JPH11207183A - 排気ガス浄化用触媒 - Google Patents

排気ガス浄化用触媒

Info

Publication number
JPH11207183A
JPH11207183A JP9324225A JP32422597A JPH11207183A JP H11207183 A JPH11207183 A JP H11207183A JP 9324225 A JP9324225 A JP 9324225A JP 32422597 A JP32422597 A JP 32422597A JP H11207183 A JPH11207183 A JP H11207183A
Authority
JP
Japan
Prior art keywords
exhaust gas
sulfate
palladium
catalyst
cerium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9324225A
Other languages
English (en)
Other versions
JP3827838B2 (ja
Inventor
Mari Yamamoto
真里 山本
Hirohisa Tanaka
裕久 田中
Shinji Matsuura
慎次 松浦
Hironori Satou
容規 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Cataler Corp
Original Assignee
Daihatsu Motor Co Ltd
Cataler Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd, Cataler Corp filed Critical Daihatsu Motor Co Ltd
Priority to JP32422597A priority Critical patent/JP3827838B2/ja
Publication of JPH11207183A publication Critical patent/JPH11207183A/ja
Application granted granted Critical
Publication of JP3827838B2 publication Critical patent/JP3827838B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

(57)【要約】 【課題】 低温(200〜400℃)での活性を高める
べくパラジウムを用いた場合において、高温耐久後の触
媒活性が低下することを抑制し、優れた触媒性能を持つ
排気ガス浄化触媒を提供する。。 【解決手段】 排気ガス浄化用触媒において、耐熱性無
機酸化物と、パラジウムが担持されたセリウム系複合酸
化物と、パラジウムが排気ガス中に含まれる炭化水素類
によって被毒されるのを抑制する硫酸塩とを含ませた。
好ましくは、上記硫酸塩として、硫酸バリウム、硫酸カ
ルシウム、硫酸ストロンチウム、硫酸セシウム、硫酸カ
リウム、硫酸マグネシウム、硫酸イットリウム、および
硫酸ランタンからなる群より少なくとも1つが選ばれ
る。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本願発明は、自動車などの内
燃機関から排出される排気ガス中に含まれる窒素酸化物
(NOX )、一酸化炭素(CO)、および炭化水素(H
C)などを効率よく浄化するための排気ガス浄化用触媒
に関する。
【0002】
【従来の技術】排気ガスから上記有害物質を浄化するた
めに従来から最も広く用いられている触媒としては、プ
ラチナ、パラジウム、ロジウムなどの貴金属を活性物質
とした、いわゆる三元触媒がある。この三元触媒は、N
X からN2 への還元反応、あるいはCOからCO2
よびHCからCO2 、H2 Oへの酸化反応の触媒として
作用するものである。
【0003】ところで、自動車用触媒は、今後厳しさを
増すコールドエミッションへの対応として床下からより
内燃機関に近いマニバータ位置に搭載される傾向にあ
る。そのため、上記三元触媒は、実用的には、例えば9
00℃以上(場合によっては1000℃以上)の高温に
曝されることもあり、このような高温下における高い触
媒活性が要求される。その一方で、内燃機関が始動した
直後のように、上記内燃機関が十分に暖気されていない
比較的低温下においても、高い触媒活性が要求される。
【0004】
【発明が解決しようとする課題】このような事情から、
低温での触媒活性を向上させるためにパラジウムを含ん
だ排気ガス浄化用触媒が使用されている。ところが、パ
ラジウムは、ガス変動下での排気ガス浄化率や、リッチ
雰囲気下でのNOx の浄化率が低いといった欠点を有す
る。リッチ雰囲気下でのNOx の浄化率が低いのは、排
気ガスの成分の一つである炭化水素によってパラジウム
の表面が被毒されるためである。
【0005】このような不具合は、アルカリ土類金属を
排気ガス浄化用触媒に添加することによって防止するこ
とができるが、アルカリ土類金属を炭酸塩や酢酸塩とし
て添加した場合には、これらの添加物が高温時に他の触
媒成分と複合酸化物を形成してしまうので、被毒の抑制
効果を十分に得られなかったり、逆に急激な触媒性能の
低下を引き起す原因となっていた。
【0006】本願発明は、上記した事情のもとで考え出
されたものであって、低温(200〜400℃)での活
性を高めるべくパラジウムを用いた場合において、高温
耐久後の触媒活性が低下することを抑制し、優れた触媒
性能を持つ排気ガス浄化触媒を提供することをその課題
とする。
【0007】
【発明の開示】上記の課題を解決するため、本願発明で
は、次の技術的手段を講じている。
【0008】すなわち、本願発明によれば、耐熱性無機
酸化物と、パラジウムが担持されたセリウム系複合酸化
物と、パラジウムが排気ガス中に含まれる炭化水素類に
よって被毒されるのを抑制する硫酸塩とを含むこと特徴
とする、排気ガス浄化用触媒が提供される。
