JPH08172102A - 半導体装置の製造方法 - Google Patents
半導体装置の製造方法Info
- Publication number
- JPH08172102A JPH08172102A JP6317019A JP31701994A JPH08172102A JP H08172102 A JPH08172102 A JP H08172102A JP 6317019 A JP6317019 A JP 6317019A JP 31701994 A JP31701994 A JP 31701994A JP H08172102 A JPH08172102 A JP H08172102A
- Authority
- JP
- Japan
- Prior art keywords
- mask layer
- opening
- layer
- manufacturing
- gate electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 23
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 21
- 239000000758 substrate Substances 0.000 claims abstract description 16
- 238000010438 heat treatment Methods 0.000 claims abstract 2
- 238000000151 deposition Methods 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 238000000034 method Methods 0.000 abstract description 13
- 235000001674 Agaricus brunnescens Nutrition 0.000 abstract description 11
- 238000010030 laminating Methods 0.000 abstract 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 11
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 11
- 238000005530 etching Methods 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66848—Unipolar field-effect transistors with a Schottky gate, i.e. MESFET
- H01L29/66856—Unipolar field-effect transistors with a Schottky gate, i.e. MESFET with an active layer made of a group 13/15 material
- H01L29/66863—Lateral single gate transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
- H01L21/0271—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
- H01L21/0272—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers for lift-off processes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/285—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
- H01L21/28506—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
- H01L21/28575—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising AIIIBV compounds
- H01L21/28587—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising AIIIBV compounds characterised by the sectional shape, e.g. T, inverted T
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/10—Lift-off masking
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S438/00—Semiconductor device manufacturing: process
- Y10S438/942—Masking
- Y10S438/948—Radiation resist
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Ceramic Engineering (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
(57)【要約】
【目的】 安価な装置と短い工程で、精度良くマッシュ
ルーム型ゲート電極を形成することにより、安価で、高
歩留まりのGaAsMESFET及びそれを用いた集積
回路を製造することができる半導体装置の製造方法を提
供する。 【構成】 半導体基板上に第1のマスク層16を積層す
る工程と、第1のマスク層16に開口部16aを形成す
