JP6946815B2 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP6946815B2
JP6946815B2 JP2017142763A JP2017142763A JP6946815B2 JP 6946815 B2 JP6946815 B2 JP 6946815B2 JP 2017142763 A JP2017142763 A JP 2017142763A JP 2017142763 A JP2017142763 A JP 2017142763A JP 6946815 B2 JP6946815 B2 JP 6946815B2
Authority
JP
Japan
Prior art keywords
value
air
fuel ratio
cylinders
rich
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017142763A
Other languages
English (en)
Other versions
JP2019023443A (ja
Inventor
勇喜 野瀬
勇喜 野瀬
純久 小田
純久 小田
一輝 寉岡
一輝 寉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017142763A priority Critical patent/JP6946815B2/ja
Priority to DE102018113520.3A priority patent/DE102018113520B4/de
Priority to US16/036,081 priority patent/US10612439B2/en
Priority to CN201810795974.1A priority patent/CN109296468B/zh
Publication of JP2019023443A publication Critical patent/JP2019023443A/ja
Application granted granted Critical
Publication of JP6946815B2 publication Critical patent/JP6946815B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/007Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring oxygen or air concentration downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0085Balancing of cylinder outputs, e.g. speed, torque or air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/025Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus by changing the composition of the exhaust gas, e.g. for exothermic reaction on exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1408Dithering techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1475Regulating the air fuel ratio at a value other than stoichiometry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1495Detection of abnormalities in the air/fuel ratio feedback system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control
    • F02D41/2458Learning of the air-fuel ratio control with an additional dither signal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • F02P5/1508Digital data processing using one central computing unit with particular means during idling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/06Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by varying fuel-air ratio, e.g. by enriching fuel-air mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/025Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting O2, e.g. lambda sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D43/00Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Materials Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

