JPH0673367B2 - 半導体集積回路容量の製作方法 - Google Patents

半導体集積回路容量の製作方法

Info

Publication number
JPH0673367B2
JPH0673367B2 JP58502043A JP50204383A JPH0673367B2 JP H0673367 B2 JPH0673367 B2 JP H0673367B2 JP 58502043 A JP58502043 A JP 58502043A JP 50204383 A JP50204383 A JP 50204383A JP H0673367 B2 JPH0673367 B2 JP H0673367B2
Authority
JP
Japan
Prior art keywords
layer
polysilicon
making
temperature
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58502043A
Other languages
English (en)
Other versions
JPS59500893A (ja
Inventor
アルスペクタ−・ジヨシユア
キンスブロン・エリ−ザ−
スタ−ンヘイム・マレツク・アンドレ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AT&T Corp
Original Assignee
AT&T Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AT&T Technologies Inc filed Critical AT&T Technologies Inc
Publication of JPS59500893A publication Critical patent/JPS59500893A/ja
Publication of JPH0673367B2 publication Critical patent/JPH0673367B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Description

【発明の詳細な説明】 本発明はポリシリコンの第1層を形成する工程,ポリシ
リコンを導電性にする工程及びポリシリコン層の一表面
上に,第1の絶縁層を形成する工程から成る容量の作成
法に係る。
多結晶シリコン,熱酸化物及びもう一つの多結晶シリコ
ンの層の三層構造から成る型の集積回路容量は,比較的
高精度で作ることができる。多結晶シリコンはここでは
以後ポリシリコンと呼ぶことにする。ポリ酸化物容量と
よばれるこの型の容量は、フイルタ/コーデクのような
ある種の半導体集積回路の重要な一部である。これらの
容量はMOS技術を用いて製作されるデバイス中で主に使
用され,スイツチドキヤパシタフイルタを含む設計のよ
うな多くの用途の場合,半導体チツプの広い部分を占め
る。
半導体チツプの領域は価値のある商品であるから,デバ
イス及び相互接続両方の設計をよりコンパクトにしよう
とする努力が耐えず続けられている。容量は面積に比例
する関数であり、誘電体の厚さに反比例する関数であ
る。もしポリ酸化物容量の誘電体酸化物層の厚さが小さ
くできるならば、与えられた容量に対する容量の面積は
減すことができる。
しかし,より薄い誘電体酸化物層を用いることにより,
より高い容量デバイスを実現することは,約600オング
ストローム又はそれ以下の薄膜を誘電体として保持する
ことが,約3.5MV/cmの電界強度以上では保証できないと
いう事実により,妨げられる。ポリ酸化物容量の誘電体
を構成する酸化物の構造は,ポリシリコン層の表面モル
フオロジーの関数であることがわかる。ポリシリコン層
の上には,熱酸化物を成長させる。降伏を起すような形
状は,ポリシリコンが堆積された後,比較的高い温度で
ポリシリコン層中に,リンのような不純物を拡散させる
通常の方法により,ポリシリコンが導電性となつた構造
の場合である。ポリシリコン層は通常アモルフアスから
結晶構造へ遷移する温度以上又はその近くで堆積され,
従つて比較的荒い表面を有する円柱状結晶構造が生じ
る。これはポリシリコン層表面の特性にかなり影響を与
えることがわかる。
従つて,一つの問題はより高い降伏電界を生じるポリ酸
化物容量の製作にある。付加的な問題は,与えられた容
量の値に対し,より小さな面積のポリ酸化物容量を製作
することである。
これらの問題は,本発明に従う容量作成法により解決さ
れる。この方法は第1のポリシリコン層を570℃ないし
約595℃の温度でシリコンを堆積させることにより形成
され,ポリシリコンは堆積工程中の同時ドーピングによ
り導電性にすることを特徴とする。
図面の簡単な説明 図面は本発明に従うポリ酸化物容量を含むCMOS型集積回
路の表面部分の断面図である。
600℃以下の温度で堆積させ同時に,すなわち層を成長
させる時ドープされたポリシリコン層上に成長させた熱
酸化膜は,堆積に続いて拡散熱処理によりドープされた
ポリシリコンより優れた降伏特性をもつことを見出し
た。具体的には,ポリシリコン層が約570℃ないし約595
℃の範囲内の温度で低圧化学気相堆積させることにより
形成された時,熱酸化物の特性が著しく改善されること
を見出した。
本発明に従つて作られたポリ酸化物容量は,約500オン
