JP6717191B2 - 成膜装置、基板処理装置、および、デバイス製造方法 - Google Patents

成膜装置、基板処理装置、および、デバイス製造方法 Download PDF

Info

Publication number
JP6717191B2
JP6717191B2 JP2016513844A JP2016513844A JP6717191B2 JP 6717191 B2 JP6717191 B2 JP 6717191B2 JP 2016513844 A JP2016513844 A JP 2016513844A JP 2016513844 A JP2016513844 A JP 2016513844A JP 6717191 B2 JP6717191 B2 JP 6717191B2
Authority
JP
Japan
Prior art keywords
substrate
film forming
exhaust
degrees
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016513844A
Other languages
English (en)
Other versions
JPWO2015159983A1 (ja
Inventor
康孝 西
康孝 西
誠 中積
誠 中積
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Publication of JPWO2015159983A1 publication Critical patent/JPWO2015159983A1/ja
Application granted granted Critical
Publication of JP6717191B2 publication Critical patent/JP6717191B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/02Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
    • B05B13/0221Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work characterised by the means for moving or conveying the objects or other work, e.g. conveyor belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/02Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
    • B05B13/04Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work the spray heads being moved during spraying operation
    • B05B13/0463Installation or apparatus for applying liquid or other fluent material to moving work of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B16/00Spray booths
    • B05B16/60Ventilation arrangements specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/08Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point
    • B05B7/0869Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point the liquid or other fluent material being sucked or aspirated from an outlet orifice by another fluid, e.g. a gas, coming from another outlet orifice
