JP5379753B2 - 内燃機関の空燃比制御装置 - Google Patents

内燃機関の空燃比制御装置 Download PDF

Info

Publication number
JP5379753B2
JP5379753B2 JP2010151597A JP2010151597A JP5379753B2 JP 5379753 B2 JP5379753 B2 JP 5379753B2 JP 2010151597 A JP2010151597 A JP 2010151597A JP 2010151597 A JP2010151597 A JP 2010151597A JP 5379753 B2 JP5379753 B2 JP 5379753B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
value
output
output deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010151597A
Other languages
English (en)
Other versions
JP2012013028A (ja
Inventor
理範 谷
健一 前田
淳宏 宮内
誠二 渡辺
宗一郎 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2010151597A priority Critical patent/JP5379753B2/ja
Priority to US13/174,653 priority patent/US8818690B2/en
Publication of JP2012013028A publication Critical patent/JP2012013028A/ja
Application granted granted Critical
Publication of JP5379753B2 publication Critical patent/JP5379753B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1403Sliding mode control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1409Introducing closed-loop corrections characterised by the control or regulation method using at least a proportional, integral or derivative controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/021Engine temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1402Adaptive control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、排気通路に設けられた空燃比センサの出力値に応じて、空燃比をフィードバック制御する内燃機関の空燃比制御装置に関する。
従来のこの種の内燃機関の空燃比制御装置として、例えば特許文献1に開示されたものが知られている。この内燃機関の排気通路には、排ガスを浄化するための触媒が設けられており、この触媒の上流側にはLAFセンサが、下流側には酸素濃度センサがそれぞれ配置されている。LAFセンサは、排ガスの空燃比をリニアに検出し、酸素濃度センサは、排ガス空燃比を検出するとともに、理論空燃比に相当する排ガス空燃比の前後において急激に変化する出力特性を有する、いわゆる反転タイプのものである。
この空燃比制御装置では、LAFセンサによって検出された排ガス空燃比が目標空燃比になるように、燃料噴射量をフィードバック制御する。また、酸素濃度センサによって検出された排ガス空燃比に応じて、燃料噴射量を補正する補正量を算出する。具体的には、酸素濃度センサの出力値の領域を、目標空燃比に対応する目標値と、目標空燃比よりもリッチ側およびリーン側の所定のリッチ基準空燃比およびリーン基準空燃比にそれぞれ対応する2つの値とによって、4つの領域に区分する。そして、酸素濃度センサの出力値が目標値に近い側の2つの領域にあるときには、補正量をより小さな値に設定し、出力値が目標値から遠い側の2つの領域にあるときには、補正量をより大きな値に設定する。これにより、酸素濃度センサの出力値と目標値との差である出力偏差が大きい領域において、より大きな補正量を用いることによって、排ガス空燃比を目標空燃比に速やかに制御するようにしている。
特開平9−317531号公報