本発明は、複数の気筒から排出された排気を浄化する触媒と、前記複数の気筒毎に設けられた燃料噴射弁とを備える内燃機関を制御対象とする内燃機関の制御装置に関する。
たとえば特許文献1には、触媒装置(触媒)の昇温要求がある場合、一部の気筒における空燃比を理論空燃比よりもリッチとし、残りの気筒における空燃比を理論空燃比よりもリーンとし、触媒に流入する排気の空燃比を目標空燃比に制御するディザ制御を実行する制御装置が記載されている。
また、複数の気筒のそれぞれにおける空燃比を互いに等しく制御するために燃料噴射弁を操作した際の複数の気筒のそれぞれの燃料噴射弁の噴射量のばらつき(インバランス)の度合いを学習するインバランス学習処理が周知である。
特開2004−218541号公報
ところで、上記インバランスが生じている場合、各気筒の燃焼室内における燃焼対象となる混合気の空燃比は、狙いとする値からずれうるため、燃焼の制御性が低下する。一方、ディザ制御を実行する場合には、空燃比が理論空燃比よりもリッチとなる気筒とリーンとなる気筒とを設けることから、燃焼状態を最適な状態から意図的にずらす必要が生じる。このため、インバランスが生じている場合にディザ制御を実行すると、インバランスに起因した燃焼の制御性の低下が、ディザ制御によって助長されて顕在化するおそれがある。
以下、上記課題を解決するための手段およびその作用効果について記載する。なお、特許請求の範囲に記載の請求項1〜6は、それぞれ、下記の1〜5,7の手段において表現を改めるなどしたものに対応する。
1.内燃機関の制御装置は、複数の気筒から排出された排気を浄化する触媒と、前記複数の気筒毎に設けられた燃料噴射弁とを備える内燃機関を制御対象とし、前記複数の気筒のうちの一部の気筒を、空燃比が理論空燃比よりもリーンであるリーン燃焼気筒とし、前記複数の気筒のうちの前記一部の気筒とは別の気筒を、空燃比が理論空燃比よりもリッチであるリッチ燃焼気筒とすべく、前記燃料噴射弁を操作するディザ制御処理と、前記複数の気筒のそれぞれにおける空燃比を互いに等しく制御するために前記燃料噴射弁を操作する場合の前記複数の気筒のそれぞれの前記燃料噴射弁の噴射量のばらつき度合いを学習するインバランス学習処理と、前記ばらつき度合いが所定値以上である場合、前記ディザ制御処理を、前記複数の気筒のそれぞれにおける空燃比のうちの最もリッチなものと最もリーンなものとの差を小さくする側に制限する制限処理と、を実行する。
上記構成では、ばらつき度合いが所定値以上である場合、ディザ制御を制限することにより、インバランスに起因した燃焼の制御性の低下がディザ制御によって助長されて顕在化する事態が生じることを、回避する、または、ディザ制御を制限しない場合と比較して抑制する、ことができる。
2.上記1記載の内燃機関の制御装置において、前記ばらつき度合いが前記所定値よりも大きい閾値以上である場合、報知機器を操作することによって、前記ばらつき度合いが大きい旨を報知する報知処理を実行する。
上記構成では、上記所定値を上記閾値よりも小さい値とすることにより、閾値を設定する際、インバランスに起因した燃焼の制御性の低下がディザ制御によって助長されて顕在化することを考慮する制約が軽減または解消される。このため、上記所定値を上記閾値以上とする場合と比較すると、閾値を大きい値に設定しやすく、結果、報知処理がなされることを抑制できる。
3.上記1または2記載の内燃機関の制御装置は、前記制限処理は、前記ディザ制御処理を禁止する処理を含む。
上記構成では、ディザ制御処理を禁止することにより、インバランスに起因した燃焼の制御性の低下がディザ制御によって助長されて顕在化する事態が生じることを回避できる。
4.上記1または2記載の内燃機関の制御装置において、前記制限処理は、前記ばらつき度合いが前記所定値以上である場合に前記所定値未満である場合よりも前記リーン燃焼気筒における空燃比と前記リッチ燃焼気筒における空燃比との差を小さくする処理を含む。
上記制限処理によれば、制限処理を実行しない場合と比較して、インバランスに起因した燃焼の制御性の低下がディザ制御によって助長されて顕在化することを抑制することができる。
5.上記4記載の内燃機関の制御装置において、前記ディザ制御処理は、前記内燃機関の動作点に応じて前記リーン燃焼気筒における空燃比と前記リッチ燃焼気筒における空燃比との差を可変設定する可変設定処理を含み、前記制限処理は、前記可変設定処理によって設定された前記差の大きさに対する上限ガード値によるガード処理を含み、前記上限ガード値は、前記所定値以上である場合に前記所定値未満である場合よりも小さい。
上記構成では、内燃機関の動作点に応じて上記差を可変設定することにより、動作点によって、ディザ制御による燃焼の制御性の低下のしやすさが、動作点に応じて異なることを考慮して、動作点毎に適切な差を設定することができる。そして、制限処理をガード処理とすることにより、動作点毎の可変設定処理による上記差の設定を極力尊重することができる。
6.上記1〜5のいずれか1項に記載の内燃機関の制御装置において、前記ディザ制御処理は、前記触媒の硫黄被毒回復要求のために前記触媒を昇温する要求が生じることを条件に少なくとも実行され、前記制限処理は、前記硫黄被毒回復要求のために前記触媒を昇温するディザ制御処理を制限する。
硫黄被毒回復処理は、同処理がなされない場合と比較して触媒を高温とする処理となる。このため、ディザ制御によって燃焼の制御性が低下することにより、硫黄被毒回復処理に必要とされる昇温性能を上回る昇温がなされる場合には、触媒の劣化が促進されるおそれがある。このため、制限処理を実行することが特に有効である。
7.上記1〜6のいずれか1項に記載の内燃機関の制御装置において、前記インバランス学習処理を、前記ディザ制御処理が実行されていないことを条件に実行する。
上記構成では、ディザ制御処理が実行されていないことを条件にインバランス学習処理を実行することにより、ディザ制御による複数の気筒の空燃比のばらつきを考慮しなくてよいため、インバランス学習を高精度に実行することが容易である。
第1の実施形態にかかる制御装置および内燃機関を示す図。 同実施形態にかかる制御装置が実行する処理の一部を示すブロック図。 同実施形態にかかるリッチインバランス学習処理部の処理の手順を示す流れ図。 同実施形態にかかるリーンインバランス学習処理部の処理の手順を示す流れ図。 同実施形態にかかる要求値出力処理部の処理の手順を示す流れ図。 (a)および(b)は、同実施形態の効果を示すタイムチャート。 第2の実施形態にかかる噴射量補正要求値算出処理の手順を示す流れ図。 第3の実施形態にかかる噴射量補正要求値算出処理の手順を示す流れ図。
<第1の実施形態>
以下、内燃機関の制御装置にかかる第1の実施形態について図面を参照しつつ説明する。
図1に示す内燃機関10において、吸気通路12から吸入された空気は、過給機14を介して各気筒の燃焼室16に流入する。燃焼室16には、燃料を噴射する燃料噴射弁18と、火花放電を生じさせる点火装置20とが突出している。燃焼室16において、空気と燃料との混合気は、燃焼に供され、燃焼に供された混合気は、排気として、排気通路22に排出される。排気通路22のうちの過給機14の下流には、酸素吸蔵能力を有した三元触媒24が設けられている。
制御装置30は、内燃機関10を制御対象とし、その制御量(トルク、排気成分等)を制御するために、燃料噴射弁18や点火装置20等の内燃機関10の操作部を操作する。この際、制御装置30は、三元触媒24の上流側の上流側空燃比センサ40によって検出される空燃比(上流側空燃比Afu)や、三元触媒24の下流側の下流側空燃比センサ42によって検出される空燃比(下流側空燃比Afd)を参照する。また制御装置30は、クランク角センサ44の出力信号Scrや、エアフローメータ46によって検出される吸入空気量Gaを参照する。制御装置30は、CPU32、ROM34、および電気的に書き換え可能な不揮発性メモリ36を備えており、ROM34に記憶されたプログラムをCPU32が実行することにより上記制御量の制御を実行する。
図2に、ROM34に記憶されたプログラムをCPU32が実行することにより実現される処理の一部を示す。
ベース噴射量算出処理部M10は、クランク角センサ44の出力信号Scrに基づき算出された回転速度NEと吸入空気量Gaとに基づき、燃焼室16における混合気の空燃比を目標空燃比に開ループ制御するための操作量である開ループ操作量として、ベース噴射量Qbを算出する。
ローパスフィルタM12は、上流側空燃比Afuの高周波成分を除去することにより、フィードバック制御量としての空燃比Afを算出する。目標値設定処理部M14は、燃焼室16における混合気の空燃比を上記目標空燃比に制御するためのフィードバック制御量の目標値Af*を設定する。
メインフィードバック処理部M16は、空燃比Afを目標値Af*にフィードバック制御するための操作量であるフィードバック操作量KAFを算出する。本実施形態では、目標値Af*と空燃比Afとの差を入力とする比例要素、積分要素、および微分要素の各出力値の和を、フィードバック操作量KAFとする。
フィードバック補正処理部M18は、ベース噴射量Qbにフィードバック操作量KAFを乗算することによって、ベース噴射量Qbを補正する。
なお、サブフィードバック処理部M20では、下流側空燃比Afdを目標値Afd*にフィードバック制御するための操作量であるサブ補正量Sfbを目標値設定処理部M14に出力する。これにより、目標値設定処理部M14では、目標空燃比に相当する制御量の値をサブ補正量Sfbによって補正する処理によって、目標値Af*を設定する。