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/062Pretreatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/082Coating starting from inorganic powder by application of heat or pressure and heat without intermediate formation of a liquid in the layer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • H10K71/611Forming conductive regions or layers, e.g. electrodes using printing deposition, e.g. ink jet printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2252/00Sheets
    • B05D2252/02Sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/10Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by other chemical means

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electroluminescent Light Sources (AREA)
  • Nozzles (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Details Or Accessories Of Spraying Plant Or Apparatus (AREA)
  • Coating Apparatus (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Spray Control Apparatus (AREA)

Description

本発明は、薄膜原料を噴霧することで基板に薄膜を形成する成膜装置、基板処理装置、および、デバイス製造方法に関する。
特開2002−075641号公報には、ミストを噴霧することで基板上に薄膜を形成して、デバイスを製造することが記載されている。
しかしながら、薄膜原料を含む液体をミスト化して基板上に塗布する場合は、基板の表面に局所的に液溜まりが生じる等の理由によって、均一の膜厚で薄膜を基板上に形成することが困難であった。
本発明の第1の態様は、基板上に薄膜を形成する成膜装置であって、薄膜原料を噴霧する噴霧部と、気体を排気する排気部と、を備え、前記排気部の排気口は、前記基板に対して、重力が働く方向とは反対側に配置され、前記噴霧部は、前記基板に対して、前記排気部と同じ側に配置され、前記成膜装置は、重力が働く方向と直交する水平面に対して15度〜75度の範囲で傾斜している前記基板に対して薄膜を形成し、前記噴霧部による前記薄膜原料の噴霧方向と前記排気部による前記気体の排気方向のそれぞれの方向に沿った線分のなす角度は、75度以下である。
本発明の第2の態様は、基板処理装置であって、前記した第1の態様の成膜装置と、前記成膜装置によって薄膜が形成された前記基板に光を照射して、所定のパターンを前記基板に露光する露光装置と、を備える。
本発明の第3の態様は、デバイスを製造するデバイス製造方法であって、前記した第1の態様の成膜装置を用いて、前記基板上に薄膜を形成する成膜工程と、前記成膜工程で成膜された前記基板に光を照射して、所定のパターンを前記基板に露光する露光工程と、を備える。
第1の実施の形態における基板に対して所定の処理を施してデバイスを製造する基板処理装置の概略構成を示す図である。 実施例1におけるノズルおよび排気部と基板との配置関係を示す図である。 比較例1におけるノズルおよび排気部と基板との配置関係を示す図である。 水平面に対するノズルの噴霧方向の噴霧角度、水平面に対する基板の傾斜角度、および、水平面に対する排気部の排気方向の排気角度の説明図である。 実施例2の実験結果を示すグラフである。 実施例3の実験結果を示すグラフである。 実施例4の実験結果を示すグラフである。 実施例5の実験結果を示すグラフである。 実施例6の実験結果を示すグラフである。 第3の実施の形態および実施例7におけるノズル、供給管、排気部、および、基板の配置構成を示す図である。 比較例2におけるノズル、供給管、排気部、および、基板の配置関係を示す図である。 比較例3におけるノズル、供給管、および、基板の配置関係を示す図である。 比較例3における膜厚の均一性の評価結果を示す図である。 変形例1において、基板上に形成されたZnO:Alの膜上に、SiO2の薄膜を形成して得られたデバイスの構造を示す図である。
