JPH0762258B2 - Afm/stmプロフィロメトリ用マイクロメカニカルセンサの製造方法 - Google Patents
Afm/stmプロフィロメトリ用マイクロメカニカルセンサの製造方法Info
- Publication number
- JPH0762258B2 JPH0762258B2 JP2186985A JP18698590A JPH0762258B2 JP H0762258 B2 JPH0762258 B2 JP H0762258B2 JP 2186985 A JP2186985 A JP 2186985A JP 18698590 A JP18698590 A JP 18698590A JP H0762258 B2 JPH0762258 B2 JP H0762258B2
- Authority
- JP
- Japan
- Prior art keywords
- mask
- inorganic material
- wafer
- pattern
- cantilever
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- 238000001314 profilometry Methods 0.000 title claims description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 138
- 238000005530 etching Methods 0.000 claims description 82
- 239000000377 silicon dioxide Substances 0.000 claims description 68
- 235000012239 silicon dioxide Nutrition 0.000 claims description 68
- 229910010272 inorganic material Inorganic materials 0.000 claims description 62
- 239000011147 inorganic material Substances 0.000 claims description 62
- 229920002120 photoresistant polymer Polymers 0.000 claims description 57
- 238000000034 method Methods 0.000 claims description 29
- 239000000758 substrate Substances 0.000 claims description 14
- 239000010409 thin film Substances 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 10
- 238000000347 anisotropic wet etching Methods 0.000 claims description 9
- 239000011248 coating agent Substances 0.000 claims description 8
- 238000000576 coating method Methods 0.000 claims description 8
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims description 6
- 230000009471 action Effects 0.000 claims description 5
- 238000012546 transfer Methods 0.000 claims description 3
- 239000002210 silicon-based material Substances 0.000 claims 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims 1
- 229910052581 Si3N4 Inorganic materials 0.000 claims 1
- 229910052799 carbon Inorganic materials 0.000 claims 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims 1
- 229910010271 silicon carbide Inorganic materials 0.000 claims 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 27
- 229910052710 silicon Inorganic materials 0.000 description 25
- 239000010703 silicon Substances 0.000 description 25
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 20
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 19
- 238000004574 scanning tunneling microscopy Methods 0.000 description 13
- 239000000243 solution Substances 0.000 description 9
- 238000001020 plasma etching Methods 0.000 description 8
- 229910004298 SiO 2 Inorganic materials 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000000872 buffer Substances 0.000 description 5
- 239000007853 buffer solution Substances 0.000 description 5
- 238000000206 photolithography Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 239000013078 crystal Substances 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000001039 wet etching Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Substances [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- -1 argon ions Chemical class 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 238000000427 thin-film deposition Methods 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01Q—SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
- G01Q60/00—Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
- G01Q60/10—STM [Scanning Tunnelling Microscopy] or apparatus therefor, e.g. STM probes
- G01Q60/16—Probes, their manufacture, or their related instrumentation, e.g. holders
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y35/00—Methods or apparatus for measurement or analysis of nanostructures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01Q—SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
- G01Q60/00—Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
- G01Q60/02—Multiple-type SPM, i.e. involving more than one SPM techniques
- G01Q60/04—STM [Scanning Tunnelling Microscopy] combined with AFM [Atomic Force Microscopy]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01Q—SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
- G01Q60/00—Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
- G01Q60/24—AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
- G01Q60/38—Probes, their manufacture, or their related instrumentation, e.g. holders
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Analytical Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- ing And Chemical Polishing (AREA)
- Weting (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は、自由端にチップ、固定端に取り付けブロック
を備えた片持ばりから構成されたAFM/STMのプロファイ
ル測定、即ちプロフィロメトリ用、のマイクロメカニカ
ルセンサを製造する方法に関する。
を備えた片持ばりから構成されたAFM/STMのプロファイ
ル測定、即ちプロフィロメトリ用、のマイクロメカニカ
ルセンサを製造する方法に関する。
[従来の技術] 走査トンネル顕微鏡(以下「STM」と略称する)が、極
めて精巧なチップを用いることによる材料の微小特性表
記(microcharacterization)のための新しい技術の開
発を促してきた。これらの技術の1つには、導体や絶縁
体のプロファイルを測定し、像形成しうる可能性を最近
示したアトミック・フォース(atomic force)顕微鏡
(以下「AFM」と略称する)を含む。
めて精巧なチップを用いることによる材料の微小特性表
記(microcharacterization)のための新しい技術の開
発を促してきた。これらの技術の1つには、導体や絶縁
体のプロファイルを測定し、像形成しうる可能性を最近
示したアトミック・フォース(atomic force)顕微鏡
(以下「AFM」と略称する)を含む。
(1986年 Binning G,Quate CF,Gerber Ch,によるAtomic
Force Microscope,Phys.Rev.Lett.56,930〜933頁並び
にヨーロッパ特許出願公開明細書223918号に示されてい
るように)、AFMの初期設計においては、一端でしっか
りと装着され、自由端で誘電チップを担持したばね状片
持ばりから構成されたセンサが対象物の表面のプロファ
イルを測定している。対象物の表面とチップとの間の力
が片持ばりを撓ませ、この撓みを、例えば、STMの一部
である第2のチップにより正確に検出することができ
る。初期段階では3nmの横方向間隔の分解能が達成され
た。
Force Microscope,Phys.Rev.Lett.56,930〜933頁並び
にヨーロッパ特許出願公開明細書223918号に示されてい
るように)、AFMの初期設計においては、一端でしっか
りと装着され、自由端で誘電チップを担持したばね状片
持ばりから構成されたセンサが対象物の表面のプロファ
イルを測定している。対象物の表面とチップとの間の力
が片持ばりを撓ませ、この撓みを、例えば、STMの一部
である第2のチップにより正確に検出することができ
る。初期段階では3nmの横方向間隔の分解能が達成され
た。
別のタイプのAFMは、STM検出の代りに光学的検出を含
む。このタイプにおいては、圧電変換器にワイヤの端部
のタングステンチップを取り付けられている。この変換
器は、片持ばりとして作用するワイヤの共振周波数にお
いてチップを振動させ、レーザヘテロダイン干渉計が交
流振動の振幅を正確に測定する。チップとサンプルとの
間の力勾配がレバーのコンプライアンスを修正し、した
がってレバーの共振のシフトによる振動振幅の変化をも
たらす。レバーの特性が判っていれば、チップの関数、
すなわちサンプルの間隔、として振動の振幅を測定し
て、先の力勾配を導き出し、このようにして力自体を導
き出すことができる。(1986年Duerig UT,Gimzewski J
K,Pohl DWによる「Experimental Observation of Force
s Acting During Scanning Tunneling Microscopy」,Ph
ys.Rev.Lett.57,2403〜2406および1987年Martin Y,Will
iams CC,Wickramasinghe HKによる「Atomic Force Micr
oscope−Force Mapping and Profiling on a sub 100−
A Scala」J.Appl,Phys.61(10),4723〜4729を参照のこ
と) AFMにおける最も重要な構成要素はばね状の片持ばりで
ある。所定の力に対する最大撓みが必要な場合、片持ば
りはできるだけ柔軟である必要がある。同時に、建物か