要求値出力処理部M22は、三元触媒24の昇温要求が生じることを条件に、内燃機関10の各気筒#1〜#4からの排気の空燃比(排気空燃比)の平均値を目標空燃比としつつも、燃焼対象とする混合気の空燃比を気筒間で異ならせるディザ制御の噴射量補正要求値αを算出して出力する。ここで、本実施形態にかかるディザ制御では、第1の気筒#1〜第4の気筒#4のうちの1つの気筒を、混合気の空燃比を理論空燃比よりもリッチとするリッチ燃焼気筒とし、残りの3つの気筒を、混合気の空燃比を理論空燃比よりもリーンとするリーン燃焼気筒とする。そして、リッチ燃焼気筒における噴射量を、上記フィードバック補正処理部M18の出力値の「1+α」倍とし、リーン燃焼気筒における噴射量を、同出力値の「1−(α/3)」倍とする。
なお、対象排気の排気空燃比は、仮想混合気を用いて定義される。すなわち、仮想混合気を、新気および燃料のみからなって且つ燃焼させた場合に生成される排気の未燃燃料濃度(たとえばHC)、不完全燃焼成分濃度(たとえばCO)および酸素濃度が対象排気の未燃燃料濃度、不完全燃焼成分濃度および酸素濃度と同一となる混合気と定義し、排気空燃比を、仮想混合気の空燃比と定義する。ただし、ここで仮想混合気の燃焼には、未燃燃料濃度および不完全燃焼成分濃度と酸素濃度との少なくとも一方がゼロまたはゼロと見なせる値となる燃焼に限らず、未燃燃料濃度および不完全燃焼成分濃度と酸素濃度との双方がゼロよりも大きい状態となる燃焼も含まれることとする。また、複数の気筒の排気空燃比の平均値とは、複数の気筒から排出される排気全体を対象排気とした場合の排気空燃比のこととする。リーン燃焼気筒とリッチ燃焼気筒との上記噴射量の設定によれば、各気筒において燃焼対象とされる混合気の燃空比の平均値を目標燃空比とすることによって、排気空燃比の平均値を目標空燃比とすることができる。なお、燃空比とは、空燃比の逆数のことである。
補正係数算出処理部M24では、「1」に、噴射量補正要求値αを加算して、リッチ燃焼気筒に関し、フィードバック補正処理部M18の出力値の補正係数を算出する。ディザ補正処理部M26は、フィードバック補正処理部M18の出力値に補正係数「1+α」を乗算することによって、リッチ燃焼気筒の噴射量指令値Qr*を算出する。
乗算処理部M28では、噴射量補正要求値αを「−1/3」倍し、補正係数算出処理部M30では、「1」に、乗算処理部M28の出力値を加算して、リーン燃焼気筒に関し、フィードバック補正処理部M18の出力値の補正係数を算出する。ディザ補正処理部M32は、フィードバック補正処理部M18の出力値に補正係数「1−(α/3)」を乗算することによって、リーン燃焼気筒の噴射量指令値Ql*を算出する。
噴射量操作処理部M34は、噴射量指令値Qr*に基づき、リッチ燃焼気筒の燃料噴射弁18の操作信号MS2を生成して、同燃料噴射弁18に出力し、同燃料噴射弁18から噴射される燃料量が噴射量指令値Qr*に応じた量となるように燃料噴射弁18を操作する。また、噴射量操作処理部M34は、噴射量指令値Ql*に基づき、リーン燃焼気筒の燃料噴射弁18の操作信号MS2を生成して、同燃料噴射弁18に出力し、同燃料噴射弁18から噴射される燃料量が噴射量指令値Ql*に応じた量となるように燃料噴射弁18を操作する。なお、気筒#1〜#4のうちリッチ燃焼気筒となる気筒は、1燃焼サイクルよりも長い周期で変更されることが望ましい。また、噴射量補正要求値αがゼロの場合、ディザ補正処理部M26,M32によって、フィードバック補正処理部M18の出力値に「1」が乗算されるため、噴射量補正要求値αがゼロの場合、各気筒#1〜#4のそれぞれの噴射量指令値がフィードバック補正処理部M18の出力値となるが、図2では、ディザ制御時の噴射量指令値Ql*,Qr*を便宜上図示している。なお、噴射量補正要求値αがゼロの場合、操作信号MS2は、フィードバック補正処理部M18の出力値から算出される。
リッチインバランス学習処理部M40は、リッチインバランスの学習値(リッチ学習値Inr)を算出する。ここで、リッチインバランスとは、全ての気筒#1〜#4における混合気の空燃比を同一の値に制御するように各気筒#1〜#4の燃料噴射弁18を操作する場合に、特定の気筒の空燃比が上記同一の値に対してリッチ側にずれることである。
図3に、リッチインバランス学習処理部M40の処理の手順を示す。図3に示す処理は、ROM34に記憶されたプログラムをCPU32がたとえば所定周期で繰り返し実行することにより実現される。なお、以下では、先頭に「S」を付与した数字によって、ステップ番号を表現する。
図3に示す一連の処理において、CPU32は、まずリッチインバランス学習条件が成立するか否かを判定する(S10)。ここで、学習条件は、以下の条件(ア)〜(ウ)の論理積が真である旨の条件である。
条件(ア):今回のトリップにおいて、未だリッチ学習値Inrが算出され更新されていない旨の条件。ここで、トリップとは、内燃機関10が搭載された車両が走行不能な状態から走行可能な状態に切り替えられてから再度走行不能な状態に切り替えられるまでの期間とする。走行可能な状態への切替は、仮に車両の原動機が内燃機関10のみであるなら、イグニッションスイッチのオン状態への切替に相当する。
条件(イ):回転速度NEが所定範囲内にあって且つ吸入空気量Gaが所定範囲内にある旨の条件。この条件は、排気流量が少ない場合よりも多い場合の方が学習精度を高くすることができることに鑑み、排気流量が所定値以上となるときに学習を実行することなどを狙ったものである。
条件(ウ):ディザ制御が実行されていない旨の条件。
CPU32は、学習条件が成立すると判定する場合(S10:YES)、上流側空燃比Afuの時系列データを取得する(S12)。そして、CPU32は、上流側空燃比Afuの時系列データから上流側空燃比Afuの所定時間当たりの変化量である時間変化ΔAfuを算出し、これに基づき、リッチ学習値Inrを算出する(S14)。ここでCPU32は、時間変化ΔAfuが大きい場合に小さい場合よりもリッチインバランスが大きいとして、リッチ学習値Inrを大きい値に算出する。そしてCPU32は、不揮発性メモリ36に記憶されているリッチ学習値Inrを、S14の処理によって新たに算出した値に基づき更新する(S16)。ここでCPU32は、不揮発性メモリ36に記憶される値を、前回のS16の処理によって不揮発性メモリ36に記憶されていた値と、S14の処理によって新たに算出した値との指数移動平均処理値に更新する。次にCPU32は、リッチ学習値Inrが閾値InrF以上であるか否かを判定する(S18)。この処理は、リッチインバランスの度合いが許容範囲を超えるか否かを判定する処理である。そしてCPU32は、閾値InrF以上であると判定する場合(S18:YES)、図1に示す警告灯48を操作して、修理工場にてインバランス異常を解消することを促すべく、車両のユーザに異常が生じた旨を報知する報知処理を実行する(S20)。
なお、CPU32は、S10,S18の処理において否定判定する場合や、S20の処理が完了する場合には、図3に示す一連の処理を一旦終了する。
図2に戻り、リーンインバランス学習処理部M42は、リーンインバランスの学習値(リーン学習値Inl)を算出する。ここで、リーンインバランスとは、全ての気筒#1〜#4における混合気の空燃比を同一の値に制御するように各気筒#1〜#4の燃料噴射弁18を操作する場合に、特定の気筒の空燃比が上記同一の値に対してリーン側にずれることである。
図4に、リーンインバランス学習処理部M42の処理の手順を示す。図4に示す処理は、ROM34に記憶されたプログラムをCPU32がたとえば所定周期で繰り返し実行することにより実現される。
図4に示す一連の処理において、CPU32は、まずリーンインバランスの学習条件が成立するか否かを判定する(S30)。この学習条件は、上記条件(ア)においてリッチ学習値Inrをリーン学習値Inlに読み替えたものと、条件(イ)と条件(ウ)との論理積が真である旨の条件である。CPU32は、学習条件が成立すると判定する場合(S30:YES)、クランク角センサ44の出力信号Scrから算出される各気筒#1〜#4のTDCを含む30°の回転角度領域における回転速度である瞬時速度ωの時系列データを取得する(S32)。そしてCPU32は、一対の気筒の瞬時速度ω同士の差Δωの大きさに基づきリーン学習値Inlを算出する(S34)。ここで、一対の気筒は、たとえば圧縮上死点が出現する順序が互いに隣り合う一対の気筒とすればよい。CPU32は、差Δωが大きい場合に小さい場合よりもリーンインバランスの度合いが大きいとして、リーン学習値Inlを大きい値に算出する。
そしてCPU32は、不揮発性メモリ36に記憶されているリーン学習値InlをS34の処理によって新たに算出した値に基づき更新する(S36)。ここでCPU32は、不揮発性メモリ36に記憶される値を、前回のS36の処理によって不揮発性メモリ36に記憶されていた値と、S34の処理によって新たに算出した値との指数移動平均処理値に更新する。なお、CPU32は、差Δωに基づき、気筒#1〜#4のうちリーンとなっている気筒を特定することができることから、特定した気筒を併せ不揮発性メモリ36に記憶する。次にCPU32は、リーン学習値Inlが閾値InlF以上であるか否かを判定する(S38)。この処理は、リーンインバランスの度合いが許容範囲を超えるか否かを判定する処理である。そしてCPU32は、閾値InlF以上であると判定する場合(S38:YES)、図1に示す警告灯48を操作して、車両のユーザに異常が生じた旨を報知する報知処理を実行する(S40)。
CPU32は、S30,S38の処理において否定判定する場合や、S40の処理が完了する場合には、図4に示す一連の処理を一旦終了する。
なお、図2に示す目標値設定処理部M14は、リッチ学習値Inrが大きい場合に小さい場合よりも、目標値Af*をリッチ側の値とする。これは、リッチインバランスの度合いが大きい場合には小さい場合よりも、空燃比Afが全ての気筒#1〜#4の排気空燃比の平均値に対してリッチ側にずれることに鑑みた設定である。同様の理由から、目標値設定処理部M14は、ディザ制御を実行する場合には実行しない場合と比較して、目標値Af*をリッチ側の値とする。これに対し、CPU32は、リーン学習値Inlに基づき、アイドリング時に限って、リーンインバランスに起因してリーンとなっている気筒の噴射量を増量する。これは、アイドリング時に狙いとする噴射量に対して実際の噴射量が不足する場合、失火が生じやすいことに鑑みたものである。