【0009】上記排気ガス浄化用触媒においては、低温
活性に優れるパラジウムが含まれているので、低温排気
ガス、特にHCを良好に浄化することができる。すなわ
ち、パラジウムを含むことによって内燃機関が十分に暖
気されていない段階において排出されるHCなどの排気
ガスを十分に浄化することができる。また、パラジウム
が排気ガス中に含まれるHCなどの炭化水素類によって
被毒されるのを抑制する硫酸塩が添加されているので、
NOX 浄化率が低下してしまうことが回避されている。
加えて、硫酸塩は、排気ガス中で熱的に安定であり、1
000℃では熱分解してしまうこともないので、他の触
媒成分と複合酸化物を形成して上記排気ガス浄化用触媒
の性能が劣化してしまうこともない。
【0010】また、パラジウムをセリウム系複合酸化物
に担持させれば、この酸化物が有する酸素ストレージ能
により、パラジウムが触媒活性が高活性なPdOになる
とともに、パラジウムの粒成長が抑制されて触媒活性の
低下を抑制することができる。このため、パラジウム担
持させたセリウム系複合酸化物を含む排気ガス浄化用触
媒では、COの浄化率とNOx の浄化率が一致する、い
わゆるCO−NOx クロス点浄化率が高いといった利点
が得られる。
【0011】炭化水素類による被毒を抑制する硫酸塩と
しては、バリウム(Ba)、カルシウム(Ca)、スト
ロンチウム(Sr)、セシウム(Cs)、カリウム
(K)、マグネシウム(Mg)、イットリウム(Y)、
およびランタン(La)の硫酸塩が挙げられ、これらの
硫酸塩からなる群から少なくとも1つを選択するのが好
ましい。たとえば硫酸バリウムは、1200℃程度にお
いて熱分解されるので、上記排気ガス浄化用触媒がマニ
バータ位置に搭載された場合に上記排気ガス浄化用触媒
が達する温度、たとえば1000℃程度では熱分解され
ず、上記排気ガス浄化用触媒を劣化させることなく、上
記貴金属が被毒されてしまうことが回避されている。
【0012】上記耐熱性無機酸化物としては、酸化ジル
コニウム(ZrO2 )、酸化ジルコニウムと他の酸化物
との複合酸化物、アルミナ(Al2 3 )、シリカ(S
iO 2 )、チタニア(TiO2 )、マグネシア(Mg
O)などが用いることができる。
【0013】上記耐熱性無機酸化物には、排気ガス浄化
用触媒としての高温における触媒活性を高めるべく、少
なくともその一部に貴金属、たとえばロジウム(Rh)
やプラチナ(Pt)を担持させるのが好ましい。パラジ
ウムに加えて、プラチナおよび/またはロジウムを使用
する場合に、これらの貴金属を耐熱性無機酸化物に担持
させるのは、プラチナとロジウムとは、相性が良いため
に、これらを同一の担体上に共存させることが好まし
く、一方、ロジウムとパラジウムとは、高温では合金化
しやすいために触媒としては相性が悪く、これらを同一
の担体上に共存させることが好ましくないからである。
さらには、プラチナおよび/またはロジウムを酸化ジル
コニウムなどの耐熱性無機酸化物に担持させた場合に
は、これらの貴金属が高温で粒成長してしまうことを抑
制することができるからである。
【0014】上記セリウム系複合酸化物としては、酸化
セリウムと酸化ジルコニウムとを含むものなどが挙げら
れる。すなわち、Ce1-a Zra 2 またはCe
1-(x+y) Zrx y xideで定義されるものが挙げら
れ、この場合、いずれか一方の複合酸化物を用いても、
また双方とも用いてもよい。なお、Rとしては、たとえ
ばセリウム以外の希土類元素が挙げられ、好ましくはイ
ットリウム(Y)、ランタン(La)、ネオジム(N
d)、イッテルビウム(Yb)からなる群より少なくと
も1つが選択され、0.2≦a≦0.9、0.2≦x+
y≦0.9、0.15≦x≦0.7、0.05≦y≦
0.2とされる。また、酸化セリウムと酸化ジルコニウ
ムとを含むセリウム系複合酸化物においては、酸化セリ
ウム結晶中のセリウム元素の一部がジルコニウム元素で
置換固溶されていることが好ましい。ここで、Rを含む
複合酸化物においては、酸素の原子割合が「Oxide」と
記載されているが、これはRの酸化数がCeやZrの酸
化数と一致しない場合を考慮したものであり、その原子
割合はRの酸化数やCeおよびZrの原子割合によって
決定される。
【0015】酸化セリウムと酸化ジルコニウムとを含む
セリウム系複合酸化物は、公知の方法(共沈法やアルコ
キシド法)により所望の組成に調整することができる。
たとえば、所定の化学量論比となるようにセリウム、ジ
ルコニウム、並びに必要に応じてセリウム以外の希土類
元素を含む塩の溶液を調整して、この溶液にアルカリ性
水溶液、あるいは有機酸を加え、セリウム、ジルコニウ
ム、必要に応じて希土類元素を含む塩を共沈させた後、
この共沈物を熱処理するか、あるいは、セリウム、ジル
コニウム、必要に応じて希土類元素を含む混合アルコキ
シド溶液を調整し、この混合アルコキシド溶液に脱イオ
ン水を加えて、共沈あるいは加水分解させて、この共沈
物あるいは加水分解生成を熱処理することにより行われ
る。
【0016】ここで用いるジルコニウム源としては、一
般の工業的用途に用いられる1〜3重量%のハフニウム
を含んだものでよく、本願発明では便宜上、ハフニウム
含有分をジルコニウムとみなして組成計算している。
【0017】この場合、用いる塩としては、セリウム、
ジルコニウムのオキシ塩酸塩、オキシ硝酸塩、オキシ硫
酸塩などの無機塩の他、オキシ酢酸塩などの有機塩を使
用することができる。また、セリウム以外の希土類元素
の塩としては、硫酸塩、硝酸塩、塩酸塩、リン酸塩など
の無機塩や、酢酸塩、シュウ酸塩などの有機塩を用いる
ことができる。さらに、アルカリ水溶液としては、アン
モニア水溶液などが用いられ、有機酸としては、シュウ
酸、クエン酸などが用いられる。
【0018】また、混合アルコキシド溶液のアルコキシ
ドとしては、セリウム、ジルコニウム、および希土類元
素のメトキシド、エトキシド、プロポキシド、ブトキシ
ドなどやこれらのエチレンオキサイド付加物などが用い
られる。
【0019】さらに、得られた共沈物あるいは加水分解