らの振動ノイズに対する感度を最小とするために高い固
有周波数を有する剛性の片持ばりが必要とされる。通
常、主として建物の振動である周囲の振動は100ヘルツ
以下の程度のものである。もし片持ばりが固有周波数f0
≧10kHzを有するよう選択されたとすれば、周囲の振動
は無視しうる値にまで減衰される。これらの要件を満足
しうるのは以下の二式により表わされる片持ばりの幾何
学的寸法を減少させることによるのみである。
む。このタイプにおいては、圧電変換器にワイヤの端部
のタングステンチップを取り付けられている。この変換
器は、片持ばりとして作用するワイヤの共振周波数にお
いてチップを振動させ、レーザヘテロダイン干渉計が交
流振動の振幅を正確に測定する。チップとサンプルとの
間の力勾配がレバーのコンプライアンスを修正し、した
がってレバーの共振のシフトによる振動振幅の変化をも
たらす。レバーの特性が判っていれば、チップの関数、
すなわちサンプルの間隔、として振動の振幅を測定し
て、先の力勾配を導き出し、このようにして力自体を導
き出すことができる。(1986年Duerig UT,Gimzewski J
K,Pohl DWによる「Experimental Observation of Force
s Acting During Scanning Tunneling Microscopy」,Ph
ys.Rev.Lett.57,2403〜2406および1987年Martin Y,Will
iams CC,Wickramasinghe HKによる「Atomic Force Micr
oscope−Force Mapping and Profiling on a sub 100−
A Scala」J.Appl,Phys.61(10),4723〜4729を参照のこ
と) AFMにおける最も重要な構成要素はばね状の片持ばりで
ある。所定の力に対する最大撓みが必要な場合、片持ば
りはできるだけ柔軟である必要がある。同時に、建物か
らの振動ノイズに対する感度を最小とするために高い固
有周波数を有する剛性の片持ばりが必要とされる。通
常、主として建物の振動である周囲の振動は100ヘルツ
以下の程度のものである。もし片持ばりが固有周波数f0
≧10kHzを有するよう選択されたとすれば、周囲の振動
は無視しうる値にまで減衰される。これらの要件を満足
しうるのは以下の二式により表わされる片持ばりの幾何
学的寸法を減少させることによるのみである。
片持ばりの固有周波数f0は次式により与えられる。
ここでEはヤング弾性係数、Oは密度、Kは1に近い修
正係数で、lは片持ばりの長さ、tは片持ばりの厚さで
ある。
正係数で、lは片持ばりの長さ、tは片持ばりの厚さで
ある。
感度を決める片持ばりのばね常数は次式により与えられ
る。
る。
ここでFは片持ばりの撓みyを発生させる力、Eはヤン
グ弾性係数、wは片持ばりの幅、lは長さ、tは厚さで
ある。ばね常数の項によれば、片持ばりの感度は、片持
ばりの寸法とそれを構成する材料とにそって左右され、
最も感度の高いのは長くて、薄くかつ狭幅の片持ばりの
場合である。片持ばりの幅は横方向の振動が抑制される
に十分大きくあるべきである。また、片持ばりの幅は、
例えばチップのような付加的な構造物をその上で作りう
るような寸法とすべきである。したがって、約10μmの
最小幅wが合理的のようである。実際に、片持ばりの過
度の熱振動を阻止し、かつ測定可能の応答性を得るため
に、誘引力検出の間の不安定性を排除するようCは約1N
/m以上とする必要がある。
グ弾性係数、wは片持ばりの幅、lは長さ、tは厚さで
ある。ばね常数の項によれば、片持ばりの感度は、片持
ばりの寸法とそれを構成する材料とにそって左右され、
最も感度の高いのは長くて、薄くかつ狭幅の片持ばりの
場合である。片持ばりの幅は横方向の振動が抑制される
に十分大きくあるべきである。また、片持ばりの幅は、
例えばチップのような付加的な構造物をその上で作りう
るような寸法とすべきである。したがって、約10μmの
最小幅wが合理的のようである。実際に、片持ばりの過
度の熱振動を阻止し、かつ測定可能の応答性を得るため
に、誘引力検出の間の不安定性を排除するようCは約1N
/m以上とする必要がある。
C=1N/mおよびf0=10kHzを満足する片持ばりの寸法は
例えばl=800μm、w=75μm、t=5.5μmである。
例えばl=800μm、w=75μm、t=5.5μmである。
片持ばりの通常の撓みモードにおいて、10-12N程度の
力を検出することができる。センサヘッドの感度は、19
86年G.Binnig他によるPhys.Pev,Lett,56,930〜933頁に
おいて記載されているように、そのプロファイルを測定
すべき対象物を片持ばりの共振周波数f0で振動させるこ
とによりさらに高めることができる。
力を検出することができる。センサヘッドの感度は、19
86年G.Binnig他によるPhys.Pev,Lett,56,930〜933頁に
おいて記載されているように、そのプロファイルを測定
すべき対象物を片持ばりの共振周波数f0で振動させるこ
とによりさらに高めることができる。
前述のBinnig他の論文並びにヨーロッパ特許出願公開明
細書第223918号によって実現されたAFMにおいては、片
持ばりおよびチップに対する要件は、少量の接着剤を用
いてダイヤモンドの小片を取り付けた、約厚さが25μ
m、長さが800μmおよび幅が250μmの金箔により満足
された。別の提案では、極めて小さい孔を介して材料を
蒸発させることによりその上に微小円錐形物を生長させ
ることができた、極めて質量の小さい薄膜(厚さが1.5
μm)の二酸化シリコン(Sio2)マイクロ片持ばりを構
成するマイクロ製作技術を用いた。(1988年Albrecht T
hRおよびQuate CFによる「Atomic Resolution with the
Atomic Force Microscope on Conductors and Noncond
uctors」J.Vac.Sci.Technol.,271〜274を参照のこ
と。) 当該技術の状況についての前述の説明から第1のプロセ
ス過程において片持ばりを構成し、第2のプロセス過程
において、その上にチップを取り付けることが公知であ
る。当業者には前述のタイプのチップを備えた片持ばり
の構成は極めて微妙であり、歩どまりが低くなりがちで
あることが明らかである。
細書第223918号によって実現されたAFMにおいては、片
持ばりおよびチップに対する要件は、少量の接着剤を用
いてダイヤモンドの小片を取り付けた、約厚さが25μ
m、長さが800μmおよび幅が250μmの金箔により満足
された。別の提案では、極めて小さい孔を介して材料を
蒸発させることによりその上に微小円錐形物を生長させ
ることができた、極めて質量の小さい薄膜(厚さが1.5
μm)の二酸化シリコン(Sio2)マイクロ片持ばりを構
成するマイクロ製作技術を用いた。(1988年Albrecht T
hRおよびQuate CFによる「Atomic Resolution with the
Atomic Force Microscope on Conductors and Noncond
uctors」J.Vac.Sci.Technol.,271〜274を参照のこ
と。) 当該技術の状況についての前述の説明から第1のプロセ
ス過程において片持ばりを構成し、第2のプロセス過程
において、その上にチップを取り付けることが公知であ
る。当業者には前述のタイプのチップを備えた片持ばり
の構成は極めて微妙であり、歩どまりが低くなりがちで
あることが明らかである。
[発明が解決しようとする課題] 本発明の主な目的は、薄膜付着または熱酸化法、写真製
版法およびエッチング法を適当に組み合せて使用するこ
とにより、少ないマスク位置合せによりAFM/STMプロフ
ィロメトリ用マイクロメカニカルセンサのための先鋭状
チップと一体化した薄膜状の片持ばりを製造する方法を
提供することである。
版法およびエッチング法を適当に組み合せて使用するこ
とにより、少ないマスク位置合せによりAFM/STMプロフ
ィロメトリ用マイクロメカニカルセンサのための先鋭状
チップと一体化した薄膜状の片持ばりを製造する方法を
提供することである。
本発明の他の目的は、チップの形成と片持ばりの形成を
実質的に単一のエッチング・ステップによし達成できる
AFM/STMプロフィロメトリ用マイクロメカニカルセンサ
のためのチップと一体化した薄膜状の片持ばりを製造す
る方法を提供することである。
実質的に単一のエッチング・ステップによし達成できる
AFM/STMプロフィロメトリ用マイクロメカニカルセンサ
のためのチップと一体化した薄膜状の片持ばりを製造す
る方法を提供することである。
本発明の他の目的は、ウェファ上の無機材料層の表面に
形成されたエッチング・マスク・パターンの中間マスク
を全面エッチングにより前記無機材料層のより深いレベ
ルに転写したマスクを使用することにより、効率よく、
AFM/STMプロフィロメトリ用マイクロメカニカルセンサ
のためのチップと一体化した薄膜状の片持ばりを製造す
る方法を提供することである。
形成されたエッチング・マスク・パターンの中間マスク
を全面エッチングにより前記無機材料層のより深いレベ
ルに転写したマスクを使用することにより、効率よく、
AFM/STMプロフィロメトリ用マイクロメカニカルセンサ
のためのチップと一体化した薄膜状の片持ばりを製造す
る方法を提供することである。
[課題を解決するための手段] 本発明の構成は次の通りである。
1.自由端に先細り状のチップおよび固定端に取り付け用
のウェファ・ブロックが一体に形成されている薄膜状の
片持ばりから構成されるAFM/STMプロフィロメトリ用マ
イクロメカニカルセンサの製造方法において、 (イ)平板状のウェファの上面および底面を、各々、上
面無機材料層および底面無機材料層で被覆する工程、 (ロ)前記各無機材料層の各表面上に順次に形成された
片持ばりパターンおよび開口パターンを、各々、有する
上面および底面の各フオトレジスト層をマスクとして、
エッチングすることにより、前記上面無機材料層の表面
の浅いレベルに前記片持ばりパターンを転写して片持ば
りの中間マスクを形成すると共に前記底面無機材料層の
中にウェファ底面を露出する深さに前記開口パターンを
形成する工程、 (ハ)前記片持ばりパターンが表面に転写されている前
記上面無機材料層をフォトレジスト層で平坦化する工
程、 (ニ)片持ばりの自由端に対応する前記片持ばりパター
ンの位置において前記平坦化フォトレジスト層中にチッ
プ・パターンを画成してチップ用のフォトレジスト・マ
スクを形成する工程、 (ホ)前記片持ばり中間マスク上において片持ばりの自
由端に対応する位置に前記チップ用フォトレジスト・マ
スクを有する前記上面無機材料層の表面全体を無機材料
エッチング雰囲気に置き、前記中間マスクを規定する隣
接した無機材料層部分がエッチング除去されてウェファ
上面が露出される迄、前記上面無機材料の表面をエッチ
ングして前記チップのパターンを浅いレベルに、かつ、
前記中間マスクのパターンを深いレベルに転写し、その
際、前記チップ用フォトレジスト・マスクの下方の無機
材料をアンダカットして先細り状のチップを有する無機
材料の薄膜状の片持ばりを形成する工程、 (ヘ)前記開口パターンを有する前記底面無機材料層を
マスクとして前記ウェファ底面を異方性湿式エッチング
雰囲気に露出して前記開口に対応する区域のウェファを
前記ウェファ上面に達するまでエッチング除去する工
程、 とより成るマイクロメカニカルセンサの製造方法。
のウェファ・ブロックが一体に形成されている薄膜状の
片持ばりから構成されるAFM/STMプロフィロメトリ用マ
イクロメカニカルセンサの製造方法において、 (イ)平板状のウェファの上面および底面を、各々、上
面無機材料層および底面無機材料層で被覆する工程、 (ロ)前記各無機材料層の各表面上に順次に形成された
片持ばりパターンおよび開口パターンを、各々、有する
上面および底面の各フオトレジスト層をマスクとして、
エッチングすることにより、前記上面無機材料層の表面
の浅いレベルに前記片持ばりパターンを転写して片持ば
りの中間マスクを形成すると共に前記底面無機材料層の
中にウェファ底面を露出する深さに前記開口パターンを
形成する工程、 (ハ)前記片持ばりパターンが表面に転写されている前
記上面無機材料層をフォトレジスト層で平坦化する工
程、 (ニ)片持ばりの自由端に対応する前記片持ばりパター
ンの位置において前記平坦化フォトレジスト層中にチッ
プ・パターンを画成してチップ用のフォトレジスト・マ
スクを形成する工程、 (ホ)前記片持ばり中間マスク上において片持ばりの自
由端に対応する位置に前記チップ用フォトレジスト・マ
スクを有する前記上面無機材料層の表面全体を無機材料
エッチング雰囲気に置き、前記中間マスクを規定する隣
接した無機材料層部分がエッチング除去されてウェファ
上面が露出される迄、前記上面無機材料の表面をエッチ
ングして前記チップのパターンを浅いレベルに、かつ、
前記中間マスクのパターンを深いレベルに転写し、その
際、前記チップ用フォトレジスト・マスクの下方の無機
材料をアンダカットして先細り状のチップを有する無機
材料の薄膜状の片持ばりを形成する工程、 (ヘ)前記開口パターンを有する前記底面無機材料層を
マスクとして前記ウェファ底面を異方性湿式エッチング
雰囲気に露出して前記開口に対応する区域のウェファを
前記ウェファ上面に達するまでエッチング除去する工
程、 とより成るマイクロメカニカルセンサの製造方法。
自由端に先細り状のチップおよび固定端に取り付け用の
ウェファ・ブロックが一体に形成されている薄膜状のウ
ェファ材料の片持ばりから構成されるAFM/STM用プロフ
ィロメトリ用マイクロメカニカルセンサの製造方法にお
いて、 (イ)平板状のウェファの上面および底面を、各々、上
面無機材料層および下面無機材料層で被覆する工程、 (ロ)前記各無機材料層の各表面上に順次に形成された
片持ばりパターンおよび開口パターンを、各々、有する
上面および底面の各フォトレジスト層をマスクとして、
エッチングすることにより、前記上面無機材料層の表面
の浅いレベルに前記片持ばりパターンを転写して片持ば
りの中間マスクを形成すると共に前記底面無機材料層の
中にウェファ底面を露出する深さに前記開口パターンを