上述した酸素濃度センサは、非線形の出力特性を有する反転タイプのものであるため、例えば、酸素濃度センサの出力値の目標値が理論空燃比に相当する値よりもリッチ側に設定されている場合には、目標値のリッチ側とリーン側で酸素濃度センサの出力特性が非対称になる。より具体的には、排ガス空燃比の変化量が同じである場合、酸素濃度センサの出力の変化は、目標値のリッチ側ではより小さく、リーン側ではより大きくなる。このため、酸素濃度センサの出力値と目標値との偏差が0になるように補正量を算出する場合には、目標空燃比に対する排ガス空燃比のずれが同じであっても、出力値が目標値よりもリッチ側にあるときには、補正量がより小さな値に算出されるため、排ガス空燃比がリッチ側に留まる時間が長くなり、リッチ側に偏るリッチシフトが発生しやすい。
さらに、触媒の活性化前や劣化時には、触媒の酸素貯蔵能力が低いため、触媒を通過する酸素が多くなり、酸素濃度センサで検出された排ガス空燃比が実際の値よりもリーン側にシフトするため、リッチシフトが顕著に現れやすい。
これに対し、特許文献1の空燃比制御装置では、酸素濃度センサの出力偏差が大きいほど、より大きな補正量を用いるにすぎない。このため、目標空燃比が理論空燃比と異なる値に設定されることで、酸素濃度センサの出力特性が目標値に対して非対称になった場合にも、出力偏差に応じて補正量が算出されるため、排ガス空燃比がリッチ側またはリーン側に偏ってしまい、排ガス空燃比を適切に制御することができない。
本発明は、このような課題を解決するためになされたものであり、空燃比センサの出力特性が目標値に対して非対称な場合でも、それを適切に補償しながら、空燃比センサの出力値と目標値に基づくフィードバック制御に用いられる制御入力を適切に算出でき、それにより、空燃比の制御精度を向上させることができる内燃機関の空燃比制御装置を提供することを目的とする。
この目的を達成するために、本願の請求項1に係る内燃機関の空燃比制御装置1は、内燃機関3の排気通路(排気管5)に設けられ、排ガスの空燃比を検出するとともに、排ガスの空燃比に対して非線形の出力特性を有する空燃比センサ(酸素濃度センサ21)と、空燃比センサの出力値(O2出力値SVO2)が所定の目標値SVO2CMDよりもリッチ側にあるときに、出力値と目標値SVO2CMDとの差である出力偏差SVO2CMDを第1所定値EREF1に変換し、出力値が目標値SVO2CMDよりもリーン側にあるときに、出力偏差SVO2Pを第1所定値EREF1と絶対値が等しく正負が逆の第2所定値EREF2に変換する出力偏差変換手段(ECU2、図6)と、空燃比センサの出力値を変換された出力偏差SVO2Pが0になるようにフィードバック制御するための制御入力を算出する制御入力算出手段(ECU2、図4)と、算出された制御入力を用いて排ガスの空燃比を制御する空燃比制御手段(ECU2)と、を備えることを特徴とする
この内燃機関は、排ガスの空燃比を検出する空燃比センサを備えている。ここで、「排ガスの空燃比」とは、排ガス中の空気と可燃性気体との重量比をいう。この空燃比センサは、排ガスの空燃比に対して非線形の出力特性を有するタイプのものである。このため、目標値が理論空燃比に相当する値と異なる値に設定されている場合などには、目標値のリッチ側とリーン側とで空燃比センサの出力特性が非対称になる。本発明によれば、空燃比センサの出力値と目標値との差である出力偏差を、出力値が所定の目標値よりもリッチ側にあるときに第1所定値に変換し、リーン側にあるときに第2所定値に変換する。これらの第1および第2所定値は、互いに絶対値が等しく、正負が逆のものである。このような変換により、空燃比センサの出力特性が目標値を中心として非対称なときでも、変換された出力偏差は目標値を中心として対称になる。
そして、このように変換された出力偏差が0になるように、空燃比センサの出力値をフィードバック制御するための制御入力を算出し、算出された制御入力を用いて、排ガスの空燃比を制御する。したがって、空燃比センサの出力特性が目標値に対して非対称な場合でも、それを適切に補償しながら、空燃比センサの出力値と目標値に基づくフィードバック制御に用いられる制御入力を適切に算出でき、それにより、空燃比の制御精度を向上させることができる。
請求項2に係る発明は、請求項1に記載の内燃機関の空燃比制御装置1において、出力偏差変換手段は、出力偏差SVO2Pが値0を中心として対称に設定された所定範囲よりもリッチ側にあるときに(SVO2P>Va)、出力偏差SVO2Pを第1所定値EREF1に変換し(図8のステップ32)、出力偏差SVO2Pが所定範囲よりもリーン側にあるときに(SVO2P<−Va)、出力偏差を第2所定値EREF2に変換し(図6のステップ34)、出力偏差SVO2Pが所定範囲内にあるときに、出力偏差SVO2Pを、第1所定値EREF1および第2所定値EREF2を基準とする補間計算によって算出された値に変換する(図6のステップ35、図7)ことを特徴とする。