グストローム又はそれ以下の厚さを有する酸化物の場
合,約6ないし9MV/cmの降伏電界を示す。改善はまたよ
り厚い酸化物膜を有する容量で見られ,それはこれまで
の容量より高い電界に耐えることができる。本発明に従
うプロセスは,現在の技術,特にMOS形と両立する。周
知のMOSプロセスにおいては,シリコンチツプの表面上
に薄い酸化物薄膜及び厚い酸化物薄膜を形成するのに続
いて,ポリシリコンの層(ポリI)が堆積され,それは
その後パターン形成され,ゲート構造及びデバイスの導
電性相互接続が形成される。この工程の一部として,ポ
リ酸化物容量の下部電極を構成する第一のポリシリコン
層も,規定される。
本発明に従うと,この第1のポリシリコン層は窒素中に
稀釈されたシラン(SiH4)とホスフイン(PH3)の熱分
解により,570℃ないし595℃の範囲の温度における反応
容器中で,低圧化学気相堆積プロセスを用いて堆積され
る。これらの堆積条件下で,ポリシリコン薄膜は比較的
なめらかな表面を示し,従つてそれはその後に形成され
る熱酸化物と,なめらかな界面を作る。熱酸化物は約90
0ないし1.100℃の範囲の温度において,乾燥酸素の雰囲
気中で成長させるのが好ましい。ポリシリコン及び酸化
物間の界面の特性は,酸化物の成長開始直後にほとんど
決り,従つてポリシリコンと酸化物の間に,比較的なめ
らかな界面が保存される。酸化物の最上部上に,第2の
ポリシリコン層(ポリII)を堆積させ,上部及び下部ポ
リシリコン電極の両方に接触を形成することにより,容
量が完成する。
先に述べたように,このように形成された容量は,約50
0オングストロームの酸化物厚の場合,6ないし9MV/cmの
降伏電界を示した。このプロセスは容量電極と同様にド
ープされた半導体チツプ上のポリシリコン導電性パター
ンが所望のシート抵抗を有し,この技術に関連して,作
られたMOSデバイスの閾値電圧に有害な効果を与えない
限り,集積回路技術と両立する。
このように,本発明の特徴は標準的なMOS技術と完全に
両立する改善されたポリ酸化物容量の形成方法である。
このプロセスにより,従来知られた技術によつて形成さ
れる容量に必要な面積より,少くとも30パーセント減少
した面積をもつ容量が作られる。
本発明に従うポリ酸化物容量は,相補MOS又はCMOS構造
の一部として図面に描かれている。具体的には,CMOS装
置はツイン−タブ形とよばれる周知の形である。シリコ
ンチツプ(10)のカツコの部分(15)は,n及びpチヤネ
ルMOSトランジスタで,カツフの部分(27)はポリ酸化
物容量を含む。
シリコンチツプ部分(10)はn+基板(11)から成り,そ
の上には底濃度ドープnエピタキシヤル層を成長させ
る。n領域(14)及びp領域(13)はツイン−タブから
成り,その中に相補形MOSトランジスタが形成される。
トランジスタのそれぞれはソース及びドレイン領域(3
1,32,33,34),薄いゲート酸化物(25,26)上のゲート
電極(20,21)から成る。シリコンチツプの表面は,順
にシリコン酸化物(28),一般的にpガラスとよばれる
リンドープ酸化物(30)の層,電極(19,23,24)から成
るアルミニウムの金属層及び最後の窒化物(29)の層で
被覆される。これら誘電体皮膜を用いること及びそれら
の利点については,当業者にはよく知られている。
チツプの容量部分(27)についてみると,容量は第1の
導電性ポリシリコン層(17)(ポリI),シリコン熱酸
化物から成る中間誘電体層(18)及び導電性ポリシリコ
ンの第2の層(22)(ポリII)により,形成される。こ
の容量構造は,標準的な製作プロセスの集積部分として
形成され,それは導電性にするためポリシリコン層にド
ーパントを添加する方式とは著しく異る。
具体的には,その一部が最終的にはゲート酸化物(20,2
1)である薄い酸化物層の形成及び厚い又は電界用酸化
物層(16)の形成に続き,典型的な場合約6500オングス
トロームの厚さを有するポリシリコン層が,ウエハの全
表面に堆積される。従来の方法では,この層を堆積さ
せ,続いて通常の堆積したままの形よりポリシリコンを
より導電性にする三臭化ホウ素のようなドーパント材料
の存在下で基体を拡散熱処理する。しかし,本発明に従
うと,低圧化学気相堆積(LPCVD)プロセスが堆積プロ
セスそれ自身の間,リンのような導電性を増す元素を添
加できるよう修正される。反応容器内の温度がかなり厳
密な範囲に保たれることが,プロセスにとつて重要であ
る。
具体的には,ポリシリコンの同時リンドープ堆積のため
のLPCVDプロセスは,約570℃から約595℃の範囲で行わ
れ,それによりなめらかな表面が生じ,これまで可能で
あつたより薄い誘電体層で,降伏を起すことなく,より
高い電界を維持できる熱酸化物の形成が可能になる。堆
積プロセス及びその重要な点に関する更に詳細につい
て,以下で考察する。
容量の製作プロセスは,最初のポリシリコン層(17)の
形成に続き,酸化物層(18)を形成するため,ポリシリ
コン層の熱酸化を続ける。これは酸素の存在下,この具
体的な実施例では好ましくは乾燥酸素中で,加熱するこ
とにより行える。酸化温度は典型的な場合,約1,000℃
で実施例における酸化物の典型的な厚さは,約500オン
グストロームである。しかし,他の用途では,厚さは15
00オングストロームに達してもよく,成長温度は乾燥酸
素を用い,約900ないし,1,100℃の範囲でよい。