図5に、要求値出力処理部M22の処理の手順を示す。図5に示す処理は、ROM34に記憶されたプログラムをCPU32がたとえば所定周期で繰り返し実行することにより実現される。
図5に示す一連の処理において、CPU32は、まず回転速度NEおよび負荷率KLを取得する(S50)。ここで、負荷率KLは、基準流入空気量に対する、1気筒の1燃焼サイクル当たりの流入空気量の比であり、筒内充填空気量を定量化したものである。なお、基準流入空気量は、回転速度NEに応じて可変設定してもよい。
次にCPU32は、ディザ制御による三元触媒24の昇温要求が生じているか否かを判定する(S52)。本実施形態では、昇温要求は、硫黄被毒回復処理の実行要求が生じる場合と、三元触媒24に硫黄が堆積しやすい運転領域(たとえばアイドリング運転領域)にあることに起因して堆積を抑制する要求が生じる場合とに、生じるものとする。ちなみに、硫黄被毒回復処理の実行条件は、三元触媒24の硫黄被毒量が予め定められた値以上となる場合に成立するとすればよく、また硫黄被毒量は、たとえば回転速度NEが高いほど、負荷率KLが高いほど被毒量の増加量を多く算出し、増加量を積算することによって算出すればよい。ただし、ディザ制御が実行される場合、実行されない場合と比較して被毒量の増加量は低減される。
CPU32は、昇温要求があると判定する場合(S52:YES)、インバランス学習要求があるか否かを判定する(S54)。CPU32は、リッチインバランス学習条件のうちのディザ制御が実行されていない旨の条件を除いたものが成立する場合や、リーンインバランス学習条件のうちのディザ制御が実行されていない旨の条件を除いたものが成立する場合にインバランス学習要求が生じたと判定する。
CPU32は、インバランス学習条件が成立しないと判定する場合(S54:NO)、リッチ学習値Inrが上記閾値InrFよりも小さい規定値Inrth未満であることとリーン学習値Inlが上記閾値InlFよりも小さい規定値Inlth未満であることとの論理積が真であるか否かを判定する(S56)。この処理は、ディザ制御を許可するか否かを判定するためのものである。なお、不揮発性メモリ36におけるリッチ学習値Inrの記憶領域には、上記更新処理が初めてなされる前には、規定値Inrthよりも大きい値がデフォルトで記憶されているものとする。また、不揮発性メモリ36におけるリーン学習値Inlの記憶領域には、上記更新処理が初めてなされる前には、規定値Inlthよりも大きい値がデフォルトで記憶されているものとする。これは、インバランス学習が実行されていることを、ディザ制御の実行条件の1つとするための設定である。
CPU32は、論理積が真であると判定する場合(S56:YES)、ディザ制御を実行すべく、上記噴射量補正要求値αを算出する(S58)。本実施形態において、CPU32は、噴射量補正要求値αを、回転速度NEおよび負荷率KLに基づき可変設定する。詳しくは、CPU32は、噴射量補正要求値αを、中負荷領域において最大とする。これは、低負荷領域では中負荷領域と比較して燃焼が不安定なために、低負荷領域では中負荷領域よりも噴射量補正要求値αを大きくしにくいことと、高負荷領域では、ディザ制御を実行しなくても排気温度が高いこととに鑑みたものである。また、CPU32は、噴射量補正要求値αを、回転速度NEが低い場合よりも高い場合に大きい値とする。これは、回転速度NEが低い場合よりも高い場合の方が燃焼が安定するために、噴射量補正要求値αを大きい値としやすいためである。具体的には、ROM34に、入力変数としての回転速度NEおよび負荷率KLと出力変数としての噴射量補正要求値αとの関係を定めたマップデータを記憶しておき、CPU32がこれを用いて噴射量補正要求値αをマップ演算すればよい。なお、マップデータとは、入力変数の離散的な値と、入力変数の値のそれぞれに対応する出力変数の値と、の組データである。またマップ演算は、たとえば、入力変数の値がマップデータの入力変数の値のいずれかに一致する場合、対応する出力変数の値を演算結果とし、一致しない場合、組データに含まれる複数の出力変数の値の補間によって得られる値を演算結果とする処理とすればよい。
一方、CPU32は、昇温要求がないと判定する場合(S52:NO)や、インバランス学習実行要求があると判定する場合(S54:YES)、さらにはリッチ学習値Inrが規定値Inrth以上であるかリーン学習値Inlが規定値Inlth以上である場合(S56:NO)には、噴射量補正要求値αをゼロとする(S60)。ここで、S56の処理において否定判定する場合にS60の処理に移行する設定は、リッチ学習値Inrが規定値Inrth以上であることとリーン学習値Inlが規定値Inlth以上であることとの論理和が真である場合にディザ制御を禁止する設定である。
なお、CPU32は、S58,S60の処理が完了する場合、図6に示す一連の処理を一旦終了する。
ここで本実施形態の作用を説明する。
CPU32は、ディザ制御が実行されていない状態で、リッチ学習値Inrやリーン学習値Inlを算出する。そして、CPU32は、ディザ制御による昇温要求が生じる場合、リッチ学習値Inrが規定値Inrth未満であることとリーン学習値Inlが規定値Inlth未満であることとの論理積が真であることを、ディザ制御を実行する条件とする。換言すれば、CPU32は、リッチ学習値Inrが規定値Inrth以上である場合やリーン学習値Inlが規定値Inlth以上である場合には、ディザ制御を禁止する。このためインバランスに起因した燃焼の制御性の低下がディザ制御によって助長され顕在化することを抑制することができる。
図6(a)に、本実施形態にかかる三元触媒24の温度の推移例を示し、図6(b)に、比較例にかかる推移例を示す。
図6(a)に示すように、本実施形態では、時刻t1において硫黄被毒回復処理のための昇温要求が生じたにもかかわらず、リッチ学習値Inrが規定値Inrth以上であるために、ディザ制御を実行しない。このため、気筒#1〜#4のそれぞれにおいて燃焼対象となる混合気が目標空燃比から過度にずれることが抑制される。
これに対し、図6(b)に示す比較例では、時刻t1において硫黄被毒回復処理のための昇温要求が生じると、リッチ学習値Inrが規定値Inrth以上であるにもかかわらずディザ制御が実行される。そしてこれにより、図5のS58の処理において設定した噴射量補正要求値αから想定されるリッチ化度合いよりも、リッチ燃焼気筒の空燃比が過度にリッチとなり、三元触媒24の温度がその劣化が促進される温度Tthを超えて上昇している。
なお、アイドリング時等に生じる昇温要求に応じてディザ制御を実行する場合には、リッチ学習値Inrが規定値Inrthを上回る場合であっても、三元触媒24の温度が温度Tthを超える事態にはなりにくい。しかし、インバランスが生じている場合にディザ制御を実行する場合には、気筒#1〜#4のそれぞれにおいて燃焼対象となる混合気が目標空燃比から過度にずれ、トルク変動が顕在化したり、失火を招いたりすることが懸念される。
ちなみに、ディザ制御を禁止すると、三元触媒24の昇温性能が低下するおそれがある。しかし、リッチ学習値Inrが規定値Inrth以上である場合やリーン学習値Inlが規定値Inlth以上である場合には、インバランス異常に起因して、三元触媒24には、一部の気筒から排出された酸素と他の気筒から排出された未燃燃料成分や不完全燃焼成分とが流入する。このため、本実施形態では、インバランス異常に起因して三元触媒24が昇温されるため、インバランス異常が生じていない場合にディザ制御を禁止する場合と比較すると、ディザ制御の禁止に起因した昇温性能の低下が抑制される。
以上説明した本実施形態によれば、さらに以下に記載する効果が得られる。
(1)リッチインバランスに関し、規定値Inrthを閾値InrFよりも小さくすることにより、閾値InrFを設定する際、インバランスに起因した燃焼の制御性の低下がディザ制御によって助長されて顕在化することを考慮する制約が生じない。このため、規定値Inrthを閾値InrF以上とする場合と比較して、閾値InrFを大きい値に設定しやすく、ひいては報知処理が実行されることを抑制できる。また、リーンインバランスに関し、規定値Inlthを閾値InlFよりも小さくすることにより、閾値InlFを設定する際、インバランスに起因した燃焼の制御性の低下がディザ制御によって助長されて顕在化することを考慮する制約が生じない。このため、規定値Inlthを閾値InlF以上とする場合と比較して、閾値InlFを大きい値に設定しやすく、ひいては報知処理が実行されることを抑制できる。
(2)インバランス学習処理を、ディザ制御処理が実行されていないことを条件に実行した。これにより、ディザ制御による気筒#1〜#4の空燃比のばらつきを考慮しなくてよいため、インバランス学習を高精度に実行することが容易となる。
<第2の実施形態>
以下、第2の実施形態について、第1の実施形態との相違点を中心に図面を参照しつつ説明する。
本実施形態では、リッチ学習値Inrが規定値Inrth未満であって且つリーン学習値Inlが規定値Inlth未満である場合であっても、リッチ学習値Inrやリーン学習値Inlに基づき噴射量補正要求値αの大きさを制限する。なお、本実施形態の規定値Inrth,Inlthの大きさは、必ずしも第1の実施形態と同一でなくてよい。
図7に、本実施形態にかかる噴射量補正要求値算出処理の手順を示す。図7に示す処理は、図5のS58の処理に代わるものであり、ROM34に記憶されたプログラムをCPU32が所定周期で繰り返し実行することにより実現される。
