集光された光に応じて、光記録媒体8の記録層上における光の合焦状態を示すフォーカス誤差信号と光の照射位置を示すトラッキング誤差信号を出力する。ここで、フォーカス誤差信号とトラッキング誤差信号は、例えば、非点収差法とプッシュプル法等の周知の技術を用いて検出される。
フォーカス制御手段(図示せず)は、フォーカス誤差信号に基づき、光が常に合焦状態で光記録媒体8の記録層上に集光されるように、対物レンズ7の位置をその光軸方向に制御する。また、トラッキング制御手段(図示せず)は、トラッキング誤差信号に基づき、光が光記録媒体8上の所望のトラックに集光されるように、対物レンズ7の位置を光記録媒体8の半径方向に制御する。また、光検出器10からは、光記録媒体8の基材厚に関する情報と光記録媒体8に記録された情報も得られる。
次に、基材厚検出手段について説明する。本実施の形態で用いられている基材厚検出手段は、特開2000−171346号公報に開示されているものである。この基材厚検出手段は、光記録媒体8からの反射光を、ホログラム51を用いて、光軸に近い側の第1の光ビームと、前記第1の光ビームよりも外側の第2の光ビームとに分割し、当該2つの光ビームの対物レンズ出射光の焦点位置に基づいて、球面収差を検出する方式のものである(球面収差が分かれば、光記録媒体8の基材厚に換算することができる)。この検出された信号はメモリ12に入力され、対物レンズ傾け手段13は、この信号に応じて対物レンズ7を必要量だけ傾ける。
次に、対物レンズの傾け量について説明する。
各層ごとの対物レンズ7の傾け量は、メモリ12に予め記憶されている。しかし、各層においても、基材厚は光記録媒体8の作製誤差等によって変動している。例えば、二層光記録媒体の第一層目の標準の基材厚が0.08mmであり、それが作製誤差のために0.07mmになっていたとする。この場合、光記録媒体8が0.5゜傾いたときに発生するコマ収差は、0.08mmの基材厚に対しては44mλであるが、0.07mmの基材厚に対しては38mλとなる。このため、対物レンズ7の傾け量を基材厚に応じて補正しなければ、コマ収差のキャンセル量が不十分になるか、もしくは過補正になる。特に、高密度光記録媒体の場合には、許容される収差に対するマージンが厳しいため、このキャンセル不足や過補正が大きな問題となる。
そこで、本実施の形態においては、光記録媒体8の各層の基材厚をモニターし、この基材厚に応じて対物レンズ7の傾け量を補正するように構成されており、これにより対物レンズ7を傾けることによる収差の補正を正確に行うことが可能となる。さらに、単層の光記録媒体8であっても、上記したように基材厚に作製誤差があるため、基材厚を検出し、検出された基材厚の量に応じて対物レンズ7の傾け量を変えることにより、安定した再生信号を得ることが可能となる。また、この方法を用いれば、安定した記録を行うことも可能となる。また、本実施の形態の光ヘッド16においては、メモリ12に、各層ごとの対物レンズ7の傾け量が記憶されているが、基材厚に対する対物レンズ7の傾け量が記憶されていても何ら問題はない。
また、メモリ12には、光記録媒体8の傾き量と、基材厚が単層の標準値である光記録媒体8がその傾き量だけ傾いたときに発生する収差を補正するのに必要な対物レンズ7の傾け量に対応する電圧のみが記憶されていてもよい。この場合には、以下のような方法を用いることにより、上記と同様の効果を得ることができる。まず、傾きセンサー11によって検出された信号がメモリ12に入力されると、メモリ12から対物レンズ7を傾けるのに必要な電圧が出力される。次に、この電圧は可変抵抗を含む回路に入力され、可変抵抗の抵抗値によって分圧される。そして、可変抵抗の抵抗値が基材厚検出手段によって検出された信号に応じて変えられると、対物レンズ傾け手段13に入力される電圧が変化し、光記録媒体8の傾き量が同じであっても、基材厚に関する情報に応じて対物レンズ7の傾け量が変えられる。このようにすれば、メモリ12には或る基材厚に対する情報が記憶されているだけで、上記と同様の効果を得ることができるので、メモリ12の回路規模を小さくすることができる。
また、本実施の形態の光ヘッド16においては、光記録媒体8の傾き量と、その傾きに起因して発生する収差を補正するための傾き起因収差補正手段の駆動量(例えば、対物レンズ傾け手段13の対物レンズ7の傾け量)がメモリ12に記憶されているが、メモリ12を用いる代わりに、光記録媒体8の基材厚に関する情報(電圧)と光記録媒体8の傾きに関する情報(電圧)とを入力したときに、出力される電圧が変わるような回路を用いることもできる。この場合には、光記録媒体8の傾き量と、傾き起因収差補正手段の駆動量との関係を数式で表し、この数式に基づいて傾き起因収差補正手段の駆動量を変えることと同等になり、多層光記録媒体の各層や基材厚に応じてこの数式の比例係数を変えることになる。また、上記関係の係数は非線形であってもよく、この非線形の係数を変えても何ら問題はない。
また、本実施の形態の光ヘッド16においては、メモリ12としてROMを用いて、光記録媒体8の傾きと基材厚に関する情報に対する対物レンズ7の傾け量の値が記憶されているが、光ヘッドごとの最適なデータを当該光ヘッドの組み立て時に求めて記憶するために、不揮発性メモリを搭載することもできる。このような構成にすれば、光ヘッドの製造ばらつきをも考慮したものとなるので、収差補正の精度を向上させることができる。また、さらに書き換え可能なメモリを搭載し、光記録媒体ごとに学習をして、その情報を記憶してもよい。この場合には、光記録媒体のばらつきをも考慮したものとなるので、収差補正の精度をさらに向上させることができる。