この構成によれば、出力偏差に対して、値0を中心として対称の所定範囲が設定されており、出力偏差が所定範囲よりもリッチ側またはリーン側にあるときには、出力偏差を第1所定値または第2所定値に変換し、出力偏差が所定範囲内にあるときに、出力偏差を、第1所定値および第2所定値を基準とする補間計算によって算出された値に変換する。したがって、目標値付近の所定範囲内においても、出力偏差の変換を、その線形性を保ちながら、きめ細かく行うことができる。また、所定範囲内において、変換された出力偏差は、第1所定値と第2所定値との間で連続的に変化するので、目標値付近で制御入力が急激に変化することを回避できる。
請求項3に係る発明は、請求項1または2に記載の内燃機関の空燃比制御装置1において、制御入力は積分項を含み、制御入力算出手段は、変換された出力偏差を用いて、積分項を算出する(図5のステップ26)ことを特徴とする。
この構成によれば、請求項1で算出された変換値は、制御入力に含まれる積分項の算出に用いられる。積分項は累積的に加算されることで算出されるので、変換値の精度の影響が他のフィードバック成分と比較して大きい。したがって、上記のように適切に算出された変換値を積分項の算出に用いることにより、積分項が不適切にシフトすることを回避できる。また、積分項以外のフィードバック成分は、累積的に算出するものではないので、空燃比センサ出力特性が非線形なことによる影響度合が小さい。したがって、変換値をこれらのフィードバック成分には用いないことによって、フィードバックの応答性などを確保することができる。
請求項4に係る発明は、請求項1ないし3のいずれかに記載の内燃機関の空燃比制御装置1において、空燃比センサは、内燃機関3から排出された排ガスを浄化する触媒8の下流側に設けられており、触媒8の上流側に設けられ、排ガスの空燃比を検出するとともに、排ガスの空燃比に応じてリニアに変化する出力特性を有する上流側空燃比センサ(LAFセンサ22)をさらに備え、空燃比制御手段は、空燃比センサの出力値が目標値SVO2CMDになるように、スライディングモード制御により、制御入力として目標空燃比KCMDを算出するとともに、上流側空燃比センサにより検出された排ガスの空燃比が前記目標空燃比になるように、内燃機関3に供給される燃料量(燃料噴射量Tout)を制御し、制御入力は、変換された出力偏差を用いて算出される適応則入力UADPを含むこと特徴とする。
この構成によれば、空燃比センサは触媒の下流側に設けられており、触媒の上流側にはさらに、排ガスの空燃比に応じてリニアに変化する出力特性を有する上流側空燃比センサが設けられている。また、制御入力としての目標空燃比を、空燃比センサの出力値が目標値になるように、スライディングモード制御により算出する。したがって、空燃比センサで検出された排ガスの空燃比を用い、外乱の影響が少なく、かつ目標値への収束が早いという特性を有するスライディングモード制御によって、目標空燃比を適切に算出することができる。
また、そのように算出された目標空燃比を用いて、上流側空燃比センサにより検出された排ガスの空燃比が目標空燃比になるように、内燃機関に供給される燃料量を制御するので、空燃比の制御精度をさらに向上させることができる。また、制御入力は、スライディングモード制御における適応則入力を含み、この適応則入力は、積分項に相当するとともに、変換された出力偏差を用いて算出される。したがって、変換された出力偏差を用いて積分項を算出することによる前述した請求項3の利点を同様に得ることができる。
本発明の実施形態による空燃比制御装置を、内燃機関とともに示す図である。 酸素濃度センサの出力特性を示す図である。 燃料噴射量の算出処理を示すフローチャートである。 目標空燃比の算出処理を示すフローチャートである。 適応則入力の算出処理を示すフローチャートである。 変換値の算出処理を示すフローチャートである。 変換値を説明するための図である。
以下、図面を参照しながら、本発明の好ましい実施形態について説明する。図1に示すように、本発明を適用した空燃比制御装置1は、ECU2を備えており、このECU2は、内燃機関(以下「エンジン」という)3の空燃比制御を含む各種の制御処理を行う。エンジン3は、車両(図示せず)に搭載された、例えば4気筒のガソリンエンジンである。エンジン3の吸気管4には、スロットル弁6が設けられ、その下流側の吸気マニホールド4aには、燃料噴射弁(以下「インジェクタ」という)7が設けられている。インジェクタ7の開弁時間および開閉タイミングは、ECU2によって制御され、それにより、燃料噴射量Toutおよび燃料噴射時期が制御される。
一方、排気管5の下流側には、触媒8が設けられている。この触媒8は、三元触媒で構成されており、酸化還元作用によって、排ガス中のCO、HCおよびNOxを浄化する。
また、排気管5の触媒8よりも下流側には、酸素濃度センサ(以下「O2センサ」という)21が設けられている。O2センサ21は、触媒8の下流側で排ガス中の酸素濃度を検出し、その酸素濃度に応じた電圧を有する信号をECU2に出力する。