生成物を熱処理するに際しては、これらの共沈物あるい
は加水分解生成物を濾過洗浄後、好ましくは約50〜2
00℃で約1〜48時間乾燥し、得られた乾燥物を約3
50〜1000℃、好ましくは400〜700℃で約1
〜12時間焼成することにより行う。
【0020】焼成後に得られたセリウム系酸化物にパラ
ジウムを担持させるには、パラジウムを含む塩の溶液を
調整して、これをセリウム系酸化物を含浸させた後に熱
処理すればよい。パラジウム塩の溶液としては、硝酸塩
水溶液、ジニトロジアンミン硝酸塩溶液、塩化物水溶液
などが用いられる。また、パラジウム塩の溶液は、約1
〜20重量%のパラジウム塩を含み、含浸後の熱処理
は、好ましくは約50〜200℃で約1〜48時間、さ
らに約350〜1000℃、好ましくは400〜700
℃で約1〜12時間成することにより行う。同様に、耐
熱性無機酸化物にプラチナおよび/またはロジウムを担
持させる場合には、プラチナおよび/またはロジウム含
む塩の溶液を調整して、この溶液に耐熱性無機酸化物を
含浸させた後に熱処理すればよい。
【0021】また、上記排気ガス浄化用触媒に硫酸塩を
共存させる方法としては、上記排気ガス浄化用触媒によ
って、たとえばセラミックハニカム担体などの支持担体
を被覆する際に添加する方法が挙げられる。具体的に
は、上記排気ガス浄化用触媒(セリウム系複合酸化物、
ジルコニアおよびアルミナなどの無機酸化物)と硫酸塩
とを混合して蒸留水を加えてスラリー状とし、このスラ
リーに上記支持担体を漬け込んだ後に引き上げ、電気炉
にて乾燥させることにより行われる。
【0022】本願発明のその他の特徴および利点は、添
付図面を参照して以下に行う詳細な説明によって、より
明らかとなろう。
【0023】
【発明の実施の形態】次に、本願発明の実施例を比較例
とともに説明する。
【0024】
【実施例1】セリウム系複合酸化物(Ce0.6 Zr0.3
0.1 xide)にパラジウム元素に換算して2.3重量
%となるように硝酸パラジウム水溶液を含浸させ、これ
を乾燥させた後に600℃で3時間焼成することによっ
てパラジウムが担持されたセリウム系複合酸化物(ア)
の粉末を得た。一方、ジルコニア(ZrO2 )に白金元
素に換算して1.9重量%となるようにジニトロジアン
ミン白金溶液を含浸し、ロジウム元素に換算して1.0
重量%となるように硝酸ロジウム水溶液を含浸させ、こ
れを乾燥させた後に600℃で3時間焼成することによ
って白金およびロジウムが担持されたジルコニア(イ)
の粉末を得た。このようにして得られた粉末(ア)、粉
末(イ)、活性アルミナ、硫酸バリウム、アルミナゾル
をボールミルで混合・粉砕して得られたスラリーをモノ
リス担体に付着させて乾燥した後に、600℃で3時間
焼成することによって本実施例の排気ガス浄化用触媒を
得た。なお、この排気ガス浄化用触媒には、モノリス担
体1リットルに対して、パラジウム1.8g、セリウム
系複合酸化物75g、白金1.0g、ロジウム0.5
g、ジルコニア50g、アルミナ130g、およびバリ
ウム元素0.1molが付着されている。
【0025】
【実施例2】セリウム系複合酸化物(Ce0.5 Zr
0.375 0.125 xide)にパラジウム元素に換算して
8.5重量%となるように硝酸パラジウム水溶液を含浸
し、これを乾燥させた後に600℃で3時間焼成するこ
とによってパラジウムが担持されたセリウム系複合酸化
物の粉末を得た。この粉末、活性アルミナ、硫酸バリウ
ム、アルミナゾルをボールミルで混合・粉砕して得られ
たスラリーをモノリス担体に付着させて乾燥した後に、
600℃で3時間焼成することによって本実施例の排気
ガス浄化用触媒を得た。なお、この排気ガス浄化用触媒
には、モノリス担体1リットルに対して、パラジウム
7.0g、セリウム系複合酸化物75g、アルミナ18
0g、およびバリウム元素0.2molが付着されてい
る。
【0026】
【実施例3】セリウム系複合酸化物(Ce0.6 Zr0.4
2 )にパラジウム元素に換算して6.7重量%となる
ように硝酸パラジウム水溶液を含浸し、これを乾燥させ
た後に600℃で3時間焼成することによってパラジウ
ムが担持されたセリウム系複合酸化物(ア)の粉末を得
た。一方、活性アルミナに白金元素に換算して0.3重
量%となるようにジニトロジアンミン白金溶液を含浸
し、ロジウム元素に換算して0.3重量%となるように
硝酸ロジウム水溶液をそれぞれ含浸し、これを乾燥させ
た後に600℃で3時間焼成することによって白金およ
びロジウムが担持された活性アルミナ(イ)の粉末を得
た。このようにして得られた粉末(ア)、粉末(イ)、
硫酸バリウム、アルミナゾルをボールミルで混合・粉砕
して得られたスラリーをモノリス担体に付着させて乾燥
した後に、600℃で3時間焼成することによって本実
施例の排気ガス浄化用触媒を得た。なお、この排気ガス
浄化用触媒には、モノリス担体1リットルに対して、パ
ラジウム3.6g、セリウム系複合酸化物50g、白金
0.5g、ロジウム0.5g、アルミナ180g、およ
びバリウム元素0.2molが付着されている。
【0027】
【実施例4】セリウム系複合酸化物(Ce0.65Zr0.3
0.05xide)にパラジウム元素に換算して4.8重量
%となるように硝酸パラジウム水溶液を含浸し、これを
乾燥させた後に600℃で3時間焼成することによって
パラジウムが担持されたセリウム系複合酸化物(ア)の
粉末を得た。(ア)とは別のセリウム系複合酸化物(C
0.65Zr0.3 0.05xide)に、白金元素に換算して
1.2重量%となるようにジニトロジアンミン白金溶液
を含浸し、ロジウム元素に換算して1.2重量%となる
ように硝酸ロジウム水溶液を含浸させ、これを乾燥させ
た後に600℃で3時間焼成することによって白金およ
びロジウムが担持されたセリウム系複合酸化物(イ)の
粉末を得た。このようにして得られた粉末(ア)、粉末
(イ)、活性アルミナ、硫酸バリウム、アルミナゾルを
ボールミルで混合・粉砕して得られたスラリーをモノリ
ス担体に付着させて乾燥した後に、600℃で3時間焼