以上説明したように、より高密度の多層光記録媒体の場合には、各層の基材厚を検出し、その基材厚分だけ対物レンズ7の傾け量を補正することにより、収差を正確に補正することが可能となり、安定な記録及び再生を行うことが可能となる。
尚、本実施の形態においては、基材厚に関する情報の検出を、ホログラム51を用いて行っているが、他の方式を用いて行っても何ら問題はない。例えば、他の基材厚検出手段が特開平10−334575号公報に開示されている。この公報に開示された基材厚検出手段は、光源と、光源から出射された光を光記録媒体(測定対象物)に集光(照射)する第1の光学系と、光記録媒体で反射された光を光検出器(受光素子)に導く第2の光学系とからなる。ここで、光源は、レーザ、LEDあるいはランプからなり、第1及び第2の光学系は、凸レンズ、あるいは凸レンズと凹レンズとの組み合わせにより構成されている。この構成においては、基材厚に応じて受光素子から出力される信号が異なる。本実施の形態で説明した上記方法は、ホログラム51を搭載するだけで実現可能であり、光記録媒体8の基材厚を検出するための光学系を別に設ける必要はないので、光ヘッド16の小型化を図るのに好都合である。一方、ここで説明した方法の場合には、光記録媒体の基材厚に起因して発生する収差を、記録再生用の光学系とは別の光学系で検出することとなるため、記録時もしくは再生時に同時に光記録媒体の基材厚に起因して発生する収差を検出することが可能となる。
また、特開平11−110802号公報に、2つの誤差に起因して発生する収差を、1つの光学素子を用いて補正するようにした技術が開示されている。この技術を用いれば、光記録媒体の傾きに起因して発生する収差と光記録媒体の基材厚に起因して発生する収差を、1つの光学素子を用いて補正することが可能となる。図6に、この光学素子の断面図を示す。
図6において、60は第1のガラス基板、61は第1のITO膜(インジウム−錫−酸化物合金)、62は第1のポリビニルアルコール膜、63はエポキシ樹脂層、64は第2のポリビニルアルコール膜、65は第2のITO膜、66は第2のガラス基板、67は液晶をそれぞれ示している。ここで、第1のITO膜61と第2のITO膜65は、それぞれ第1のガラス基板60の内面と第2のガラス基板66の内面に蒸着されており、これら第1及び第2のITO膜61、65は、外部からの信号を液晶67に印加すると共に、光を透過させる透明電極である。第1のポリビニルアルコール膜62と第2のポリビニルアルコール膜64は、それぞれ第1のITO膜61上と第2のITO膜65上に蒸着されている。これら第1及び第2のポリビニルアルコール膜62、64は、液晶67の配向を制御する配向膜であり、ナイロン等の高分子布でこすられている。エポキシ樹脂層63は、液晶67が外に漏れないようにするための封止層として機能する。第1のITO膜61は、光記録媒体8の傾きに起因して発生するコマ収差を補正するために、図7に示すようなパターンにパターニングされて3つの領域に分割されている。また、第2のITO膜65は、光記録媒体8の基材厚に起因して発生する球面収差を補正するために、図8に示すようなパターンにパターニングされて4つの領域に分割されている。
尚、本実施の形態の光学素子は、収差補正素子として機能するものである。この場合、光記録媒体8の傾きに起因して発生する収差を補正することのできるパターンが形成された第1のITO膜61が、第1の収差補正電極として機能し、光記録媒体8の基材厚に起因して発生する収差を補正することのできるパターンが形成された第2のITO膜65が、第2の収差補正用電極として機能する。また、液晶67が、本発明の位相変化層に対応している。そして、第1のITO膜61と第2のITO膜65に所望の電圧を印加することにより、光記録媒体8の傾きに起因して発生するコマ収差と光記録媒体8の基材厚に起因して発生する球面収差を同時に補正することができる。従って、この光学素子を光ヘッドに搭載することにより、凹レンズ4、凸レンズ5、凹レンズ4と凸レンズ5とのレンズ間隔を変えるための手段(凹レンズ4をその光軸方向に移動させるための手段15)、及び対物レンズ7を傾けるために必要な部材を全てなくすことが可能となるので、光ヘッド16の小型化を図ることができる。
尚、上記第1及び第2の実施の形態においては、凹レンズ4と、凸レンズ5と、凹レンズ4と凸レンズ5とのレンズ間隔を変えるための手段(凹レンズ4をその光軸方向に移動させるための手段15)とを用いて、基材厚起因収差補正手段を構成しているが、この基材厚起因収差補正手段は、正レンズ群及び負レンズ群と、前記正レンズ群と前記負レンズ群とのレンズ間隔を変える手段とを用いて構成されていればよい。また、別の方式を用いて、基材厚起因収差補正手段を構成することもできる。例えば、上記したような液晶を用いた方式であってもよい。具体的には、図6に示した光学素子において、第1のITO膜61のパターンをなくしたものにすればよい。上記第1及び第2の実施の形態において説明した基材厚起因収差補正手段は、レンズを用いて構成されているため、往路は当然として復路においても光記録媒体8の基材厚に起因して発生する収差を補正することができる。その結果、安定した記録を行うことができると共に、安定した制御信号や再生信号を得ることもできる。一方、ここで説明した方式を用いて光記録媒体8の基材厚に起因して発生する収差を補正するようにすれば、凹レンズ4、凸レンズ5、及び凹レンズ4と凸レンズ5とのレンズ間隔を変えるための手段(凹レンズ4をその光軸方向に移動させるための手段15)を全てなくすことが可能となるので、光ヘッドの小型化を図ることができる。