図7に示す一連の処理において、CPU32は、まず回転速度NEおよび負荷率KLに基づき、噴射量補正要求値αを可変設定する(S70)。この処理は、第1の実施形態において説明した処理と同一である。次にCPU32は、リッチ学習値Inrとリーン学習値Inlとに基づき、噴射量補正要求値αの上限ガード値Gimbを算出する(S72)。ここで、CPU32は、リッチ学習値Inrが大きい場合に小さい場合よりも上限ガード値Gimbを小さい値に算出し、リーン学習値Inlが大きい場合に小さい場合よりも上限ガード値Gimbを小さい値に算出する。詳しくは、リッチ学習値Inrおよびリーン学習値Inlを入力変数とし上限ガード値Gimbを出力変数とするマップデータをROM34に記憶しておき、CPU32は、マップ演算によって上限ガード値Gimbを算出する。なお、図7には、マップデータの入力変数としてのリッチ学習値Inrの最大値InrHと最小値InrL、およびリーン学習値Inlの最大値InlHおよび最小値InlLを記載している。また、図7には、出力変数gnm(m=1,2,3…:n=1,2,3…)について、リッチ学習値Inrが大きい場合の出力変数gksがリッチ学習値Inrが小さい場合の出力変数gktよりも小さいことや、リーン学習値Inlが大きい場合の出力変数gskがリーン学習値Inlが小さい場合の出力変数gtkよりも小さいことが示されている。なお、上限ガード値Gimbは、マップ演算によって出力変数gnmのいずれかに一致するか、複数の出力変数の補間演算によって算出された値となる。
CPU32は、噴射量補正要求値αが上限ガード値Gimbよりも大きいか否かを判定する(S74)。そしてCPU32は、上限ガード値Gimbよりも大きいと判定する場合(S74:YES)、噴射量補正要求値αに、上限ガード値Gimbを代入する(S76)。なお、CPU32は、S76の処理が完了する場合や、S74において否定判定する場合には、図7に示す一連の処理を一旦終了する。
ここで本実施形態の作用を説明する。
CPU32は、回転速度NEおよび負荷率KLに基づき噴射量補正要求値αを算出すると、上限ガード値Gimbによるガード処理を施す。CPU32は、リッチ学習値Inrがマップデータの最大値InrHと最小値InrLとの間の所定値未満である場合と比較して、所定値以上である場合の方が、上限ガード値Gimbを小さい値に算出する。また、CPU32は、リーン学習値Inlがマップデータの最大値InlHと最小値InlLとの間の所定値未満である場合と比較して、所定値以上である場合の方が、上限ガード値Gimbを小さい値に算出する。これにより、噴射量補正要求値αは、インバランスの度合いが大きい場合に小さい場合よりも小さい値とされることとなる。
これにより、上記第1の実施形態と比較して、規定値Inrth,Inlthをより大きい値に設定しやすく、結果として、噴射量補正要求値αの大きさを制限しつつディザ制御を極力実行することができる。
<第3の実施形態>
以下、第3の実施形態について、第2の実施形態との相違点を中心に図面を参照しつつ説明する。
図8に、本実施形態にかかる噴射量補正要求値算出処理の手順を示す。図8に示す処理は、ROM34に記憶されたプログラムをCPU32が所定周期で繰り返し実行することにより実現される。なお、図8においては、図7に示した処理に対応する処理については、便宜上、同一のステップ番号を付している。
図8に示す一連の処理において、CPU32は、回転速度NEおよび負荷率KLに基づき噴射量補正要求値αを可変設定する(S70)と、リーン学習値Inlに基づき噴射量補正要求値αのリーンインバランス補正係数Klを算出する(S80)。詳しくは、CPU32は、リーン学習値Inlが大きい場合に小さい場合よりもリーンインバランス補正係数Klを小さい値(>0)に算出する。具体的には、ROM34に、リーン学習値Inlを入力変数とし、リーンインバランス補正係数Klを出力変数とするマップデータを記憶しておき、CPU32は、リーンインバランス補正係数Klをマップ演算する。なお、図8には、マップデータの入力変数としてのリーン学習値Inlの最小値InlLと最大値InlHと、最小値InlLにおいてリーンインバランス補正係数Klが「1」である旨と、が記載されている。
次に、CPU32は、リッチ学習値Inrに基づき噴射量補正要求値αのリッチインバランス補正係数Krを算出する(S82)。詳しくは、CPU32は、リッチ学習値Inrが大きい場合に小さい場合よりもリッチインバランス補正係数Krを小さい値(>0)に算出する。具体的には、ROM34に、リッチ学習値Inrを入力変数とし、リッチインバランス補正係数Krを出力変数とするマップデータを記憶しておき、CPU32は、リッチインバランス補正係数Krをマップ演算する。なお、図8には、マップデータの入力変数としてのリッチ学習値Inrの最小値InrLと最大値InrHと、最小値InrLにおいてリッチインバランス補正係数Krが「1」である旨と、が記載されている。
そして、CPU32は、S80の処理において算出した噴射量補正要求値αに、リッチインバランス補正係数Krとリーンインバランス補正係数Klとを乗算した値を、最終的な噴射量補正要求値αとする(S84)。
なお、CPU32は、S84の処理が完了する場合、図8に示す一連の処理を一旦終了する。
以上説明した本実施形態によっても、上記第2の実施形態に準じた効果を奏することができる。
<対応関係>
上記実施形態における事項と、上記「課題を解決するための手段」の欄に記載した事項との対応関係は、次の通りである。以下では、「課題を解決するための手段」の欄に記載した解決手段の番号毎に、対応関係を示している。[1]触媒は、三元触媒24に対応し、ディザ制御処理は、補正係数算出処理部M24、ディザ補正処理部M26、乗算処理部M28、補正係数算出処理部M30、ディザ補正処理部M32、噴射量操作処理部M34、およびS52,S58(S70)の処理に対応し、インバランス学習処理は、S10〜S16,S30〜S36の処理に対応する。所定値は、第1の実施形態においては、規定値Inrth,Inlthに対応し、第2および第3の実施形態においては、規定値Inrth,Inlthまたは、最小値InrL(InlL)と最大値InrH(InlH)との間の値に対応する。制限処理は、第1の実施形態では、S56において否定判定される場合にS60の処理に移行する処理に対応し、第2の実施形態では、S72〜S76の処理に対応し、第3の実施形態では、S80〜S84の処理に対応する。[2]報知機器は、警告灯48に対応する。[3]S56において否定判定される場合にS60の処理に移行する処理に対応する。[4]S72〜S76の処理や、S80〜S84の処理に対応する。[5]可変設定処理は、S70の処理に対応し、ガード処理は、S74,S76の処理に対応する。すなわち、リーン燃焼気筒における空燃比とリッチ燃焼気筒における空燃比との差は、噴射量補正要求値αに応じて定まる量であるため、噴射量補正要求値αに対するガード処理は、上記差に対するガード処理と見なせる。[7]S10,S30の処理に対応する。
<その他の実施形態>
なお、上記実施形態の各事項の少なくとも1つを、以下のように変更してもよい。
・「制限処理について」
たとえば上記「昇温要求について」の欄に記載したように、三元触媒24の暖機要求が生じることを条件にディザ制御を実行するものにおいて、リッチ学習値Inrが規定値Inrth以上である場合やリーン学習値Inlが規定値Inlth以上である場合に、三元触媒24の暖機のためのディザ制御を禁止してもよい。
上記実施形態では、リッチ学習値Inrが規定値Inrth以上である場合やリーン学習値Inlが規定値Inlth以上である場合に、ディザ制御を一律禁止したがこれに限らない。たとえば、硫黄被毒回復要求のための昇温要求の場合に限って、ディザ制御を禁止してもよい。もっとも、リッチ学習値Inrが規定値Inrth以上である場合やリーン学習値Inlが規定値Inlth以上である場合に、硫黄被毒回復要求のためのディザ制御を禁止することは必須ではない。たとえば、三元触媒24の温度を検出する温度センサを備え、その検出値に基づきディザ制御を停止することにより温度Tthを超えないように制御できるのであれば、ディザ制御の停止までの期間は、たとえば噴射量補正要求値αを小さい値に制限するのみとしてもよい。
上記第2および第3の実施形態では、リッチ学習値Inrが規定値Inrth以上である場合やリーン学習値Inlが規定値Inlth以上である場合には、ディザ制御を禁止したがこれに限らない。たとえば、リッチ学習値Inrが規定値Inrth以上である場合やリーン学習値Inlが規定値Inlth以上である場合においても、回転速度NEおよび負荷率KLから定まる噴射量補正要求値αよりも噴射量補正要求値αを小さい値に制限しつつディザ制御を実行してもよい。なお、この場合、リッチ学習値Inrが閾値InrF以上となったりリーン学習値Inlが閾値InlF以上となったりすることにより、ディザ制御を禁止してもよい。さらに、リッチ学習値Inrが規定値Inrth以上である場合やリーン学習値Inlが規定値Inlth以上である場合にディザ制御を禁止しないものとしては、上記変形例に限らない。すなわち、リッチ学習値Inrが規定値Inrth未満である領域においてリッチ学習値Inrが大きいほど噴射量補正要求値αを小さい値に制限したり、リーン学習値Inlが規定値Inlth未満である領域においてリーン学習値Inlが大きいほど噴射量補正要求値αを小さい値に制限したりするものに限らない。たとえば上記第2の実施形態において、上限ガード値Gimbとして2通りの値を用意し、リッチ学習値Inrが規定値Inrth以上となる場合に規定値Inrth未満の場合よりも小さい値としたり、リーン学習値Inlが規定値Inlth以上となる場合に規定値Inlth未満の場合よりも小さい値としたりしてもよい。
たとえば、リーンインバランスが生じている気筒の燃料噴射量を増量する処理をアイドリング運転時以外にも実行することとし、その増量補正の精度を高くすることができるのであれば、リーンインバランスが生じている場合には、ディザ制御を制限せず、リッチインバランスが生じていることを条件にディザ制御を制限してもよい。