本発明の態様に係る成膜装置、成膜装置を備える基板処理装置、および、成膜装置を用いてデバイスを製造するデバイス製造方法について、好適な実施の形態を掲げ、添付の図面を参照しながら以下、詳細に説明する。なお、本発明の態様は、これらの実施の形態に限定されるものではなく、多様な変更または改良を加えたものも含まれる。
[第1の実施の形態]
図1は、基板Pに対して所定の処理を施してデバイスを製造する基板処理装置12の概略構成を示す図である。なお、以下の説明においては、XYZ直交座標系を設定し、図に示す矢印にしたがって、X方向、Y方向、およびZ方向を説明する。
基板処理装置12は、例えば、デバイスとしてのフレキシブル・ディスプレイを製造するシステムである。フレキシブル・ディスプレイとしては、例えば、有機ELディスプレイ等がある。基板処理装置12は、フレキシブルの基板(シート基板)Pをロール状に巻いた供給ロール14から基板Pが送出され、送出された基板Pに対して基板処理装置12が各種処理を連続的に施した後、各種処理後の基板Pを回収ロール16で巻き取る、いわゆる、ロール・ツー・ロール(Roll To Roll)方式の構造を有する。この基板Pは、基板Pの移動方向が長手方向(長尺)となり、幅方向が短手方向(短尺)となる帯状の形状を有する。各種処理後の基板Pは、複数のデバイスが連なった状態となっており、多面取り用の基板となっている。供給ロール14から送られた基板Pは、順次、基板処理装置12の洗浄装置18、成膜装置20、および露光装置22等で各種処理が施され、回収ロール16で巻き取られる。
なお、X方向は、水平面内において、基板Pが搬送される方向であり、Y方向は、水平面においてX方向に直交する方向であり、基板Pの幅方向である。Z方向は、X方向とY方向とに直交する方向(上方向)である。−Z方向は、重力方向(重力が働く方向、つまり、重力がかかる方向)であり、水平面を、重力方向と直交する面とする。
基板Pの材料としては、例えば、樹脂フィルム、または、ステンレス鋼等の金属または合金からなる箔(フォイル)等が用いられる。樹脂フィルムの材質としては、例えば、ポリエチレン樹脂、ポリエーテル樹脂、ポリプロピレン樹脂、ポリエステル樹脂、エチレンビニル共重合体樹脂、ポリ塩化ビニル樹脂、ポリフェニレンスルフィド樹脂、ポリアリレート樹脂、セルロース樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、および、酢酸ビニル樹脂のうち、少なくとも1つ以上を含んだものを用いてもよい。また、基板Pの厚みや剛性(ヤング率)は、基板Pに座屈による折れ目や非可逆的なシワが生じないような範囲であればよい。基板Pの母材として、厚みが25μm〜200μm程度のPET(ポリエチレンテレフタレート)やPEN(ポリエチレンナフタレート)、PES(ポリエーテルスルホン)等のフィルムは、シート基板の典型である。
基板Pは、基板処理装置12で施される各処理において熱を受ける場合があるため、熱膨張係数が顕著に大きくない材質の基板を選定することが好ましい。例えば、無機フィラーを樹脂フィルムに混合することによって熱膨張係数を抑えることができる。無機フィラーは、例えば、酸化チタン、酸化亜鉛、アルミナ、または酸化ケイ素等でもよい。また、基板Pは、フロート法等で製造された厚さ100μm程度の極薄ガラスの単層体であってもよいし、この極薄ガラスに上記の樹脂フィルム、または、箔等を貼り合わせた積層体であってもよい。
洗浄装置18は、連続的に搬送された基板Pを洗浄する。洗浄装置18は、基板Pをアルコール洗浄液で超音波洗浄する超音波洗浄装置30と、超音波洗浄が行われた基板Pに対して基板P上(基板Pの表面)に残留しているアルコール洗浄液を除去する送風機32と、送風機32によってアルコール洗浄液が除去された基板Pの表面に対して紫外線(UV:ultraviolet)を照射するUV照射装置34とを備える。
超音波洗浄装置30は、アルコール洗浄液が貯蔵された洗浄槽36と、図示しないポンプを有し、洗浄槽36に貯蔵されているアルコール洗浄液を循環させるための循環系38とを有する。この洗浄槽36の底面には、超音波振動を発生する超音波振動子40が設けられている。この超音波振動子40が機械的に振動することで、洗浄槽36内に超音波が出力される。したがって、洗浄槽36に搬送された基板Pがアルコール洗浄液によって超音波洗浄される。アルコール洗浄液としては、メタノール、エタノール、イソプロピルアルコール(IPA)等が用いられる。なお、循環系38は、設けなくてもよい。
送風機32は、基板Pに対して風を送ることで基板P上に残留しているアルコール洗浄液を除去する。UV照射装置34は、紫外線を発生する低圧水銀ランプ34aを有し、連続的に搬送された基板Pの表面に対して紫外線を照射する。基板Pに対して紫外線を照射することで、基板Pの表面の有機物汚染の除去、表面改質を行うUVオゾン洗浄を行うことができる。この紫外線によって、基板Pの表面が親水性に改質される。紫外線は、200nm以下の波長であることが好ましい。オゾンを効率よく基板Pに照射できるようにするため、UV照射装置34は、ある程度密閉された空間内で基板Pに対して紫外線を照射することが好ましい。