また、上記第1及び第2の実施の形態においては、傾き起因収差補正手段として対物レンズ傾け手段13を用いているが、別の方式を用いて、傾き起因収差補正手段を構成することもできる。例えば、上記したような液晶を用いた方式であってもよい。具体的には、図6に示した光学素子において、第2のITO膜65のパターンをなくしたものにすればよい。上記第1及び第2の実施の形態において説明した傾き起因収差補正手段は、対物レンズ7を傾けるものであるため、光記録媒体8の偏心に伴う対物レンズ7の移動に対しては影響がなく、さらに、往路は当然として復路においても収差を補正することができるので、安定した記録を行うことができると共に、安定した制御信号や再生信号を得ることもできる。一方、ここで説明した方式を用いて光記録媒体8の傾きに起因して発生する収差を補正するようにすれば、対物レンズ7を傾けるために必要な部材を全てなくすことが可能となるので、光ヘッドの小型化を図ることができる。さらに、この方式を用いた場合には、対物レンズ7を傾ける場合と異なり、コマ収差しか発生しないので、収差を良好に補正することができる。
また、位相変化層である液晶を用いた収差の補正に関しては特開2001−84631号公報にも開示されており、この公報に開示された光学素子は、ITO電極が領域分割されないので、収差の補正に有利である。
また、上記第1及び第2の実施の形態においては、対物レンズ7を傾けることにより、光記録媒体8の傾きに起因して発生するコマ収差を、当該コマ収差が最小となるように補正しているが、対物レンズ7を傾けるとコマ収差以外の収差(例えば、非点収差や高次収差)も発生するので、トータル収差が最小になる位置をあらかじめ求めておき、それを参照しながら補正するようにしてもよい。
また、上記第1及び第2の実施の形態においては、対物レンズ7として単レンズを用いているが、高いNAを有する組レンズであっても何ら問題はない。
また、上記第1及び第2の実施の形態においては、無限系の光ヘッドを用いて説明したが、本発明は、コリメータレンズ2を用いない有限系の光ヘッドにも適用することができる。
また、上記第1及び第2の実施の形態においては、無偏光光学系の光ヘッドを用いて説明したが、本発明は、偏光光学系の光ヘッドにも適用することができる。
また、上記第1及び第2の実施の形態においては、傾き起因収差補正手段13の駆動方向については言及していないが、例えば、対物レンズ7を傾ける方向により、ラジアル方向あるいはタンジェンシャル方向のいずれか、もしくは両方を補正することができる。また、位相変化層を備えた光学素子を用いて、光記録媒体の傾きに起因して発生する収差を補正する場合にあっては、図7に示すように、ラジアル方向の傾きに起因して発生する収差を補正しているが、パターンを変更することによってタンジェンシャル方向の傾きに起因して発生する収差を補正することもできる。また、二種類のパターンを組み合わせれば、両方の傾きに起因して発生する収差を補正することもできる。
また、上記第1及び第2の実施の形態においては、傾き検出手段として傾きセンサー11が用いられているが、他の方式を用いて光記録媒体8の傾き量を検出するようにしても何ら問題はない。他の方式の傾き検出手段としては、例えば、特開2000−348362号公報に開示されたものが知られている。この方式においては、光記録媒体の内周と外周で対物レンズを光軸方向に動かしながら、フォーカスが最も良好に合焦される位置であるフォーカスゼロクロス位置が検出される。そして、フォーカスゼロクロス位置を検出するためのフォーカスサーチ電圧の、光記録媒体の内周と外周での差に基づいて、光記録媒体の傾き量と傾きの方向が求められる。この構成によれば、光記録媒体の傾きを検出するための光学系を別途設ける必要がないので、光ヘッドの小型化を図ることができる。一方、上記第1又は第2の実施の形態のように傾き検出手段として傾きセンサー11を用いる構成によれば、記録又は再生のための光学系と別個の光学系が用いられることとなるので、記録又は再生と同時に光記録媒体8の傾き量を検出することができる。
また、本発明は、種類の異なる光記録媒体に対して記録もしくは再生を行う光ヘッドにも適用することができる。図9に、種類の異なる光記録媒体に対して記録もしくは再生を行う光ヘッドの模式図を示す。
図9において、91は第1の光源、92は第2の光源、93は波長選択プリズムをそれぞれ示している。第1の光源91は、その波長が405nmであり、標準の基材厚が0.1mmの光記録媒体8に対して記録もしくは再生を行うためのものである(第1の光源91から出射される光の光路を、図9に実線で示している)。また、第2の光源92は、その波長が660nmであり、標準の基材厚が0.6mmの光記録媒体8(DVD)に対して記録もしくは再生を行うためのものである(第2の光源9から出射される光の光路を、図9に破線で示している)。他の構成は上記第1の実施の形態と同様である。従って、特に説明のないものについては上記第1の実施の形態と同じであるとし、上記第1の実施の形態と同一の符号を付している構成部材については、特に説明のない限り、上記第1の実施の形態と同様の機能を有するものとする。
次に、以上のような構成を有する光ヘッド17の動作について、図9を参照しながら説明する。