図2に示すように、O2センサ21は、混合気の理論空燃比に相当する排ガスの空燃比(以下「理論排ガス空燃比」という)A/FEXTHの前後において急激に変化する出力特性を有する。具体的には、O2センサ21の出力信号の電圧値(以下「O2出力値」という)SVO2は、理論空燃比よりもリッチな混合気が燃焼し、排ガス空燃比A/FEXがリッチなときには、高い値(例えば600mV以上)を示し、理論空燃比よりもリーンな混合気が燃焼し、排ガス空燃比A/FEXがリーンなときには、低い値(例えば200mV以下)を示すとともに、理論空燃比付近の混合気が燃焼し、排ガス空燃比A/FEXが理論排ガス空燃比A/FEXTH付近のときには、上記の値の間で急激に変化する。
また、排気管5の触媒8よりも上流側には、LAFセンサ22が設けられている。LAFセンサ22は、理論排ガス空燃比A/FEXTHに対してリッチ側からリーン側までの広い範囲において、排ガス中の酸素濃度をリニアに検出し、酸素濃度に応じた排ガス空燃比(以下「実空燃比」という)KACTを表す検出信号をECU2に出力する。この実空燃比KACT、および後述する目標空燃比KCMDは、当量比で表される。
また、吸気管4のスロットル弁6よりも上流側にはエアフローメータ23が、下流側には吸気圧センサ24が、それぞれ設けられている。エアフローメータ23は、吸気管4を流れる空気の質量(以下「空気質量」という)GAIRを検出し、吸気圧センサ24は、吸気の圧力(以下「吸気圧」という)PBAを検出し、それらの検出信号をECU2に出力する。さらに、ECU2には、水温センサ26からエンジン3の冷却水の温度(以下「エンジン水温」という)TWを表す検出信号が出力される。
一方、エンジン3のクランクシャフト(図示せず)には、クランク角センサ25が設けられている。クランク角センサ25は、クランクシャフトの回転に伴い、パルス信号であるCRK信号およびTDC信号を、ECU2に出力する。
このCRK信号は、所定のクランク角(例えば30゜)ごとに出力される。ECU2は、CRK信号に基づき、エンジン3の回転数(以下「エンジン回転数」という)NEを算出する。TDC信号は、いずれかの気筒(図示せず)においてピストン(図示せず)が吸気行程開始時のTDC(上死点)付近の所定のクランク角度位置にあることを表す信号であり、4気筒タイプの本例では、クランク角180゜ごとに出力される。
また、ECU2は、CPU、RAM、ROMおよび入出力インターフェース(いずれも図示せず)などから成るマイクロコンピュータ(図示せず)で構成されている。ECU2は、上述したセンサ21〜26からの検出信号に応じ、ROMに記憶された制御プログラムなどに基づいて、空燃比制御などのための各種の演算処理を実行する。なお、本実施形態では、ECU2は、出力偏差変換手段、制御入力算出手段および空燃比制御手段に相当する。
次に、図3〜図7を参照しながら、ECU2で実行される空燃比制御処理について説明する。この空燃比制御処理は、O2出力値SVO2が目標値SVO2CMDになるように目標空燃比KCMDを算出するとともに、実空燃比KACTが算出した目標空燃比KCMDになるように燃料噴射量Toutを算出することによって、エンジン3で燃焼する混合気の空燃比および排ガス空燃比A/FEXを制御するものである。なお、本実施形態では、NOxの低減などのために、目標値SVO2CMDは、理論排ガス空燃比A/FEXTHに相当する値SVO2TH(例えば590V)よりも、若干リッチ側に相当する比較的大きな値(例えば650mV)に設定されている(図2参照)。
図3は、燃料噴射量Toutの算出処理を示す。本処理は、TDC信号の発生に同期して実行される。本処理ではまず、ステップ1(「S1」と図示。以下同じ)において、エンジン回転数NEおよび吸気圧PBAに応じ、所定のマップ(図示せず)を検索することよって、基本燃料量TIbaseを算出する。この基本燃料量TIbaseは、燃料噴射量Toutの基本値であり、このマップでは、エンジン回転数NEが高いほど、また、吸気圧PBAが高いほど、より大きな値に設定されている。なお、この基本燃料量TIbaseの算出を、エアフローメータ23で検出された空気質量GAIRを用いてもよい。次に、ステップ2において、目標空燃比KCMDを算出する。その詳細については後述する。
次に、ステップ3において、PIDフィードバック制御によって、LAFセンサ22で検出された実空燃比KACTが目標空燃比KCMDに収束するように、空燃比補正係数KAFを算出する。なお、空燃比補正係数KAFの算出を、STR(セルフチューニングレギュレータ)などを用いて行ってもよい。
次に、ステップ4において、総補正係数KTOTALを算出する。この総補正係数KTOTALは、エンジン水温TWに応じて算出される水温補正係数などを含む各種の補正係数を互いに乗算することによって算出される。