もっとも、インバランスに起因した気筒別の噴射量補正を実行する場合にはディザ制御を制限しないことは必須ではない。たとえば、噴射量補正を実行している期間であっても噴射量補正の誤差による燃焼の制御性の低下がディザ制御によって助長され顕在化するおそれがあるなら、ディザ制御を制限することが望ましい。
上記実施形態では、ディザ制御を制限するか否かを判定するための学習値として、不揮発性メモリ36に記憶されている値を用いたがこれに限らない。たとえばRAMに記憶されている値を用いてもよい。この場合、RAMに値が記憶されていない場合、換言すれば、現在のトリップにおいて未だ学習値が算出されていない場合、ディザ制御を制限するか否かを判定するための学習値が存在しないとして、ディザ制御を禁止してもよい。もっとも、現在のトリップにおいて未だ学習値が算出されていない場合、ディザ制御を禁止するものとしては、学習値をRAMに記憶するものに限らない。たとえば、上記実施形態において、不揮発性メモリ36に記憶する学習値の更新処理が現在のトリップにおいてなされていない場合にディザ制御を禁止してもよい。
・「インバランス学習処理について」
リッチ学習値Inrを学習する学習処理としては、上記実施形態において例示したものに限らない。たとえば、上流側空燃比Afuの極大値と極小値との差に基づき、同差が大きい場合に小さい場合よりもリッチインバランスの度合いが大きいとしてリッチ学習値Inrを算出してもよい。リッチ学習値Inrを学習する学習処理としては、上流側空燃比Afuを用いるものにも限らない。たとえば、下流側空燃比Afdが目標空燃比に対してリーン側にずれる量が大きい場合に小さい場合よりもリッチインバランスの度合いが大きいとしてリッチ学習値Inrを算出してもよい。
リーン学習値Inlを学習する学習処理としては、上記実施形態において例示したものに限らない。たとえば、瞬時速度ωの算出に用いられる回転角度領域がTDCを含まなくてもよく、またたとえば30°CAの回転角度領域の速度に限らず、たとえば60°CAの回転角度領域の速度等であってもよい。ただし、各気筒の燃焼行程に起因してクランク軸の回転速度が極大となる期間を含むことが望ましい。またたとえば、下流側空燃比Afdが目標空燃比に対してリーン側にずれる量が大きい場合に小さい場合よりもリーンインバランスの度合いが大きいとしてリーン学習値Inlを算出してもよい。
リッチ学習値Inrとリーン学習値Inlとを各別に学習することは必須ではない。たとえば、下流側空燃比Afdが目標空燃比に対してリーン側にずれる量が大きい場合に小さい場合よりもリーンまたはリッチのインバランスの度合いが大きいとしてインバランスの度合いを学習してもよい。
インバランスの学習処理としては、空燃比センサの値や瞬時速度ωを用いるものに限らない。たとえば気筒#1〜#4のそれぞれに筒内圧センサを備えることとし、その検出値に基づき熱発生率を算出し、熱発生率に基づき噴射量を推定し、推定された噴射量のばらつきの度合いを定量化する処理であってもよい。なお、この場合、噴射量の推定精度を十分高めることができるのであれば、推定した噴射量のうちディザ制御によるばらつき分を除いた量からインバランスの度合いを算出してもよい。換言すれば、ディザ制御の実行中にインバランス学習を実行してもよい。
・「閾値以上のインバランス異常時の処理について」
上記実施形態では、リッチ学習値Inrが閾値InrF以上となる場合やリーン学習値Inlが閾値InlF以上となる場合に、ユーザにその旨を報知する報知処理を実行したが、これに限らない。たとえば、内燃機関10の出力の上限値を、リッチ学習値Inrが閾値InrF未満であって且つリーン学習値Inlが閾値InlF未満である場合よりも小さい値に制限してもよい。なお、この処理は、報知処理と併せ実行してもよい。
・「昇温対象とされる触媒について」
昇温対象とされる触媒としては、三元触媒24に限らない。たとえば、三元触媒を備えたガソリンパティキュレートフィルタ(GPF)であってもよい。ここで、GPFを上記三元触媒24の下流に設けるなら、三元触媒24において、リーン燃焼気筒の酸素によってリッチ燃焼気筒の未燃燃料成分や不完全燃焼成分を酸化させる際の酸化熱を利用して、GPFを昇温してもよい。なお、GPFの上流に酸素吸蔵能力を有した触媒が存在しない場合、GPFに酸素吸蔵能力を有した触媒を備えることが望ましい。
・「昇温要求について」
昇温要求としては、上記実施形態において例示したものに限らない。たとえば、内燃機関10の冷間始動時において三元触媒24の暖機のためにディザ制御による昇温要求を生じさせてもよい。これは、たとえば、始動からの積算空気量が規定値以上となることにより、触媒の先端温度が活性温度となっていると推定される旨の条件(ア)と、水温が所定温度以下且つ、積算空気量が所定値(>規定値)以下であることにより暖機要求が生じる旨の条件(イ)との論理積が真である場合に、昇温要求有りとすればよい。ここで、条件(ア)は、三元触媒24の先端部分については酸素吸蔵能力を発揮し、リーン燃焼気筒から排出された酸素と、リッチ燃焼気筒から排出された未燃燃料成分や不完全燃焼成分との反応熱を利用できることを保証する条件である。
また、「触媒について」の欄に記載したように、GPFを備える内燃機関10を制御対象とする場合、GPF内の微粒子状物質を燃焼させるためにディザ制御による昇温要求を生じさせてもよい。
・「報知機器について」
報知機器としては、警告灯に限らず、たとえばユーザに異常がある旨を示す視覚情報を提供する表示装置であってもよい。
・「ディザ制御処理について」
噴射量補正要求値αを、回転速度NEおよび負荷率KLに加えて、内燃機関10の冷却水の温度(水温THW)に基づき可変設定してもよい。またたとえば、回転速度NEおよび水温THW、または負荷率KLおよび水温THWの2つのパラメータのみに基づいて可変設定してもよく、またたとえば、上記3つのパラメータのうちの1つのパラメータのみに基づいて可変設定してもよい。また、たとえば内燃機関10の動作点を特定するパラメータとして回転速度NEおよび負荷率KLを用いる代わりに、負荷としての負荷率KLに代えて、たとえば負荷としてのアクセル操作量を用いてもよい。また、回転速度NEおよび負荷に代えて、吸入空気量Gaに基づき可変設定してもよい。
噴射量補正要求値αを上記パラメータに基づき可変設定すること自体必須ではない。たとえば固定値としてもよい。
上記実施形態では、リッチ燃焼気筒の数よりもリーン燃焼気筒の数を多くしたが、これに限らない。たとえば、リッチ燃焼気筒の数とリーン燃焼気筒の数とを同一としてもよい。またたとえば、全ての気筒#1〜#4を、リーン燃焼気筒かリッチ燃焼気筒かにするものに限らず、たとえば1つの気筒の空燃比を目標空燃比としてもよい。さらに、1燃焼サイクル内で、排気空燃比の平均値が目標空燃比となることも必須ではない。たとえば、上記実施形態のように4気筒の場合において、5ストロークにおける排気空燃比の平均値が目標値となるようにしてもよく、3ストロークにおける排気空燃比の平均値が目標値となるようにしてもよい。ただし、1燃焼サイクルにおいて、リッチ燃焼気筒とリーン燃焼気筒との双方が存在する期間が少なくとも2燃焼サイクルに1回以上は生じることが望ましい。換言すれば、所定期間における排気空燃比の平均値を目標空燃比とする際、所定期間を2燃焼サイクル以下とすることが望ましい。ここで、たとえば所定期間を2燃焼サイクルとして2燃焼サイクルの間に1度だけリッチ燃焼気筒が存在する場合、リッチ燃焼気筒とリーン燃焼気筒との出現順序は、リッチ燃焼気筒をR、リーン燃焼気筒をLとすると、たとえば「R,L,L,L,L,L,L,L」となる。この場合、所定期間よりも短い1燃焼サイクルの期間であって「R,L,L,L」となる期間が設けられており、気筒#1〜#4のうちの一部がリーン燃焼気筒であり、別の気筒がリッチ燃焼気筒となっている。ちなみに、1燃焼サイクル内における排気空燃比の平均値を目標空燃比としない場合には、内燃機関が吸気行程において一旦吸入した空気の一部を吸気バルブが閉弁するまでに吸気通路に吹き戻す量が無視できることが望ましい。
・「制御装置について」
制御装置としては、CPU32とROM34とを備えて、ソフトウェア処理を実行するものに限らない。たとえば、上記実施形態においてソフトウェア処理されたものの少なくとも一部を、ハードウェア処理する専用のハードウェア回路(たとえばASIC等)を備えてもよい。すなわち、制御装置は、以下の(a)〜(c)のいずれかの構成であればよい。(a)上記処理の全てを、プログラムに従って実行する処理装置と、プログラムを記憶するROM等のプログラム格納装置とを備える。(b)上記処理の一部をプログラムに従って実行する処理装置およびプログラム格納装置と、残りの処理を実行する専用のハードウェア回路とを備える。(c)上記処理の全てを実行する専用のハードウェア回路を備える。ここで、処理装置およびプログラム格納装置を備えたソフトウェア処理回路や、専用のハードウェア回路は複数であってもよい。すなわち、上記処理は、1または複数のソフトウェア処理回路および1または複数の専用のハードウェア回路の少なくとも一方を備えた処理回路によって実行されればよい。
・「内燃機関について」
内燃機関としては、4気筒の内燃機関に限らない。たとえば直列6気筒の内燃機関であってもよい。またたとえば、V型の内燃機関等、第1の触媒と第2の触媒とを備え、それぞれによって排気が浄化される気筒が異なるものであってもよい。
・「そのほか」
燃料噴射弁としては、燃焼室16に燃料を噴射するものに限らず、たとえば吸気通路12に燃料を噴射するものであってもよい。ディザ制御の実行時に空燃比フィードバック制御をすることは必須ではない。
10…内燃機関、12…吸気通路、14…過給機、16…燃焼室、18…燃料噴射弁、20…点火装置、22…排気通路、24…三元触媒、30…制御装置、32…CPU、34…ROM、36…不揮発性メモリ、40…上流側空燃比センサ、42…下流側空燃比センサ、44…クランク角センサ、46…エアフローメータ、48…警告灯。