第1の光源91から出射された光は、上記第1の実施の形態と同様にして、対物レンズ7により光記録媒体8の記録層上に集光される。また、光記録媒体8で反射された光は、集光レンズ9によって光検出器10に集光される。そして、光検出器10からは、制御信号及び再生信号が得られる。
第2の光源92から出射された光は、波長選択プリズム93で反射された後、対物レンズ7により光記録媒体8(DVD)の記録層上に集光される。また、光記録媒体8(DVD)で反射された光は、集光レンズ9によって光検出器10に集光される。そして、光検出器10からは、制御信号及び再生信号が得られる。尚、基材厚が異なることによる焦点位置の違いのため、及び球面収差を補正するために、第2の光源92から出射された光は、発散光のまま対物レンズ7に入射されている。
上記したように基材厚が異なっているため、光記録媒体8の傾き量が同じであっても、光記録媒体8の種類が異なれば傾きに起因して発生する収差も異なり、対物レンズ7の傾け量も異なることになる。従って、光記録媒体8の傾き量が同じであっても、光記録媒体8の種類に応じて対物レンズ傾け手段13の傾け量を変えることにより、安定した記録を行うことができると共に、安定した制御信号や再生信号を得ることもできる。
[第3の実施の形態]
図10は本発明の第3の実施の形態における光記録再生装置を示す模式図である。
本実施の形態の光記録再生装置は、単層もしくは多層の光記録媒体に対して信号の記録及び再生を行う装置である。図10に示すように、本実施の形態における光記録再生装置100は、上記第1の実施の形態で説明した光ヘッド14と、光記録媒体8を回転させるモータ102と、処理回路103とを備えている。ここでは、光ヘッドとして上記第1の実施の形態で説明したものが用いられているが、上記第2の実施の形態で説明したものを用いてもよい。尚、光ヘッドは、上記第1の実施の形態で説明したものと同じであるため、重複する説明は省略する。
次に、以上のような構成を有する光記録再生装置100の動作について、図10を参照しながら説明する。
まず、光記録再生装置100に光記録媒体8がセットされると、処理回路103がモータ102を回転させる信号を出力し、モータ102を回転させる。次に、処理回路103が、光源1を駆動して光を出射させる。光源1から出射された光は、対物レンズ7によって光記録媒体8の記録層上に集光され、光記録媒体8で反射された光は、集光レンズ9によって光検出器10に集光される。光検出器10は、集光された光に応じて、光記録媒体8の記録層上における光の合焦状態を示すフォーカス誤差信号と光の照射位置を示すトラッキング誤差信号を、処理回路103に対して出力する。処理回路103は、これらの信号に基づき、対物レンズ傾け手段13に対して対物レンズ7を制御する信号を出力し、これによって光源1から出射された光を光記録媒体8の所望のトラック上に集光させる。また、処理回路103は、光検出器10から出力される信号に基づいて、光記録媒体8に記録されている情報を再生する。また、傾きセンサー11は光記録媒体8の傾き量を検出し、その検出信号は処理回路103に入力される。そして、処理回路103は、記録もしくは再生を行っている光記録媒体8が単層か多層の何層目かを判断し、光記録媒体8の傾き量を補正するのに必要な対物レンズ7の傾け量をメモリ12から呼び出して、対物レンズ傾け手段13に対物レンズ7を必要量だけ傾けるための信号を出力する。
以上のように光ヘッドとして上記第1の実施の形態の光ヘッド14を用いているため、単層もしくは多層の光記録媒体8のどの記録層であっても、光記録媒体8が傾いたときに発生する収差を正確に補正することができ、その結果、安定した記録を行うことができると共に、安定した制御信号や再生信号を得ることもできる。
尚、上記実施の形態においては、多層光記録媒体として二層光記録媒体を例に挙げて説明したが、二層よりも層数の多い多層光記録媒体は基材厚がより大きくなるので、特にかかる多層光記録媒体に対して本発明を適用すれば、優れた効果を得ることができる。
また、上記実施の形態においては、光のみによって情報を記録する光記録媒体を例に挙げて説明したが、光及び磁気によって情報を記録する光記録媒体についても同様の効果が得られる。
また、上記実施の形態においては、光記録媒体が光ディスクである場合を例に挙げて説明したが、光ディスクの代わりに光カードを用いた場合であっても、光ディスクを用いた場合と同等の効果を得ることができる。
本発明の第1の実施の形態における光ヘッドを示す模式図 DVDシステムにおける単層光記録媒体と二層光記録媒体の各層での、光記録媒体の傾き量と、発生するコマ収差の量との関係を示すグラフ DVDよりも高密度化された単層光記録媒体と多層光記録媒体(二層光記録媒体)の各層での、光記録媒体の傾き量と、発生するコマ収差の量との関係を示すグラフ 本発明の第1の実施の形態における光ヘッドに用いられる傾き起因収差補正手段としての対物レンズ傾け手段の構成を示す斜視図 本発明の第2の実施の形態における光ヘッドを示す模式図 本発明の第2の実施の形態における光記録媒体の傾きに起因して発生する収差と光記録媒体の基材厚に起因して発生する収差を補正する光学素子を示す断面図 本発明の第2の実施の形態における光記録媒体の傾きに起因して発生する収差を補正するために用いられる電極パターンを示す図 本発明の第2の実施の形態における光記録媒体の基材厚に起因して発生する収差を補正するために用いられる電極パターンを示す図 本発明の第2の実施の形態における光ヘッドの他の例を示す模式図 本発明の第3の実施の形態における光記録再生装置を示す模式図 従来技術における光ヘッドの構成を示す模式図