る工程と、半導体基板を熱処理することにより、第1の
マスク層16をフローする工程と、第1のマスク層16
上に第2のマスク層17を積層する工程と、第2のマス
ク層17に第1のマスク層の開口部16aより大きく、
かつ第1のマスク層の開口部16aを表出させている開
口部17aを形成する工程と、第2のマスク層の開口部
17aにゲート電極19を形成する工程とからなる。
ルーム型ゲート電極を形成することにより、安価で、高
歩留まりのGaAsMESFET及びそれを用いた集積
回路を製造することができる半導体装置の製造方法を提
供する。 【構成】 半導体基板上に第1のマスク層16を積層す
る工程と、第1のマスク層16に開口部16aを形成す
る工程と、半導体基板を熱処理することにより、第1の
マスク層16をフローする工程と、第1のマスク層16
上に第2のマスク層17を積層する工程と、第2のマス
ク層17に第1のマスク層の開口部16aより大きく、
かつ第1のマスク層の開口部16aを表出させている開
口部17aを形成する工程と、第2のマスク層の開口部
17aにゲート電極19を形成する工程とからなる。
Description
【0001】
【産業上の利用分野】本発明は、半導体装置の製造方法
に関し、特にショットキーゲート型電解効果トランジス
タ及びそれを用いた集積回路等のマッシュルーム形ゲー
ト電極を有する半導体装置の製造方法に関する。
に関し、特にショットキーゲート型電解効果トランジス
タ及びそれを用いた集積回路等のマッシュルーム形ゲー
ト電極を有する半導体装置の製造方法に関する。
【0002】
【従来の技術】ガリウム砒素ショットキーゲート型電解
効果トランジスタ(以下GaAsMESFETと記す)
は、高周波特性が優れ、かつ高出力化が図れる。そし
て、このMESFETの高性能化(高周波化、高出力
化、高効率化)及び高信頼性化のために、種々の構造及
び製造方法が提案されている。
効果トランジスタ(以下GaAsMESFETと記す)
は、高周波特性が優れ、かつ高出力化が図れる。そし
て、このMESFETの高性能化(高周波化、高出力
化、高効率化)及び高信頼性化のために、種々の構造及
び製造方法が提案されている。
【0003】高性能化のためには、ゲート抵抗(Rg
)、ソース抵抗(Rs )、ソース・ドレイン間容量
(Cgs)の低減と相互コンダクタンス(gm )の向上な
どが重要である。このうち、ソース・ドレイン間容量
(Cgs)の低減と相互コンダクタンス(gm )の向上に
は、ゲート長を短縮することが有効である。また、ゲー
ト長の短縮化によるゲート抵抗(Rg )の増加を防ぐた
めには、マッシュルーム形ゲート電極が有効である。
)、ソース抵抗(Rs )、ソース・ドレイン間容量
(Cgs)の低減と相互コンダクタンス(gm )の向上な
どが重要である。このうち、ソース・ドレイン間容量
(Cgs)の低減と相互コンダクタンス(gm )の向上に
は、ゲート長を短縮することが有効である。また、ゲー
ト長の短縮化によるゲート抵抗(Rg )の増加を防ぐた
めには、マッシュルーム形ゲート電極が有効である。
【0004】従来、マッシュルーム形ゲート電極を有す
るGaAsMESFETの製造方法として、特公平4−
72381に開示されているような製造方法があった。
るGaAsMESFETの製造方法として、特公平4−
72381に開示されているような製造方法があった。
【0005】図2(a)〜(d)は、従来のマッシュル
ーム型ゲート電極を有するGaAsMESFETの製造
方法を示す断面図である。まず、半絶縁性GaAsから
なる半導体基板21上部に、エピタキシャル成長法又は
イオン注入法で形成された活性層22を形成する。次
に、活性層22上にソース電極23及びドレイン電極2
4を形成したのち、絶縁膜25、第1のマスク層である
レジスト層26を順次堆積し、第1のマスク層であるレ
ジスト層26のゲート電極形成予定領域に対応する部分
に開口部26aを形成する(図2(a))。
ーム型ゲート電極を有するGaAsMESFETの製造
方法を示す断面図である。まず、半絶縁性GaAsから
なる半導体基板21上部に、エピタキシャル成長法又は
イオン注入法で形成された活性層22を形成する。次
に、活性層22上にソース電極23及びドレイン電極2
4を形成したのち、絶縁膜25、第1のマスク層である
レジスト層26を順次堆積し、第1のマスク層であるレ
ジスト層26のゲート電極形成予定領域に対応する部分
に開口部26aを形成する(図2(a))。
【0006】次いで、第1のマスク層であるレジスト層
26をマスクとして絶縁膜25を選択エッチングして開
口窓25aを開ける(図2(b))。
26をマスクとして絶縁膜25を選択エッチングして開
口窓25aを開ける(図2(b))。
【0007】次いで、第1のマスク層であるレジスト層
26を除去したのち、第2のマスク層である別のレジス
ト層27を堆積し、開口窓25aよりも幅の広い開口部
27aを形成する。その後、第2のマスク層であるレジ
スト層27および絶縁膜25をマスクとして活性層22
をエッチングしてリセス28を形成する(図2
(c))。
26を除去したのち、第2のマスク層である別のレジス
ト層27を堆積し、開口窓25aよりも幅の広い開口部
27aを形成する。その後、第2のマスク層であるレジ
スト層27および絶縁膜25をマスクとして活性層22
をエッチングしてリセス28を形成する(図2
(c))。
【0008】最後に、ゲート電極を構成する金属を半導
体基板21上に蒸着したのち、第2のマスク層であるレ
ジスト層27を除去することによってその上の金属膜を
も除去して、マッシュルーム形ゲート電極29を有する
GaAsMESFET20を得る(図2(d))。
体基板21上に蒸着したのち、第2のマスク層であるレ