成することによって本実施例の排気ガス浄化用触媒を得
た。なお、この排気ガス浄化用触媒には、モノリス担体
1リットルに対して、パラジウム2.0g、セリウム系
複合酸化物80g、白金0.5g、ロジウム0.5g、
アルミナ170g、およびバリウム元素0.15mol
が付着されている。
【0028】
【実施例5】セリウム系複合酸化物(Ce0.6 Zr0.3
0.1 xide)にパラジウム元素に換算して9.6重量
%となるように硝酸パラジウム水溶液を含浸させ、これ
を乾燥させた後に600℃で3時間焼成することによっ
てパラジウムが担持されたセリウム系複合酸化物(ア)
の粉末を得た。一方、ジルコニウム系酸化物(Zr0. 89
Ce0.112 )に、ロジウム元素に換算して1.6重量
%となるように硝酸ロジウムを含浸し、これを乾燥させ
た後に600℃で3時間焼成することによってロジウム
が担持されたジルコニウム系酸化物(イ)の粉末を得
た。このようにして得られた粉末(ア)、粉末(イ)、
活性アルミナ、硫酸カルシウム、アルミナゾルをボール
ミルで混合・粉砕して得られたスラリーをモノリス担体
に付着させて乾燥した後に、600℃で3時間焼成する
ことによって本実施例の排気ガス浄化用触媒を得た。な
お、この排気ガス浄化用触媒には、モノリス担体1リッ
トルに対して、パラジウム8.0g、セリウム系複合酸
化物75g、ロジウム0.8g、アルミナ100g、ジ
ルコニウム系酸化物50g、およびカルシウム元素0.
3molが付着されている。
【0029】
【実施例6】セリウム系複合酸化物(Ce0.6 Zr0.3
0.1 xide)にパラジウム元素に換算して5.1重量
%となるように硝酸パラジウム水溶液を含浸し、これを
乾燥させた後に600℃で3時間焼成することによって
パラジウムが担持されたセリウム系複合酸化物の粉末を
得た。この粉末、活性アルミナ、硫酸ストロンチウム、
アルミナゾルをボールミルで混合・粉砕して得られたス
ラリーをモノリス担体に付着させて乾燥した後に、60
0℃で3時間焼成することによって本実施例の排気ガス
浄化用触媒を得た。なお、この排気ガス浄化用触媒に
は、モノリス担体1リットルに対して、パラジウム4.
0g、セリウム系複合酸化物75g、アルミナ180
g、およびストロンチウム元素0.2molが付着され
ている。
【0030】
【比較例A】セリウム系複合酸化物(Ce0.6 Zr0.3
0.1 xide)にパラジウム元素に換算して2.3重量
%となるように硝酸パラジウム水溶液を含浸し、これを
乾燥させた後に600℃で3時間焼成することによって
パラジウムが担持されたセリウム系複合酸化物(ア)の
粉末を得た。一方、ジルコニア(ZrO2 )に白金元素
に換算して1.9重量%となるようにジニトロジアンミ
ン白金溶液を含浸し、ロジウム元素に換算して1.0重
量%となるように硝酸ロジウム水溶液を含浸し、これを
乾燥させた後に600℃で3時間焼成することによって
白金およびロジウムが担持されたジルコニア(イ)の粉
末を得た。このようにして得られた粉末(ア)、粉末
(イ)、活性アルミナ、アルミナゾルをボールミルで混
合・粉砕して得られたスラリーをモノリス担体に付着さ
せて乾燥した後に、600℃で3時間焼成した。さら
に、この触媒に酢酸バリウム水溶液を含浸し、乾燥させ
た後に600℃で3時間焼成することによって本比較例
の排気ガス浄化用触媒を得た。なお、この排気ガス浄化
用触媒には、モノリス担体1リットルに対して、パラジ
ウム1.8g、セリウム系複合酸化物75g、白金1.
0g、ロジウム0.5g、ジルコニア50g、アルミナ
130g、およびバリウム元素0.1molが付着され
ている。
【0031】
【比較例B】セリア(CeO2 )、活性アルミナ、アル
ミナゾルをボールミルで混合・粉砕して得られたスラリ
ーをモノリス担体に付着させて乾燥した後に、600℃
で3時間焼成した。この触媒に、硝酸パラジウム水溶液
を含浸し、乾燥させた後に600℃で3時間焼成し、さ
らに、酢酸バリウム水溶液を含浸して乾燥させた後に6
00℃で3時間焼成することによって本比較例の排気ガ
ス浄化用触媒を得た。なお、この排気ガス浄化用触媒に
は、モノリス担体1リットルに対して、パラジウム7.
0g、セリア75g、アルミナ180g、およびバリウ
ム元素0.2molが付着されている。
【0032】
【比較例C】活性アルミナに、パラジウム元素に換算し
て2.0重量%となるように硝酸パラジウム水溶液を含
浸させ、これを乾燥させた後に600℃で3時間焼成す
ることによってパラジウムが担持されたパラジウムが担
持された活性アルミナの粉末を得た。この粉末、セリウ
ム系複合酸化物(Ce0.6 Zr0.4 2 )、活性アルミ
ナ、アルミナゾルをボールミルで混合・粉砕して得られ
たスラリーをモノリス担体に付着させて酢酸バリウムを
担持させて乾燥した後に、600℃で3時間焼成した。
この触媒に、ジニトロジアンミン白金溶液を含浸して乾
燥させ600℃で3時間焼成し、さらに、硝酸ロジウム
水溶液を含浸して乾燥させ600℃で3時間焼成するこ
とによって本比較例の排気ガス浄化用触媒を得た。な
お、この排気ガス浄化用触媒には、モノリス担体1リッ
トルに対して、パラジウム3.6g、セリウム系複合酸
化物50g、白金0.5g、ロジウム0.5g、アルミ
ナ180g、およびバリウム元素0.2molが付着さ
れている。
【0033】
【比較例D】ジルコニア(ZrO2 )にパラジウム元素
に換算して5.1重量%となるように硝酸パラジウム水
溶液を含浸し、これを乾燥させた後に600℃で3時間
焼成することによってパラジウムが担持されたジルコニ
アの粉末を得た。この粉末、セリア(CeO2 )、活性
アルミナ、アルミナゾルをボールミルで混合・粉砕して
得られたスラリーをモノリス担体に付着させて乾燥した
後に、600℃で3時間焼成して本比較例の排気ガス浄
化用触媒を得た。なお、この排気ガス浄化用触媒には、
モノリス担体1リットルに対して、パラジウム4.0
g、セリア75g、アルミナ105g、およびジルコニ
ア75gが付着されている。
【0034】
【各触媒の性能評価】以上に説明した実施例1〜6、お