Claims (20)

  1. 光記録媒体に信号を記録し、又は前記光記録媒体に記録された信号を再生する光ヘッドであって、
    光源と、前記光源から出射された光を前記光記録媒体に集光する対物レンズと、前記光記録媒体が傾いたときに発生する収差を補正する傾き起因収差補正手段とを備え、
    前記光記録媒体の傾きに関する情報と前記光記録媒体の基材厚に関する情報とに応じて前記傾き起因収差補正手段の駆動量を変えることを特徴とする光ヘッド。
  2. 前記傾き起因収差補正手段が、前記対物レンズを傾ける手段である請求項1に記載の光ヘッド。
  3. 前記対物レンズが或る一定の開口数(NA)を有し、前記光記録媒体の基材厚に応じて前記対物レンズの傾け量を変える請求項2に記載の光ヘッド。
  4. 前記対物レンズのNAが0.7以上である請求項1に記載の光ヘッド。
  5. 前記光記録媒体の傾きに関する情報と前記光記録媒体の基材厚に関する情報とにより決定される、前記光記録媒体が傾いたことによって発生する収差を補正するために必要な前記傾き起因収差補正手段の駆動量に関する情報が記憶されたメモリをさらに備え、
    前記光記録媒体の傾きに関する情報と前記光記録媒体の基材厚に関する情報とに応じて、前記メモリに記憶された前記傾き起因収差補正手段の駆動量に関する情報を呼び出し、呼び出された情報に応じて前記傾き起因収差補正手段を駆動する請求項1に記載の光ヘッド。
  6. 前記光記録媒体の傾きに関する情報を検出する傾き検出手段をさらに備えた請求項1に記載の光ヘッド。
  7. 前記傾き検出手段が、前記光源と異なる第2の光源と、前記第2の光源から出射された光を前記光記録媒体に集光する集光レンズと、前記光記録媒体で反射された光を検出する光検出器とを備えた請求項6に記載の光ヘッド。
  8. 前記傾き検出手段が、前記光記録媒体の半径方向の任意の二点でのフォーカスゼロクロス位置を検出し、前記フォーカスゼロクロス位置を検出するためのフォーカスサーチ電圧の、前記二点での差に基づいて、前記光記録媒体の傾き量を検出する請求項6に記載の光ヘッド。
  9. 前記光記録媒体の基材厚に関する情報が記憶されたメモリをさらに備えた請求項1に記載の光ヘッド。
  10. 前記光記録媒体の基材厚に関する情報を検出する基材厚検出手段をさらに備えた請求項1に記載の光ヘッド。
  11. 前記基材厚検出手段が、前記光源と異なる第2の光源と、前記第2の光源から出射された光を前記光記録媒体に集光する集光レンズと、前記光記録媒体で反射された光を検出する光検出器とを備えた請求項10に記載の光ヘッド。
  12. 前記基材厚検出手段が、光軸に近い側の第1の光ビームと前記第1の光ビームよりも外側の第2の光ビームの2つの光ビームの焦点位置に基づいて、前記光記録媒体の基材厚に関する情報を検出する請求項10に記載の光ヘッド。
  13. 前記傾き起因収差補正手段が、透明な導電性薄膜を有する一対の基板と、前記一対の基板間に配置された位相変化層とを備えた光学素子からなり、前記一方の導電性薄膜に、前記光記録媒体の傾きに起因して発生する収差を補正することのできるパターンが形成された請求項1に記載の光ヘッド。
  14. 前記光記録媒体の基材厚が標準値からずれたことに起因して発生する収差を補正する基材厚起因収差補正手段をさらに備えた請求項1に記載の光ヘッド。
  15. 前記基材厚起因収差補正手段が、光路中に配置された正レンズ群及び負レンズ群と、前記正レンズ群と前記負レンズ群とのレンズ間隔を変える手段とを備えた請求項14に記載の光ヘッド。
  16. 前記基材厚起因収差補正手段が、透明な導電性薄膜を有する一対の基板と、前記一対の基板間に配置された位相変化層とを備えた光学素子からなり、前記一方の導電性薄膜に、前記光記録媒体の基材厚に起因して発生する収差を補正することのできるパターンが形成された請求項14に記載の光ヘッド。
  17. 前記傾き起因収差補正手段及び前記基材厚起因収差補正手段が、透明な導電性薄膜を有する一対の基板と、前記一対の基板間に配置された位相変化層とを備えた1つの光学素子からなり、前記一方の導電性薄膜に、前記光記録媒体の傾きに起因して発生する収差を補正することのできるパターンが形成され、前記他方の導電性薄膜に、前記光記録媒体の基材厚に起因して発生する収差を補正することのできるパターンが形成された請求項14に記載の光ヘッド。
  18. 前記位相変化層が液晶である請求項13、16又は17のいずれかに記載の光ヘッド。
  19. 光源と、前記光源から出射された光を光記録媒体に集光する対物レンズと、前記光記録媒体が傾いたときに発生する収差を補正する傾き起因収差補正手段とを備え、前記光記録媒体に信号を記録し、又は前記光記録媒体に記録された信号を再生する光ヘッドを用いて、前記光記録媒体が傾いたときに発生する収差を補正する方法であって、
    前記光記録媒体の傾きに関する情報と前記光記録媒体の基材厚に関する情報とに応じて前記傾き起因収差補正手段を駆動することを特徴とする収差補正方法。
  20. 光記録媒体に信号を記録し、又は前記光記録媒体に記録された信号を再生する光ヘッドを備えた光記録再生装置であって、
    前記光ヘッドとして、請求項1〜18のいずれかに記載の光ヘッドを用いることを特徴とする光記録再生装置。
JP2003573639A 2002-03-04 2002-12-09 光ヘッド及びそれを用いた光記録再生装置 Expired - Lifetime JP4256788B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002056954 2002-03-04
JP2002056954 2002-03-04
PCT/JP2002/012884 WO2003075266A1 (en) 2002-03-04 2002-12-09 Optical head and optical recording/reproducing device using it, and aberration correction method