形成する工程、 (ハ)前記片持ばりの中間マスクが形成されている前記
上面無機材料層上にフォトレジスト層を塗布し、該フォ
トレジスト層中に、前記中間マスクの片持ばりの自由端
に対応する位置においてチップ・パターンを画成してチ
ップ用のフォトレジスト・マスクを形成する工程、 (ニ)前記チップ用フォトレジスト・マスクが形成され
ている前記上面無機材料層の表面全体を無機材料エッチ
ング雰囲気に露出してエッチングすることにより、前記
チップ用パターンを前記上面無機材料の表面の浅いレベ
ルに転写してチップ・マスクを形成すると同時に前記中
間マスクの片持ばりパターンを深いレベルに転写する工
程、 (ホ)前記チップ用フォトレジスト・マスクを除去した
後、前記上面無機材料層の表面全体を無機材料エッチン
グ雰囲気に露出し、中間マスクの片持ばりパターンを規
定する隣接した上面無機材料層部分がエッチング除去さ
れてウェファ上面が露出される迄、前記上面無機材料層
を全面エッチングして前記チップ・マスクのパターンを
深いレベルにおよび前記片持ばりマスクのパターンをよ
り深いレベルに転写する工程、 (ヘ)前記ウェファの露出上面を異方性湿式エッチング
液に曝らして片持ばりの所定の厚さに対応する深さまで
ウェファを除去する工程、 (ト)前記ウェファ露出上面を含む前記上面無機材料層
を無機材料エッチング雰囲気に曝らし、前記より深いレ
ベルに転写されている片持ばりマスクがエッチング除去
される迄、全面エッチングして前記チップ・マスクのパ
ターンをより深いレベルに転写する工程、 (チ)前記より深いレベルのチップ・マスクを有するウ
ェファ上面を異方性湿式エッチング液に曝らし、異方性
エッチング作用およびアンダカット作用の下にチップを
先鋭状に成形する工程、 とより成るマイクロメカニカルセンサの製造方法。
ウェファ・ブロックが一体に形成されている薄膜状のウ
ェファ材料の片持ばりから構成されるAFM/STM用プロフ
ィロメトリ用マイクロメカニカルセンサの製造方法にお
いて、 (イ)平板状のウェファの上面および底面を、各々、上
面無機材料層および下面無機材料層で被覆する工程、 (ロ)前記各無機材料層の各表面上に順次に形成された
片持ばりパターンおよび開口パターンを、各々、有する
上面および底面の各フォトレジスト層をマスクとして、
エッチングすることにより、前記上面無機材料層の表面
の浅いレベルに前記片持ばりパターンを転写して片持ば
りの中間マスクを形成すると共に前記底面無機材料層の
中にウェファ底面を露出する深さに前記開口パターンを
形成する工程、 (ハ)前記片持ばりの中間マスクが形成されている前記
上面無機材料層上にフォトレジスト層を塗布し、該フォ
トレジスト層中に、前記中間マスクの片持ばりの自由端
に対応する位置においてチップ・パターンを画成してチ
ップ用のフォトレジスト・マスクを形成する工程、 (ニ)前記チップ用フォトレジスト・マスクが形成され
ている前記上面無機材料層の表面全体を無機材料エッチ
ング雰囲気に露出してエッチングすることにより、前記
チップ用パターンを前記上面無機材料の表面の浅いレベ
ルに転写してチップ・マスクを形成すると同時に前記中
間マスクの片持ばりパターンを深いレベルに転写する工
程、 (ホ)前記チップ用フォトレジスト・マスクを除去した
後、前記上面無機材料層の表面全体を無機材料エッチン
グ雰囲気に露出し、中間マスクの片持ばりパターンを規
定する隣接した上面無機材料層部分がエッチング除去さ
れてウェファ上面が露出される迄、前記上面無機材料層
を全面エッチングして前記チップ・マスクのパターンを
深いレベルにおよび前記片持ばりマスクのパターンをよ
り深いレベルに転写する工程、 (ヘ)前記ウェファの露出上面を異方性湿式エッチング
液に曝らして片持ばりの所定の厚さに対応する深さまで
ウェファを除去する工程、 (ト)前記ウェファ露出上面を含む前記上面無機材料層
を無機材料エッチング雰囲気に曝らし、前記より深いレ
ベルに転写されている片持ばりマスクがエッチング除去
される迄、全面エッチングして前記チップ・マスクのパ
ターンをより深いレベルに転写する工程、 (チ)前記より深いレベルのチップ・マスクを有するウ
ェファ上面を異方性湿式エッチング液に曝らし、異方性
エッチング作用およびアンダカット作用の下にチップを
先鋭状に成形する工程、 とより成るマイクロメカニカルセンサの製造方法。
[実施例] 本発明の実施例数例の詳細を添付図面を参照して以下説
明する。
明する。
第1図を参照すれば、圧電バイモルフ4に強固に接着さ
れている取り付け用のウェファ・ブロック3を固定端で
一体に担持し、その自由端で先細り状、すなわち、先鋭
状のチップ2を一体に担持する片持ばり1が示されてい
る。一体化された片持ばり1とチップ2とは、たとえ
ば、SiO2,Si3N4,Sic,純粋の、もしくは、ドーピングし
た単結晶シリコンまたは単結晶シリコンのような半導体
結晶を無機材料から構成すればよい。
れている取り付け用のウェファ・ブロック3を固定端で
一体に担持し、その自由端で先細り状、すなわち、先鋭
状のチップ2を一体に担持する片持ばり1が示されてい
る。一体化された片持ばり1とチップ2とは、たとえ
ば、SiO2,Si3N4,Sic,純粋の、もしくは、ドーピングし
た単結晶シリコンまたは単結晶シリコンのような半導体
結晶を無機材料から構成すればよい。
第1の例においては、好ましくはSiO2である無機材料の
層が、好ましくは(110)面の平板状のシリコンウェフ
ァの両面上に形成される。第1および第2の2つの写真
製版マスクにより、先ず、片持ばりとチップのパターン
がフォトレジスト上に作像され、現象され、次に、これ
らのパターンを適当な湿式または乾式のエッチング処理
ステップにおいてSiO2層に転写してエッチング・マスク
を形成し、このマスクを利用してこのSiO2層に片持ばり
およびチップを一体に形成する。
層が、好ましくは(110)面の平板状のシリコンウェフ
ァの両面上に形成される。第1および第2の2つの写真
製版マスクにより、先ず、片持ばりとチップのパターン
がフォトレジスト上に作像され、現象され、次に、これ
らのパターンを適当な湿式または乾式のエッチング処理
ステップにおいてSiO2層に転写してエッチング・マスク
を形成し、このマスクを利用してこのSiO2層に片持ばり
およびチップを一体に形成する。
第2A図から第2E図までに示す例1についての以下の詳細
なプロセス説明から明らかになるように、上記プロセス
順序を成功させるためにある種の技術が必要とされる。
なプロセス説明から明らかになるように、上記プロセス
順序を成功させるためにある種の技術が必要とされる。
第2A図は、本発明の製造方法を適用する最初の層構造体
を示す。(110)面の平板状のシリコンウェファ21の上
面および底面が二酸化シリコンのような無機材料の層で
被覆される。たとえば、ウェファ上面には上面二酸化シ
リコン(SiO2)層23が化学気相成長法で付着される。こ
の上面二酸化シリコン層の厚さは約10μmであるのが好
ましい。ウェファ底面には、約1〜2μmの厚さの底面
二酸化シリコン層22が付着される。次に、約3μmの厚
さのフォトレジスト層24が上面二酸化シリコン層23上に
塗布される。
を示す。(110)面の平板状のシリコンウェファ21の上
面および底面が二酸化シリコンのような無機材料の層で
被覆される。たとえば、ウェファ上面には上面二酸化シ
リコン(SiO2)層23が化学気相成長法で付着される。こ
の上面二酸化シリコン層の厚さは約10μmであるのが好
ましい。ウェファ底面には、約1〜2μmの厚さの底面
二酸化シリコン層22が付着される。次に、約3μmの厚
さのフォトレジスト層24が上面二酸化シリコン層23上に
塗布される。
この目的に対して、たとえばシプレイ社(Shipley Comp
any)のAZ1350Jのような周知のポジティブ作用のフォト
レジストあるいはネガティブ作用のフォトレジストを用
いることができる。
any)のAZ1350Jのような周知のポジティブ作用のフォト
レジストあるいはネガティブ作用のフォトレジストを用
いることができる。
第1の写真製版ステップにおいて、片持ばりパターン
(図示せず)がフォトレジスト層24に作像されて現象
(以下、画成と称する)される。このフォトレジスト層
24の厚さは約3μmである。次に、この片持ばりのフォ
トレジスト・パターンは、二酸化シリコンのエッチング
液であるフッ化水素酸緩衝液を用いた湿式エッチング、
または1〜10マイクロバールのCF4ガスを用いた反応性
エッチングによる第1のエッチング・ステップにおい
て、フォトレジスト・マスクとして働き、厚さが10μm
の上面二酸化シリコン層23の露出表面が約3μmの深さ
までエッチングされる。第1エッチング・ステップは、
片持ばりパターンをフォトレジスト層24から上面二酸化
シリコン層23の表面の浅いレベルへ転写して片持ばりの
二酸化シリコン・パターン、すなわち、片持ばりマスク
25を形成するステップである。この浅いレベルのパター
ンは、後述する第2の全面エッチング・ステップにおい
て、より深いレベルに転写される。したがって、浅いレ
ベルのパターンを有する二酸化シリコンの片持ばりマス
クは、「中間マスク」として機能する。
(図示せず)がフォトレジスト層24に作像されて現象
(以下、画成と称する)される。このフォトレジスト層
24の厚さは約3μmである。次に、この片持ばりのフォ
トレジスト・パターンは、二酸化シリコンのエッチング
液であるフッ化水素酸緩衝液を用いた湿式エッチング、
または1〜10マイクロバールのCF4ガスを用いた反応性
エッチングによる第1のエッチング・ステップにおい
て、フォトレジスト・マスクとして働き、厚さが10μm
の上面二酸化シリコン層23の露出表面が約3μmの深さ
までエッチングされる。第1エッチング・ステップは、
片持ばりパターンをフォトレジスト層24から上面二酸化
シリコン層23の表面の浅いレベルへ転写して片持ばりの
二酸化シリコン・パターン、すなわち、片持ばりマスク
25を形成するステップである。この浅いレベルのパター
ンは、後述する第2の全面エッチング・ステップにおい
て、より深いレベルに転写される。したがって、浅いレ
ベルのパターンを有する二酸化シリコンの片持ばりマス
クは、「中間マスク」として機能する。
前述の第1の写真製版およびエッチングの各ステップの
間、ウェファ底面上の底面二酸化シリコン層22について
も同様の処理プロセスが実行され、長方形の開口26が上
面二酸化シリコン層23中の片持ばりマスクのパターンと
整合した状態で底面二酸化シリコン層22内に形成され
る。次に、フォトレジスト・マスクが上面および底面の
各二酸化シリコン層23、22上から除去される。その結
果、第2B図に示す構造体が得られる。
間、ウェファ底面上の底面二酸化シリコン層22について
も同様の処理プロセスが実行され、長方形の開口26が上
面二酸化シリコン層23中の片持ばりマスクのパターンと
整合した状態で底面二酸化シリコン層22内に形成され
る。次に、フォトレジスト・マスクが上面および底面の
各二酸化シリコン層23、22上から除去される。その結
果、第2B図に示す構造体が得られる。
片持ばりマスク25のパターンが転写されている上面二酸
化シリコン層23の表面全体に亘って約5μmの厚さのフ
ォトレジスト層27が塗布されて表面を平坦化する(第2C
図)。フォトレジスト層による平坦化が片持ばり形成後
のチップマスクの画成のためではなくて、片持ばり形成
前のチップマスクの画成のためであることは注目すべき
である。その理由は、片持ばりマスク25のパターンが高
低差の小さい単一レベルであり、したがって、比較的薄
いフォトレジスト層で容易に平坦化できるからである。
化シリコン層23の表面全体に亘って約5μmの厚さのフ
ォトレジスト層27が塗布されて表面を平坦化する(第2C
図)。フォトレジスト層による平坦化が片持ばり形成後
のチップマスクの画成のためではなくて、片持ばり形成
前のチップマスクの画成のためであることは注目すべき
である。その理由は、片持ばりマスク25のパターンが高
低差の小さい単一レベルであり、したがって、比較的薄
いフォトレジスト層で容易に平坦化できるからである。
次に、片持ばり上でのチップ29の一体的な形成について
説明する。第2の写真製版ステップにおいて、前記フォ
トレジスト層27の前記片持ばりマスク25上の所定位置
に、チップ29形成用のフォトレジスト・パターン28が画
成される(第2D図)。
説明する。第2の写真製版ステップにおいて、前記フォ
トレジスト層27の前記片持ばりマスク25上の所定位置
に、チップ29形成用のフォトレジスト・パターン28が画
成される(第2D図)。
第2のエッチング・ステップにおいて、第2D図に示され
た形態の二酸化シリコン層23の表面全体を湿式または反
応性イオンのエッチング雰囲気に露出すると、前記フォ
トレジスト・パターン28を、チップ29形成用のマスクと
して、二酸化シリコン層23の表面全体に亘って一様にエ
ッチングが起こる。このエッチングが進行するにつれ
て、上面二酸化シリコン層23は、フォトレジスト・マス
ク28の部分を除いて、均一の厚さだけ薄くなり、その結
果、片持ばりマスク25を含む露出表面の形状が深いレベ
ルへ転写されたことになる。
た形態の二酸化シリコン層23の表面全体を湿式または反
応性イオンのエッチング雰囲気に露出すると、前記フォ
トレジスト・パターン28を、チップ29形成用のマスクと
して、二酸化シリコン層23の表面全体に亘って一様にエ
ッチングが起こる。このエッチングが進行するにつれ
て、上面二酸化シリコン層23は、フォトレジスト・マス
ク28の部分を除いて、均一の厚さだけ薄くなり、その結
果、片持ばりマスク25を含む露出表面の形状が深いレベ
ルへ転写されたことになる。
片持ばりマスク25のパターン(凸部)を指定する隣接し
た上面二酸化シリコン層部分(周辺の凹部)がエッチン
グ除去されてウェファ上面があ露出し始めた時点では、
片持ばりマスク25のパターンの上面二酸化シリコン層23
のみしか残存していないことは容易に理解できるであろ
う。換言すれば、二酸化シリコンの片持ばりのマスク25
は、このマスク・パターン以外の二酸化シリコン層23の
部分を後続のエッチング・ステップにおいて除去するた
めの「中間マスク」として機能しているといえる。この