Claims (6)

  1. 複数の気筒から排出された排気を浄化する触媒と、前記複数の気筒毎に設けられた燃料噴射弁とを備える内燃機関を制御対象とし、
    前記複数の気筒のうちの一部の気筒を、空燃比が理論空燃比よりもリーンであるリーン燃焼気筒とし、前記複数の気筒のうちの前記一部の気筒とは別の気筒を、空燃比が理論空燃比よりもリッチであるリッチ燃焼気筒とすべく、前記燃料噴射弁を操作するディザ制御処理と、
    前記複数の気筒のそれぞれにおける空燃比を互いに等しく制御するために前記燃料噴射弁を操作する場合の前記複数の気筒のそれぞれの前記燃料噴射弁の噴射量のばらつき度合いを推定するインバランス推定処理と、
    前記ばらつき度合いが所定値以上である場合、前記ディザ制御処理を、前記複数の気筒のそれぞれにおける空燃比のうちの最もリッチなものと最もリーンなものとの差を小さくする側に制限する制限処理と、を実行する内燃機関の制御装置。
  2. 前記ばらつき度合いが前記所定値よりも大きい閾値以上である場合、報知機器を操作することによって、前記ばらつき度合いが大きい旨を報知する報知処理を実行する請求項1記載の内燃機関の制御装置。
  3. 前記制限処理は、前記ディザ制御処理を禁止する処理を含む請求項1または2記載の内燃機関の制御装置。
  4. 前記制限処理は、前記ばらつき度合いが前記所定値以上である場合に前記所定値未満である場合よりも前記リーン燃焼気筒における空燃比と前記リッチ燃焼気筒における空燃比との差を小さくする処理を含む請求項1または2記載の内燃機関の制御装置。
  5. 前記ディザ制御処理は、前記内燃機関の動作点に応じて前記リーン燃焼気筒における空燃比と前記リッチ燃焼気筒における空燃比との差を可変設定する可変設定処理を含み、
    前記制限処理は、前記可変設定処理によって設定された前記差の大きさに対する上限ガード値によるガード処理を含み、
    前記上限ガード値は、前記所定値以上である場合に前記所定値未満である場合よりも小さい請求項4記載の内燃機関の制御装置。
  6. 前記インバランス推定処理を、前記ディザ制御処理が実行されていないことを条件に実行する請求項1〜のいずれか1項に記載の内燃機関の制御装置。
JP2017142763A 2017-07-24 2017-07-24 内燃機関の制御装置 Active JP6946815B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017142763A JP6946815B2 (ja) 2017-07-24 2017-07-24 内燃機関の制御装置
DE102018113520.3A DE102018113520B4 (de) 2017-07-24 2018-06-06 Steuervorrichtung für Verbrennungskraftmaschine
US16/036,081 US10612439B2 (en) 2017-07-24 2018-07-16 Control apparatus for internal combustion engine
CN201810795974.1A CN109296468B (zh) 2017-07-24 2018-07-19 内燃机的控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017142763A JP6946815B2 (ja) 2017-07-24 2017-07-24 内燃機関の制御装置