Publications (2)

Publication Number Publication Date
JPWO2003075266A1 true JPWO2003075266A1 (ja) 2005-06-30
JP4256788B2 JP4256788B2 (ja) 2009-04-22

Family

ID=27784654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003573639A Expired - Lifetime JP4256788B2 (ja) 2002-03-04 2002-12-09 光ヘッド及びそれを用いた光記録再生装置

Country Status (6)

Country Link
US (1) US7164638B2 (ja)
EP (1) EP1482491A4 (ja)
JP (1) JP4256788B2 (ja)
CN (1) CN1292418C (ja)
AU (1) AU2002354119A1 (ja)
WO (1) WO2003075266A1 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003242915A1 (en) * 2002-07-26 2004-02-25 Koninklijke Philips Electronics N.V. Optical disc drive apparatus, method for measuring tilt of an optical disc, and method for correcting tilt of an optical disc
US7406007B2 (en) * 2003-09-02 2008-07-29 Matsushita Electric Industrial Co., Ltd. Optical disc apparatus and spherical aberration correction controlling apparatus
JP2005116142A (ja) 2003-09-18 2005-04-28 Ricoh Co Ltd 光記録媒体チルト補償装置及びチルト補償方法とこれを用いる光情報処理装置
JP2005122828A (ja) * 2003-10-16 2005-05-12 Pioneer Electronic Corp 光ピックアップ装置および光学記録媒体再生装置
WO2005048250A1 (ja) * 2003-11-14 2005-05-26 Konica Minolta Opto, Inc. 光ピックアップ装置及びそれに用いられる光学素子
JP2005209283A (ja) * 2004-01-22 2005-08-04 Ricoh Co Ltd 光ピックアップ、光情報処理装置及び光情報処理方法
JP2005322357A (ja) * 2004-05-11 2005-11-17 Canon Inc 光ピックアップ装置
JP2005322356A (ja) * 2004-05-11 2005-11-17 Canon Inc 光ピックアップ装置
US8098555B2 (en) * 2004-07-23 2012-01-17 Panasonic Corporation Optical disk device with coma aberration correction
JP4445913B2 (ja) * 2005-09-15 2010-04-07 株式会社日立製作所 光ピックアップ及びその調整方法
JP4410177B2 (ja) * 2005-09-21 2010-02-03 株式会社日立製作所 情報記録再生方法及び情報記録再生装置
JP4329772B2 (ja) * 2006-03-03 2009-09-09 船井電機株式会社 光ディスク装置
JP2008097661A (ja) * 2006-10-06 2008-04-24 Sanyo Electric Co Ltd 光ピックアップ装置
US7933182B2 (en) * 2006-12-13 2011-04-26 Canon Kabushiki Kaisha Optical information recording and reproducing apparatus that sets a movable range of an objective lens based on the type of recording medium
JP4840167B2 (ja) * 2007-01-31 2011-12-21 船井電機株式会社 光ディスク装置
WO2009047907A1 (ja) * 2007-10-10 2009-04-16 Panasonic Corporation 光ピックアップ装置およびコリメートレンズ
JP2009123322A (ja) * 2007-10-24 2009-06-04 Panasonic Corp 光ディスク装置
CN102084419B (zh) * 2008-08-07 2014-06-04 松下电器产业株式会社 光盘装置、光学头及信息处理装置
JP2011108359A (ja) * 2011-03-07 2011-06-02 Canon Inc 光学式情報記録再生装置

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1015905A (en) * 1974-09-16 1977-08-23 Arthur G. Mcmullen Nickel clad steel coinage blank
DE3116135C2 (de) * 1981-04-23 1983-02-10 Metallgesellschaft Ag, 6000 Frankfurt Verwendung einer Kupferlegierung als Werkstoff für goldfarbene Münzen
US4550819A (en) * 1982-09-24 1985-11-05 Umc Industries, Inc. Coin apparatus