よび比較例A〜Dに係る排気ガス浄化用触媒について、
耐久試験を行なった後に、排気ガスの浄化性能について
評価した。
【0035】[耐久試験]排気量4リッター・V型8気
筒エンジンを実車に搭載し、このエンジンの片バンク
(4気筒)に上記ようにして形成された排気ガス浄化用
触媒を装着することにより行った。具体的には、以下に
説明するサイクルを1サイクル(60秒)とし、このサ
イクルを3000回繰り返して計50時間行なった。図
1に示すように、0〜40秒の間はフィードバック制御
によって理論空燃比(A/F=14.6)、すなわちス
トイキ状態に維持された混合気をエンジンに供給すると
ともに、排気ガス浄化用触媒の内部温度が850℃近辺
となるように設定し、40〜44秒の間はフィードバッ
クをオープンにするとともに、燃料を過剰に噴射して燃
料リッチな状態(A/F=11.7)の混合気をエンジ
ンに供給した。また、44秒〜56秒の間は、引き続い
てフィードバックをオープンにして燃料を過剰に供給し
たまま上記排気ガス浄化用触媒の上流側から導入管を介
してエンジンの外部から二次空気を吹き込んで上記排気
ガス浄化用触媒(ハニカム担体)内部で過剰な燃料と二
次空気とを反応させて温度を上昇させた。このときの最
高温度は1050℃であった。過剰燃料と二次空気とが
供給される44秒〜56の間は、空燃比はストイキ状態
よりもややリーン状態(A/F=14.8)とされてい
る。最後の56秒〜60の間は、空気が供給され続けて
リーン状態(A/F=18.0)に制御されている。な
お、上記排気ガス浄化用触媒の温度は、ハニカム担体の
中心部に挿入した熱電対によって計測した。
【0036】[排気ガスの浄化性能の評価](炭化水素
50%浄化温度の測定)エンジンにストイキ状態の混合
気を供給し、この混合気の燃焼によって排出される排気
ガスの温度を30℃/minの割合で上昇させつつ上記
排気ガス浄化用触媒に供給して、上記排気ガス浄化触媒
によって排気ガス中の炭化水素が50%浄化されるとき
の温度をそれぞれ測定した。この測定は、排気ガスの空
間速度(SV)が80000/hの場合のそれぞれにつ
いて行った。なお、エンジンに供給される混合気は、フ
ィードバック制御によって略ストイキ状態とされている
が、そのA/F値は14.6±0.2である。
【0037】(50%浄化ウインドウ幅の測定)混合気
を燃料リッチな状態からリーン状態に変化させつつ、こ
の混合気をエンジンに供給し、供給された混合気をエン
ジンで燃焼させたとき排出される排気ガス中に含まれる
COおよびNOX が上記ハニカム担体によって浄化され
る割合をそれそれ測定し、COおよびNOX の双方とも
に50%以上浄化できるA/F値の幅を50%浄化ウイ
ンドウ幅とした。この50%浄化ウインドウ幅は、排気
ガス浄化用触媒が一定の性能を発揮できる供給混合気状
態の範囲の広さを表す指標である。たとえば、エンジン
に供給される混合気のA/F値が14.5以上のときに
CO浄化率が50%であり、A/F値が15.5以下の
ときにNOX 浄化率が50%以上である場合には、混合
気のA/F値が14.5〜15.5の範囲においてCO
およびNOX の双方とも50%以上浄化することがで
き、この場合には、50%浄化ウインドウ幅は1(A/
F)となる。
【0038】(CO−NOX クロス点浄化率の測定)混
合気を燃料リッチな状態からリーン状態に変化させつ
つ、この混合気をエンジンに供給し、供給された混合気
をエンジンで燃焼させたとき排出される排気ガス中に含
まれるCOおよびNOX が上記ハニカム担体によって浄
化される割合をそれそれ測定し、これらの成分の浄化率
が一致するときの浄化率をCO−NOXクロス点浄化率
として測定した。なお、この測定は、エンジンを自動車
に実際に搭載させた状態ではなく、エンジンのみの状態
で行った。また、上記排気ガス浄化用触媒に供給される
排気ガスの温度は400℃であり、その空間速度SVは
80000/hである。そして、エンジンに供給される
混合気のA/F値は、フィードバック制御によって上記
した混合気のA/F値±1.0とされている。
【0039】[排気ガスの浄化性能の評価結果]各排気
ガス浄化用触媒の構成を表1に、各触媒の浄化性能を評
価した結果を表2に示す。
【0040】
【表1】
【0041】
【表2】
【0042】
【発明の効果】表2から明らかなように、本願発明の排
気ガス浄化用触媒は、パラジウムをセリウム系複合酸化
物に選択的に固定担持することにより、パラジウムの劣
化を抑制し、良好なウインドウをもっている。さらに、
硫酸塩を添加することによって、高温耐久後も複合酸化
物などの生成物により触媒が劣化することを抑制し、パ
ラジウムのHC吸着被毒を抑制し、良好な触媒性能を維
持できた。振幅の大きな条件下(A/F値が大きく変動
する条件下)でのCO−NOX クロス点浄化率が良好な
ことで代表されるように、本願発明の排気ガス浄化用触
媒の触媒性能が良好であるこが証明された。また、エン
ジン始動直後に、より早く排気ガスの浄化を始める低温
活性も良好であることが確認された。
【0043】このように、本願発明に係る排気ガス浄化
用触媒は、高温域(1000℃前後)の過酷条件下に曝
された後においても高い触媒活性を維持しているととも
に、低温域(200〜400℃)においても高い触媒性
能を発揮することができる。すなわち、本願発明によれ
ば、エンジン始動直後から排気ガスを良好に浄化できる
ととも、マニバータ位置に搭載しても高い浄化性能を維
持することができる排気ガス浄化用触媒を提供すること
ができる。
【図面の簡単な説明】
【図1】触媒の耐久試験条件を説明するための図であ
る。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 裕久 滋賀県蒲生郡竜王町大字山之上3000番地 ダイハツ工業株式会社滋賀テクニカルセン ター内 (72)発明者 松浦 慎次 静岡県小笠郡大東町千浜7800番地 キャタ ラー工業株式会社内 (72)発明者 佐藤 容規 静岡県小笠郡大東町千浜7800番地 キャタ ラー工業株式会社内