ジスト層27を除去することによってその上の金属膜を
も除去して、マッシュルーム形ゲート電極29を有する
GaAsMESFET20を得る(図2(d))。
【0009】
【発明が解決しようとする課題】しかしながら、このよ
うな製造方法においては、絶縁膜25のエッチングに、
りん酸系、硫酸系等のウエットエッチングを用いる場
合、基板面内及びロット間には若干のエッチング量の不
均一が生じ、必ずしも開口窓の幅が狙い目通りになら
ず、均一性も悪くなるということがあった。従って、素
子特性が基板面内及びロット間で不均一になるという問
題点があった。
うな製造方法においては、絶縁膜25のエッチングに、
りん酸系、硫酸系等のウエットエッチングを用いる場
合、基板面内及びロット間には若干のエッチング量の不
均一が生じ、必ずしも開口窓の幅が狙い目通りになら
ず、均一性も悪くなるということがあった。従って、素
子特性が基板面内及びロット間で不均一になるという問
題点があった。
【0010】また、エッチング量、つまり開口窓25a
の幅を均一にするために、絶縁膜25のエッチングに、
反応性イオンエッチング、イオンミリング等のドライエ
ッチングを用いる場合があるが、この場合、活性層22
表面にダメージ等が入り、素子特性が劣化するという問
題点があった。
の幅を均一にするために、絶縁膜25のエッチングに、
反応性イオンエッチング、イオンミリング等のドライエ
ッチングを用いる場合があるが、この場合、活性層22
表面にダメージ等が入り、素子特性が劣化するという問
題点があった。
【0011】さらに、このような製造方法においては、
絶縁膜25、第1のマスク層であるレジスト層26を順
次堆積する工程と、第1のマスク層であるレジスト層2
6に開口部26aを形成し、絶縁膜25に開口窓25a
を形成したのち、第1のマスク層であるレジスト層26
を除去する工程と、第2のマスク層である別のレジスト
層27を堆積する工程と、第2のマスク層であるレジス
ト層27に開口部27aを形成する工程が必要なため、
プロセスが煩雑で、コストも増加するという問題点があ
った。
絶縁膜25、第1のマスク層であるレジスト層26を順
次堆積する工程と、第1のマスク層であるレジスト層2
6に開口部26aを形成し、絶縁膜25に開口窓25a
を形成したのち、第1のマスク層であるレジスト層26
を除去する工程と、第2のマスク層である別のレジスト
層27を堆積する工程と、第2のマスク層であるレジス
ト層27に開口部27aを形成する工程が必要なため、
プロセスが煩雑で、コストも増加するという問題点があ
った。
【0012】本発明の目的は、前記問題点を解決するも
ので、マッシュルーム型ゲート電極を安価な装置と短い
工程で、精度良く形成することにより、安価で、高歩留
まりのGaAsMESFET及びそれを用いた集積回路
を製造することができる半導体装置の製造方法を提供す
るものである。
ので、マッシュルーム型ゲート電極を安価な装置と短い
工程で、精度良く形成することにより、安価で、高歩留
まりのGaAsMESFET及びそれを用いた集積回路
を製造することができる半導体装置の製造方法を提供す
るものである。
【0013】
【課題を解決するための手段】上述する問題点を解決す
るため、本発明は、半導体基板上に第1のマスク層を堆
積する工程と、前記第1のマスク層に開口部を形成する
工程と、前記半導体基板を熱処理することにより、前記
第1のマスク層をフローする工程と、前記第1のマスク
層上に第2のマスク層を堆積する工程と、前記第2のマ
スク層に前記第1のマスク層の開口部より大きく、かつ
該第1のマスク層の開口部を表出させている開口部を形
成する工程と、前記第2のマスク層の開口部にゲート電
極となる金属を蒸着する工程とを含んでなることを特徴
とする。
るため、本発明は、半導体基板上に第1のマスク層を堆
積する工程と、前記第1のマスク層に開口部を形成する
工程と、前記半導体基板を熱処理することにより、前記
第1のマスク層をフローする工程と、前記第1のマスク
層上に第2のマスク層を堆積する工程と、前記第2のマ
スク層に前記第1のマスク層の開口部より大きく、かつ
該第1のマスク層の開口部を表出させている開口部を形
成する工程と、前記第2のマスク層の開口部にゲート電
極となる金属を蒸着する工程とを含んでなることを特徴
とする。
【0014】
【作用】本発明の半導体装置の製造方法によれば、エッ
チングにより絶縁膜を開口する工程を採用していないの
で、ゲート長は、第1のマスク層であるレジスト層の開
口部の幅のみで決定される。従って、ゲート電極直下の
活性層表面にダメージ等を導入することなく、レジスト
層の開口部の幅を制御よく形成できる。
チングにより絶縁膜を開口する工程を採用していないの
で、ゲート長は、第1のマスク層であるレジスト層の開
口部の幅のみで決定される。従って、ゲート電極直下の
活性層表面にダメージ等を導入することなく、レジスト
層の開口部の幅を制御よく形成できる。
【0015】さらに、絶縁膜を開口する工程と、第1の
マスク層であるレジスト膜を除去する工程がないので、
工程を短縮することができる。
マスク層であるレジスト膜を除去する工程がないので、
工程を短縮することができる。
【0016】
【実施例】図1(a)〜(d)は、本発明の一実施例に
よるマッシュルーム型ゲート電極を有するGaAsME
SFETの製造方法を示す断面図であり、以下に、その
概略を説明する。まず、図1(a)に示すように、半絶
縁性GaAsからなる半導体基板11上部に、エピタキ
シャル成長法又はイオン注入法で形成された活性層12
を形成する。次に、活性層12上にソース電極13及び
ドレイン電極14を形成したのち、第1のマスク層であ
るレジスト層16を堆積し、ゲート電極形成予定領域に