GB8305610D0 (en) * 1983-03-01 1983-03-30 Imi Kynoch Ltd Alloy
CA1219708A (en) * 1984-05-01 1987-03-31 Michael J.H. Ruscoe Aureate coins, medallions and tokens
JPS6288877A (ja) * 1985-10-11 1987-04-23 Hamamatsu Gasket Seisakusho:Kk 金属ガスケツト
US5151167A (en) * 1990-06-21 1992-09-29 Royal Canadian Mint Coins coated with nickel, copper and nickel and process for making such coins
US5139886A (en) * 1990-06-21 1992-08-18 Royal Canadian Mint Coins coated with nickel, copper and nickel
KR100230250B1 (ko) * 1994-12-26 1999-11-15 윤종용 광디스크 기울어짐에 의한 수차를 보정하는 방법과 그 장치
US5754513A (en) * 1995-04-28 1998-05-19 Konica Corporation Information pick-up apparatus and optical disk apparatus
JP3795998B2 (ja) 1996-04-30 2006-07-12 パイオニア株式会社 波面収差補正ユニット、波面収差補正装置及び光ピックアップ
JP3640497B2 (ja) * 1997-03-05 2005-04-20 パイオニア株式会社 収差補正装置及び情報記録媒体再生装置
JP3538520B2 (ja) * 1997-04-16 2004-06-14 パイオニア株式会社 収差補正用液晶パネル、光ピックアップ及び情報再生装置
JPH10334575A (ja) 1997-06-04 1998-12-18 Nec Corp 光学的情報記録装置
JP3488056B2 (ja) * 1997-10-03 2004-01-19 パイオニア株式会社 収差補正装置及び情報再生装置
JPH11144279A (ja) * 1997-11-05 1999-05-28 Toshiba Corp 光ディスク装置
JPH11259893A (ja) * 1998-01-09 1999-09-24 Sony Corp 光学ヘッド、記録及び/又は再生装置並びに記録及び/又は再生方法、並びに厚み検出方法
JPH11312327A (ja) 1998-04-28 1999-11-09 Hitachi Ltd 対物レンズ駆動装置
JP3443668B2 (ja) * 1998-04-30 2003-09-08 富士通株式会社 収差補正方法及び収差補正装置
JP2000020993A (ja) * 1998-07-01 2000-01-21 Fujitsu Ltd 光ディスク装置
JP2000034862A (ja) 1998-07-17 2000-02-02 Masazumi Morishita 自動引き戸
JP2000131603A (ja) 1998-10-22 2000-05-12 Sony Corp 光学ヘッド及び記録再生装置
JP3545233B2 (ja) 1998-12-08 2004-07-21 シャープ株式会社 球面収差検出装置および光ピックアップ装置
DE60003555T2 (de) * 1999-05-05 2004-04-29 Olin Corp., New Haven Kupferlegierung mit goldenem aussehen
KR100606669B1 (ko) * 1999-05-19 2006-07-31 엘지전자 주식회사 광 기록매체의 기록재생 방법
WO2000079525A1 (fr) * 1999-06-22 2000-12-28 Matsushita Electric Industrial Co., Ltd. Disque optique, dispositif de disque optique, et procede de reproduction pour disque optique
US6532202B1 (en) * 1999-07-07 2003-03-11 Matsushita Electric Industrial Co., Ltd. Optical element, optical head and optical recording reproducing apparatus
JP3493335B2 (ja) * 1999-07-07 2004-02-03 松下電器産業株式会社 光学素子、光ヘッド及び光記録再生装置
JP4281168B2 (ja) 1999-09-09 2009-06-17 旭硝子株式会社 光ヘッド装置
US6898168B2 (en) * 2000-05-12 2005-05-24 Konica Corporation Optical pick-up apparatus
US6656606B1 (en) * 2000-08-17 2003-12-02 The Westaim Corporation Electroplated aluminum parts and process of production
US6383657B1 (en) * 2000-12-18 2002-05-07 Alltrista Zinc Products Aluminum clad zinc bimetallic coin planchet
KR100354771B1 (ko) * 2000-12-28 2002-10-05 삼성전자 주식회사 기록매체 두께 변화 검출 및/또는 그 두께 변화에 의해발생된 구면수차 보정 가능한 광픽업장치
JP3794940B2 (ja) * 2001-06-19 2006-07-12 株式会社日立製作所 対物レンズ光学系、光ヘッド及び光情報再生装置