Claims (6)

    【特許請求の範囲】
  1. 【請求項1】 耐熱性無機酸化物と、パラジウムが担持
    されたセリウム系複合酸化物と、パラジウムが排気ガス
    中に含まれる炭化水素類によって被毒されるのを抑制す
    る硫酸塩とを含むこと特徴とする、排気ガス浄化用触
    媒。
  2. 【請求項2】 上記硫酸塩は、硫酸バリウム、硫酸カル
    シウム、硫酸ストロンチウム、硫酸セシウム、硫酸カリ
    ウム、硫酸マグネシウム、硫酸イットリウム、および硫
    酸ランタンからなる群より少なくとも1つが選ばれる、
    請求項1に記載の排気ガス浄化用触媒。
  3. 【請求項3】 上記耐熱性無機酸化物には、少なくとも
    その一部に貴金属が担持されている、請求項1または2
    に記載の排気ガス浄化用触媒。
  4. 【請求項4】 上記貴金属は、白金および/またはロジ
    ウムである、請求項3に記載の排気ガス浄化用触媒。
  5. 【請求項5】 上記セリウム系複合酸化物は、一般式 【化1】 および/または、 【化2】 で表され、 Rは希土類金属を表し、0.2≦a≦0.9、0.2≦
    x+y≦0.9、0.15≦x≦0.7、0.05≦y
    ≦0.2である、請求項1ないし4のいずれかに記載の
    排気ガス浄化用触媒。
  6. 【請求項6】 上記耐熱性無機酸化物担体は、ジルコニ
    ウム系酸化物および/またはジルコニウム系複合酸化物
    である、請求項1ないし5のいずれかに記載の排気ガス
    浄化用触媒。
JP32422597A 1997-11-20 1997-11-26 排気ガス浄化用触媒 Expired - Fee Related JP3827838B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32422597A JP3827838B2 (ja) 1997-11-20 1997-11-26 排気ガス浄化用触媒