次に、ステップ5において、ステップ1〜4で算出された基本燃料量TIbase、目標空燃比KCMD、空燃比補正係数KAFおよび総補正係数KTOTALを用い、次式(1)によって、燃料噴射量Toutを算出し、本処理を終了する。
Tout=TIbase・KCMD・KAF・KTOTAL ・・・・(1)
以下、図4を参照しながら、図3のステップ2において実行される目標空燃比KCMDの算出処理について説明する。本処理は、後述する式(3)〜(8)に示すスライディングモード制御アルゴリズムによって、目標空燃比KCMDを算出するものである。本処理ではまず、ステップ11において、適応則入力UADPを算出する。図5は、そのサブルーチンを示す。
本処理ではまず、ステップ21において、O2出力値SVO2と目標値SVO2CMDとの差を、出力偏差SVO2Pとして算出し、ステップ22において、変換値ERRADPNの設定処理を実行する。図6は、そのサブルーチンを示す。
本処理ではまず、ステップ31において、出力偏差SVO2Pが所定値Va(例えば30mV)よりも大きいか否かを判別する。この答がYESのときには、ステップ32において、正値である第1所定値EREF1(例えば1.0)を変換値ERRADPNとして設定し、本処理を終了する。
一方、上記ステップ31の答がNOのときには、ステップ33において、出力偏差SVO2Pが−Va値よりも小さいか否かを判別する。この答がYESのときには、ステップ34において、第1所定値EREF1と絶対値が等しく、負値である第2所定値EREF2(例えば−1.0)を、変換値ERRADPNとして設定し、本処理を終了する。
一方、上記ステップ31の答がNOで、−Va≦SVO2P≦Vaのときには、ステップ35において、出力偏差SVO2P、リッチ側変換値EREF1および所定値Vaを用い、次式(2)によって、変換値ERRADPNを算出し、本処理を終了する。
ERRADPN=SVO2P・EREF1/Va ・・・・(2)
以上のように、変換値ERRADPNは、出力偏差SVO2Pが−Va値とVa値で規定される所定範囲よりもリッチ側にあるときには、第1所定値EREF1に設定され、出力偏差SVO2Pが所定範囲よりもリーン側にあるときには、第2所定値EREF2(=−EREF1)に設定され、出力偏差SVO2Pが所定範囲内にあるときには、第1所定値EREF1および第2所定値EREF2を基準とする補間計算によって算出される(図7参照)。
図5に戻り、ステップ22に続くステップ23では、O2出力値SVO2に応じ、所定のマップ(図示せず)を検索することによって、第1ゲインKADPVO2Nを算出する。
次に、ステップ24において、空気質量GAIRに応じ、所定のマップ(図示せず)を検索することによって、第2ゲインKADPAIRNを算出し、ステップ25において、算出された第2ゲインKADPAIRNを前述した第1ゲインKADPVO2Nに乗算することによって、総ゲインSLDKADPNを算出する。
次に、ステップ26において、今回および前回の変換値ERRADPN(k),ERRADPN(k−1)と、所定の応答指定パラメータs(−1<s<0)を用い、次式(3)によって、切換関数σ(k)を算出する。
σ(k)=ERRADPN(k)+s・ERRADPN(k−1)・・・・(3)
次に、ステップ27において、次式(4)によって、切換関数σ(k)の積分値Sumσ(k)を算出する。
Sumσ(k)=Sumσ(k−1)+SLDKADPN・σ(k) ・・・・(4)
次に、ステップ28において、算出された積分値Sumσ(k)および総ゲインSLDKADPNを用い、次式(5)によって、適応則入力の基本値UADPbaseを算出する。
UADPbase
=UADPbase(k−1)+SLDKADPN・σ(k)
=Sumσ(k) ・・・・(5)
次に、ステップ29において、算出された適応則入力の基本値UADPbaseにリミット処理を行うことによって、適応則入力UADPを算出し、本処理を終了する。このリミット処理は、具体的には、基本値UADPbaseが所定の上限値UADPLMTHよりも大きいときには、適応則入力UADPを上限値UADPLMTHに設定する。また、基本値UADPbaseが下限値UADPLMTLよりも小さいときには、適応則入力UADPを下限値UADPLMTLに設定する。また、上記以外のときには、適応則入力UADPを基本値UADPbaseに設定する。
図4に戻り、ステップ11に続くステップ12では、所定の到達則ゲインKRCHおよび切換関数σ(k)を用い、次式(6)によって、到達則入力の基本値URCHbaseを算出するとともに、その値にリミット処理を施した値を、最終的な到達則入力URCHとして算出する。
URCH=KRCH・σ(k) ・・・・(6)
次に、ステップ13において、算出された適応則入力UADPおよび到達則入力URCHを用い、次式(7)によって、補正値USLを算出する。