二酸化シリコン層の「中間マスク」と、二酸化シリコン
層のチップ29を形成するためのフォトレジスト・マスク
との二種類のマスクが単一のエッチング・ステップで用
いられていることに注目されたい。
た上面二酸化シリコン層部分(周辺の凹部)がエッチン
グ除去されてウェファ上面があ露出し始めた時点では、
片持ばりマスク25のパターンの上面二酸化シリコン層23
のみしか残存していないことは容易に理解できるであろ
う。換言すれば、二酸化シリコンの片持ばりのマスク25
は、このマスク・パターン以外の二酸化シリコン層23の
部分を後続のエッチング・ステップにおいて除去するた
めの「中間マスク」として機能しているといえる。この
二酸化シリコン層の「中間マスク」と、二酸化シリコン
層のチップ29を形成するためのフォトレジスト・マスク
との二種類のマスクが単一のエッチング・ステップで用
いられていることに注目されたい。
前記エッチングにおいては、半導体分野でよく知られて
いる酸化シリコン・エッチング液、たとえば、フッ化水
素酸緩衝液、のアンダカット作用を利用することによ
り、フォトレジスト・パターン28に向って先細り状、す
なわち、先鋭状、で高さが約5〜7μmの二酸化シリコ
ン・チップ29を二酸化シリコン層状の片持ばりと一体に
形成できる(第2E図)。反応性イオン・エッチングの場
合には、約100マイクロバールのCF4をエッチングガスと
して使用する異方性エッチング雰囲気において、たとえ
ば、方向性エッチングを併用することにそり、同様なア
ンダカット・エッチングを達成できる。
いる酸化シリコン・エッチング液、たとえば、フッ化水
素酸緩衝液、のアンダカット作用を利用することによ
り、フォトレジスト・パターン28に向って先細り状、す
なわち、先鋭状、で高さが約5〜7μmの二酸化シリコ
ン・チップ29を二酸化シリコン層状の片持ばりと一体に
形成できる(第2E図)。反応性イオン・エッチングの場
合には、約100マイクロバールのCF4をエッチングガスと
して使用する異方性エッチング雰囲気において、たとえ
ば、方向性エッチングを併用することにそり、同様なア
ンダカット・エッチングを達成できる。
二酸化シリコン片持ばりマスク25とチップ29とを除いて
シリコンウェファ21の上面を覆う全ての二酸化シリコン
が除去されてしまう程度まで二酸化シリコンの「中間マ
スク」(すなわち、片持ばりマスク)25、と二酸化シリ
コン層23とがエッチングされたとき反応性イオン・エッ
チングは停止する(第2E図)。次に、残存フォトレジス
ト28が除去され、必要に応じチップ29がアルゴンイオン
のミリング加工により鋭くされる。
シリコンウェファ21の上面を覆う全ての二酸化シリコン
が除去されてしまう程度まで二酸化シリコンの「中間マ
スク」(すなわち、片持ばりマスク)25、と二酸化シリ
コン層23とがエッチングされたとき反応性イオン・エッ
チングは停止する(第2E図)。次に、残存フォトレジス
ト28が除去され、必要に応じチップ29がアルゴンイオン
のミリング加工により鋭くされる。
第3A図から第3C図までは前述の方法の側面図であって、
第3A図は第2A図に、第3B図は第2B図に、第3C図は第2E図
に対応する。第3D図に示すように、チップ39を備えた二
酸化シリコン片持ばり35を支持するシリコンウェファ31
は、開口36を介してKOH水溶液を使用する異方性シリコ
ン湿式エッチング液に露出することにより、取り付け用
ブロック部分を除くすべてがウェファの底面から除去さ
れる。支持ウェファとして(100)面または(110)面ウ
ェファを用いることが好ましい。第3B図に示されたステ
ップにおいて底面の二酸化シリコン層32内に形成するウ
ェファ・エッチング用の長方形の開口36の向きおよび大
きさは、(110)面ウェファの場合、開口の各辺が(11
1)面と整列するように、選択される。このようにすれ
ば、エッチング速度の極めて大きい(111)面が優先的
にエッチングされて異方性エッチングが達成される。
第3A図は第2A図に、第3B図は第2B図に、第3C図は第2E図
に対応する。第3D図に示すように、チップ39を備えた二
酸化シリコン片持ばり35を支持するシリコンウェファ31
は、開口36を介してKOH水溶液を使用する異方性シリコ
ン湿式エッチング液に露出することにより、取り付け用
ブロック部分を除くすべてがウェファの底面から除去さ
れる。支持ウェファとして(100)面または(110)面ウ
ェファを用いることが好ましい。第3B図に示されたステ
ップにおいて底面の二酸化シリコン層32内に形成するウ
ェファ・エッチング用の長方形の開口36の向きおよび大
きさは、(110)面ウェファの場合、開口の各辺が(11
1)面と整列するように、選択される。このようにすれ
ば、エッチング速度の極めて大きい(111)面が優先的
にエッチングされて異方性エッチングが達成される。
このようにして、自由端にチップ39が一体に形成され、
固定端に取り付け用のウェファ・ブロックが一体に形成
されている薄膜状の片持ばり35が製造される。このウェ
ファ・ブロックは第1図のブロック3に相当し、後で圧
電バイモルク4へ接着される。
固定端に取り付け用のウェファ・ブロックが一体に形成
されている薄膜状の片持ばり35が製造される。このウェ
ファ・ブロックは第1図のブロック3に相当し、後で圧
電バイモルク4へ接着される。
本発明の方法の第2の例を第4A図から第4F図までを参照
して説明する。
して説明する。
この例は、たとえば、既に物理的素子が形成されている
三次元に構成した半導体(たとえば、シリコン結晶)の
ウェファ基板上に片持ばりおよびチップを一体的に追加
する製造方法に関する。この方法では、たとえば、可撓
性で、かつ脆性の片持ばりに、次いで露光するためのフ
ォトレジストをコーティングする必要のある場合に、問
題が発生する。これらの問題は、基板上に形成されるマ
スクが、次の基板エッチング・ステップにおける全ての
関連パターンを含むように構成されれば解決される。こ
のことは、全ての写真製版ステップにおける一連の中間
構造体が基板エッチングを行う前に1個ずつマスクへエ
ッチングされることを意味する。その後、この情報は順
次マスクから基板へ転写される。2つの一連の基板エッ
チングステップの間に、付加的な写真製版ステップを必
要としないマスクエッチングステップが介在する。この
多重ステップマスクは従来のプレーナ技術により作るこ
とができる。別の利点は、マスクの厚さは単に数μmで
あるのでフォトレジストの被覆と露光とに関しては問題
の無いことである。この方法の利点は、それぞれ湿式ま
たは乾式あるいはその両方のエッチングステップから構
成しうる基板エッチング方法においてマスク対基板の間
で高い選択性があることにより得られる。
三次元に構成した半導体(たとえば、シリコン結晶)の
ウェファ基板上に片持ばりおよびチップを一体的に追加
する製造方法に関する。この方法では、たとえば、可撓
性で、かつ脆性の片持ばりに、次いで露光するためのフ
ォトレジストをコーティングする必要のある場合に、問
題が発生する。これらの問題は、基板上に形成されるマ
スクが、次の基板エッチング・ステップにおける全ての
関連パターンを含むように構成されれば解決される。こ
のことは、全ての写真製版ステップにおける一連の中間
構造体が基板エッチングを行う前に1個ずつマスクへエ
ッチングされることを意味する。その後、この情報は順
次マスクから基板へ転写される。2つの一連の基板エッ
チングステップの間に、付加的な写真製版ステップを必
要としないマスクエッチングステップが介在する。この
多重ステップマスクは従来のプレーナ技術により作るこ
とができる。別の利点は、マスクの厚さは単に数μmで
あるのでフォトレジストの被覆と露光とに関しては問題
の無いことである。この方法の利点は、それぞれ湿式ま
たは乾式あるいはその両方のエッチングステップから構
成しうる基板エッチング方法においてマスク対基板の間
で高い選択性があることにより得られる。
第4A図に示すように、(100)シリコンウェファ41は両
面が二酸化シリコンで被覆される。ウェファの上面およ
び底面上の酸化物層43および42は約3μmの厚さの層と
なるまで熱成長する。最初の写真製版ステップにおい
て、片持ばりマスク45および長方形の開口46に対応する
各パターンがフォトレジスト層に画成される。この目的
に対して、AZ1350のポジティブフォトレジストがウェフ
ァ両面の各二酸化シリコン層42および43上に塗付され
る。ウェファ両面上のフォトレジスト層は同時に露光さ
れ、かつ現像される。エッチングにより、片持ばりパタ
ーンがフォトレジスト層から二酸化シリコン層43の表面
に転写され終るまでの時間だけ、二酸化シリコンの両層
が通常の二酸化シリコン・エッチング液であるフッ化水
素酸緩衝液あるいは反応性イオン・エッチングに曝らさ
れてエッチングされる。次に、ウェファ上面が焼付けし
たフォトレジスト層により保護され、さらに、ウェファ
底面に残存している酸化物層42に関してフッ化水素酸緩
衝液中でエッチングが続行されて、残存酸化物層42が除
去される。その結果得られた構造体を第4A図に示す。
面が二酸化シリコンで被覆される。ウェファの上面およ
び底面上の酸化物層43および42は約3μmの厚さの層と
なるまで熱成長する。最初の写真製版ステップにおい
て、片持ばりマスク45および長方形の開口46に対応する
各パターンがフォトレジスト層に画成される。この目的
に対して、AZ1350のポジティブフォトレジストがウェフ
ァ両面の各二酸化シリコン層42および43上に塗付され
る。ウェファ両面上のフォトレジスト層は同時に露光さ
れ、かつ現像される。エッチングにより、片持ばりパタ
ーンがフォトレジスト層から二酸化シリコン層43の表面
に転写され終るまでの時間だけ、二酸化シリコンの両層
が通常の二酸化シリコン・エッチング液であるフッ化水
素酸緩衝液あるいは反応性イオン・エッチングに曝らさ
れてエッチングされる。次に、ウェファ上面が焼付けし
たフォトレジスト層により保護され、さらに、ウェファ
底面に残存している酸化物層42に関してフッ化水素酸緩
衝液中でエッチングが続行されて、残存酸化物層42が除
去される。その結果得られた構造体を第4A図に示す。
第2の写真製版ステップにおいて、チップのパターンが
二酸化シリコンの片持ばりマスク45上に新しく塗布され
たフォトレジスト層(図示せず)において画成される。
シリコン酸化物層43の表面全体をフッ化水素酸緩衝液ま
たは反応性イオン・エッチング雰囲気に露出してエッチ
ングすることにより、チップ形成用のフォトレジスト・
パターンが二酸化シリコン層43の片持ばりマスク45上に
転写され、チップ・マスク・パターン48を二酸化シリコ
ン層43内に形成する。この全面的エッチングの間、片持
ばりマスク45のパターンが層43のより深いレベルまで転
写され、このパターン以外の残りは二酸化シリコン層43
の厚さも対応して減少する。ウェファの底面はこのステ
ップの間、焼付けしたフォトレジスト層により保護され
る。このように、フォトレジスト・パターンから順次に
二酸化シリコン層へ転写されて形成された二酸化シリコ
ンのマスク構造体45および48を第4B図に示す。
二酸化シリコンの片持ばりマスク45上に新しく塗布され
たフォトレジスト層(図示せず)において画成される。
シリコン酸化物層43の表面全体をフッ化水素酸緩衝液ま
たは反応性イオン・エッチング雰囲気に露出してエッチ
ングすることにより、チップ形成用のフォトレジスト・
パターンが二酸化シリコン層43の片持ばりマスク45上に
転写され、チップ・マスク・パターン48を二酸化シリコ
ン層43内に形成する。この全面的エッチングの間、片持
ばりマスク45のパターンが層43のより深いレベルまで転
写され、このパターン以外の残りは二酸化シリコン層43
の厚さも対応して減少する。ウェファの底面はこのステ
ップの間、焼付けしたフォトレジスト層により保護され
る。このように、フォトレジスト・パターンから順次に
二酸化シリコン層へ転写されて形成された二酸化シリコ
ンのマスク構造体45および48を第4B図に示す。
次に、シリコンウェファ41は、片持ばりの厚さの約2倍
に、チップの高さの2倍を加え、かつ残りの約10μmの
厚さを加えたものに相当する厚さに達するまで底面から
通常の湿式シリコンエッチングを行うことにより薄くさ
れる。たとえば、約80℃で約37.5重量パターンの水酸化
カリウム(KOH)水溶液を用いるシリコン・エッチング
は(111)面に対して優先的エッチングであり、したが
って、異方性てある。その結果得られた構造体を第4C図
に示す。
に、チップの高さの2倍を加え、かつ残りの約10μmの
厚さを加えたものに相当する厚さに達するまで底面から
通常の湿式シリコンエッチングを行うことにより薄くさ
れる。たとえば、約80℃で約37.5重量パターンの水酸化
カリウム(KOH)水溶液を用いるシリコン・エッチング
は(111)面に対して優先的エッチングであり、したが
って、異方性てある。その結果得られた構造体を第4C図
に示す。
第4C図に示された片持ばり用およびチップ用の各マスク
構造体45および48を有する二酸化シリコン層43の表面全
体が、二酸化シリコンのエッチング液、たとえばフッ化
水素酸緩衝液、または反応性イオン・エッチング雰囲気
に均一に露出されて略均一の厚さだけエッチングされ
る。この結果、マスク構造体の各マスクのパターンが徐
々に二酸化シリコン層43の下部に向って転写されること
になる。この二酸化シリコンのエッチングは、片持ばり
マスク45に隣接した二酸化シリコン区域49が除去されて
ウェファ41の表面が露出された時点で停止する。このエ
ッチング停止時点における二酸化シリコン層43は、第4C
図の構造体に比べて、区域49の厚さだけ、全面的に薄く
なっているが同一パターンのマスク構造体45および48を
保持している一方、除去された区域49に相当する開口を
介してウェファ41の表面を露出していることが容易に理
解できるであろう(第4D図の二酸化シリコン層43の形態
を参照されたい)。
構造体45および48を有する二酸化シリコン層43の表面全
体が、二酸化シリコンのエッチング液、たとえばフッ化
水素酸緩衝液、または反応性イオン・エッチング雰囲気
に均一に露出されて略均一の厚さだけエッチングされ
る。この結果、マスク構造体の各マスクのパターンが徐