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP31974297 1997-11-20
JP9-319742 1997-11-20
JP32422597A JP3827838B2 (ja) 1997-11-20 1997-11-26 排気ガス浄化用触媒

Publications (2)

Publication Number Publication Date
JPH11207183A true JPH11207183A (ja) 1999-08-03
JP3827838B2 JP3827838B2 (ja) 2006-09-27

Family

ID=26569811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32422597A Expired - Fee Related JP3827838B2 (ja) 1997-11-20 1997-11-26 排気ガス浄化用触媒

Country Status (1)

Country Link
JP (1) JP3827838B2 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001079403A (ja) * 1999-09-14 2001-03-27 Daihatsu Motor Co Ltd 排気ガス浄化用触媒
JP2001104786A (ja) * 1999-10-08 2001-04-17 Daihatsu Motor Co Ltd 排気ガス浄化用触媒
WO2001053380A1 (en) * 2000-01-18 2001-07-26 General Electric Company Method for making siloxane copolycarbonates
JP2001232200A (ja) * 2000-02-02 2001-08-28 Ford Global Technol Inc 希土類金属酸化物を用いた三元触媒
WO2004004898A1 (ja) * 2002-07-09 2004-01-15 Daihatsu Motor Co., Ltd. 排ガス浄化用触媒
JP2004243305A (ja) * 2002-10-11 2004-09-02 Daihatsu Motor Co Ltd 排ガス浄化用触媒
JP2007216200A (ja) * 2006-01-20 2007-08-30 Matsushita Electric Ind Co Ltd 排ガス浄化触媒
US7381394B2 (en) 2002-07-09 2008-06-03 Daihatsu Motor Co., Ltd. Method for producing perovskite-type composite oxide
JP2009297616A (ja) * 2008-06-11 2009-12-24 Toyota Motor Corp NOx吸蔵還元型触媒
WO2010071205A1 (ja) 2008-12-19 2010-06-24 株式会社 キャタラー 排ガス浄化用触媒
WO2010137657A1 (ja) 2009-05-27 2010-12-02 株式会社 キャタラー 排ガス浄化用触媒
WO2010137658A1 (ja) 2009-05-27 2010-12-02 株式会社 キャタラー 排ガス浄化用触媒及びその製造方法
WO2010147163A1 (ja) 2009-06-16 2010-12-23 株式会社 キャタラー 排ガス浄化用触媒、粉末材料、及び排ガス浄化用触媒の製造方法
WO2017200013A1 (ja) * 2016-05-20 2017-11-23 株式会社キャタラー 2ストローク汎用エンジン用排ガス浄化触媒

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102506775B1 (ko) * 2018-04-27 2023-03-07 현대자동차주식회사 배기가스 정화용 촉매의 제조방법 및 이를 통해 형성된 배기가스 정화용 촉매
KR102506776B1 (ko) * 2018-04-27 2023-03-07 현대자동차주식회사 배기가스 정화용 촉매의 제조방법 및 이를 통해 형성된 배기가스 정화용 촉매

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01281144A (ja) * 1988-04-30 1989-11-13 Toyota Central Res & Dev Lab Inc 排気ガス浄化用触媒
JPH05168926A (ja) * 1992-05-15 1993-07-02 N E Chemcat Corp 耐熱性に優れた内燃機関排気ガス浄化用触媒及びその製造方法
JPH05237390A (ja) * 1992-02-28 1993-09-17 Nippon Shokubai Co Ltd 排気ガス浄化用触媒
JPH07299360A (ja) * 1994-05-11 1995-11-14 Cataler Kogyo Kk 排気ガス浄化用触媒
JPH08229395A (ja) * 1995-02-24 1996-09-10 Mazda Motor Corp 排気ガス浄化用触媒
JPH09131530A (ja) * 1995-11-09 1997-05-20 Ict:Kk 内燃機関排ガス浄化用触媒
JP2669861B2 (ja) * 1987-08-13 1997-10-29 エンゲルハード・コーポレーシヨン 触 媒
JPH10249200A (ja) * 1997-03-13 1998-09-22 Nissan Motor Co Ltd 内燃機関の排気浄化用触媒およびその製造方法
JPH10296085A (ja) * 1997-04-30 1998-11-10 Cataler Kogyo Kk 排ガス浄化用触媒
JPH1147596A (ja) * 1997-08-01 1999-02-23 Nissan Motor Co Ltd 排気ガス浄化用触媒

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2669861B2 (ja) * 1987-08-13 1997-10-29 エンゲルハード・コーポレーシヨン 触 媒
JPH01281144A (ja) * 1988-04-30 1989-11-13 Toyota Central Res & Dev Lab Inc 排気ガス浄化用触媒
JPH05237390A (ja) * 1992-02-28 1993-09-17 Nippon Shokubai Co Ltd 排気ガス浄化用触媒
JPH05168926A (ja) * 1992-05-15 1993-07-02 N E Chemcat Corp 耐熱性に優れた内燃機関排気ガス浄化用触媒及びその製造方法
JPH07299360A (ja) * 1994-05-11 1995-11-14 Cataler Kogyo Kk 排気ガス浄化用触媒
JPH08229395A (ja) * 1995-02-24 1996-09-10 Mazda Motor Corp 排気ガス浄化用触媒
JPH09131530A (ja) * 1995-11-09 1997-05-20 Ict:Kk 内燃機関排ガス浄化用触媒
JPH10249200A (ja) * 1997-03-13 1998-09-22 Nissan Motor Co Ltd 内燃機関の排気浄化用触媒およびその製造方法
JPH10296085A (ja) * 1997-04-30 1998-11-10 Cataler Kogyo Kk 排ガス浄化用触媒
JPH1147596A (ja) * 1997-08-01 1999-02-23 Nissan Motor Co Ltd 排気ガス浄化用触媒