USL=UADP+URCH ・・・・(7)
次に、ステップ14において、所定の空燃比基準値FLAFBASEおよび算出された補正値USLを用い、次式(8)によって、目標空燃比KCMDを算出し、本処理を終了する。
KCMD=FLAFBASE−USL ・・・・(8)
以上のように、本実施形態によれば、O2センサ21の出力偏差SVO2Pを、O2出力値SVO2が目標値SVO2CMDよりもリッチ側にあるときに第1所定値EREF1に変換し、リーン側にあるときに第2所定値EREF2(=−EREF1)に変換する。このような変換により、本実施形態のように目標値SVO2CMDが理論排ガス空燃比A/FEXTHに相当する値よりもリッチ側に設定されることで、O2センサ21の出力特性が非対称な場合でも、変換値ERRADPNは、目標値SVO2CMDを中心として対称になる。
そして、このように変換された出力偏差SVO2Pが0になるように、O2出力値SVO2をフィードバック制御するための目標空燃比KCMDを算出し、この目標空燃比KCMDを用いて、排ガス空燃比A/FEXを制御する。したがって、O2センサ21の出力特性が目標値SVO2CMDに対して非対称な場合でも、それを適切に補償しながら、目標空燃比KCMDを適切に算出でき、それにより、排ガス空燃比A/FEXの制御精度を向上させることができる。
また、出力偏差SVO2Pが−Va値とVa値で規定される所定範囲内にあるときには、変換値ERRADPNを前記の式(2)による補間計算によって算出する。したがって、出力偏差SVO2Pが所定範囲にあるときに、変換値ERRADPNを、その線形性を保ちながら、出力偏差SVO2に応じた値にきめ細かく適切に算出することができる。また、この所定範囲内において、変換値ERRADPNは第1所定値EREF1と第2所定値EREF2との間で連続的に変化するので、変換値ERRADPNの急激な変化を回避でき、目標空燃比KCMDの変動を防止することができる。
また、上記のように適切に算出された変換値ERRADPNを適応則入力UADPの算出に用いることにより、適応則入力UADPがリッチシフトすることを回避できる。また、到達則入力URCHの算出には、変換値ERRADPNを用いないので、フィードバックの応答性などを確保することができる。
また、目標空燃比KCMDを、O2出力値SVO2が目標値SVO2CMDになるように、スライディングモード制御により算出する。したがって、O2センサ21で検出された排ガス空燃比A/FEXを用い、外乱の影響が少なく、かつ目標値への収束が早いという特性を有するスライディングモード制御によって、目標空燃比KCMDを適切に算出することができる。また、そのように算出された目標空燃比KCMDを用いて、LAFセンサ22で検出された実空燃比KACTが目標空燃比KCMDになるように、燃料噴射量Toutを制御するので、混合気の空燃比および排ガス空燃比A/FEXの制御精度をさらに向上させることができる。
なお、本発明は、説明した実施形態に限定されることなく、種々の態様で実施することができる。例えば、実施形態では、目標空燃比KCMDの算出を、スライディングモード制御により行っているが、PIDフィードバック制御によって行ってもよい。その場合には、積分項の算出に変換値ERRADPNが用いられる。また、比例項や微分項の算出に変換値ERRADPNを用いてもよい。
また、実施形態では、出力偏差SVO2Pが所定範囲内にあるときに、変換値ERRADPNを、補間計算によって算出された値に設定しているが、第1所定値EREF1と第2所定値EREF2をリニアに結んだ値に設定してもよい。
また、実施形態では、出力偏差SVO2Pを変換する変換値ERRADPNとしての第1所定値EREF1を1.0に設定し、第2所定値EREF2を−1.0に設定しているが、それらの絶対値が互いに等しく、正負が逆であれば、他の値に設定してもよい。
また、実施形態は、本発明を車両に搭載されたガソリンエンジンに適用した例であるが、本発明は、これに限らず、ガソリンエンジン以外のディーゼルエンジンなどの各種のエンジンに適用してもよく、また、車両用以外のエンジン、例えば、クランク軸を鉛直に配置した船外機などのような船舶推進機用エンジンにも適用可能である。その他、本発明の趣旨の範囲内で、細部の構成を適宜、変更することが可能である。
1 空燃比制御装置
2 ECU(出力偏差変換手段、制御入力算出手段、空燃比制御手段)
3 内燃機関
5 排気管(排気通路)
8 触媒
21 酸素濃度センサ(空燃比センサ)
22 LAFセンサ(上流側空燃比センサ)
SVO2 O2出力値(空燃比センサの出力値)
SVO2P 出力偏差
SVO2CMD 目標値
EREF1 第1所定値
EREF2 第2所定値
KCMD 目標空燃比(制御入力)
Tout 燃料噴射量(内燃機関に供給される燃料量)
UADP 適応則入力