酸化工程の後,熱酸化物層(18)の最上部上に,第2の
ポリシリコン層(ポリII)が堆積される。第1層の場合
に用いたのと同じプロセスを用いて,第2のポリシリコ
ン層(22)を堆積させるのが有利であるが,決定的なこ
とではない。第2層の厚さも第1のそれと同様である。
この実施例におけるポリシリコン層の場合,典型的な厚
さは,約6,500オングストロームで,約1,000オングスト
ロームないし約10,000オングストロームの厚さを他の用
途で用いてもよい。
ポリII層上にフオトレジストマスクが形成され,それは
集積回路に用いられるこの層の他の任意の部分と同様,
ポリ酸化物容量を規定する。別々のマスク形成及びエツ
チング操作により,ポリI層(17)の上部表面の一部が
露出され,続く金属部形成工程中接触可能なようにす
る。
アンドープガラス層(28)及びリンガラス層(30)の形
式とパターン描画により,通常の方式でデバイスが完成
する。これらガラス層をパターン形成した後,トランジ
スタのゲート,ソース及びドレインへの接触が,アルミ
ニウムの堆積及びパターン形成により形成される。アル
ミニウム層はMOSトランジスタのソース及びドレインへ
の接触(19),ポリ酸化物容量の上部及び下部電極への
接触(23)及び(24)を形成する。最後に,シリコン窒
化物の層(29)が封じ用として,表面全体上に形成され
る。
ポリシリコンの堆積により,通常円柱状の結晶粒材料が
生じ,その中で粒界は表面から連続して成長する傾向が
あり,表面上にはポリシリコン層の最終表面として粒界
が堆積される。これは特にポリシリコンが約600℃を越
える温度で堆積された時起る。これらの粒界はその後の
高温プロセス中大きさが増す。その結果,そのようなポ
リシリコン層の表面形状は,表面において大きな結晶粒
界のそれぞれが終端することにより決る荒れ又はうねり
を有する。
本発明に従う堆積プロセスは,ドーパントが堆積中添加
され,特定の温度範囲を用いるもので,通常秩序さが低
い材料すなわちより無定形の材料を生じ,その結果表面
は従来用いられている拡散させたポリシリコンの場合よ
り,滑らかになる傾向がある。
このプロセスは約570℃ないし約595℃の先に述べた範囲
の温度におけるLPCVD法に適した反応容器中で行つても
よい。この温度範囲はアモルフアス−結晶遷移温度以下
である。LPCVDプロセスに適した典型的な圧力は約380mT
orrであるが,約300ないし500mTorrの範囲でよい。同時
ドープポリシリコンの場合,リンド−パントは窒素中に
希釈されたホスフイン(PH3)により供給される。LPCVD
プロセスに適した装置は,以下のような混合ガスを用い
る。80ccシラン(SiH4);16cc窒素中の0.5パーセントホ
スフイン(PH3)。これによりリン対シラン比が0.001と
なる。具体的な例において,591℃の温度においてこれら
のパラメータを用いると,1分当り40オングストロームの
堆積速度が観測された。リン−シラン比は,約0.0015に
まで上げてもよい。もしホスフインの濃度を著しく上げ
ると,堆積速度を下る効果があり,プロセスを好ましく
ないほど長くする。0.001以下のホスフイン−シラン比
ではドーパント濃度がシリコン中の固溶限界以下で,シ
ート抵抗が所望の値以上のポリシリコンが生じる。
有用な堆積速度は1分当り約35ないし45オングストロー
ムの範囲である。(一例として)591℃の温度で適切な
堆積温度が得られ,ポリシリコン層上のきわめて平滑な
表面が得られる。誘電体層の厚さが減少することは,単
位面積当りの容量を増す働きをし,それにより本発明の
一つの目的,すなわち与えられたポリ酸化物容量に必要
とされる面積を減すことが実現される。あるいは,本発
明により与えられた面積内の容量が増すかあるいはより
厚い誘電体酸化物層を用いることにより,より高電圧の
デバイスが作られる。
同時ドープポリシリコン堆積はアンドープポリシリコン
の場合より,幾分遅い速度で起るが,余分にかかる時間
は別の拡散工程に必要とされる時間が除かれるだけでな
く,容量特性に対する拡散熱処理の有害な影響がなくな
ることで十分補償される。350オングストロームもの薄
い熱酸化物層は,約6MV/cmの降伏電界を示すことがわか
つた。
異なるドーパントを用いることにより,プロセスのある
種のパラメータ特に堆積速度に変化が生じるであろう。
これらのパラメータは堆積したままの薄膜が,それらの
アモルフアス構造を平滑な表面を維持するように,調整
することができる。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 キンスブロン・エリ−ザ− アメリカ合衆国08904ニユ−ジヤ−シイ・ ハイランド・パ−ク・サウス・フオ−ス・ アヴエニユ−233 (72)発明者 スタ−ンヘイム・マレツク・アンドレ アメリカ合衆国94550カリフオルニア・リ ヴア−モア・アルマノア・コ−ト2555 (56)参考文献 特開 昭54−8484(JP,A) 「電子材料」1975−4,P.117〜122 「interface effects and high conduetiv ity in oxides grown from polycrystalli ne silicon」Applied Physics Letters Vo l.27,No.9(1975.11.1)P. 505〜507

Claims (13)

    【特許請求の範囲】
  1. 【請求項1】ドープされたポリシリコンの第1の層(1
    7)及び該ポリシリコン層の一表面上に形成された第1
    の絶縁層(18)とから成る容量の製作方法において、 該ドープされたポリシリコンを約570℃ないし約595℃の
    範囲の温度のシリコンとリンドーパントを含む化学気相
    堆積雰囲気でのポリシリコン堆積工程中の同時ドーピン
    グによりつくっていることを特徴とする方法。
  2. 【請求項2】請求の範囲第1項に記載された容量の製作
    方法において、 前記堆積工程は該温度におけるシランの熱分解工程から
    成ることを特徴とする方法。
  3. 【請求項3】請求の範囲第2項に記載された容量の製作
    方法において、 前記第1のポリシリコン層はシリコン半導体基体(16)
    上の第2絶縁層(17)上に形成されることを特徴とする
    方法。
  4. 【請求項4】請求の範囲第3項に記載された容量の製作
    方法において、 第2のポリシリコン層(22)が前記第1の絶縁層(18)
    の少なくとも一部分上に堆積されることを特徴とする方
    法。
  5. 【請求項5】請求の範囲第4項に記載された容量の製作
    方法において、 前記同時ドーピングは、該温度におけるホスフインから
    のリンの化学気相堆積により行なわれることを特徴とす
    る方法。
  6. 【請求項6】請求の範囲第5項に記載された容量の製作
    方法において、 前記第1及び第2の絶縁層はシリコンの熱酸化により形
    成されることを特徴とする方法。
  7. 【請求項7】請求の範囲第5項に記載された容量の製作
    方法において、 ホスフイン−シランの体積比は、0.001ないし0.0015の
    範囲であることを特徴とする方法。
  8. 【請求項8】請求の範囲第6項に記載された容量の製作
    方法において、 前記シリコン酸化物の第1の絶縁層は、約900ないし1,0
    00℃の範囲の温度で成長させることを特徴とする方法。
  9. 【請求項9】請求の範囲第8項に記載された容量の製作
    方法において、 前記酸化物の第2の絶縁層は、乾燥酸素の存在下で約1,
    500オングストロームの厚さに成長されることを特徴と
    する方法。
  10. 【請求項10】請求の範囲第2項に記載された容量の製
    作方法において、 前記第1のポリシリコン層は約591℃の温度で堆積され
    ることを特徴とする方法。
  11. 【請求項11】請求の範囲第10項に記載された容量の製
    作方法において、 前記第1のポリシリコン層は約6,500オングストローム
    の厚さに堆積されることを特徴とする方法。
  12. 【請求項12】請求の範囲第2項に記載された容量の製
    作方法において、 前記熱分解は約300ないし500mTorrの範囲の圧力で行わ
    れることを特徴とする方法。
  13. 【請求項13】請求の範囲第12項に記載された容量の製
    作方法において、 前記圧力は約380mTorrであることを特徴とする方法。
JP58502043A 1982-05-26 1983-05-09 半導体集積回路容量の製作方法 Expired - Lifetime JPH0673367B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US382403NLESE 1982-05-26
US382403 1982-05-26
US06/382,403 US4441249A (en) 1982-05-26 1982-05-26 Semiconductor integrated circuit capacitor
PCT/US1983/000696 WO1983004343A1 (en) 1982-05-26 1983-05-09 Semiconductor integrated circuit capacitor

Publications (2)

Publication Number Publication Date
JPS59500893A JPS59500893A (ja) 1984-05-17
JPH0673367B2 true JPH0673367B2 (ja) 1994-09-14

Family

ID=23508798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58502043A Expired - Lifetime JPH0673367B2 (ja) 1982-05-26 1983-05-09 半導体集積回路容量の製作方法

Country Status (7)

Country Link
US (1) US4441249A (ja)
EP (1) EP0110952B1 (ja)
JP (1) JPH0673367B2 (ja)
CA (1) CA1199423A (ja)
DE (1) DE3368350D1 (ja)
GB (1) GB2120849B (ja)
WO (1) WO1983004343A1 (ja)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0058548B1 (en) * 1981-02-16 1986-08-06 Fujitsu Limited Method of producing mosfet type semiconductor device
GB2130009B (en) * 1982-11-12 1986-04-03 Rca Corp Polycrystalline silicon layers for semiconductor devices
GB2131407B (en) * 1982-11-12 1987-02-04 Rca Corp Method of formation of silicon dioxide layer
JPS59210658A (ja) * 1983-05-16 1984-11-29 Nec Corp 半導体装置の製造方法
US4847732A (en) * 1983-09-15 1989-07-11 Mosaic Systems, Inc. Wafer and method of making same
WO1985003805A1 (en) * 1984-02-21 1985-08-29 Mosaic Systems, Inc. Monolithic wafer having interconnection system including programmable interconnection layer
JPS61156862A (ja) * 1984-12-28 1986-07-16 Toshiba Corp 半導体記憶装置
JPS61174744A (ja) * 1985-01-30 1986-08-06 Nec Corp 集積回路装置およびその製造方法
US4635345A (en) * 1985-03-14 1987-01-13 Harris Corporation Method of making an intergrated vertical NPN and vertical oxide fuse programmable memory cell
US4701780A (en) * 1985-03-14 1987-10-20 Harris Corporation Integrated verticle NPN and vertical oxide fuse programmable memory cell
JPH0682783B2 (ja) * 1985-03-29 1994-10-19 三菱電機株式会社 容量およびその製造方法
US4685197A (en) * 1986-01-07 1987-08-11 Texas Instruments Incorporated Fabricating a stacked capacitor
GB2186117B (en) * 1986-01-30 1989-11-01 Sgs Microelettronica Spa Monolithically integrated semiconductor device containing bipolar junction,cmosand dmos transistors and low leakage diodes and a method for its fabrication
US4814291A (en) * 1986-02-25 1989-03-21 American Telephone And Telegraph Company, At&T Bell Laboratories Method of making devices having thin dielectric layers
US4874716A (en) * 1986-04-01 1989-10-17 Texas Instrument Incorporated Process for fabricating integrated circuit structure with extremely smooth polysilicone dielectric interface
US5017505A (en) * 1986-07-18 1991-05-21 Nippondenso Co., Ltd. Method of making a nonvolatile semiconductor memory apparatus with a floating gate
JPS63255972A (ja) * 1987-04-14 1988-10-24 Toshiba Corp 半導体装置の製造方法
US5851871A (en) * 1987-12-23 1998-12-22 Sgs-Thomson Microelectronics, S.R.L. Process for manufacturing integrated capacitors in MOS technology
US5057448A (en) * 1988-02-26 1991-10-15 Hitachi, Ltd. Method of making a semiconductor device having DRAM cells and floating gate memory cells
JPH01289264A (ja) * 1988-05-17 1989-11-21 Toshiba Corp 半導体装置
US4939099A (en) * 1988-06-21 1990-07-03 Texas Instruments Incorporated Process for fabricating isolated vertical bipolar and JFET transistors