Also Published As

Publication number Publication date
US20050078574A1 (en) 2005-04-14
EP1482491A4 (en) 2008-02-20
EP1482491A1 (en) 2004-12-01
AU2002354119A1 (en) 2003-09-16
US7164638B2 (en) 2007-01-16
JP4256788B2 (ja) 2009-04-22
WO2003075266A1 (en) 2003-09-12
CN1292418C (zh) 2006-12-27
CN1623191A (zh) 2005-06-01

Similar Documents

Publication Publication Date Title
JP4256788B2 (ja) 光ヘッド及びそれを用いた光記録再生装置
US7843774B2 (en) Optical information recording and reproducing apparatus capable of coma aberration correction
US7649821B2 (en) Disk discriminating method and optical disk apparatus
US7260032B2 (en) Focal point adjusting method, and optical pickup device
JP2000171346A (ja) 収差検出装置および光ピックアップ装置
JP4538453B2 (ja) 光情報装置及び光情報装置の制御方法
US20070159936A1 (en) Optical head unit and optical disc apparatus
US8014257B2 (en) Extraction optical system and optical head device including the same
JP4733868B2 (ja) 光ヘッドと光記録再生装置
JP2002157756A (ja) 焦点位置ずれ検出方法および光ピックアップ装置
US20050122857A1 (en) Optical pickup
JP4038467B2 (ja) 光ピックアップおよび光ディスク装置
WO2010023901A1 (ja) 光ディスク装置、前記光ディスク装置を用いた映像再生装置、サーバー及びカーナビゲーションシステム、集積回路、並びに記録再生方法
JPH10222856A (ja) 光学式情報記録再生装置
JP4136400B2 (ja) 情報記録再生装置
US20080291803A1 (en) Optical pickup device
US20040190400A1 (en) Optical head and optical recording and reproducing apparatus
JP2009009617A (ja) 光ヘッドと光情報装置とコンピュータと映像記録再生装置と映像再生装置とサーバーとカーナビゲーションシステム
JP2001344803A (ja) 光ヘッドおよびそれを用いた光情報記録再生装置
JP2002055024A (ja) 収差検出方法及び光ピックアップ装置
JP2004281035A (ja) 光ヘッド及びそれを備えた光記録再生装置
JP2004327012A (ja) 光ヘッド及びそれを備えた光記録再生装置
JP2002039915A (ja) 検出装置及び光ピックアップ装置
JP2002039914A (ja) 収差検出方法、収差検出装置並びに光ピックアップ装置
JP2003208731A (ja) 光学ヘッド及びディスク記録再生装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4256788

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

EXPY Cancellation because of completion of term