々に二酸化シリコン層43の下部に向って転写されること
になる。この二酸化シリコンのエッチングは、片持ばり
マスク45に隣接した二酸化シリコン区域49が除去されて
ウェファ41の表面が露出された時点で停止する。このエ
ッチング停止時点における二酸化シリコン層43は、第4C
図の構造体に比べて、区域49の厚さだけ、全面的に薄く
なっているが同一パターンのマスク構造体45および48を
保持している一方、除去された区域49に相当する開口を
介してウェファ41の表面を露出していることが容易に理
解できるであろう(第4D図の二酸化シリコン層43の形態
を参照されたい)。
次に、前述のようにエッチング処理された二酸化シリコ
ン層43の表面をシリコン・エッチング液、たとえばKOH
水溶液、に露出すると前記区域49に対応する開口を介し
てウェファ41の表面がエッチングされる。このようにし
て、片持ばりマスク45のパターンがウェファ41に転写さ
れる。シリコン・ウェファのエッチングは、所望のシリ
コン片持ばりの厚さに対応する深さだけ行なう。同時
に、ウェファ41は底面からもエッチングされてもよい。
この結果、得られた構造体を第4D図に示す。
ン層43の表面をシリコン・エッチング液、たとえばKOH
水溶液、に露出すると前記区域49に対応する開口を介し
てウェファ41の表面がエッチングされる。このようにし
て、片持ばりマスク45のパターンがウェファ41に転写さ
れる。シリコン・ウェファのエッチングは、所望のシリ
コン片持ばりの厚さに対応する深さだけ行なう。同時
に、ウェファ41は底面からもエッチングされてもよい。
この結果、得られた構造体を第4D図に示す。
第4図の構造体を二酸化シリコンに対するエッチング
液、たとえば、フッ化水素酸緩衝液または反応性イオン
・エッチング雰囲気に露出して二酸化シリコンの全面エ
ッチングを行い、片持ばりマスク45および区域49に隣接
した残余の二酸化シリコン層43をエッチングした後、停
止する。次に、このように二酸化シリコンのチップ用マ
スク48のみを有するウェファ41を、シリコンに対する横
方向のエッチング速度が深さ方向のエッチング速度より
も大きい異方性エッチング液、たとえば60℃に維持され
た37.5重量パーセントのKOH水溶液(横方向のエッチン
グ速度が深さ方向のエッチング速度の約2倍)、または
方向性の反応性イオン・エッチング雰囲気に、露出して
アンダカット作用を伴なうエッチングにより先鋭状のチ
ップを形成する。このステップが、全体のエッチングサ
イクルにおける最も時間的に重要なステップである。し
たがって、光学的検査による慎重な検査が不可欠であ
る。エッチング深さHは経験式により以下のように与え
られる。
液、たとえば、フッ化水素酸緩衝液または反応性イオン
・エッチング雰囲気に露出して二酸化シリコンの全面エ
ッチングを行い、片持ばりマスク45および区域49に隣接
した残余の二酸化シリコン層43をエッチングした後、停
止する。次に、このように二酸化シリコンのチップ用マ
スク48のみを有するウェファ41を、シリコンに対する横
方向のエッチング速度が深さ方向のエッチング速度より
も大きい異方性エッチング液、たとえば60℃に維持され
た37.5重量パーセントのKOH水溶液(横方向のエッチン
グ速度が深さ方向のエッチング速度の約2倍)、または
方向性の反応性イオン・エッチング雰囲気に、露出して
アンダカット作用を伴なうエッチングにより先鋭状のチ
ップを形成する。このステップが、全体のエッチングサ
イクルにおける最も時間的に重要なステップである。し
たがって、光学的検査による慎重な検査が不可欠であ
る。エッチング深さHは経験式により以下のように与え
られる。
チップのエッチングの終りに、二酸化シリコンのチップ
マスク48はシリコンチップ410から落下する。チップの
エッチング状態を第4E図に示す。
マスク48はシリコンチップ410から落下する。チップの
エッチング状態を第4E図に示す。
区域49における残りのシリコン膜がウェファの底面から
エッチングされる。このエッチングステップは、エッチ
ングガスとしてCF4を、そして約10マイクロバールの圧
力を用い、ウェファ上面に影響を与えることのない反応
性イオン・エッチングにより行なわれる。
エッチングされる。このエッチングステップは、エッチ
ングガスとしてCF4を、そして約10マイクロバールの圧
力を用い、ウェファ上面に影響を与えることのない反応
性イオン・エッチングにより行なわれる。
前述のエッチング方法は、(100)の方向に向いた一体
チップを備えた片持ばりから構成されるマイクロメカニ
カル単結晶シリコン構造体を提供する。チップの半径は
約10μmより小さく、この値は従来達成されたことのな
い値である。片持ばりの厚さは1μmから20μmの範囲
であって、片持ばりのばね常数は1N/mから100N/mの範囲
である。これらの特性を備えた片持ばりをAFMにおいて
用いることが好ましい。
チップを備えた片持ばりから構成されるマイクロメカニ
カル単結晶シリコン構造体を提供する。チップの半径は
約10μmより小さく、この値は従来達成されたことのな
い値である。片持ばりの厚さは1μmから20μmの範囲
であって、片持ばりのばね常数は1N/mから100N/mの範囲
である。これらの特性を備えた片持ばりをAFMにおいて
用いることが好ましい。
第3の例は単結晶モノリシックシリコンチップを作る方
法を前述している。各チップは、チップの方向により約
20μmから2μmの高さとされる。
法を前述している。各チップは、チップの方向により約
20μmから2μmの高さとされる。
STMによりサンプルの表面のプロファイルを測定するに
は、これらのチップをサンプルの面に対して極めて近接
して隔置させる表面がある。サンプルと装着部との間の
接触をどこでも避けるためにチップはその装着部から極
めて明確に突出している必要がある。したがって、これ
らのチップは、例えば基台(pedestal)上にセットする
ことが望ましい。
は、これらのチップをサンプルの面に対して極めて近接
して隔置させる表面がある。サンプルと装着部との間の
接触をどこでも避けるためにチップはその装着部から極
めて明確に突出している必要がある。したがって、これ
らのチップは、例えば基台(pedestal)上にセットする
ことが望ましい。
このことを達成するには、約2μmの厚さの二酸化シリ
コンの層を(100)シリコンウェファ上で熱生長させ
る。第1の写真製版ステップにおいては500μm径の円
板がある配列で二酸化シリコンの層に画成される。これ
らの円板はシリコン基台に対してエッチングマスクを形
成するためのものである。上記酸化物はフッ化水素酸緩
衝液により約1.1μmの深さまでエッチングされる。第
2の写真製版ステップにおいては、80μm径の円板が、
500μm径の円板の上に位置して二酸化シリコンに画成
される。直径のより小さいこれらの円板はシリコンチッ
プ用のエッチングマスクを形成するためのものである。
前記酸化物層はフッ化水素酸緩衝液中で約1.1μmの深
さまでエッチングされる。その結果できた二酸化シリコ
ンマスクで前述の例の第4B図に示すマスクに対応するも
のが段階的にシリコン基板へ転写される。
コンの層を(100)シリコンウェファ上で熱生長させ
る。第1の写真製版ステップにおいては500μm径の円
板がある配列で二酸化シリコンの層に画成される。これ
らの円板はシリコン基台に対してエッチングマスクを形
成するためのものである。上記酸化物はフッ化水素酸緩
衝液により約1.1μmの深さまでエッチングされる。第
2の写真製版ステップにおいては、80μm径の円板が、
500μm径の円板の上に位置して二酸化シリコンに画成
される。直径のより小さいこれらの円板はシリコンチッ
プ用のエッチングマスクを形成するためのものである。
前記酸化物層はフッ化水素酸緩衝液中で約1.1μmの深
さまでエッチングされる。その結果できた二酸化シリコ
ンマスクで前述の例の第4B図に示すマスクに対応するも
のが段階的にシリコン基板へ転写される。
第1のステップにおいて、基台はたとえば150μmの深
さまでウェファへエッチングされる。このステップはKO
H水溶液を用いた異方性湿式エッチングからなる。次
に、基台用のマスク(これは二酸化シリコンマスクの第
1レベルのパターン情報である)がフッ化水素酸緩衝液
中でエッチングすることにより除去される。チップ・マ
スク(これはマスクの第2レベルのパターン情報であ
る)に対する公差の要求が極めて厳しいとすれば、第1
レベルのパターン情報は異方性の反応性イオン・エッチ
ングにより除去できる。第2のステップにおいて、チッ
プは既に存在するシリコン基台へエッチングされる。約
60℃で37.5重量%のKOH水溶液を用いるこの異方性エッ
チングステップは、80μmのシリコン二酸化円板が完全
にアンダーカットされると停止する。約60℃で37.5重量
%のKOH水溶液のアンダーカットエッチング速度は(10
0)の方向におけるエッチング速度の約2倍であるの
で、完全なアンダーカットは円板の直径の約1/4に概ね
相応するエッチング深さにおいて得られる。エッチング
条件は他の方向と比較して、KOH水溶液の濃度を高くし
て(100)の方向における低いエッチング速度を補うこ
とを意味する。エッチング速度比に対してはエッチング
温度は重要でない。
さまでウェファへエッチングされる。このステップはKO
H水溶液を用いた異方性湿式エッチングからなる。次
に、基台用のマスク(これは二酸化シリコンマスクの第
1レベルのパターン情報である)がフッ化水素酸緩衝液
中でエッチングすることにより除去される。チップ・マ
スク(これはマスクの第2レベルのパターン情報であ
る)に対する公差の要求が極めて厳しいとすれば、第1
レベルのパターン情報は異方性の反応性イオン・エッチ
ングにより除去できる。第2のステップにおいて、チッ
プは既に存在するシリコン基台へエッチングされる。約
60℃で37.5重量%のKOH水溶液を用いるこの異方性エッ
チングステップは、80μmのシリコン二酸化円板が完全
にアンダーカットされると停止する。約60℃で37.5重量
%のKOH水溶液のアンダーカットエッチング速度は(10
0)の方向におけるエッチング速度の約2倍であるの
で、完全なアンダーカットは円板の直径の約1/4に概ね
相応するエッチング深さにおいて得られる。エッチング
条件は他の方向と比較して、KOH水溶液の濃度を高くし
て(100)の方向における低いエッチング速度を補うこ
とを意味する。エッチング速度比に対してはエッチング
温度は重要でない。
チップマスクの完全なアンダーカット(二酸化シリコン
マスクの第2レベルのパターン情報)により、エッチン
グの遅い方向(100)に方向性を有し、エッチングの速
い面により囲まれたチップを備えたシリコンチップを作
る(前述の例の第4E図参照)。約45度というチップの鋭
いテーパ角度のため、オーバエッチングされてチップを
速く短くさせる。従って、最大オーバエッチング時間は
円板の直径に慎重に合わせる必要がある。
マスクの第2レベルのパターン情報)により、エッチン
グの遅い方向(100)に方向性を有し、エッチングの速
い面により囲まれたチップを備えたシリコンチップを作
る(前述の例の第4E図参照)。約45度というチップの鋭
いテーパ角度のため、オーバエッチングされてチップを
速く短くさせる。従って、最大オーバエッチング時間は
円板の直径に慎重に合わせる必要がある。
この例のチップは高さが約20μmで半径が約10nmより小
さく、高品質のSTM像を得るに優れた構造体である。
さく、高品質のSTM像を得るに優れた構造体である。
STMのプロフィルメトリの観点から、本発明により作ら
れたチップは金属コーティングを担持することができ
る。
れたチップは金属コーティングを担持することができ
る。
本発明を選定例に関して説明してきたが、本発明の精神
と範囲とから逸脱することなく変更が可能なことは当業
者には明らかであろう。
と範囲とから逸脱することなく変更が可能なことは当業
者には明らかであろう。
[効果] 本発明の製造方法によれば、チップと一体化した薄膜状
の片持ばりがより少ない数のマスクないしマスク合せ操
作により、しかも、より短縮したエッチング時間で製造
できる。
の片持ばりがより少ない数のマスクないしマスク合せ操
作により、しかも、より短縮したエッチング時間で製造
できる。
第1図は圧電バイモルフにしっかりと取り付けられたウ
ェファの一片を一端で担持し、その自由端で鋭く尖った
チップを担持する片持ばりを示す図、第2A図ないし第2E
図は、写真製版およびエッチングのステップを用い、シ
リコンウェファ基板に配置された材料の層から加工し
た、一体チップを備えた片持ばりを作る処理ステップの
順序を示す図、 第3A図ないし第3D図は第2図に示す処理ステップの側面
図、および第4A図ないし第4F図は、2レベルの情報を備
えたマスクを用い、かつ写真製版およびエッチングのス
テップを用いて、シリコンウェファ基板から加工した、
一体チップを備えた片持ばりを作る処理ステップの順序
を示す図である。 21、31、41……シリコンウェファ 22、23、32、33、42、43……二酸化シリコン層 24、27……フォトレジスト層 25、35、45……片持ばり 26、36、46……開口 28、38……フォトレジストマスク 29、39……チップ 48……チップマスク 49……二酸化シリコン領域 410……チップ
ェファの一片を一端で担持し、その自由端で鋭く尖った
チップを担持する片持ばりを示す図、第2A図ないし第2E
図は、写真製版およびエッチングのステップを用い、シ
リコンウェファ基板に配置された材料の層から加工し
た、一体チップを備えた片持ばりを作る処理ステップの
順序を示す図、 第3A図ないし第3D図は第2図に示す処理ステップの側面
図、および第4A図ないし第4F図は、2レベルの情報を備
えたマスクを用い、かつ写真製版およびエッチングのス
テップを用いて、シリコンウェファ基板から加工した、
一体チップを備えた片持ばりを作る処理ステップの順序
を示す図である。 21、31、41……シリコンウェファ 22、23、32、33、42、43……二酸化シリコン層 24、27……フォトレジスト層 25、35、45……片持ばり 26、36、46……開口 28、38……フォトレジストマスク 29、39……チップ 48……チップマスク 49……二酸化シリコン領域 410……チップ