対応する部分に開口部16aを形成する。
よるマッシュルーム型ゲート電極を有するGaAsME
SFETの製造方法を示す断面図であり、以下に、その
概略を説明する。まず、図1(a)に示すように、半絶
縁性GaAsからなる半導体基板11上部に、エピタキ
シャル成長法又はイオン注入法で形成された活性層12
を形成する。次に、活性層12上にソース電極13及び
ドレイン電極14を形成したのち、第1のマスク層であ
るレジスト層16を堆積し、ゲート電極形成予定領域に
対応する部分に開口部16aを形成する。
【0017】次いで、図1(b)に示すように、半導体
基板11を第1のマスク層であるレジスト層16がフロ
ーする温度、例えば200℃で熱処理し、第1のマスク
層であるレジスト層16をフローさせ、第1のマスク層
であるレジスト層161と開口窓16bを形成する。
基板11を第1のマスク層であるレジスト層16がフロ
ーする温度、例えば200℃で熱処理し、第1のマスク
層であるレジスト層16をフローさせ、第1のマスク層
であるレジスト層161と開口窓16bを形成する。
【0018】次いで、図1(c)に示すように、第2の
マスク層であるレジスト層17を堆積し、開口窓16b
よりも幅の広い開口部17aを形成する。この際、後工
程でのリフトオフが容易になるように、第2のマスク層
であるレジスト層17にネガレジスト、あるいは多層レ
ジストを用いても良い。
マスク層であるレジスト層17を堆積し、開口窓16b
よりも幅の広い開口部17aを形成する。この際、後工
程でのリフトオフが容易になるように、第2のマスク層
であるレジスト層17にネガレジスト、あるいは多層レ
ジストを用いても良い。
【0019】最後に、図1(d)に示すように、ゲート
電極を構成する金属、例えばTi(チタン)/Pt(白
金)/Au(金)を半導体基板11上に蒸着したのち、
第1のマスク層であるレジスト層161と第2のマスク
層であるレジスト層17を同時に除去することによって
その上の金属膜をも除去して、マッシュルーム形ゲート
電極19を有するGaAsMESFET10を得る。
電極を構成する金属、例えばTi(チタン)/Pt(白
金)/Au(金)を半導体基板11上に蒸着したのち、
第1のマスク層であるレジスト層161と第2のマスク
層であるレジスト層17を同時に除去することによって
その上の金属膜をも除去して、マッシュルーム形ゲート
電極19を有するGaAsMESFET10を得る。
【0020】以上、本願の実施例では、MESFETの
製造方法に応用した場合を示したが、高移動度トランジ
スタにも応用できる。
製造方法に応用した場合を示したが、高移動度トランジ
スタにも応用できる。
【0021】また、本願の実施例では、半導体基板にG
aAsを用いた場合を示したが、Si、InP等の他の
半導体基板を用いた場合にも応用できる。
aAsを用いた場合を示したが、Si、InP等の他の
半導体基板を用いた場合にも応用できる。
【0022】
【発明の効果】以上述べたように、本発明に係る半導体
装置の製造方法によれば、ゲート電極直下の活性層表面
にダメージ等を導入することなく、レジスト層の開口部
の幅を制御よく形成できるので、均一なゲート長を有す
るマッシュルーム型ゲート電極が作製できる。従って、
ソース・ドレイン間容量(Cgs)の低減、相互コンダク
タンス(gm )の向上及びゲート抵抗(Rg )の低減が
可能となる。
装置の製造方法によれば、ゲート電極直下の活性層表面
にダメージ等を導入することなく、レジスト層の開口部
の幅を制御よく形成できるので、均一なゲート長を有す
るマッシュルーム型ゲート電極が作製できる。従って、
ソース・ドレイン間容量(Cgs)の低減、相互コンダク
タンス(gm )の向上及びゲート抵抗(Rg )の低減が
可能となる。
【0023】また、面内及びロット間の素子特性、例え
ば、相互コンダクタンス(gm )、ソース・ドレイン電
流(Idss )及びピンチオフ電圧(Vp )の再現性、均
一性に優れたMESFET及びそれを用いた集積回路を
製造することができる。
ば、相互コンダクタンス(gm )、ソース・ドレイン電
流(Idss )及びピンチオフ電圧(Vp )の再現性、均
一性に優れたMESFET及びそれを用いた集積回路を
製造することができる。
【0024】さらに、マッシュルーム型ゲート電極を作
製する工程を短縮することができるので、製造コスト及
び材料コストを大幅に低減できる。
製する工程を短縮することができるので、製造コスト及
び材料コストを大幅に低減できる。
【図1】本発明の一実施例によるGaAsMESFET
の製造方法を示す断面図。
の製造方法を示す断面図。
【図2】従来技術によるGaAsMESFETの製造方
法を示す断面図。
法を示す断面図。
11 半導体基板 12 活性層 13 ソース電極 14 ドレイン電極 16、161 第1のマスク層であるレジスト層 17 第2のマスク層であるレジスト層 19 マッシュルーム形ゲート電極
Claims (1)
- 【請求項1】 半導体基板上に第1のマスク層を堆積す
る工程と、 前記第1のマスク層に開口部を形成する工程と、 前記半導体基板を熱処理することにより、前記第1のマ
スク層をフローする工程と、 前記第1のマスク層上に第2のマスク層を堆積する工程
と、 前記第2のマスク層に前記第1のマスク層の開口部より
大きく、かつ該第1のマスク層の開口部を表出させてい
る開口部を形成する工程と、 前記第2のマスク層の開口部にゲート電極となる金属を
蒸着する工程とを含んでなることを特徴とする半導体装
置の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6317019A JPH08172102A (ja) | 1994-12-20 | 1994-12-20 | 半導体装置の製造方法 |