Claims (4)

  1. 内燃機関の排気通路に設けられ、排ガスの空燃比を検出するとともに、排ガスの空燃比に対して非線形の出力特性を有する空燃比センサと、
    当該空燃比センサの出力値が所定の目標値よりもリッチ側にあるときに、前記出力値と前記目標値との差である出力偏差を第1所定値に変換し、前記出力値が前記目標値よりもリーン側にあるときに、前記出力偏差を前記第1所定値と絶対値が等しく正負が逆の第2所定値に変換する出力偏差変換手段と、
    前記空燃比センサの出力値を前記変換された出力偏差が0になるようにフィードバック制御するための制御入力を算出する制御入力算出手段と、
    当該算出された制御入力を用いて排ガスの空燃比を制御する空燃比制御手段と、
    を備えることを特徴とする内燃機関の空燃比制御装置。
  2. 前記出力偏差変換手段は、前記出力偏差が値0を中心として対称に設定された所定範囲よりもリッチ側にあるときに、前記出力偏差を前記第1所定値に変換し、前記出力偏差が前記所定範囲よりもリーン側にあるときに、前記出力偏差を前記第2所定値に変換し、前記出力偏差が前記所定範囲内にあるときに、前記出力偏差を、前記第1所定値および前記第2所定値を基準とする補間計算によって算出された値に変換することを特徴とする、請求項1に記載の内燃機関の空燃比制御装置。
  3. 前記制御入力は積分項を含み、前記制御入力算出手段は、前記変換された出力偏差を用いて、前記積分項を算出することを特徴とする、請求項1または2に記載の内燃機関の空燃比制御装置。
  4. 前記空燃比センサは、前記内燃機関から排出された排ガスを浄化する触媒の下流側に設けられており、
    当該触媒の上流側に設けられ、排ガスの空燃比を検出するとともに、排ガスの空燃比に応じてリニアに変化する出力特性を有する上流側空燃比センサをさらに備え、
    前記空燃比制御手段は、前記空燃比センサの前記出力値が前記目標値になるように、スライディングモード制御により、前記制御入力として目標空燃比を算出するとともに、
    前記上流側空燃比センサにより検出された排ガスの空燃比が前記目標空燃比になるように、内燃機関に供給される燃料量を制御し、
    前記制御入力は、前記変換された出力偏差を用いて算出される適応則入力を含むこと特徴とする、請求項1ないし3のいずれかに記載の内燃機関の空燃比制御装置。
JP2010151597A 2010-07-02 2010-07-02 内燃機関の空燃比制御装置 Active JP5379753B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010151597A JP5379753B2 (ja) 2010-07-02 2010-07-02 内燃機関の空燃比制御装置
US13/174,653 US8818690B2 (en) 2010-07-02 2011-06-30 Air-fuel ratio control apparatus for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010151597A JP5379753B2 (ja) 2010-07-02 2010-07-02 内燃機関の空燃比制御装置