フロントページの続き (72)発明者 ゲオルク・クラウス ドイツ連邦共和国 7277 ベルトバーク 4 イン・ヒネンタル 70 (72)発明者 ヘルガ・ヴァイス ドイツ連邦共和国 7030 ベブリンゲン, ヴァイラントシュトラーセ 7 (72)発明者 オラフ・ヴォルター ドイツ連邦共和国 7042 アイドリンゲン ヴァフォルデルヴェーク 8 (56)参考文献 特開 昭63−289443(JP,A) 特開 昭56−16912(JP,A) 特開 昭54−55174(JP,A) 特開 昭54−102872(JP,A) 特開 昭48−28181(JP,A) 特開 昭50−145081(JP,A) 特開 昭55−141567(JP,A) 特公 昭60−13071(JP,B2)
Claims (6)
- 【請求項1】自由端に先細り状のチップおよび固定端に
取り付け用のウェファ・ブロックが一体に形成されてい
る薄膜状の片持ばりから構成されるAFM/STMプロフィロ
メトリ用マイクロメカニカルセンサの製造方法におい
て、 (イ)平板状のウェファの上面および底面を、各々、上
面無機材料層および底面無機材料層で被覆する工程、 (ロ)前記各無機材料層の各表面上に順次に形成された
片持ばりパターンおよび開口パターンを、各々、有する
上面および底面の各フオトレジスト層をマスクとして、
エッチングすることにより、前記上面無機材料層の表面
の浅いレベルに前記片持ばりパターンを転写して片持ば
りの中間マスクを形成すると共に前記底面無機材料層の
中にウェファ底面を露出する深さに前記開口パターンを
形成する工程、 (ハ)前記片持ばりパターンが表面に転写されている前
記上面無機材料層をフォトレジスト層で平坦化する工
程、 (ニ)片持ばりの自由端に対応する前記片持ばりパター
ンの位置において前記平坦化フォトレジスト層中にチッ
プ・パターンを画成してチップ用のフォトレジスト・マ
スクを形成する工程、 (ホ)前記片持ばり中間マスク上において片持ばりの自
由端に対応する位置に前記チップ用フォトレジスト・マ
スクを有する前記上面無機材料層の表面全体を無機材料
エッチング雰囲気に置き、前記中間マスクを規定する隣
接した無機材料層部分がエッチング除去されてウェファ
上面が露出される迄、前記上面無機材料の表面をエッチ
ングして前記チップのパターンを浅いレベルに、かつ、
前記中間マスクのパターンを深いレベルに転写し、その
際、前記チップ用フォトレジスト・マスクの下方の無機
材料をアンダカットして先細り状のチップを有する無機
材料の薄膜状の片持ばりを形成する工程、 (ヘ)前記開口パターンを有する前記底面無機材料層を
マスクとして前記ウェファ底面を異方性湿式エッチング
雰囲気に露出して前記開口に対応する区域のウェファを
前記ウェファ上面に達するまでエッチング除去する工
程、 とより成るマイクロメカニカルセンサの製造方法。 - 【請求項2】ウェファが単結晶シリコン材料から構成さ
れ、上面無機材料層が二酸化シリコン、窒化シリコン、
炭化リシコン、ダイアモンド状カーボン、ドープされた
単結晶シリコン、または多結晶シリコンの材料から構成
されていることを特徴とする請求項1に記載のマイクロ
メカニカルセンサの製造方法。 - 【請求項3】上面無機材料層の被覆工程としてシリコン
材料のウェファの上面を二酸化シリコン材料の層で10μ
mの厚さまで被覆することを特徴とする請求項1に記載
のマイクロメカニカルセンサの製造方法。 - 【請求項4】ウェファとして(100)面または(110)面
の単結晶シリコン材料を使用することを特徴とする請求
項1に記載のマイクロメカニカルセンサの製造方法。 - 【請求項5】自由端に先細り状のチップおよび固定端に
取り付け用のウェファ・ブロックが一体に形成されてい
る薄膜状のウェファ材料の片持ばりから構成されるAFM/
STM用プロフィロメトリ用マイクロメカニカルセンサの
製造方法において、 (イ)平板状のウェファの上面および底面を、各々、上
面無機材料層および下面無機材料層で被覆する工程、 (ロ)前記各無機材料層の各表面上に順次に形成された
片持ばりパターンおよび開口パターンを、各々、有する
上面および底面の各フォトレジスト層をマスクとして、
エッチングすることにより、前記上面無機材料層の表面
の浅いレベルに前記片持ばりパターンを転写して片持ば
りの中間マスクを形成すると共に前記底面無機材料層の
中にウェファ底面を露出する深さに前記開口パターンを
形成する工程、 (ハ)前記片持ばりの中間マスクが形成されている前記
上面無機材料層上にフォトレジスト層を塗布し、該フォ
トレジスト層中に、前記中間マスクの片持ばりの自由端
に対応する位置においてチップ・パターンを画成してチ
ップ用のフォトレジスト・マスクを形成する工程、 (ニ)前記チップ用フォトレジスト・マスクが形成され
ている前記上面無機材料層の表面全体を無機材料エッチ
ング雰囲気に露出してエッチングすることにより、前記
チップ用パターンを前記上面無機材料の表面の浅いレベ
ルに転写してチップ・マスクを形成すると同時に前記中
間マスクの片持ばりパターンを深いレベルに転写する工
程、 (ホ)前記チップ用フォトレジスト・マスクを除去した
後、前記上面無機材料層の表面全体を無機材料エッチン
グ雰囲気に露出し、中間マスクの片持ばりパターンを規
定する隣接した上面無機材料層部分がエッチング除去さ
れてウェファ上面が露出される迄、前記上面無機材料層
を全面エッチングして前記チップ・マスクのパターンを
深いレベルにおよび前記片持ばりマスクのパターンをよ
り深いレベルに転写する工程、 (ヘ)前記ウェファの露出上面を異方性湿式エッチング
液に曝らして片持ばりの所定の厚さに対応する深さまで
ウェファを除去する工程、 (ト)前記ウェファ露出上面を含む前記上面無機材料層
を無機材料エッチング雰囲気に曝らし、前記より深いレ
ベルに転写されている片持ばりマスクがエッチング除去
される迄、全面エッチングして前記チップ・マスクのパ
ターンをより深いレベルに転写する工程、 (チ)前記より深いレベルのチップ・マスクを有するウ
ェファ上面を異方性湿式エッチング液に曝らし、異方性
エッチング作用およびアンダカット作用の下にチップを
先鋭状に成形する工程、 とより成るマイクロメカニカルセンサの製造方法。 - 【請求項6】ウェファの露出表面を異方性湿式エッチン
グ液に曝らす工程に先立って、ウェファ底面を底面無機
材料層中の開口を介して異方性湿式エッチング液に曝ら
し、片持ばりに対応するウェファ区域を底面から薄くす
る工程を含むことを特徴とする請求項5に記載のマイク
ロメカニカルセンサの製造方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP89115100A EP0413042B1 (en) | 1989-08-16 | 1989-08-16 | Method of producing micromechanical sensors for the afm/stm profilometry and micromechanical afm/stm sensor head |
EP89115100.3 | 1989-08-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03162602A JPH03162602A (ja) | 1991-07-12 |
JPH0762258B2 true JPH0762258B2 (ja) | 1995-07-05 |
Family
ID=8201771
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2186985A Expired - Lifetime JPH0762258B2 (ja) | 1989-08-16 | 1990-07-13 | Afm/stmプロフィロメトリ用マイクロメカニカルセンサの製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US5051379A (ja) |
EP (1) | EP0413042B1 (ja) |
JP (1) | JPH0762258B2 (ja) |
DE (1) | DE68903951T2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002079499A (ja) * | 2000-09-08 | 2002-03-19 | Terumo Corp | 針形状物の作製方法および作製された針 |
Families Citing this family (77)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02187944A (ja) * | 1989-01-13 | 1990-07-24 | Sharp Corp | 再生装置 |
US5580827A (en) * | 1989-10-10 | 1996-12-03 | The Board Of Trustees Of The Leland Stanford Junior University | Casting sharpened microminiature tips |
JP2624873B2 (ja) * | 1990-05-16 | 1997-06-25 | 松下電器産業株式会社 | 原子間力顕微鏡用探針およびその製造方法 |
JP2501945B2 (ja) * | 1990-08-28 | 1996-05-29 | 三菱電機株式会社 | 原子間力顕微鏡のカンチレバ―及びその製造方法 |
JP3053456B2 (ja) * | 1990-08-31 | 2000-06-19 | オリンパス光学工業株式会社 | 走査型プローブ顕微鏡用カンチレバー及びその作製方法 |
US5144833A (en) * | 1990-09-27 | 1992-09-08 | International Business Machines Corporation | Atomic force microscopy |
US5186041A (en) * | 1990-11-28 | 1993-02-16 | International Business Machines Corporation | Microprobe-based CD measurement tool |
JPH05196458A (ja) * | 1991-01-04 | 1993-08-06 | Univ Leland Stanford Jr | 原子力顕微鏡用ピエゾ抵抗性片持ばり構造体 |
JP3010318B2 (ja) * | 1991-02-26 | 2000-02-21 | キヤノン株式会社 | 微小プローブ、その製造方法、該プローブを用いた表面観察装置及び情報処理装置 |
JP3000492B2 (ja) * | 1991-04-22 | 2000-01-17 | キヤノン株式会社 | 情報処理装置 |
US5264696A (en) * | 1991-05-20 | 1993-11-23 | Olympus Optical Co., Ltd. | Cantilever chip for scanning probe microscope having first and second probes formed with different aspect ratios |
US5716218A (en) * | 1991-06-04 | 1998-02-10 | Micron Technology, Inc. | Process for manufacturing an interconnect for testing a semiconductor die |
GB9112777D0 (en) * | 1991-06-13 | 1991-07-31 | Buser Rudolf A | Microprobe for surface scanning microscopes |
US5606162A (en) * | 1991-06-13 | 1997-02-25 | British Technology Group Limited | Microprobe for surface-scanning microscopes |
US5298975A (en) * | 1991-09-27 | 1994-03-29 | International Business Machines Corporation | Combined scanning force microscope and optical metrology tool |
US5200027A (en) * | 1991-11-12 | 1993-04-06 | General Motors Corporation | Oil microsensor having interdigitated electrodes with rough surfaces and methods of making and using the same |
US5448399A (en) * | 1992-03-13 | 1995-09-05 | Park Scientific Instruments | Optical system for scanning microscope |
US5763782A (en) * | 1992-03-16 | 1998-06-09 | British Technology Group Limited | Micromechanical sensor |
US5397897A (en) * | 1992-04-17 | 1995-03-14 | Terumo Kabushiki Kaisha | Infrared sensor and method for production thereof |
US5302239A (en) * | 1992-05-15 | 1994-04-12 | Micron Technology, Inc. | Method of making atomically sharp tips useful in scanning probe microscopes |
US5298748A (en) * | 1992-06-15 | 1994-03-29 | California Institute Of Technology | Uncooled tunneling infrared sensor |