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001079403A (ja) * 1999-09-14 2001-03-27 Daihatsu Motor Co Ltd 排気ガス浄化用触媒
JP2001104786A (ja) * 1999-10-08 2001-04-17 Daihatsu Motor Co Ltd 排気ガス浄化用触媒
WO2001053380A1 (en) * 2000-01-18 2001-07-26 General Electric Company Method for making siloxane copolycarbonates
JP2001232200A (ja) * 2000-02-02 2001-08-28 Ford Global Technol Inc 希土類金属酸化物を用いた三元触媒
WO2004004898A1 (ja) * 2002-07-09 2004-01-15 Daihatsu Motor Co., Ltd. 排ガス浄化用触媒
US7205257B2 (en) 2002-07-09 2007-04-17 Daihatsu Motor Co., Ltd. Catalyst for clarifying exhaust gas
US7381394B2 (en) 2002-07-09 2008-06-03 Daihatsu Motor Co., Ltd. Method for producing perovskite-type composite oxide
US7622418B2 (en) 2002-07-09 2009-11-24 Daihatsu Motor Company, Ltd. Method for producing exhaust gas purifying catalyst
JP2004243305A (ja) * 2002-10-11 2004-09-02 Daihatsu Motor Co Ltd 排ガス浄化用触媒
JP2007216200A (ja) * 2006-01-20 2007-08-30 Matsushita Electric Ind Co Ltd 排ガス浄化触媒
JP2009297616A (ja) * 2008-06-11 2009-12-24 Toyota Motor Corp NOx吸蔵還元型触媒
WO2010071205A1 (ja) 2008-12-19 2010-06-24 株式会社 キャタラー 排ガス浄化用触媒
US8318632B2 (en) 2008-12-19 2012-11-27 Cataler Corporation Exhaust gas purification catalyst
WO2010137657A1 (ja) 2009-05-27 2010-12-02 株式会社 キャタラー 排ガス浄化用触媒
WO2010137658A1 (ja) 2009-05-27 2010-12-02 株式会社 キャタラー 排ガス浄化用触媒及びその製造方法
US8580706B2 (en) 2009-05-27 2013-11-12 Cataler Corporation Exhaust gas-purifying catalyst
US8741799B2 (en) 2009-05-27 2014-06-03 Cataler Corporation Exhaust gas-purifying catalyst
US9364793B2 (en) 2009-05-27 2016-06-14 Cataler Corporation Exhaust gas-purifying catalyst
WO2010147163A1 (ja) 2009-06-16 2010-12-23 株式会社 キャタラー 排ガス浄化用触媒、粉末材料、及び排ガス浄化用触媒の製造方法
US8546296B2 (en) 2009-06-16 2013-10-01 Cataler Corporation Exhaust gas-purifying catalyst, powdery material, and method of manufacturing exhaust gas-purifying catalyst
WO2017200013A1 (ja) * 2016-05-20 2017-11-23 株式会社キャタラー 2ストローク汎用エンジン用排ガス浄化触媒
JPWO2017200013A1 (ja) * 2016-05-20 2019-02-14 株式会社キャタラー 2ストローク汎用エンジン用排ガス浄化触媒
US11291951B2 (en) 2016-05-20 2022-04-05 Cataler Corporation Exhaust gas purifying catalyst for 2-stroke general-purpose engines

Also Published As

Publication number Publication date
JP3827838B2 (ja) 2006-09-27

Similar Documents

Publication Publication Date Title
JP3688871B2 (ja) 排気ガス浄化用触媒
JP3845274B2 (ja) 排ガス浄化用触媒
JP3704279B2 (ja) 排ガス浄化用触媒
US6261989B1 (en) Catalytic converter for cleaning exhaust gas
JP2659796B2 (ja) 排ガス浄化用触媒およびその製造方法
KR100452573B1 (ko) 배기가스정화용촉매
JP3664182B2 (ja) 高耐熱性排ガス浄化用触媒とその製造方法
JP3688974B2 (ja) 排ガス浄化用触媒
JPH09141098A (ja) 排気ガス浄化用触媒及びその製造方法
KR20020046959A (ko) 배기가스 정화용 촉매
JP3827838B2 (ja) 排気ガス浄化用触媒
EP1095702A1 (en) Catalyst for exhaust gas purification, process for producing the same, and method of purifying exhaust gas
JPH10286462A (ja) 排気ガス浄化用触媒
JPWO2017203863A1 (ja) ガソリンエンジン排気ガスの浄化用三元触媒
JP3851521B2 (ja) 排ガス浄化用触媒
JP3756706B2 (ja) 排気ガス浄化用触媒
JPH07299360A (ja) 排気ガス浄化用触媒
JPH08131830A (ja) 排ガス浄化用触媒
JP2001070792A (ja) 排気ガス浄化用触媒
JPH09313938A (ja) 排気ガス浄化用触媒
JP2001079404A (ja) 排気ガス浄化用触媒
JPH09248462A (ja) 排気ガス浄化用触媒
JP2010069380A (ja) 排ガス浄化用触媒
JP2010022892A (ja) 排ガス浄化用触媒
JPH10249199A (ja) 排ガス浄化用触媒

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060705

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees