JP7322852B2 - 内燃機関の失火検出装置 - Google Patents

内燃機関の失火検出装置 Download PDF

Info

Publication number
JP7322852B2
JP7322852B2 JP2020171006A JP2020171006A JP7322852B2 JP 7322852 B2 JP7322852 B2 JP 7322852B2 JP 2020171006 A JP2020171006 A JP 2020171006A JP 2020171006 A JP2020171006 A JP 2020171006A JP 7322852 B2 JP7322852 B2 JP 7322852B2
Authority
JP
Japan
Prior art keywords
value
misfire
internal combustion
determination
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020171006A
Other languages
English (en)
Other versions
JP2022062848A (ja
Inventor
仁己 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2020171006A priority Critical patent/JP7322852B2/ja
Priority to US17/448,392 priority patent/US11536214B2/en
Priority to CN202111114613.4A priority patent/CN114320592A/zh
Priority to EP21200708.2A priority patent/EP3981977A1/en
Publication of JP2022062848A publication Critical patent/JP2022062848A/ja
Application granted granted Critical
Publication of JP7322852B2 publication Critical patent/JP7322852B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D37/00Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
    • F02D37/02Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0097Electrical control of supply of combustible mixture or its constituents using means for generating speed signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/152Digital data processing dependent on pinking
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/11Testing internal-combustion engines by detecting misfire
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1002Output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1012Engine speed gradient
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1015Engines misfires
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

本発明は、内燃機関の失火検出装置に関する。
たとえば下記特許文献1には、クランク角センサの出力信号に基づき失火の有無を判定する装置が記載されている。この装置は、クランクロータの歯部に基づき、60°CAの回転角度間隔におけるクランク軸の回転速度についての圧縮上死点を挟んだ値同士の差を回転変動Nxdとしている。そして、この装置では、360°CA前の回転変動Nxd同士の差を回転変動差とし、回転変動差と判定値との大小比較に基づき、失火の有無を判定する。
特開2006-266253号公報
上記のように、単に回転変動Nxdと判定値との大小比較をするのではなく、回転変動差を用いることにより、360°CA前の回転変動Nxdを、今回の回転変動Nxdの基準値として用いることができる。特に、360°CA前の回転変動Nxdと今回の回転変動Nxdとは、クランクロータの同一の歯部を用いて算出されたものであることから、クランクロータの公差等の影響についても同等の値である。
ただし、クランク軸の回転挙動が不安定な状況にあっては、360°CA前の回転変動Nxdに回転挙動の不安定性に起因したノイズが重畳し、回転変動差と判定値との大小比較に基づく失火の有無の判定精度が低下するおそれがある。
以下、上記課題を解決するための手段およびその作用効果について記載する。
1.クランク角センサの出力信号を入力としてトルク指標値を算出する算出処理と、内燃機関の失火の有無の判定対象とされる気筒に関する前記トルク指標値の大きさに基づき失火の有無を判定する判定処理と、を実行し、前記判定処理は、過去の前記トルク指標値の平均値に対する前記判定対象とされる気筒の今回の前記トルク指標値の相対的な大きさと判定値との大小比較に基づき、前記失火の有無を判定する処理であり、前記過去のトルク指標値は、前記判定対象とされる気筒の圧縮上死点との角度間隔がクランク軸の1回転の整数倍となる気筒に関する量であり、前記トルク指標値は、圧縮上死点の出現間隔の長さの周期を有したクランク軸のトルクを特徴づける変数である内燃機関の失火検出装置である。
内燃機関の各気筒における燃焼行程に起因して、クランク軸のトルクは、圧縮上死点の出現間隔の長さの周期を有する。そのため、圧縮上死点の出現間隔の長さの周期を有したクランク軸のトルクを特徴づける変数であるトルク指標値の大きさには、失火の有無に関する情報が含まれている。ここで、上記構成では、判定対象とされる気筒の今回のトルク指標値の大きさと判定値との大小を直接比較する代わりに、過去のトルク指標値の平均値に対する判定対象とされる気筒の今回のトルク指標値の相対的な大きさと判定値との大小を比較する。ここで、過去のトルク指標値は、判定対象とされる気筒との圧縮上死点の出現間隔がクランク軸の1回転の整数倍となる気筒に関する量であることから、それら過去のトルク指標値に対する公差等の影響は、判定対象とされる気筒に関する今回のトルク指標値に対する公差等の影響と同等となる。しかも、平均値を基準として用いることにより、クランク軸の回転挙動が不安定な影響がそれら過去のトルク指標値に反映されたとしても、それらの平均値への上記影響については抑制される。そのため、クランク軸の回転挙動が不安定な状況にあっても、失火の有無の判定精度が低下することを抑制できる。
2.前記平均値は、過去において算出された規定数の前記トルク指標値の中から、失火時の値に対してより離れた値を有したものが所定数だけ選択されて平均化された値であり、前記所定数は、前記規定数よりも小さい上記1記載の内燃機関の失火検出装置である。
失火はしていなくても燃焼が不安定な場合等にあっては、トルク指標値が失火時の値に近づく傾向がある。そこで、上記構成では、失火時の値に対してより離れた値を有したものを選択的に用いて平均値を算出することにより、平均値を、失火が生じていないときの基準となるトルク指標値としてより適切な値とすることができる。
3.前記内燃機関の排気通路の触媒の温度が低いときに点火時期を遅角側に操作する遅角処理を実行し、前記判定処理は、前記遅角処理の実行時に実行される上記2記載の内燃機関の失火検出装置である。
遅角処理の実行時には、遅角処理を実行していない場合と比較して、各気筒の混合気の燃焼が不安定化しやすく、ひいてはクランク軸の回転挙動が不安定化しやすい。そのため、判定対象とされる気筒に関する今回のトルク指標値との大小の比較対象となる基準となるトルク指標値を、上記2とすることの利用価値が特に大きい。
4.前記トルク指標値は、回転変動量であり、前記回転変動量は、瞬時速度変数の変化を示す変数であり、前記瞬時速度変数は、圧縮上死点の出現間隔以下の回転角度領域を前記クランク軸が回転する際の速度を示す変数である上記1~3のいずれか1つに記載の内燃機関の失火検出装置である。
上記構成では、瞬時速度変数の変化によって回転変動量を定量化することにより、失火に起因した回転変動量を適切に定量化できる。
5.前記クランク軸の回転速度の1燃焼サイクルよりも長い期間における変化量を抽出する低周波成分抽出処理を実行し、前記判定処理は、前記相対的な大きさと前記判定値の大きさとの差の絶対値が前記低周波成分抽出処理によって抽出した前記変化量の絶対値以上であるか否かに基づき、前記失火の有無を判定する処理を含む上記4項に記載の内燃機関の失火検出装置である。
クランク軸の回転速度が1燃焼サイクルよりも長い期間において変化している場合、その変化が平均値に影響を与える。そのため、上記構成では、上記相対的な大きさと判定値の大きさとの差の絶対値が低周波成分抽出処理によって抽出した変化量の絶対値以上であるか否かに基づき、失火の有無を判定する。ここで、上記相対的な大きさと判定値の大きさとの差の絶対値には、低周波成分抽出処理によって抽出した変化量の影響が含まれている。しかし、その影響量は、低周波成分抽出処理によって抽出した変化量の絶対値程度であることから、絶対値以上であるか否かに基づき失火の有無を判定することにより、低周波成分が失火の有無の判定精度に与える影響を抑制できる。
6.前記低周波成分抽出処理は、前記判定対象に関する前記回転変動量に対して直近の過去における予め定められた個数の前記回転変動量のそれぞれと前記判定対象に関する前記回転変動量よりも過去における当該個数の前記平均値のそれぞれとの差の平均値を前記変化量として抽出する処理である上記5記載の内燃機関の失火検出装置である。
上記平均値に対する判定対象とされる気筒の回転変動量の相対的な大きさは、過去の回転変動量の平均値に対する1つの回転変動量の相対的な大きさである。そのため、上記構成では、低周波成分抽出処理において、1つの回転変動量と過去の平均値との差の予め定められた個数の平均値を、上記変化量として抽出する。このため、過去の回転変動量の平均値に対する1つの回転変動量の相対的な大きさに対する低周波成分の影響を精度良く定量化できる。
7.前記クランク軸には、電動機が機械的に連結されており、前記電動機によって前記クランク軸の回転速度を一定値に制御する一定制御処理を実行し、前記判定処理を、前記一定制御処理の実行中に実行する上記4~6のいずれか1つに記載の内燃機関の失火検出装置である。
クランク軸の回転速度が1燃焼サイクルよりも長い期間において変化している場合、その変化が平均値に影響を与える。これに対し、上記構成では、一定制御処理が実行されているときに平均値との相対的な大きさに基づく判定処理を実行することにより、クランク軸の1燃焼サイクルよりも長い期間におけるクランク軸の回転速度の変化が抑制されているときに同判定処理を実行できる。したがって、平均値を、判定対象とされる気筒に関する回転変動量に対する基準となる回転変動量としてふさわしい量とすることができる。
第1の実施形態にかかる駆動系および制御装置の構成を示す図。 同実施形態にかかる触媒暖機に関する処理の手順を示す流れ図。 同実施形態にかかる失火判定に関する処理の手順を示す流れ図。 同実施形態にかかる失火判定に関する処理の手順を示す流れ図。 同実施形態の効果を示すタイムチャート。 (a)および(b)は、同実施形態の効果を示す図。 第2の実施形態にかかる失火判定に関する処理の手順を示す流れ図。 第3の実施形態にかかる失火判定に関する処理の手順を示す流れ図。 同実施形態にかかる失火判定に関する処理の手順を示す流れ図。
<第1の実施形態>
以下、第1の実施形態について図面を参照しつつ説明する。
図1に示すように、内燃機関10は、4つの気筒#1~#4を備える。内燃機関10の吸気通路12には、スロットルバルブ14が設けられている。吸気通路12の下流部分である吸気ポート12aには、吸気ポート12aに燃料を噴射するポート噴射弁16が設けられている。吸気通路12に吸入された空気やポート噴射弁16から噴射された燃料は、吸気バルブ18の開弁に伴って、燃焼室20に流入する。燃焼室20には、筒内噴射弁22から燃料が噴射される。また、燃焼室20内の空気と燃料との混合気は、点火プラグ24の火花放電に伴って燃焼に供される。そのときに生成される燃焼エネルギは、クランク軸26の回転エネルギに変換される。
燃焼室20において燃焼に供された混合気は、排気バルブ28の開弁に伴って、排気として排気通路30に排出される。排気通路30には、酸素吸蔵能力を有した三元触媒32と、ガソリンパティキュレートフィルタ(GPF34)とが設けられている。なお、本実施形態では、GPF34として、PMを捕集するフィルタに三元触媒が担持されたものを想定している。
クランク軸26には、歯部42が設けられたクランクロータ40が結合されている。歯部42は、クランク軸26の複数の回転角度のそれぞれを示す。クランクロータ40には、基本的には、10°CA間隔で歯部42が設けられているものの、隣接する歯部42間の間隔が30°CAとなる箇所である欠け歯部44が1箇所設けられている。これは、クランク軸26の基準となる回転角度を示すためのものである。
クランク軸26は、動力分割装置を構成する遊星歯車機構50のキャリアCに機械的に連結されている。遊星歯車機構50のサンギアSには、第1モータジェネレータ52の回転軸52aが機械的に連結されている。また、遊星歯車機構50のリングギアRには、第2モータジェネレータ54の回転軸54aと駆動輪60とが機械的に連結されている。第1モータジェネレータ52の端子には、インバータ56によって交流電圧が印加される。また、第2モータジェネレータ54の端子には、インバータ58によって交流電圧が印加される。インバータ56,58は、直流電圧源としてのバッテリ59の端子電圧を交流電圧に変換する電力変換回路である。
制御装置70は、内燃機関10を制御対象とし、その制御量としてのトルクや排気成分比率等を制御するために、スロットルバルブ14、ポート噴射弁16、筒内噴射弁22、および点火プラグ24等の内燃機関10の操作部を操作する。また、制御装置70は、第1モータジェネレータ52を制御対象とし、その制御量である回転速度を制御すべく、インバータ56を操作する。また、制御装置70は、第2モータジェネレータ54を制御対象とし、その制御量であるトルクを制御すべくインバータ58を操作する。図1には、スロットルバルブ14、ポート噴射弁16、筒内噴射弁22、点火プラグ24、およびインバータ56,58のそれぞれの操作信号MS1~MS6を記載している。制御装置70は、内燃機関10の制御量を制御するために、エアフローメータ80によって検出される吸入空気量Ga、クランク角センサ82の出力信号Scr、および水温センサ86によって検出される水温THWを参照する。また、制御装置70は、第1モータジェネレータ52や第2モータジェネレータ54の制御量を制御するために、第1モータジェネレータ52の回転角を検知する第1回転角センサ90の出力信号Sm1、および第2モータジェネレータ54の回転角を検知する第2回転角センサ92の出力信号Sm2を参照する。
制御装置70は、CPU72、ROM74、記憶装置75、および周辺回路76を備えており、それらが通信線78によって通信可能とされている。ここで、周辺回路76は、内部の動作を規定するクロック信号を生成する回路や、電源回路、リセット回路等を含む。制御装置70は、ROM74に記憶されたプログラムをCPU72が実行することにより制御量を制御する。
図2に、制御装置70が実行する処理の手順を示す。図2に示す処理は、ROM74に記憶されたプログラムをCPU72がたとえば所定周期で繰り返し実行することにより実現される。なお、以下では、先頭に「S」が付与された数字によって各処理のステップ番号を表現する。
図2に示す一連の処理において、CPU72は、まずフラグFが「1」であるか否かを判定する(S10)。フラグFは、「1」である場合に三元触媒32の暖機処理を実行していることを示し、「0」である場合に実行していないことを示す。CPU72は、フラグFが「0」であると判定する場合(S10:NO)、三元触媒32の暖機処理の要求があるか否かを判定する(S12)。ここで、CPU72は、たとえば内燃機関10の始動直後であって且つ、水温THWが所定温度以下であることを条件に、要求があると判定すればよい。
CPU72は、要求があると判定する場合(S12:YES)、フラグFに「1」を代入する(S14)。そしてCPU72は、暖機処理として、点火時期を遅角する処理を実行する(S16)。ここでの点火時期の遅角とは、内燃機関10の動作点に応じて定まる通常時のベースとなる点火時期を、暖機処理のための所定の遅角量だけ遅角補正することである。
次にCPU72は、内燃機関10のクランク軸26の回転速度NEの指令値である機関速度指令値NE*を、暖機処理時用の値に設定する(S18)。本実施形態では、暖機処理時用の値は、固定値である。そして、CPU72は、内燃機関10の回転速度NEを機関速度指令値NE*にフィードバック制御するための操作量として、第1モータジェネレータ52に対する要求トルクである第1要求トルクTmg1*を算出する(S20)。ここで、回転速度NEは、CPU72により、出力信号Scrに基づき算出される。回転速度NEは、1燃焼サイクル以上の長さを有する期間におけるクランク軸26の平均的な回転速度である。CPU72は、たとえば、圧縮上死点の出現間隔以下の角度間隔におけるクランク軸26の回転速度である瞬時速度の1燃焼サイクル以上の単純移動平均処理、または、同瞬時速度の指数移動平均処理によって回転速度NEを算出すればよい。そして、CPU72は、点火プラグ24に操作信号MS4を出力して遅角補正された点火時期に応じて点火プラグ24を操作するとともに、インバータ56に操作信号MS5を出力して、第1モータジェネレータ52のトルクを第1要求トルクTmg1*に応じて制御すべくインバータ56を操作する(S22)。
これに対し、CPU72は、フラグFが「1」であると判定する場合(S10:YES)、暖機処理の実行時間として予め定められた時間が経過したか否かを判定する(S24)。CPU72は、未だ経過していないと判定する場合には(S24:NO)、S16の処理に移行する一方、経過したと判定する場合には(S24:YES)、フラグFに「1」を代入する(S26)。
なお、CPU72は、S22,S26の処理が完了する場合と、S12の処理において否定判定する場合とには、図2に示す一連の処理を一旦終了する。
図3および図4に、制御装置70が実行する別の処理の手順を示す。図3および図4に示す処理は、ROM74に記憶されたプログラムをCPU72がたとえば所定周期で繰り返し実行することにより実現される。
図3および図4に示す一連の処理において、CPU72は、まず、図3に示すように、クランク軸26が30°CA回転するのに要する時間T30を取得する(S30)。時間T30は、CPU72により、クランク角センサ82が対向する歯部42が30°CA離間した歯部42に代わるまでの時間を計時することによって算出される。次にCPU72は、「m=0,1,2,3,…」として、時間T30[m+1]に時間T30[m]を代入し、時間T30[0]にS30の処理で新たに取得した時間T30を代入する(S32)。この処理は、時間T30の後のカッコ内の変数を、過去のものほど数字が大きくなるようにするための処理である。この処理によって、カッコ内の変数の値が1つ大きい場合、30°CAだけ前の時間T30となる。
次にCPU72は、現在のクランク軸26の回転角度が、気筒#1~#4のいずれかの圧縮上死点を基準としてATDC150°CAであるか否かを判定する(S34)。CPU72は、ATDC150°CAであると判定する場合(S34:YES)、上記いずれかの気筒を失火の有無の判定対象として、判定対象となる気筒の回転変動量ΔT30[0]を算出し、記憶装置75に記憶する(S36)。詳しくは、CPU72は、最新の時間T30[0]から時間T30[4]を減算することによって、回転変動量ΔT30[0]を算出する。ここで、T30[4]は、判定対象となる気筒の圧縮上死点からATDC30°CAまでの区間の回転に要する時間である。そのため、失火が生じていない場合には、時間T30[0]は、時間T30[4]よりも小さくなることから、回転変動量ΔT30[0]は、負となる。これに対し、失火が生じる場合、回転変動量ΔT30[0]は正となる。
なお、回転変動量ΔT30の後のカッコ内の数字は、番号が大きいほどより過去の値であることを示す。すなわちたとえば、回転変動量ΔT30[1]は、現在の気筒よりも1つ前に圧縮上死点が出現した気筒における回転変動量ΔT30であることを示す。
次にCPU72は、内燃機関10の始動後の総回転数が所定値revth以上となったか否かを判定する(S38)。CPU72は、所定値revth未満であると判定する場合(S38:NO)、始動後の総回転数が規定値revthL以上であるか否かを判定する(S40)。ここで、規定値revthLは、所定値revthよりも小さく、2回転に設定されている。CPU72は、規定値revthL以上であると判定する場合(S40:YES)、1燃焼サイクル前の回転変動量ΔT30[4]を記憶装置75から読み出す(S42)。そして、CPU72は、回転変動量ΔT30[0]から回転変動量ΔT30[4]を減算した値が判定値Δth以上であるか否かを判定する(S44)。この処理は、判定対象となる気筒において失火が生じたか否かを判定する処理である。すなわち、判定対象となる今回の燃焼行程において失火が生じていない場合には、今回の回転変動量ΔT30[0]は、回転変動量ΔT30[4]と同等の大きさとなることから、回転変動量ΔT30[0]から回転変動量ΔT30[4]を減算した値は、ゼロ程度となる。これに対し、判定対象となる今回の燃焼行程において失火が生じる場合、今回の回転変動量ΔT30[0]が正となることから、回転変動量ΔT30[0]から回転変動量ΔT30[4]を減算した値は正で大きい値となる。なお、ここでは、回転変動量ΔT30[4]に対応する1燃焼サイクル前の燃焼行程において失火が生じていないことが前提である。
CPU72は、判定値Δthを回転速度NEおよび充填効率ηに応じて可変設定する。詳しくは、CPU72は、回転速度NEが大きい場合に小さい場合よりも判定値Δthを小さい値に算出し、充填効率ηが大きい場合には小さい場合よりも判定値Δthを大きい値に算出する。詳しくは、回転速度NEおよび充填効率ηを入力変数とし判定値Δthを出力変数とするマップデータがROM74に予め記憶された状態でCPU72により判定値Δthをマップ演算する。
ここで、マップデータとは、入力変数の離散的な値と、入力変数の値のそれぞれに対応する出力変数の値と、の組データである。また、マップ演算は、たとえば、入力変数の値がマップデータの入力変数の値のいずれかに一致する場合、対応するマップデータの出力変数の値を演算結果とするのに対し、一致しない場合、マップデータに含まれる複数の出力変数の値の補間によって得られる値を演算結果とする処理とすればよい。
なお、充填効率ηは、吸入空気量Gaに基づきCPU72により算出される。
CPU72は、判定値Δth以上であると判定する場合(S44:YES)、失火カウンタCranをインクリメントする(図4:S46)。CPU72は、S46の処理が完了する場合やS44の処理において否定判定する場合には、所定期間が経過したか否かを判定する(S48)。所定期間は、S44の処理が最初になされたタイミングと後述のS56の処理が最も最近なされたタイミングとのうちの近い方のタイミングを始点として所定の長さを有する期間とする。
CPU72は、所定期間が経過したと判定する場合(S48:YES)、失火カウンタCranが判定値Cranth以上であるか否かを判定する(S50)。CPU72は、判定値Cranth以上であると判定する場合(S50:YES)、失火が生じた旨判定する(S52)。そして、CPU72は、図1に示す警告灯100を操作することによって、その旨を報知する(S54)。なお、失火が生じた旨の判定は、内燃機関10において失火の発生頻度が所定以上である旨の判定である。たとえば、所定期間内に1度のみ失火が生じるようなものについては、報知処理の対象とならない。すなわち、失火が生じた旨の本判定は、報知処理を実行すべきほどの頻度で失火が生じた旨の判定である。
一方、CPU72は、判定値Cranth未満であると判定する場合(S50:NO)、失火カウンタCranを初期化する(S56)。
これに対し、CPU72は、図3の38の処理において所定値revth以上と判定する場合、フラグFが「1」であるか否かを判定する(S58)。CPU72は、フラグが「0」であると判定する場合(S58:NO)、S42の処理に移行する。一方、CPU72は、フラグFが「1」であると判定する場合(S58:YES)、10個の回転変動量ΔT30[4],ΔT30[8],…,ΔT30[40]を記憶装置75から読み出す(S60)。これら10の回転変動量ΔT30は、S34の処理において圧縮上死点を150°過ぎたとされた気筒に関する直近の過去の量である。なお、S38の処理における所定値revthは、上記10個の回転変動量ΔT30が記憶装置75に記憶されるだけの回転数とする。
そしてCPU72は、読み出した10個の量のうち、小さい量から順に5つを選択して、回転変動量ΔT30m1~ΔT30m5として抽出する(S62)。ここで、これについて図5を用いて説明する。
図5は、回転変動量ΔT30の時系列データを模式的に示したものである。ここで、時刻t1の回転変動量ΔT30[0]が最新の量である。換言すれば、回転変動量ΔT30[0]は、判定対象とされる気筒に関する量である。これに対し、回転変動量ΔT30[4],ΔT30[8],…は、順に720°CAずつ過去に遡った量である。図5に示す例では、回転変動量ΔT30[4],ΔT30[8],…,ΔT30[40]の10個の量のうち小さいもの5つは、回転変動量ΔT30[8],ΔT30[12],ΔT30[16],ΔT30[24],ΔT30[32]である。
図3に戻り、CPU72は、抽出した5個の回転変動量ΔT30m1~ΔT30m5の単純移動平均値を、平均値ΔT30ave[0]に代入する(S64)。そして、CPU72は、回転変動量ΔT30[0]から平均値ΔT30ave[0]を減算した値が判定値Δth以上であるか否かを判定する(S66)。そして、CPU72は、判定値Δth以上であると判定する場合(S66:YES)、図4のS46の処理に移行する一方、判定値Δth未満であると判定する場合(66:NO)、図4のS48の処理に移行する。
なお、CPU72は、S54,S56の処理を完了する場合と、S34,S40,S48の処理において否定判定する場合とには、図3および図4に示す一連の処理を一旦終了する。
ここで、本実施形態の作用および効果について説明する。
CPU72は、比較用の回転変動量ΔT30[4]に対する判定対象に関する回転変動量ΔT30[0]の相対的な大きさと判定値Δthとの大小比較に基づき、失火の有無を判定する。
一方、CPU72は、内燃機関10の冷間始動時に、三元触媒32を暖機すべく点火時期を遅角操作する。CPU72は、点火時期を遅角操作して三元触媒32を暖機する処理の実行時には、比較用の回転変動量ΔT30として、1燃焼サイクル前の回転変動量ΔT30[4]に代えて、過去10燃焼サイクル分の回転変動量ΔT30[4],ΔT30[8],…,ΔT30[40]の中から5個を抽出してそれらの平均値ΔT30ave[0]を用いる。これにより、点火遅角によって燃焼が不安定となっていても、平均値ΔT30ave[0]への影響は小さいことから、比較用の回転変動量を適切な値とすることができ、ひいては、燃焼の不安定性に起因して失火の判定精度が低下することを抑制できる。
これに対し、図5に示すように、たとえば回転変動量ΔT30[4]は、回転変動量ΔT30[8]と比較して、失火時の値に近いことから、失火の時の回転変動量ΔT30[0]との差Δ1が、回転変動量ΔT30[8]と失火時の回転変動量ΔT30[0]との差Δ2と比較して小さくなる。そのため、燃焼が不安定な時に比較用の量を単一の回転変動量ΔT30とする場合には、失火が生じているにもかかわらず、失火が生じていないと誤判定するおそれがある。
図6(a)に、本実施形態による失火の判定結果を示し、図6(b)に、触媒暖機処理時においてもS44の処理を実行した場合の失火の判定結果を示す。図6(a)および図6(b)ともに、判定対象に関する回転変動量ΔT30が実線よりも大きい場合に失火と判定される。
図6(a)に示すように、本実施形態では、失火した場合の回転変動量ΔT30が実線よりも大きい値となり、実際に失火である旨の判定ができている。これに対し図6(b)に示す比較例では、失火の場合の回転変動量ΔT30の一部が実線よりも小さい値となり、失火ではない旨、判定されている。
以上説明した本実施形態によれば、さらに以下に記載する作用および効果が得られる。
(1)過去10燃焼サイクル分の回転変動量ΔT30[4],ΔT30[8],…,ΔT30[40]の中から、失火の場合の値からより離間した量を5つ抽出して平均値ΔT30ave[0]を算出した。これにより、平均値ΔT30ave[0]を、失火が生じていないときの基準となる値としてよりふさわしい値とすることができる。
(2)触媒暖機処理中に、内燃機関10の回転速度NEを一定値に制御した。これにより、平均値ΔT30aveに、クランク軸26の1燃焼サイクルよりも長い期間における回転速度の変化である低周波成分が影響することを抑制できる。そのため、低周波成分の影響が顕著となる場合と比較すると、平均値ΔT30ave[0]を、判定対象に関する回転変動量ΔT30[0]の比較対象としてより適切な量とすることができる。
<第2の実施形態>
以下、第2の実施形態について、第1の実施形態との相違点を中心に図面を参照しつつ説明する。
上記第1の実施形態では、暖機処理時であることを条件に、判定対象に関する回転変動量ΔT30[0]の比較用の量として平均値ΔT30ave[0]を用いた。これに対し、本実施形態では、始動後の総回転数が所定値revth以上である場合、常時、平均値ΔT30ave[0]を用いる。
図7に、本実施形態にかかる制御装置70が実行する処理の手順を示す。図7に示す処理は、図4に示した処理とともに、ROM74に記憶されたプログラムをCPU72がたとえば所定周期で繰り返し実行することにより実現される。なお、図7に示す処理において、図3に示した処理に対応する処理については、便宜上、同一のステップ番号を付与している。
図7に示す一連の処理において、CPU72は、S64の処理が完了する場合、回転変動量ΔT30[5]~ΔT30[8]と、平均値ΔT30ave[1]~ΔT30ave[4]とを読み出す(S70)。そして、CPU72は、「i=1~4」として、回転変動量ΔT30[4+i]から平均値ΔT30ave[i]を減算した値の「i=1~4」の4つの値の平均値を、過渡補正量Δtranに代入する(S72)。そして、CPU72は、回転変動量ΔT30[0]から平均値ΔT30ave[0]と過渡補正量Δtranとを減算した値が判定値Δth以上であるか否かを判定する(S66a)。
CPU72は、判定値Δth以上であると判定する場合(S66a:YES)、図4のS46の処理に移行する一方、判定値Δth未満であると判定する場合(S66a:NO)には、図4のS48の処理に移行する。
このように、本実施形態では、過渡補正量Δtranを用いて、失火と判定される際の平均値ΔT30ave[0]に対する判定対象となる回転変動量ΔT30[0]の上回り量を変更した。これにより、クランク軸26の回転速度NEが1燃焼サイクルよりも長い期間で変化している場合であっても、その影響で失火の有無の判定精度が低下することを抑制できる。すなわち、たとえば回転速度NEが漸減している場合、燃焼が安定していても、回転変動量ΔT30[0]と比較して、過去の回転変動量ΔT30[4],ΔT30[8],…,ΔT30[40]は、より前の値となるほど回転変動量ΔT30[0]との差異が大きくなる傾向がある。
そこで本実施形態では、回転速度NEの変化が、回転変動量ΔT30[0]から平均値ΔT30ave[0]を減算した値に及ぼす影響を、過渡補正量Δtranによって定量化した。すなわち、回転変動量ΔT30[4+i]から平均値ΔT30ave[i]を減算した値は、1つの回転変動量と、過去の10個の回転変動量のうちの5個の平均値との差である。したがって、失火が生じていない場合、それら減算した値は、いずれも、回転変動量ΔT30[0]から平均値ΔT30ave[0]を減算した値相当の値と考えられる。そして、失火が生じていない場合、減算した値は、回転速度NEの変化に起因した値である。
したがって、本実施形態では、クランク軸26が1燃焼サイクル以上の長い期間で変化し、回転速度NEが低周波成分を有する場合であっても、その影響によって失火の有無の判定精度が低下することを抑制できる。
<第3の実施形態>
以下、第3の実施形態について、第2の実施形態との相違点を中心に図面を参照しつつ説明する。
上記第2の実施形態では、所定期間において失火が生じる回数が過度に多くなる異常の有無を監視した。これに対し、本実施形態では、特定の気筒で所定期間に過度に失火が生じる異常である、いわゆる連続失火を監視する。
図8および図9に、本実施形態にかかる制御装置70が実行する処理の手順を示す。図8および図9に示す処理は、ROM74に記憶されたプログラムをCPU72がたとえば所定周期で繰り返し実行することにより実現される。なお、図8および図9において、図4および図7の処理に対応する処理については、便宜上同一のステップ番号を付与している。
図8および図9に示す一連の処理において、CPU72は、S40の処理において肯定判定する場合、回転変動量ΔT30[2]を読み出す(S42a)。そして、CPU72は、回転変動量ΔT30[0]から回転変動量ΔT30[2]を減算した値が判定値Δth以上であるか否かを判定する(S44a)。
一方、CPU72は、S38の処理において肯定判定する場合、記憶装置75から回転変動量ΔT30[2],ΔT30[6],…,ΔT30[38]の10個の量を読み出す(S60a)。この処理は、判定対象とされる気筒とは圧縮上死点の出現タイミングが360°CAだけ離間した気筒に関する過去の10個の回転変動量ΔT30を読み出す処理である。そしてCPU72は、読み出した10個の値に関して、S62,S64,S70,S72,S66aの処理を実行する。
そして、CPU72は、S44a,S66aの処理において肯定判定する場合、「i=1~4」として、判定対象となる気筒のカウンタC[i]を、インクリメントする(図9:S46a)。すなわち、たとえば、回転変動量ΔT30[0]が気筒#1に関する量である場合、カウンタC[1]をインクリメントする。
CPU72は、S46aの処理を完了する場合や、S44a,S66aの処理において否定判定する場合には、S48の処理に移行する。そしてCPU72は、所定期間が経過したと判定する場合(S48:YES)、カウンタC[1]~C[4]の少なくとも1つが閾値Cconth以上であるか否かを判定する(S50a)。そして、CPU72は、閾値Cconth以上であると判定する場合(S50a:YES)、1気筒の連続失火異常であると判定し(S52a)、S54の処理に移行する。これに対し、CPU72は、閾値Cconth未満であると判定する場合(S50a:NO)、カウンタC[1]~C[4]を初期化する(S56a)。なお、CPU72は、S56aの処理を完了する場合には、図8および図9に示す一連の処理を一旦終了する。
<対応関係>
上記実施形態における事項と、上記「課題を解決するための手段」の欄に記載した事項との対応関係は、次の通りである。以下では、「課題を解決するための手段」の欄に記載した解決手段の番号毎に、対応関係を示している。[1]トルク指標値は、回転変動量ΔT30に対応する。算出処理は、S36の処理に対応する。判定処理は、図3および図4のS44~S52,S56,S66と、図4および図7のS44~S52,S56,S66aと、図8および図9のS44a,S46a,S48,S50a,S52a,S56a,S66aの処理に対応する。平均値は、平均値ΔT30ave[0]に対応する。判定値は、判定値Δthに対応する。[2]規定数は、「10」に対応し、所定数は、「5」に対応する。[3]遅角処理は、S16,S22の処理に対応する。[4]回転変動量は、回転変動量ΔT30に対応する。瞬時速度変数は、時間T30に対応する。[5,6]低周波成分抽出処理は、S70,S72の処理に対応する。判定処理は、図4および図7のS44~S52,S56,S66aと、図8および図9のS44a,S46a,S48,S50a,S52a,S56a,S66aの処理に対応する。変化量は、過渡補正量Δtranに対応する。[7]電動機は、第1モータジェネレータ52に対応する。一定制御処理は、S18~S22の処理に対応する。
<その他の実施形態>
なお、本実施形態は、以下のように変更して実施することができる。本実施形態および以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
「瞬時速度変数について」
・上記実施形態では、圧縮上死点間の間隔以下のクランク角度領域におけるクランク軸26の回転速度を示す変数である瞬時速度変数を定義するクランク角度領域を30°CAとしたが、これに限らない。たとえば、10°CAであってもよく、またたとえば圧縮上死点間の間隔自体であってもよい。
・瞬時速度変数としては、時間の次元を有する量に限らず、たとえば速度の次元を有する量であってもよい。
「回転変動量について」
・上記実施形態では、回転変動量ΔT30を、所定間隔だけ離間した瞬時速度変数同士の差として定義し、所定間隔を120°CAとしたが、これに限らない。たとえば、90°CAとしたり、180°CAとしたりしてもよい。なお、所定間隔の長さは、圧縮上死点の出現間隔以下とすることが望ましい。
・回転変動量としては、所定間隔だけ離間した瞬時速度変数同士の差に限らず、所定間隔だけ離間した瞬時速度変数同士の比であってもよい。
「平均値について」
・図3および図4と、図3および図7とに示した例では、平均値ΔT30ave[0]を、失火の判定対象となる気筒に関する過去の回転変動量ΔT30のみの平均値としたが、これに限らない。たとえば、判定対象の気筒の今回の回転変動量ΔT30[0]とは、360°CAの整数倍だけ過去の複数の量のうちのいくつかの平均値であってもよい。
・図8および図9に示した例では、平均値ΔT30ave[0]を、失火の判定対象となる気筒とは圧縮上死点の出現タイミングが360°CAだけ離間した気筒に関する過去の回転変動量ΔT30の平均値としたが、これに限らない。たとえば、判定対象の気筒の今回の回転変動量ΔT30[0]とは、360°CAの整数倍だけ過去の複数の量のうちのいくつかの平均値であってもよい。
・平均値ΔT30aveの算出に用いられる候補となる回転変動量ΔT30の数である規定数は、10個に限らない。また、規定数個の回転変動量ΔT30のうちの平均値の算出に用いる所定数個としては、規定数の1/2に限らない。
・平均値ΔT30aveとしては、過去の所定期間内の複数個の回転変動量ΔT30の一部のみを用いて算出されるものに限らない。全てを用いることによってクランク軸26の回転挙動の不安定性に起因した影響が平均値ΔT30aveの算出に用いる回転変動量ΔT30に及んでいる場合であっても、平均化処理によって、それらの平均値ΔT30aveについては、その影響を抑制することができる。
「低周波成分抽出処理について」
・低周波成分抽出処理としては、S70,S72の処理に限らない。たとえば、過渡補正量Δtranによって補正される量である「ΔT30[0]-ΔT30ave[0]」の過去の量の平均値としてもよい。すなわち、「ΔT30[1]-ΔT30ave[1],ΔT30[2]-ΔT30ave[2],…,ΔT30[4]-ΔT30ave[4]」の平均値としてもよい。
・過渡補正量Δtranとして、回転変動量ΔT30と平均値ΔT30aveとの差の平均値を算出する処理において、用いる差の数は、気筒数と同じ数に限らない。たとえば、平均値ΔT30aveの算出において定義される回転角度間隔である10燃焼サイクル分の平均値としてもよい。
・過渡補正量Δtranの算出において、回転変動量ΔT30から減算する量としては、平均値ΔT30aveに限らない。たとえば平均値ΔT30aveの算出において定義される期間である10燃焼サイクル分の回転変動量ΔT30の全ての平均値を用いてもよい。
「トルク指標値について」
・クランク角センサ82の出力信号Scrを入力として算出されるトルク指標値としては、回転変動量に限らない。たとえば内燃機関10の軸トルクの所定期間における平均値であってもよい。これは、たとえば、以下の式(c1)に基づき算出できる。
Te=Ie・dωe+(1+ρ)/{ρ・(Ig1・dωm1-Tr)} …(c1)
ただし、軸トルクTe、時間T30の逆数等から算出される内燃機関10の瞬時速度ωeの変化速度dωe、内燃機関10の慣性モーメントIe、第1モータジェネレータ52の慣性モーメントIg1、第1モータジェネレータ52の角加速度dωm1、第1モータジェネレータ52の反力トルクTr、遊星歯車機構50のプラネタリギア比ρを用いた。なお、上記所定期間は、圧縮上死点の出現間隔以下の期間とする。
「判定値について」
・上記実施形態では、回転速度NEおよび充填効率ηに基づき判定値Δthを設定したが、これに限らない。たとえば、負荷を示す変数として充填効率ηに代えて、内燃機関10に対するトルクの指令値や噴射量を用いてもよい。
・判定値Δthを、回転速度NEおよび負荷を示す変数を入力として可変設定すること自体必須ではない。たとえばそれら2つの変数に関しては、それらのうちのいずれか1つのみに応じて可変設定してもよく、また、それら2つの変数のいずれによっても可変設定しなくてもよい。
・判定値Δthを可変設定するための変数としては、内燃機関10の負荷を示す変数と回転速度NEとに限らず、たとえば水温THWを用いてもよい。
「判定処理について」
・平均値ΔT30aveに対する回転変動量ΔT30の相対的な大きさと判定値Δthとの大小比較としては、平均値ΔT30aveと回転変動量ΔT30との差と判定値Δthとの大小比較に限らず、たとえば、平均値ΔT30aveと回転変動量ΔT30との比と判定値Δthとの大小比較であってもよい。
・上記「トルク指標値について」の欄に記載したように、トルク指標値として、軸トルクTeの所定期間における平均値を用いる場合、同平均値によって回転変動量ΔT30[0]を置き換え、同平均値の過去における平均値によって平均値ΔT30ave[0]を置き換えればよい。ただし、その場合、所定期間における平均値から同平均値の過去における平均値を減算した値が判定値よりも小さい場合に失火と判定する。
「一定制御処理について」
・上記実施形態では、第1モータジェネレータ52によって内燃機関10の回転速度NEを一定値に制御したが、これに限らない。たとえば下記「車両について」の欄に記載したように、パラレルハイブリッド車においては、クランク軸26に機械的に連結される単一の電動機によって回転速度を一定値に制御してもよい。
・回転速度NEを一定値に制御するための操作対象としては、電動機にも限らない。たとえば内燃機関10自体の操作部であってもよい。
「S66の処理の適用条件について」
・S66の処理の適用条件としては、触媒暖機制御を実行している旨の条件に限らない。たとえば、内燃機関10のアイドル運転時である旨の条件であってもよい。またたとえば、回転速度NEを一定値として内燃機関10の燃焼エネルギを電力に変換するバッテリ59の強制充電中である旨の条件であってもよい。
「S66aの処理の適用条件について」
・図7や図8に示した例では、S38の処理において肯定判定される場合、常時S66aの処理を実行したが、これに限らない。たとえば燃焼状態が不安定となるか否かを判定し、不安定となると判定する場合に、S66aを実行し、不安定ではないと判定される場合には、S44,S44aの処理を実行してもよい。なお、ここで不安定である旨判定する条件としては、たとえば燃料が重質燃料であると判定される旨の条件、回転速度NEが低い旨の条件、水温THWが所定温度以下である旨の条件、および触媒暖機制御をしている旨の条件などがある。
もっとも、燃焼状態が不安定である旨の条件にも限らない。たとえばクランク軸26の回転挙動が不安定である旨の条件であってもよい。その場合、たとえば路面の凹凸が顕著である場合にクランク軸の回転挙動が不安定であると判定すればよい。なお、クランク軸26の回転挙動が不安定である旨の条件には、燃焼状態が不安定である旨の条件が含まれる。
「失火の判定結果の反映について」
・上記実施形態では、失火が生じたと判定する場合、警告灯100を用いた報知処理を実行したが、報知処理としては、視覚情報を出力する装置を操作対象とする処理に限らず、たとえば聴覚情報を出力する装置を操作対象とする処理であってもよい。
・失火の判定結果を報知処理に利用すること自体必須ではない。たとえば、失火が生じた場合に、失火が生じにくい運転状態へと内燃機関10の制御を変更すべく内燃機関10の操作部を操作する処理を実行してもよい。すなわち、失火の判定結果に対処すべく操作対象となるハードウェア手段としては、報知装置のみならず、内燃機関10の操作部等であってもよい。
「制御装置について」
・制御装置としては、CPU72とROM74とを備えて、ソフトウェア処理を実行するものに限らない。たとえば、上記実施形態においてソフトウェア処理されたものの少なくとも一部を、ハードウェア処理するたとえばASIC等の専用のハードウェア回路を備えてもよい。すなわち、制御装置は、以下の(a)~(c)のいずれかの構成であればよい。(a)上記処理の全てを、プログラムに従って実行する処理装置と、プログラムを記憶するROM等のプログラム格納装置とを備える。(b)上記処理の一部をプログラムに従って実行する処理装置およびプログラム格納装置と、残りの処理を実行する専用のハードウェア回路とを備える。(c)上記処理の全てを実行する専用のハードウェア回路を備える。ここで、処理装置およびプログラム格納装置を備えたソフトウェア実行装置や、専用のハードウェア回路は複数であってもよい。
「車両について」
・車両としては、シリーズ・パラレルハイブリッド車に限らず、たとえばパラレルハイブリッド車やシリーズハイブリッド車であってもよい。もっとも、ハイブリッド車に限らず、たとえば、車両の動力発生装置が内燃機関10のみの車両であってもよい。
10…内燃機関
20…燃焼室
32…三元触媒
40…クランクロータ
42…歯部
44…欠け歯部
52…第1モータジェネレータ
54…第2モータジェネレータ
56,58…インバータ
70…制御装置
82…クランク角センサ

Claims (7)

  1. クランク角センサの出力信号を入力としてトルク指標値を算出する算出処理と、
    内燃機関(気筒数が2個であるものを除く)の失火の有無の判定対象とされる気筒に関する前記トルク指標値の大きさに基づき失火の有無を判定する判定処理と、を実行し、
    前記判定処理は、過去の前記トルク指標値の平均値に対する前記判定対象とされる気筒の今回の前記トルク指標値の相対的な大きさと判定値との大小比較に基づき、前記失火の有無を判定する処理であり、
    前記過去のトルク指標値は、前記判定対象とされる気筒の圧縮上死点との角度間隔がクランク軸の1回転の整数倍となる気筒に関する量であり、
    前記トルク指標値は、圧縮上死点の出現間隔の長さの周期を有したクランク軸のトルクを特徴づける変数である内燃機関の失火検出装置。
  2. 前記平均値は、過去において算出された規定数の前記トルク指標値の中から、失火時の値に対してより離れた値を有したものが所定数だけ選択されて平均化された値であり、
    前記所定数は、前記規定数よりも小さい請求項1記載の内燃機関の失火検出装置。
  3. 前記内燃機関の排気通路の触媒の温度が低いときに点火時期を遅角側に操作する遅角処理を実行し、
    前記判定処理は、前記遅角処理の実行時に実行される請求項2記載の内燃機関の失火検出装置。
  4. 前記トルク指標値は、回転変動量であり、
    前記回転変動量は、瞬時速度変数の変化を示す変数であり、
    前記瞬時速度変数は、圧縮上死点の出現間隔以下の回転角度領域を前記クランク軸が回転する際の速度を示す変数である請求項1~3のいずれか1項に記載の内燃機関の失火検出装置。
  5. 前記クランク軸の回転速度の1燃焼サイクルよりも長い期間における変化量を抽出する低周波成分抽出処理を実行し、
    前記判定処理は、前記相対的な大きさと前記判定値の大きさとの差の絶対値が前記低周波成分抽出処理によって抽出した前記変化量の絶対値以上であるか否かに基づき、前記失火の有無を判定する処理を含む請求項4記載の内燃機関の失火検出装置。
  6. 前記低周波成分抽出処理は、前記判定対象に関する前記回転変動量に対して直近の過去における予め定められた個数の前記回転変動量のそれぞれと前記判定対象に関する前記回転変動量よりも過去における当該個数の前記平均値のそれぞれとの差の平均値を前記変化量として抽出する処理である請求項5記載の内燃機関の失火検出装置。
  7. 前記クランク軸には、電動機が機械的に連結されており、
    前記電動機によって前記クランク軸の回転速度を一定値に制御する一定制御処理を実行し、
    前記判定処理を、前記一定制御処理の実行中に実行する請求項4~6のいずれか1項に記載の内燃機関の失火検出装置。
JP2020171006A 2020-10-09 2020-10-09 内燃機関の失火検出装置 Active JP7322852B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020171006A JP7322852B2 (ja) 2020-10-09 2020-10-09 内燃機関の失火検出装置
US17/448,392 US11536214B2 (en) 2020-10-09 2021-09-22 Misfire detecting device and method for internal combustion engine
CN202111114613.4A CN114320592A (zh) 2020-10-09 2021-09-23 内燃机的失火检测装置及方法
EP21200708.2A EP3981977A1 (en) 2020-10-09 2021-10-04 Misfire detecting device and method for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020171006A JP7322852B2 (ja) 2020-10-09 2020-10-09 内燃機関の失火検出装置

Publications (2)

Publication Number Publication Date
JP2022062848A JP2022062848A (ja) 2022-04-21
JP7322852B2 true JP7322852B2 (ja) 2023-08-08

Family

ID=78413580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020171006A Active JP7322852B2 (ja) 2020-10-09 2020-10-09 内燃機関の失火検出装置

Country Status (4)

Country Link
US (1) US11536214B2 (ja)
EP (1) EP3981977A1 (ja)
JP (1) JP7322852B2 (ja)
CN (1) CN114320592A (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7347392B2 (ja) * 2020-10-14 2023-09-20 トヨタ自動車株式会社 内燃機関の失火判定装置
JP7392672B2 (ja) * 2021-01-29 2023-12-06 トヨタ自動車株式会社 内燃機関の失火検出装置
JP7399209B2 (ja) 2022-04-05 2023-12-15 エルジー・ケム・リミテッド 処理装置、分解生成物の製造方法、及び処理方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004176563A (ja) 2002-11-25 2004-06-24 Toyota Industries Corp 多気筒内燃機関の失火検出装置
JP2005299511A (ja) 2004-04-12 2005-10-27 Mitsubishi Motors Corp エンジンの失火検出装置及びエンジンの燃焼制御装置
JP2006266253A (ja) 2005-02-24 2006-10-05 Toyota Motor Corp 内燃機関の失火判定装置および失火判定方法
JP2010156248A (ja) 2008-12-26 2010-07-15 Hitachi Automotive Systems Ltd 内燃機関の制御装置
JP2017031933A (ja) 2015-08-05 2017-02-09 トヨタ自動車株式会社 車両
JP2020133454A (ja) 2019-02-15 2020-08-31 トヨタ自動車株式会社 内燃機関の失火検出装置、内燃機関の失火検出システム、データ解析装置、および内燃機関の制御装置
JP2020165364A (ja) 2019-03-29 2020-10-08 トヨタ自動車株式会社 内燃機関の失火検出装置、内燃機関の失火検出システム、データ解析装置、内燃機関の制御装置、内燃機関の失火検出方法、および受信実行装置

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5109695A (en) * 1990-08-24 1992-05-05 Ford Motor Company Misfire detection in an internal combustion engine
US5044195A (en) * 1990-08-24 1991-09-03 Ford Motor Company Misfire detection in an internal combustion engine
US5044194A (en) * 1990-08-24 1991-09-03 Ford Motor Company Misfire detection in an internal combustion engine
US5095742A (en) * 1990-08-24 1992-03-17 Ford Motor Company Determining crankshaft acceleration in an internal combustion engine
US5222392A (en) * 1990-09-21 1993-06-29 Nippondenso Co., Ltd. Control system with misfire detection function for internal combustion engine
JP2982381B2 (ja) * 1991-06-12 1999-11-22 株式会社デンソー 内燃機関用失火検出装置
JPH0781935B2 (ja) * 1991-08-29 1995-09-06 トヨタ自動車株式会社 多気筒内燃機関の失火検出装置
US5287736A (en) * 1991-09-30 1994-02-22 Nippondenso Co., Ltd. Misfire detecting apparatus for multicylinder internal combustion engines
JPH05312085A (ja) * 1992-05-07 1993-11-22 Nippondenso Co Ltd 悪路検出装置
DE69331156T2 (de) * 1992-06-09 2002-08-14 Mitsubishi Motors Corp Methode zur Erkennung von Fehlzündungen
JPH06146999A (ja) * 1992-11-11 1994-05-27 Honda Motor Co Ltd 内燃エンジンの燃焼状態検出装置
JPH06146998A (ja) * 1992-11-11 1994-05-27 Honda Motor Co Ltd 内燃エンジンの燃焼状態検出装置
US5539644A (en) * 1992-11-17 1996-07-23 Nippondenso Co., Ltd. System for detecting misfire in a multi-cylinder internal combustion engine
JPH06280671A (ja) * 1993-03-26 1994-10-04 Honda Motor Co Ltd 内燃機関の燃焼状態判定装置及び燃焼状態制御装置
JP3158774B2 (ja) * 1993-04-21 2001-04-23 トヨタ自動車株式会社 多気筒内燃機関の失火検出装置
JP3526870B2 (ja) * 1993-09-07 2004-05-17 モトローラ・インコーポレイテッド 往復エンジンにおける不点火状態を判定するためのパターン認識方法およびシステム
JP2807738B2 (ja) * 1993-10-15 1998-10-08 本田技研工業株式会社 内燃エンジンの燃焼状態検出装置
KR0172191B1 (ko) * 1993-12-21 1999-03-20 나까무라 유이찌 내연기관의 연소상태판정방법 및 내연기관의 연소상태제어방법 및 연소상태제어장치
US5499537A (en) * 1993-12-24 1996-03-19 Nippondenso Co., Ltd. Apparatus for detecting misfire in internal combustion engine
US5602331A (en) * 1995-06-06 1997-02-11 Chrysler Corporation Engine misfire detection with cascade filter configuration
US5544521A (en) * 1995-06-06 1996-08-13 Chrysler Corporation Engine misfire detection with rough road inhibit
US5574217A (en) * 1995-06-06 1996-11-12 Chrysler Corporation Engine misfire detection with compensation for normal acceleration of crankshaft
US5728941A (en) * 1995-10-09 1998-03-17 Denso Corporation Misfire detecting apparatus using difference in engine rotation speed variance
US6070567A (en) * 1996-05-17 2000-06-06 Nissan Motor Co., Ltd. Individual cylinder combustion state detection from engine crankshaft acceleration
JPH1030540A (ja) * 1996-07-16 1998-02-03 Nissan Motor Co Ltd エンジンの失火診断装置
JP3463476B2 (ja) * 1996-08-08 2003-11-05 トヨタ自動車株式会社 多気筒内燃機関の失火検出装置
JP3743073B2 (ja) * 1996-10-17 2006-02-08 株式会社デンソー 内燃機関の失火検出装置
JP3861550B2 (ja) * 2000-02-29 2006-12-20 株式会社デンソー 多気筒内燃機関の異常気筒検出装置
JP3961745B2 (ja) * 2000-06-22 2007-08-22 株式会社デンソー 内燃機関の失火検出装置
US6439039B1 (en) * 2001-09-04 2002-08-27 Ford Global Technologies, Inc. Method to verify cold start spark retard
US6968268B2 (en) * 2003-01-17 2005-11-22 Denso Corporation Misfire detector for an internal combustion engine
JP4552687B2 (ja) * 2005-01-11 2010-09-29 トヨタ自動車株式会社 内燃機関の失火判定装置および失火判定方法
JP4453654B2 (ja) * 2005-12-21 2010-04-21 トヨタ自動車株式会社 内燃機関の失火判定装置およびこれを搭載する車両並びに失火判定方法
JP4442568B2 (ja) * 2006-01-27 2010-03-31 トヨタ自動車株式会社 内燃機関の失火判定装置および失火判定方法
JP4702169B2 (ja) * 2006-05-09 2011-06-15 トヨタ自動車株式会社 内燃機関装置およびこれを搭載する車両並びに内燃機関の失火判定方法
JP4702180B2 (ja) * 2006-05-23 2011-06-15 トヨタ自動車株式会社 内燃機関装置および内燃機関の失火判定方法
JP4007401B1 (ja) * 2006-07-31 2007-11-14 トヨタ自動車株式会社 内燃機関の失火判定装置および失火判定方法
JP4345847B2 (ja) * 2006-09-01 2009-10-14 トヨタ自動車株式会社 内燃機関の失火判定装置および失火判定方法並びに車両
US7540185B2 (en) * 2007-02-01 2009-06-02 Toyota Motor Engineering & Manufacturing North America, Inc. System and method for detecting engine misfires
JP4458105B2 (ja) * 2007-03-07 2010-04-28 トヨタ自動車株式会社 内燃機関装置およびこれを搭載する車両並びに内燃機関の失火判定方法
JP2009121303A (ja) * 2007-11-14 2009-06-04 Denso Corp 内燃機関の失火検出装置
FR2924167A1 (fr) * 2007-11-27 2009-05-29 Renault Sas Procede et dispositif de diagnostic du fonctionnement d'une sonde a oxygene
US7707874B2 (en) * 2007-12-11 2010-05-04 Toyota Jidosha Kabushiki Kaisha Misfire determination device and method for internal combustion engine, and vehicle including misfire determination device
JP4438858B2 (ja) * 2007-12-12 2010-03-24 トヨタ自動車株式会社 内燃機関の失火判定装置および車両並びにねじれ要素の剛性推定装置,内燃機関の失火判定方法,ねじれ要素の剛性推定方法
JP5471864B2 (ja) * 2010-06-11 2014-04-16 いすゞ自動車株式会社 内燃機関の燃焼診断装置
JP2012132392A (ja) * 2010-12-22 2012-07-12 Toyota Motor Corp 気筒間空燃比ばらつき異常検出装置
JP5853922B2 (ja) 2012-09-28 2016-02-09 トヨタ自動車株式会社 車両
JP6353333B2 (ja) * 2014-10-01 2018-07-04 川崎重工業株式会社 失火判定装置
JP6090291B2 (ja) * 2014-11-27 2017-03-08 トヨタ自動車株式会社 内燃機関の失火判定装置
JP6164432B2 (ja) * 2015-05-14 2017-07-19 トヨタ自動車株式会社 内燃機関の失火判定装置
JP6269572B2 (ja) * 2015-05-15 2018-01-31 トヨタ自動車株式会社 エンジン装置
JP6536601B2 (ja) * 2017-02-28 2019-07-03 トヨタ自動車株式会社 内燃機関の失火検出装置
US11255282B2 (en) 2019-02-15 2022-02-22 Toyota Jidosha Kabushiki Kaisha State detection system for internal combustion engine, data analysis device, and vehicle
JP6624326B1 (ja) * 2019-03-29 2019-12-25 トヨタ自動車株式会社 内燃機関の失火検出装置、内燃機関の失火検出システム、データ解析装置、内燃機関の制御装置、内燃機関の失火検出方法、および受信実行装置
JP7314895B2 (ja) * 2020-09-25 2023-07-26 トヨタ自動車株式会社 内燃機関の失火判定装置
JP7268663B2 (ja) * 2020-09-25 2023-05-08 トヨタ自動車株式会社 内燃機関の失火検出装置
JP7354984B2 (ja) * 2020-10-15 2023-10-03 トヨタ自動車株式会社 内燃機関の判定装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004176563A (ja) 2002-11-25 2004-06-24 Toyota Industries Corp 多気筒内燃機関の失火検出装置
JP2005299511A (ja) 2004-04-12 2005-10-27 Mitsubishi Motors Corp エンジンの失火検出装置及びエンジンの燃焼制御装置
JP2006266253A (ja) 2005-02-24 2006-10-05 Toyota Motor Corp 内燃機関の失火判定装置および失火判定方法
JP2010156248A (ja) 2008-12-26 2010-07-15 Hitachi Automotive Systems Ltd 内燃機関の制御装置
JP2017031933A (ja) 2015-08-05 2017-02-09 トヨタ自動車株式会社 車両
JP2020133454A (ja) 2019-02-15 2020-08-31 トヨタ自動車株式会社 内燃機関の失火検出装置、内燃機関の失火検出システム、データ解析装置、および内燃機関の制御装置
JP2020165364A (ja) 2019-03-29 2020-10-08 トヨタ自動車株式会社 内燃機関の失火検出装置、内燃機関の失火検出システム、データ解析装置、内燃機関の制御装置、内燃機関の失火検出方法、および受信実行装置

Also Published As

Publication number Publication date
JP2022062848A (ja) 2022-04-21
US20220112853A1 (en) 2022-04-14
EP3981977A1 (en) 2022-04-13
CN114320592A (zh) 2022-04-12
US11536214B2 (en) 2022-12-27

Similar Documents

Publication Publication Date Title
JP7322852B2 (ja) 内燃機関の失火検出装置
JP7318621B2 (ja) 内燃機関の失火検出装置
JP7338595B2 (ja) 内燃機関の制御装置
JP7354984B2 (ja) 内燃機関の判定装置
JP7276295B2 (ja) 内燃機関の失火検出装置
JP7268663B2 (ja) 内燃機関の失火検出装置
JP7314895B2 (ja) 内燃機関の失火判定装置
JP2019100296A (ja) 内燃機関の制御装置
JP7420053B2 (ja) 内燃機関の失火検出装置
JP7384145B2 (ja) 内燃機関の失火検出装置
JP7314919B2 (ja) 内燃機関の制御装置
US11480125B2 (en) Misfire detection device for internal combustion engine
JP7392672B2 (ja) 内燃機関の失火検出装置
JP7347392B2 (ja) 内燃機関の失火判定装置
JP2023009910A (ja) 内燃機関の噴射異常判定装置
JP2023153605A (ja) 内燃機関の制御装置
JPH01285643A (ja) 内燃機関のノッキング検出装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230710

R151 Written notification of patent or utility model registration

Ref document number: 7322852

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151