US08/572,876 US5587328A (en) | 1994-12-20 | 1995-12-18 | Method for manufacturing semiconductor device |
FI956099A FI956099A (fi) | 1994-12-20 | 1995-12-19 | Menetelmä puolijohdelaitteen valmistamiseksi |
KR1019950052891A KR0163833B1 (ko) | 1994-12-20 | 1995-12-20 | 반도체 장치의 제조방법 |
EP95120152A EP0718877A3 (en) | 1994-12-20 | 1995-12-20 | MESFET manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6317019A JPH08172102A (ja) | 1994-12-20 | 1994-12-20 | 半導体装置の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08172102A true JPH08172102A (ja) | 1996-07-02 |
Family
ID=18083517
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6317019A Pending JPH08172102A (ja) | 1994-12-20 | 1994-12-20 | 半導体装置の製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US5587328A (ja) |
EP (1) | EP0718877A3 (ja) |
JP (1) | JPH08172102A (ja) |
KR (1) | KR0163833B1 (ja) |
FI (1) | FI956099A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012230408A (ja) * | 2004-01-29 | 2012-11-22 | Rohm & Haas Electronic Materials Llc | T−ゲート形成 |
JP2013258368A (ja) * | 2012-06-14 | 2013-12-26 | Toshiba Corp | 半導体装置 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5940697A (en) * | 1997-09-30 | 1999-08-17 | Samsung Electronics Co., Ltd. | T-gate MESFET process using dielectric film lift-off technique |
US6713374B2 (en) * | 1999-07-30 | 2004-03-30 | Formfactor, Inc. | Interconnect assemblies and methods |
US7435108B1 (en) | 1999-07-30 | 2008-10-14 | Formfactor, Inc. | Variable width resilient conductive contact structures |
US6524937B1 (en) * | 2000-08-23 | 2003-02-25 | Tyco Electronics Corp. | Selective T-gate process |
DE60206012T2 (de) * | 2002-02-05 | 2006-06-22 | Dr. Bernd E. Maile | Verfahren zur Herstellung einer T-förmigen Elektrode |
DE10340926A1 (de) * | 2003-09-03 | 2005-03-31 | Technische Universität Ilmenau Abteilung Forschungsförderung und Technologietransfer | Verfahren zur Herstellung von elektronischen Bauelementen |
US20060009038A1 (en) | 2004-07-12 | 2006-01-12 | International Business Machines Corporation | Processing for overcoming extreme topography |
KR20110133828A (ko) * | 2010-06-07 | 2011-12-14 | 삼성전자주식회사 | 포토레지스트 패턴 형성 방법 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4358891A (en) * | 1979-06-22 | 1982-11-16 | Burroughs Corporation | Method of forming a metal semiconductor field effect transistor |
US4567132A (en) * | 1984-03-16 | 1986-01-28 | International Business Machines Corporation | Multi-level resist image reversal lithography process |