US5436452A (en) * | 1992-06-15 | 1995-07-25 | California Institute Of Technology | Uncooled tunneling infrared sensor |
US5338932A (en) * | 1993-01-04 | 1994-08-16 | Motorola, Inc. | Method and apparatus for measuring the topography of a semiconductor device |
JPH06241777A (ja) * | 1993-02-16 | 1994-09-02 | Mitsubishi Electric Corp | 原子間力顕微鏡用カンチレバー、その製造方法、このカンチレバーを用いた原子間力顕微鏡及びこのカンチレバーを用いた試料表面密着性評価方法 |
JPH06305898A (ja) * | 1993-03-10 | 1994-11-01 | Internatl Business Mach Corp <Ibm> | 単結晶ティップ構造物およびその形成方法 |
US5393647A (en) * | 1993-07-16 | 1995-02-28 | Armand P. Neukermans | Method of making superhard tips for micro-probe microscopy and field emission |
US5483741A (en) * | 1993-09-03 | 1996-01-16 | Micron Technology, Inc. | Method for fabricating a self limiting silicon based interconnect for testing bare semiconductor dice |
JPH0792173A (ja) * | 1993-09-24 | 1995-04-07 | Agency Of Ind Science & Technol | 原子間力顕微鏡用カンチレバーとその製造方法 |
US6624648B2 (en) | 1993-11-16 | 2003-09-23 | Formfactor, Inc. | Probe card assembly |
US20020053734A1 (en) | 1993-11-16 | 2002-05-09 | Formfactor, Inc. | Probe card assembly and kit, and methods of making same |
US5383354A (en) * | 1993-12-27 | 1995-01-24 | Motorola, Inc. | Process for measuring surface topography using atomic force microscopy |
US5508231A (en) * | 1994-03-07 | 1996-04-16 | National Semiconductor Corporation | Apparatus and method for achieving mechanical and thermal isolation of portions of integrated monolithic circuits |
US5804314A (en) * | 1994-03-22 | 1998-09-08 | Hewlett-Packard Company | Silicon microstructures and process for their fabrication |
FR2739494B1 (fr) * | 1995-09-29 | 1997-11-14 | Suisse Electronique Microtech | Procede de fabrication de pieces de micromecanique ayant une partie en diamant constituee au moins d'une pointe, et pieces de micromecanique comportant au moins une pointe en diamant |
US5874668A (en) * | 1995-10-24 | 1999-02-23 | Arch Development Corporation | Atomic force microscope for biological specimens |
US5929643A (en) * | 1995-12-07 | 1999-07-27 | Olympus Optical Co., Ltd. | Scanning probe microscope for measuring the electrical properties of the surface of an electrically conductive sample |
US5861549A (en) * | 1996-12-10 | 1999-01-19 | Xros, Inc. | Integrated Silicon profilometer and AFM head |
EP0868648B1 (en) * | 1995-12-11 | 2003-04-02 | Xros, Inc. | Integrated silicon profilometer and afm head |
KR0170472B1 (ko) * | 1995-12-21 | 1999-02-01 | 정선종 | 주사관통현미경의 저전압진공증착을 이용한 상온작동 단일전자트랜지스터의 제조방법 |
US5756370A (en) * | 1996-02-08 | 1998-05-26 | Micron Technology, Inc. | Compliant contact system with alignment structure for testing unpackaged semiconductor dice |
US8033838B2 (en) | 1996-02-21 | 2011-10-11 | Formfactor, Inc. | Microelectronic contact structure |
JP3599880B2 (ja) * | 1996-03-12 | 2004-12-08 | オリンパス株式会社 | カンチレバーチップ |
DE19622701A1 (de) * | 1996-06-05 | 1997-12-18 | Fraunhofer Ges Forschung | Mikrobalken mit integrierter Abtast- bzw. Prüfspitze aus Diamant für den Einsatz in Rastersondenmikroskopen |
DE19646120C2 (de) * | 1996-06-13 | 2001-07-26 | Ibm | Mikromechanischer Sensor für die AFM/STM Profilometrie |
US5729026A (en) * | 1996-08-29 | 1998-03-17 | International Business Machines Corporation | Atomic force microscope system with angled cantilever having integral in-plane tip |
US5856672A (en) * | 1996-08-29 | 1999-01-05 | International Business Machines Corporation | Single-crystal silicon cantilever with integral in-plane tip for use in atomic force microscope system |
US6520778B1 (en) | 1997-02-18 | 2003-02-18 | Formfactor, Inc. | Microelectronic contact structures, and methods of making same |
FR2764441B1 (fr) * | 1997-06-05 | 2001-05-18 | Suisse Electronique Microtech | Procede de fabrication d'un organe palpeur pour capteur micromecanique, notamment pour microscope a force atomique |
US5936243A (en) * | 1997-06-09 | 1999-08-10 | Ian Hardcastle | Conductive micro-probe and memory device |
US6246054B1 (en) | 1997-06-10 | 2001-06-12 | Olympus Optical Co., Ltd. | Scanning probe microscope suitable for observing the sidewalls of steps in a specimen and measuring the tilt angle of the sidewalls |
US6807734B2 (en) | 1998-02-13 | 2004-10-26 | Formfactor, Inc. | Microelectronic contact structures, and methods of making same |
US6415653B1 (en) | 1998-03-24 | 2002-07-09 | Olympus Optical Co., Ltd. | Cantilever for use in a scanning probe microscope |
US6291140B1 (en) * | 1998-04-28 | 2001-09-18 | Olaf Ohlsson | Low-cost photoplastic cantilever |
US6121771A (en) * | 1998-08-31 | 2000-09-19 | International Business Machines Corporation | Magnetic force microscopy probe with bar magnet tip |
US6417673B1 (en) * | 1998-11-19 | 2002-07-09 | Lucent Technologies Inc. | Scanning depletion microscopy for carrier profiling |
US6491968B1 (en) | 1998-12-02 | 2002-12-10 | Formfactor, Inc. | Methods for making spring interconnect structures |
US6255126B1 (en) | 1998-12-02 | 2001-07-03 | Formfactor, Inc. | Lithographic contact elements |
US6268015B1 (en) * | 1998-12-02 | 2001-07-31 | Formfactor | Method of making and using lithographic contact springs |
US6672875B1 (en) | 1998-12-02 | 2004-01-06 | Formfactor, Inc. | Spring interconnect structures |
KR20070087060A (ko) * | 1998-12-02 | 2007-08-27 | 폼팩터, 인크. | 전기 접촉 구조체의 제조 방법 |
US6400166B2 (en) * | 1999-04-15 | 2002-06-04 | International Business Machines Corporation | Micro probe and method of fabricating same |
DE19928297A1 (de) * | 1999-06-22 | 2000-12-28 | Bosch Gmbh Robert | Verfahren zur Herstellung eines Sensors mit einer Membran |
US6646830B2 (en) | 2001-06-07 | 2003-11-11 | International Business Machines Corporation | Monolithic magnetic read-while-write head apparatus and method of manufacture |
US7073938B2 (en) * | 2001-10-31 | 2006-07-11 | The Regents Of The University Of Michigan | Micromachined arrayed thermal probe apparatus, system for thermal scanning a sample in a contact mode and cantilevered reference probe for use therein |
US6692145B2 (en) * | 2001-10-31 | 2004-02-17 | Wisconsin Alumni Research Foundation | Micromachined scanning thermal probe method and apparatus |
DE50201770D1 (de) | 2002-03-20 | 2005-01-20 | Nanoworld Ag Neuchatel | Verfahren zur Herstellung eines SPM-Sensors |