IT1237894B (it) * 1989-12-14 1993-06-18 Sgs Thomson Microelectronics Processo per la fabbricazione di circuiti integrati comprendenti componenti elettronici di due tipi diversi aventi ciascuno coppie di elettrodi ricavati dagli stessi strati di silicio policristallino e separati da dielettrici diversi
US5366917A (en) * 1990-03-20 1994-11-22 Nec Corporation Method for fabricating polycrystalline silicon having micro roughness on the surface
US5691249A (en) * 1990-03-20 1997-11-25 Nec Corporation Method for fabricating polycrystalline silicon having micro roughness on the surface
JP2630874B2 (ja) * 1991-07-29 1997-07-16 三洋電機株式会社 半導体集積回路の製造方法
EP0543759A3 (en) * 1991-11-20 1993-10-06 International Business Machines Corporation A poly-emitter structure with improved interface control
EP0557937A1 (en) * 1992-02-25 1993-09-01 Ramtron International Corporation Ozone gas processing for ferroelectric memory circuits
JPH05299578A (ja) * 1992-04-17 1993-11-12 Rohm Co Ltd 半導体装置およびその製法
KR940018967A (ko) * 1993-01-30 1994-08-19 오가 노리오 반도체장치 및 그 제조방법
US5332689A (en) * 1993-02-17 1994-07-26 Micron Technology, Inc. Method for depositing low bulk resistivity doped films
KR100250020B1 (ko) * 1993-03-02 2000-03-15 가네꼬 히사시 반도체 소자용 다결정 실리콘 박막 형성 방법(method of forming polycrystalline silicon thin films for semiconductor devices)
JP3313840B2 (ja) * 1993-09-14 2002-08-12 富士通株式会社 半導体装置の製造方法
JP3432601B2 (ja) * 1994-06-17 2003-08-04 東京エレクトロン株式会社 成膜方法
US5714411A (en) * 1995-01-03 1998-02-03 Motorola, Inc. Process for forming a semiconductor device including a capacitor
DE19681430B4 (de) * 1995-06-06 2006-10-26 Asahi Kasei Microsystems Co., Ltd. Verfahren zur Herstellung eines Halbleiterbauelements
DE19529865C2 (de) 1995-08-14 2002-02-28 Kaufmann R Dataprint Gerät zum Auftragen von Flüssigkeiten auf eine Unterlage mittels eines Auftragselements
US5686751A (en) * 1996-06-28 1997-11-11 Winbond Electronics Corp. Electrostatic discharge protection circuit triggered by capacitive-coupling
US5843827A (en) * 1996-09-30 1998-12-01 Lucent Technologies Inc. Method of reducing dielectric damage from plasma etch charging
US5840607A (en) * 1996-10-11 1998-11-24 Taiwan Semiconductor Manufacturing Company, Ltd. Method of forming undoped/in-situ doped/undoped polysilicon sandwich for floating gate application
DE69739202D1 (de) * 1997-11-14 2009-02-26 St Microelectronics Srl Verfahren zur Abscheidung von in-situ dotierten Polysilizium-Schichten
JPH11260734A (ja) 1998-03-12 1999-09-24 Nec Corp 半導体装置の製造方法
US6268068B1 (en) * 1998-10-06 2001-07-31 Case Western Reserve University Low stress polysilicon film and method for producing same
US6902975B2 (en) * 2003-10-15 2005-06-07 Taiwan Semiconductor Manufacturing Company, Ltd. Non-volatile memory technology compatible with 1T-RAM process
DE102005046734B4 (de) * 2005-09-29 2011-06-16 Infineon Technologies Ag Halbleiterbauelement mit integrierter Kapazitätsstruktur
US20090165646A1 (en) * 2007-12-31 2009-07-02 Sarang Gadre Effluent gas recovery process for silicon production
US10896885B2 (en) * 2017-09-13 2021-01-19 Polar Semiconductor, Llc High-voltage MOSFET structures

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5563844A (en) * 1978-11-03 1980-05-14 Ibm Method of forming insulator between conductive layers
JPS5758349A (en) * 1980-09-24 1982-04-08 Semiconductor Energy Lab Co Ltd Semiconductor device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US391032A (en) * 1888-10-16 Andrew a
JPS607389B2 (ja) * 1978-12-26 1985-02-23 超エル・エス・アイ技術研究組合 半導体装置の製造方法
DE3032632A1 (de) * 1980-08-29 1982-04-08 Siemens AG, 1000 Berlin und 8000 München Verfahren zur herstellung integrierter dynamischer ram-eintransistor-speicherzellen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5563844A (en) * 1978-11-03 1980-05-14 Ibm Method of forming insulator between conductive layers
JPS5758349A (en) * 1980-09-24 1982-04-08 Semiconductor Energy Lab Co Ltd Semiconductor device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
「interfaceeffectsandhighconduetivityinoxidesgrownfrompolycrystallinesilicon」AppliedPhysicsLettersVol.27,No.9(1975.11.1)P.505〜507
「電子材料」1975−4,P.117〜122

Also Published As

Publication number Publication date
JPS59500893A (ja) 1984-05-17
GB8314292D0 (en) 1983-06-29
WO1983004343A1 (en) 1983-12-08
EP0110952A1 (en) 1984-06-20
CA1199423A (en) 1986-01-14
GB2120849A (en) 1983-12-07
GB2120849B (en) 1986-01-08
DE3368350D1 (en) 1987-01-22
EP0110952B1 (en) 1986-12-10
EP0110952A4 (en) 1984-07-03
US4441249A (en) 1984-04-10

Similar Documents

Publication Publication Date Title
JPH0673367B2 (ja) 半導体集積回路容量の製作方法
US7923322B2 (en) Method of forming a capacitor
KR0143542B1 (ko) 반도체 장치 및 그 제조 방법
US6509239B1 (en) Method of fabricating a field effect transistor
KR100207444B1 (ko) 반도체 장치의 고유전막/전극 및 그 제조방법
EP1028458A2 (en) Chemical vapor deposition of silicate high dielectric constant materials
US5554558A (en) Method of making high precision w-polycide-to-poly capacitors in digital/analog process
KR20010076401A (ko) 반도체 소자 및 도전성 구조를 형성하기 위한 공정
JPH06177324A (ja) 電圧係数の小さいキャパシタを含むicチップとその製造法
JPH04326766A (ja) 半導体装置及びその製造方法
US5874333A (en) Process for forming a polysilicon layer having improved roughness after POCL3 doping
KR100250020B1 (ko) 반도체 소자용 다결정 실리콘 박막 형성 방법(method of forming polycrystalline silicon thin films for semiconductor devices)
JPH0738062A (ja) 半導体装置の製造方法
US6323098B1 (en) Manufacturing method of a semiconductor device
KR100379333B1 (ko) 티타늄 실리사이드막 제조방법
KR940011799B1 (ko) TiN층으로 된 전하저장전극 형성방법
JPH09213942A (ja) 半導体装置およびその製造方法
KR100315037B1 (ko) 반도체 소자의 게이트 전극 형성 방법
JPH01292860A (ja) 半導体装置およびその製造方法
KR100449248B1 (ko) 원자층 증착을 이용한 커패시터 형성 방법
KR100228462B1 (ko) 반도체 장치 및 그 제조 방법
KR100400279B1 (ko) 텅스텐 실리사이드를 갖는 반도체 소자 제조방법
KR19980033881A (ko) 반도체 디바이스의 금속 배선 형성 방법
KR20020035982A (ko) 반도체 소자의 게이트 형성방법
KR20040050406A (ko) 커패시터 유전막을 갖는 반도체 소자 및 그 제조방법