KR920009718B1 (ko) * | 1987-08-10 | 1992-10-22 | 스미도모덴기고오교오 가부시기가이샤 | 화합물반도체장치 및 그 제조방법 |
FR2646291B1 (fr) * | 1989-04-21 | 1991-06-14 | Thomson Hybrides Microondes | Procede de realisation d'un transistor autoaligne |
FR2663155B1 (fr) * | 1990-06-12 | 1997-01-24 | Thomson Composants Microondes | Procede de realisation d'une grille de transistor. |
JP2895634B2 (ja) * | 1990-12-18 | 1999-05-24 | 沖電気工業株式会社 | 電界効果トランジスタの製造方法 |
US5288660A (en) * | 1993-02-01 | 1994-02-22 | Avantek, Inc. | Method for forming self-aligned t-shaped transistor electrode |
US5486483A (en) * | 1994-09-27 | 1996-01-23 | Trw Inc. | Method of forming closely spaced metal electrodes in a semiconductor device |
-
1994
- 1994-12-20 JP JP6317019A patent/JPH08172102A/ja active Pending
-
1995
- 1995-12-18 US US08/572,876 patent/US5587328A/en not_active Expired - Lifetime
- 1995-12-19 FI FI956099A patent/FI956099A/fi unknown
- 1995-12-20 EP EP95120152A patent/EP0718877A3/en not_active Withdrawn
- 1995-12-20 KR KR1019950052891A patent/KR0163833B1/ko not_active IP Right Cessation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012230408A (ja) * | 2004-01-29 | 2012-11-22 | Rohm & Haas Electronic Materials Llc | T−ゲート形成 |
JP2013258368A (ja) * | 2012-06-14 | 2013-12-26 | Toshiba Corp | 半導体装置 |
Also Published As
Publication number | Publication date |
---|---|
EP0718877A3 (en) | 1997-01-15 |
FI956099A0 (fi) | 1995-12-19 |
FI956099A (fi) | 1996-06-21 |
KR0163833B1 (ko) | 1999-02-01 |
US5587328A (en) | 1996-12-24 |
EP0718877A2 (en) | 1996-06-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH08172102A (ja) | 半導体装置の製造方法 | |
JPH10209178A (ja) | 電界効果型トランジスタ,およびその製造方法 | |
JPH08306708A (ja) | 半導体装置およびその製造方法 | |
JPS61156887A (ja) | 電界効果トランジスタの製造方法 | |
JP2914429B2 (ja) | 半導体集積回路の製造方法 | |
JPS62115782A (ja) | 半導体装置の製造方法 | |
JP2893776B2 (ja) | 半導体装置の製造方法 | |
KR100266560B1 (ko) | 박막트랜지스터제조방법 | |
JPS5833714B2 (ja) | 砒化ガリウムショットキ障壁ゲ−ト型電界効果トランジスタの製造方法 | |
JP3101455B2 (ja) | 電界効果トランジスタ及びその製造方法 | |
JPS616870A (ja) | 電界効果トランジスタの製造方法 | |
JP2000243758A (ja) | 半導体装置及びその製造方法 | |
JPH02220449A (ja) | 電界効果トランジスタおよびその製造方法 | |
JPS6070772A (ja) | 電界効果トランジスタの製造方法 | |
JPS59224178A (ja) | 電界効果トランジスタの製造方法 | |
JPH08203922A (ja) | 半導体装置の製造方法 | |
JPS59229875A (ja) | シヨツトキ−ゲ−ト型電界効果トランジスタの製造方法 | |
JPH0997801A (ja) | 半導体装置の製造方法 | |
JPH04217329A (ja) | 電界効果トランジスタの製造方法 | |
JPS5850434B2 (ja) | 電界効果トランジスタの製造方法 | |
JPS6392062A (ja) | 電界効果トランジスタの製造方法 | |
JPH0595004A (ja) | 電界効果トランジスタの製造方法 | |
JPH04199517A (ja) | 電界効果トランジスタの製造方法 | |
JP2000150540A (ja) | 電界効果トランジスタ | |
JPH01208870A (ja) | 化合物半導体装置の製造方法 |