EP1359593B1 (de) * | 2002-03-20 | 2004-05-19 | Nanoworld AG | SPM-Sensor und Verfahren zur Herstellung desselben |
KR100771851B1 (ko) * | 2006-07-21 | 2007-10-31 | 전자부품연구원 | 전계 효과 트랜지스터가 내장된 원자간력 현미경 캔틸레버및 그의 제조방법 |
US8062535B2 (en) | 2007-01-31 | 2011-11-22 | Chung Hoon Lee | Video rate-enabling probes for atomic force microscopy |
US7823216B2 (en) * | 2007-08-02 | 2010-10-26 | Veeco Instruments Inc. | Probe device for a metrology instrument and method of fabricating the same |
FR2922677B1 (fr) * | 2007-10-23 | 2012-04-13 | Inst Nat Sciences Appliq | Pointe destinee a un capteur pour microscope a champ proche et procede de fabrication associe |
US8595860B2 (en) * | 2007-12-28 | 2013-11-26 | Bruker Nano, Inc. | Method of fabricating a probe device for a metrology instrument and a probe device produced thereby |
EP2169409A1 (de) * | 2008-09-30 | 2010-03-31 | Nanoworld AG | SPM-Sensor und Herstellungsverfahren |
BG66424B1 (bg) | 2009-09-29 | 2014-03-31 | "Амг Технолоджи" Оод | Сензори за сканираща сондова микроскопия, метод за тримерно измерване и метод за получаване на такива сензори |
US9038269B2 (en) * | 2013-04-02 | 2015-05-26 | Xerox Corporation | Printhead with nanotips for nanoscale printing and manufacturing |
RU2648287C1 (ru) * | 2016-12-27 | 2018-03-23 | Акционерное общество "Научно-исследовательский институт физических измерений" | Способ изготовления упругих элементов микромеханических датчиков |
WO2021059009A1 (en) * | 2019-09-29 | 2021-04-01 | Gharooni Milad | Fabrication of an atomic force microscope probe |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3721588A (en) * | 1971-08-13 | 1973-03-20 | Motorola Inc | Thin single crystal silicon on an insulating substrate and improved dielectric isolation processing method |
GB1501114A (en) * | 1974-04-25 | 1978-02-15 | Rca Corp | Method of making a semiconductor device |
DE2862150D1 (en) * | 1977-10-06 | 1983-02-17 | Ibm | Method for reactive ion etching of an element |
JPS54102872A (en) * | 1978-01-30 | 1979-08-13 | Toshiba Corp | Ion etching method |
JPS55141567A (en) * | 1979-03-27 | 1980-11-05 | Norio Taniguchi | Working method for sharpening blunted tip |
JPS5616912A (en) * | 1979-07-16 | 1981-02-18 | Matsushita Electric Ind Co Ltd | Construction of oscillator in pickup cartridge |
JPS6013071A (ja) * | 1983-07-01 | 1985-01-23 | Canon Inc | 気相法装置の排気系 |
DE3572030D1 (en) * | 1985-03-07 | 1989-09-07 | Ibm | Scanning tunneling microscope |
DE3675158D1 (de) * | 1985-11-26 | 1990-11-29 | Ibm | Verfahren und mikroskop zur erzeugung von topographischen bildern unter anwendung atomarer wechselwirkungskraefte mit subaufloesung. |
JPS63289443A (ja) * | 1987-05-21 | 1988-11-25 | Sharp Corp | 感湿素子 |
EP0262253A1 (en) * | 1986-10-03 | 1988-04-06 | International Business Machines Corporation | Micromechanical atomic force sensor head |
JPS63304103A (ja) * | 1987-06-05 | 1988-12-12 | Hitachi Ltd | 走査表面顕微鏡 |
US4906840A (en) * | 1988-01-27 | 1990-03-06 | The Board Of Trustees Of Leland Stanford Jr., University | Integrated scanning tunneling microscope |
JP2547869B2 (ja) * | 1988-11-09 | 1996-10-23 | キヤノン株式会社 | プローブユニット,該プローブの駆動方法及び該プローブユニットを備えた走査型トンネル電流検知装置 |
US4943719A (en) * | 1989-01-17 | 1990-07-24 | The Board Of Trustees Of The Leland Stanford University | Microminiature cantilever stylus |
US4968585A (en) * | 1989-06-20 | 1990-11-06 | The Board Of Trustees Of The Leland Stanford Jr. University | Microfabricated cantilever stylus with integrated conical tip |
-
1989
- 1989-08-16 DE DE8989115100T patent/DE68903951T2/de not_active Expired - Lifetime
- 1989-08-16 EP EP89115100A patent/EP0413042B1/en not_active Expired - Lifetime
-
1990
- 1990-07-13 JP JP2186985A patent/JPH0762258B2/ja not_active Expired - Lifetime
- 1990-08-16 US US07/568,306 patent/US5051379A/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002079499A (ja) * | 2000-09-08 | 2002-03-19 | Terumo Corp | 針形状物の作製方法および作製された針 |
Also Published As
Publication number | Publication date |
---|---|
EP0413042B1 (en) | 1992-12-16 |
DE68903951D1 (de) | 1993-01-28 |
US5051379A (en) | 1991-09-24 |
EP0413042A1 (en) | 1991-02-20 |
DE68903951T2 (de) | 1993-07-08 |
JPH03162602A (ja) | 1991-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0762258B2 (ja) | Afm/stmプロフィロメトリ用マイクロメカニカルセンサの製造方法 | |
EP0468071B1 (en) | Method of producing micromechanical sensors for the AFM/STM/MFM profilometry and micromechanical AFM/STM/MFM sensor head | |
US5116462A (en) | Method of producing micromechanical sensors for the afm/stm profilometry | |
EP0413040B1 (en) | Method of producing ultrafine silicon tips for the afm/stm profilometry | |
US6066265A (en) | Micromachined silicon probe for scanning probe microscopy | |
Albrecht et al. | Microfabrication of cantilever styli for the atomic force microscope | |
Grow et al. | Silicon nitride cantilevers with oxidation-sharpened silicon tips for atomic force microscopy | |
JPH0422809A (ja) | 原子間力顕微鏡用探針およびその製造方法 | |
US8828243B2 (en) | Scanning probe having integrated silicon tip with cantilever | |
JPH04231811A (ja) | 走査型プローブ顕微鏡用カンチレバー及びその作製方法 | |
Folch et al. | Microfabrication of oxidation-sharpened silicon tips on silicon nitride cantilevers for atomic force microscopy | |
US8857247B2 (en) | Probe for a scanning probe microscope and method of manufacture | |
US7010966B2 (en) | SPM cantilever and fabricating method thereof | |
JP5249245B2 (ja) | 原子間力顕微鏡法用のビデオレートを可能とするプローブ | |
US7119332B2 (en) | Method of fabricating probe for scanning probe microscope | |
JP3834378B2 (ja) | カンチレバーチップ | |
JPH11258251A (ja) | 超小型機械式センサ及びその形成方法 | |
RU2121657C1 (ru) | Способ формирования кантилевера сканирующего зондового микроскопа | |
JPH11271347A (ja) | 走査型プローブ顕微鏡用カンチレバー及びその製造方法 | |
JP2003329567A (ja) | Spmセンサーの製造法 | |
JPH05299015A (ja) | 走査型プローブ顕微鏡用カンチレバーの作製方法 | |
US7861315B2 (en) | Method for microfabricating a probe with integrated handle, cantilever, tip and circuit | |
JPH09152436A (ja) | 走査型プローブ顕微鏡用プローブ及びその作製方法 | |
JPH06123621A (ja) | 原子間力顕微鏡用探針付カンチレバーおよびその製造方法 | |
JP3986373B2 (ja) | Spmカンチレバー |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080705 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080705 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090705 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100705 Year of fee payment: 15 |