Publications (2)

Publication Number Publication Date
JP2019023443A JP2019023443A (ja) 2019-02-14
JP6946815B2 true JP6946815B2 (ja) 2021-10-06

Family

ID=64952061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017142763A Active JP6946815B2 (ja) 2017-07-24 2017-07-24 内燃機関の制御装置

Country Status (4)

Country Link
US (1) US10612439B2 (ja)
JP (1) JP6946815B2 (ja)
CN (1) CN109296468B (ja)
DE (1) DE102018113520B4 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7444104B2 (ja) * 2021-02-24 2024-03-06 トヨタ自動車株式会社 内燃機関の制御装置

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56138437A (en) * 1980-03-28 1981-10-29 Nippon Denso Co Ltd Air-fuel ratio controller
JP3489204B2 (ja) * 1994-08-19 2004-01-19 日産自動車株式会社 内燃機関の制御装置
JP3683356B2 (ja) * 1996-08-08 2005-08-17 本田技研工業株式会社 内燃機関の空燃比制御装置
US5758493A (en) * 1996-12-13 1998-06-02 Ford Global Technologies, Inc. Method and apparatus for desulfating a NOx trap
JP3695046B2 (ja) * 1997-02-07 2005-09-14 いすゞ自動車株式会社 エンジンの燃料噴射方法及びその装置
US6244043B1 (en) * 1999-05-19 2001-06-12 Ford Global Technologies, Inc. Emission control device air/fuel ratio control system
US6324835B1 (en) * 1999-10-18 2001-12-04 Ford Global Technologies, Inc. Engine air and fuel control
JP2001241348A (ja) * 2000-02-29 2001-09-07 Hitachi Ltd 内燃機関の燃料噴射制御装置
JP2004218541A (ja) * 2003-01-15 2004-08-05 Toyota Motor Corp 内燃機関の制御装置
JP2004353552A (ja) * 2003-05-29 2004-12-16 Denso Corp 内燃機関の触媒早期暖機制御装置
JP4103759B2 (ja) * 2003-09-26 2008-06-18 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP4182878B2 (ja) * 2003-10-09 2008-11-19 トヨタ自動車株式会社 内燃機関の空燃比制御装置
JP2005113877A (ja) * 2003-10-10 2005-04-28 Denso Corp 内燃機関の制御装置
ITTO20030837A1 (it) * 2003-10-23 2005-04-24 Fiat Ricerche Metodo di bilanciamento della coppia generata dai cilindri di un motore a combustione interna, in particolare un motore diesel ad iniezione diretta provvisto di un impianto di iniezione a collettore comune.
JP2005344598A (ja) * 2004-06-02 2005-12-15 Mitsubishi Electric Corp 内燃機関の空燃比制御装置
JP4419952B2 (ja) * 2005-12-26 2010-02-24 トヨタ自動車株式会社 内燃機関の空燃比制御装置
JP4333721B2 (ja) * 2006-09-22 2009-09-16 トヨタ自動車株式会社 内燃機関の燃料噴射制御装置
JP4566178B2 (ja) * 2006-10-06 2010-10-20 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP4512080B2 (ja) * 2006-11-10 2010-07-28 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP4462282B2 (ja) * 2007-03-14 2010-05-12 トヨタ自動車株式会社 内燃機関の排気制御装置
US7717088B2 (en) * 2007-05-07 2010-05-18 Ford Global Technologies, Llc Method of detecting and compensating for injector variability with a direct injection system
US9726103B2 (en) 2010-06-07 2017-08-08 Toyota Jidosha Kabushiki Kaisha Fuel injection amount control apparatus for an internal combustion engine
JP5379753B2 (ja) * 2010-07-02 2013-12-25 本田技研工業株式会社 内燃機関の空燃比制御装置
JP5979173B2 (ja) * 2014-04-16 2016-08-24 トヨタ自動車株式会社 内燃機関の制御装置
DE102014213825A1 (de) * 2014-07-16 2016-01-21 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines Verbrennungsmotors
US9689342B2 (en) * 2014-12-01 2017-06-27 Ford Global Technologies, Llc Methods and systems for adjusting a direct fuel injector
JP6252525B2 (ja) * 2015-03-12 2017-12-27 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP6233336B2 (ja) * 2015-03-12 2017-11-22 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP6308150B2 (ja) 2015-03-12 2018-04-11 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2016211395A (ja) * 2015-04-30 2016-12-15 トヨタ自動車株式会社 内燃機関
JP6296019B2 (ja) * 2015-08-05 2018-03-20 トヨタ自動車株式会社 内燃機関
JP6213540B2 (ja) * 2015-10-01 2017-10-18 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2018105225A (ja) * 2016-12-26 2018-07-05 トヨタ自動車株式会社 内燃機関の制御装置
US10174696B2 (en) 2016-12-27 2019-01-08 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
JP7020089B2 (ja) * 2017-12-06 2022-02-16 トヨタ自動車株式会社 内燃機関の制御装置

Also Published As

Publication number Publication date
US10612439B2 (en) 2020-04-07
CN109296468A (zh) 2019-02-01
DE102018113520A1 (de) 2019-01-24
DE102018113520B4 (de) 2022-07-28
US20190024556A1 (en) 2019-01-24
CN109296468B (zh) 2021-04-02
JP2019023443A (ja) 2019-02-14

Similar Documents

Publication Publication Date Title
JP6870560B2 (ja) 内燃機関の制御装置
JP6881209B2 (ja) 内燃機関の制御装置
JP6844488B2 (ja) 内燃機関の制御装置
JP6801597B2 (ja) 内燃機関の制御装置
JP2019078244A (ja) 内燃機関の制御装置
JP6888508B2 (ja) 内燃機関の制御装置
JP2019060302A (ja) 内燃機関の制御装置
JP7020089B2 (ja) 内燃機関の制御装置
JP6946815B2 (ja) 内燃機関の制御装置
JP6866827B2 (ja) 内燃機関の制御装置
JP2019116871A (ja) 内燃機関の制御装置
JP7155884B2 (ja) 内燃機関の制御装置
CN109555611B (zh) 内燃机的控制装置和方法
JP6822344B2 (ja) 内燃機関の制御装置
JP2018188992A (ja) 内燃機関の制御装置
JP6737209B2 (ja) 内燃機関の制御装置
JP7020088B2 (ja) 内燃機関の制御装置
JP2019085965A (ja) 内燃機関の制御装置
JP6911678B2 (ja) 内燃機関の制御装置
JP6965614B2 (ja) 内燃機関の制御装置
JP7020242B2 (ja) 内燃機関の制御装置
JP7159774B2 (ja) 内燃機関の制御装置
JP6885284B2 (ja) 内燃機関の制御装置
JP2022063656A (ja) 内燃機関の制御装置
JP2019027295A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210830

R151 Written notification of patent or utility model registration

Ref document number: 6946815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151