なお、送風機32と対向する位置に、ドレイン流路DR1が設けられ、このドレイン流路DR1から、基板P上に残留しているアルコール洗浄液が図示しない排水処理装置に向けて排出される。
成膜装置20は、洗浄装置18によって洗浄されて連続的に搬送される基板Pの表面に対して薄膜を形成する。成膜装置20は、成膜室50を有し、成膜室50内に搬送された基板P上に薄膜を形成する。成膜装置20は、薄膜原料を含むミストを噴霧することで、大気圧下において基板P上に薄膜を形成する。なお、薄膜の形成は、大気圧下ではなく、所定の圧力下で行ってもよい。
具体的には、成膜装置20は、成膜室50、ミスト供給装置52、ノズル(噴霧部)54、供給管56、フィルタ58、排気部60、および、吸引装置62を有する。ミスト供給装置52は、薄膜を形成するための薄膜原料を含む液体を霧化させ、霧化した液体、つまり、ミストを所定の流速でノズル54に供給する。ミスト供給装置52は、供給管56を介してノズル54と接続されており、ミストは供給管56を通ってノズル54に供給される。
ミストの発生方法については種々あるが、例えば、超音波振動子により液体を超音波振動させて液体同士の結合を外すことで液体を霧化させる手法や、ミストを噴霧する細管に直接電圧をかけて液体を霧化させる静電式等がある。また、圧力を加え流速を増加させたガスと液体とを衝突させることによって、液体を飛散させて霧化させる加圧式や、高速回転しているディスク上に液体の液滴を滴下し、液滴を遠心力によって飛散させて霧化させる回転ディスク式等もある。さらに、マイクロサイズの孔を有するオリフィス板に液体の液滴を通す際に、圧電素子等によって振動を加えることによって液滴を切断して霧化させるオリフィス振動式等もある。コストやパフォーマンス等に応じて適宜これらの方法の中から任意の方法を選択することができる。なお、複数の方法を組み合わせて、ミストを発生させてもよい。
この薄膜原料を含むミストをノズル54に供給する具体的な方法として、圧縮ガスであるキャリアガスを用いる。つまり、ミスト供給装置52には、キャリアガスが供給されており、ミスト供給装置52は、供給されたキャリアガスを供給管56に流すことで、キャリアガスとともに霧化したミストをノズル54に供給する。なお、キャリアガスを供給管56に流す流量(NL/min)を変えることで、ノズル54に供給するミストの流速を変えることができる。
成膜に用いられる液体(成膜用液体)としては、例えば、溶媒に薄膜原料が溶けこんだ溶液であってもよく、薄膜原料である微粒子を分散媒に分散させた分散液であってもよい。薄膜原料としては、例えば、インジウム、亜鉛、錫、シリコン、チタン等の導電性を有する金属微粒子またはこれらのうち少なくとも1つを含む金属酸化物微粒子を用いることができる。また、溶媒または分散媒として、水溶媒、若しくは、エタノール、イソプロピルアルコール(IPA)等の単独で霧化が可能なものを用いることもできる。具体的には、液体として、薄膜原料としてのITO(酸化インジウムスズ)の微粒子を含む水分散液や、薄膜原料としてのSiO2(二酸化ケイ素)の微粒子をIPA分散媒に分散させた分散液等が挙げられる。また、キャリアガスとしては、窒素や希ガス等の不活性ガスを用いることができる。
供給管56には、フィルタ58が設けられている。このフィルタ58は、ミスト供給装置52からノズル54に供給されるミストに含まれる薄膜原料(微粒子)のうち、所定の粒子径より小さい薄膜原料(微粒子)を透過するものである。これにより、所定の粒子径以上の薄膜原料(微粒子)がノズル54に供給されることはなく、成膜精度を向上させることができる。また、このフィルタ58を設けることで、液体にゴミ等の異物が入り込んだ場合等であっても、該異物のノズル54への供給をブロックすることができる。
供給管56の下流側の先端に設けられているノズル54は、成膜室50内に挿入されている。供給管56の下流側とは、ミストの供給方向からみて下流側のことをいう。ノズル54に供給されたミストは、キャリアガスとともにノズル54の噴霧口54aから噴霧される。これにより、成膜室50内で、連続的に搬送された基板Pの表面に成膜を行うことができる。この成膜により基板Pの表面には、機能性材料層が形成される。なお、ノズル54は、薄膜原料を噴霧する噴霧方向を変更可能な図示しない可動部を有してもよい。これにより、成膜材料、成膜条件、成膜時間、成膜状況等によって、薄膜原料の噴霧方向の調整が可能となる。