Publications (2)

Publication Number Publication Date
JP2012013028A JP2012013028A (ja) 2012-01-19
JP5379753B2 true JP5379753B2 (ja) 2013-12-25

Family

ID=45400320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010151597A Active JP5379753B2 (ja) 2010-07-02 2010-07-02 内燃機関の空燃比制御装置

Country Status (2)

Country Link
US (1) US8818690B2 (ja)
JP (1) JP5379753B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9249751B2 (en) * 2013-05-23 2016-02-02 Ford Global Technologies, Llc Exhaust gas sensor controls adaptation for asymmetric degradation responses
JP6341235B2 (ja) * 2016-07-20 2018-06-13 トヨタ自動車株式会社 エンジンの空燃比制御装置
JP6946815B2 (ja) * 2017-07-24 2021-10-06 トヨタ自動車株式会社 内燃機関の制御装置
JP7499146B2 (ja) 2020-10-27 2024-06-13 日立Astemo株式会社 空気過剰率算出装置
US11624333B2 (en) 2021-04-20 2023-04-11 Kohler Co. Exhaust safety system for an engine
WO2023181209A1 (ja) * 2022-03-23 2023-09-28 日立Astemo株式会社 空気過剰率算出装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2917632B2 (ja) * 1991-12-03 1999-07-12 日産自動車株式会社 エンジンの空燃比制御装置
JP3218731B2 (ja) * 1992-10-20 2001-10-15 三菱自動車工業株式会社 内燃エンジンの空燃比制御装置
JPH09317531A (ja) 1996-05-30 1997-12-09 Fuji Heavy Ind Ltd エンジンの空燃比フィードバック制御装置
JP3696570B2 (ja) * 1997-09-16 2005-09-21 本田技研工業株式会社 プラントの制御装置
MY138476A (en) * 2001-02-01 2009-06-30 Honda Motor Co Ltd Apparatus for and method of controlling plant
JP3876642B2 (ja) * 2001-04-24 2007-02-07 株式会社デンソー 内燃機関の空燃比制御装置
JP3922980B2 (ja) * 2001-07-25 2007-05-30 本田技研工業株式会社 制御装置
JP3846480B2 (ja) * 2003-02-03 2006-11-15 トヨタ自動車株式会社 内燃機関の排気浄化装置

Also Published As

Publication number Publication date
US8818690B2 (en) 2014-08-26
JP2012013028A (ja) 2012-01-19
US20120004827A1 (en) 2012-01-05

Similar Documents

Publication Publication Date Title
JP4673787B2 (ja) 内燃機関の空燃比制御装置
JP5379753B2 (ja) 内燃機関の空燃比制御装置
JP4184058B2 (ja) 制御装置
JP3998136B2 (ja) 内燃機関の空燃比制御装置
US6868326B2 (en) Control apparatus, control method, control unit, and engine control unit
JP3980424B2 (ja) 内燃機関の空燃比制御装置
JP3304844B2 (ja) プラントの制御装置
JP3683357B2 (ja) 内燃機関の気筒別空燃比推定装置
US20130184973A1 (en) Fuel injection amount control apparatus for an internal combustion engine
US9249712B2 (en) Air-fuel ratio control system for internal combustion engine
JP5741499B2 (ja) 空燃比ばらつき異常検出装置
JPH1182118A (ja) 多気筒エンジンの空燃比制御装置
JP5543852B2 (ja) 内燃機関の空燃比制御装置
JP5640967B2 (ja) 気筒間空燃比ばらつき異常検出装置
JP5337140B2 (ja) 内燃機関の空燃比制御装置
JP4439508B2 (ja) 制御装置
JP4790787B2 (ja) 内燃機関の制御装置
JP5770585B2 (ja) 内燃機関の空燃比制御装置
JP6543509B2 (ja) 内燃機関の制御装置
US8726637B2 (en) Air-fuel ratio control system for internal combustion engine
JP4453510B2 (ja) 内燃機関の制御装置
JP3847304B2 (ja) 内燃機関の空燃比制御装置
JP3889410B2 (ja) 内燃機関の空燃比制御装置
JP2015203378A (ja) 内燃機関のインバランス率学習装置
JP2759917B2 (ja) 内燃エンジンの空燃比制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130927

R150 Certificate of patent or registration of utility model

Ref document number: 5379753

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250