成膜の際は、基板Pに噴霧されるミストが基板Pの軟化点より低い温度であることが好ましい。この軟化点とは、基板Pを加熱した場合に、基板Pが軟化して変形を起し始める温度のことをいう。この軟化点は、例えば、JIS K7207(A法)に準じた試験方法により求めることができる。なお、本第1の実施の形態においては、供給管56は、その軸心が水平面に対して垂直となるように成膜室50に設けられている。
なお、この成膜の際には、ヘリウム等のガスを用い、高周波電圧を印加することで大気圧プラズマによる成膜補助を行ってもよい。この場合に用いるガスとしては、ヘリウムが望ましいが、窒素、アルゴン、空気を採用してもよい。高周波電圧の印加は、例えば、ノズル54と基板Pとの間に設けた一対の電極(図示略)に対して行う。
成膜室50には、成膜室50内の気体を排気する排気部60が設けられている。詳しくは、排気部60は、この成膜室50の外壁50aに設けられ、排気部60の排気口60aは、成膜室50内(成膜室50の外壁50aも含む)に設けられている。成膜室50内の気体は、排気口60aから排気部60内に導入する。排気部60には、気体を吸引する吸引装置62が設けられている。これにより、成膜室50内の気体が排気口60aから排気部60に吸い込まれて外部(成膜室50の外)に排気される。排気部60の排気口60aは、ノズル54の噴霧口54aに対して重力方向とは反対側(+Z方向側)に配置されており、排気口60aと噴霧口54aとは離間して設けられている。なお、排気部60は、ミストを含む気体やキャリアガスを含む気体等を排気してもよい。例えば、吸引装置62は、少なくともノズル54が噴霧したミストの9割以上が排気部60によって排気されない程度の吸引力で気体等を吸引する。
本第1の実施の形態においては、排気部60は、筒状の形状を有する排気管であり、排気管の軸心が水平面に対して垂直となるように設けられている。また、供給管56は排気部60の中を貫通するように設けられ、排気部60の下方であって、供給管56の先端にノズル54が設けられている。つまり、排気部60は、供給管56の周りに設けられている。したがって、ノズル54の噴霧口54aから離れた位置の供給管56に排気口60aを設けることができる。これにより、噴霧口54aから噴霧されたミストを、排気口60aから排気させ難くすることができる。この供給管56と排気部60とは一体に設けられていてもよい。
なお、基板Pの成膜表面近傍の成膜空間を規定するフード部材を供給管56に設けてもよい。このフード部材は、例えば、円錐型、方形型、円筒型等様々な形状を有してもよく、前記フード部材の形状を変えることで、基板Pの成膜表面近傍の成膜環境を調整することができる。また、前記フード部材を、供給管56ではなく、排気部60に設けてもよい。排気部60に前記フード部材を設けることによって、前記フード部材によって覆われた成膜空間にノズル54の噴霧口54aからミストを噴霧することができ、基板Pに形成される薄膜の膜厚の均一性を高めることが可能となる。その結果、基板Pへの成膜を高精度に行うことができる。成膜室50は、方形型、円筒型、半円筒型、多角形型等様々な形状の空間規定部材を有してもよい。それぞれの形状を採用することによって、成膜室50は、成膜が行われる空間の成膜環境を調整することができる。成膜環境の調整とは、例えば、ミストやキャリアガスの環境内での気流(流れ)、湿度、温度、ガスの分圧等の調整のことをいう。
成膜室50には、ドレイン流路DR2が設けられ、このドレイン流路DR2から基板P上に定着しなかった薄膜原料や溶媒、分散媒が図示しない排水処理装置に向けて排出される。また、成膜装置20は、成膜された基板Pに対して、膜焼成処理や、マイクロ波または紫外線を照射する照射処理等を行ってもよい。
露光装置22は、成膜装置20によって成膜されて連続的に搬送される基板Pの表面に対して露光を行う。露光装置22は、成膜された基板Pに対して、光(例えば、レーザ光)を照射して、所定のパターンを基板Pに露光する。露光装置22は、マスクを用いない直描方式の露光装置、いわゆるラスタースキャン方式の露光装置であってもよく、マスクを用いる露光装置であってもよい。また、デジタルマイクロミラーデバイス(DMD:Digital Micromirror Device)を用いて所定のパターンを露光する露光装置であってもよい。露光装置22は、基板Pに対して、フレキシブル・ディスプレイ等のデバイスの製造に必要な回路または配線等の所定のパターンを露光する。
基板処理装置12は、さらに基板搬送装置70を備える。基板搬送装置70は、供給ロール14から回収ロール16に搬送される基板Pを、所定の速度で搬送する。基板搬送装置70は、駆動ローラR1〜R6と、テンションローラRT1、RT2とを有する。駆動ローラR1〜R6は、基板Pの搬送方向Sに沿って間隔を空けて配置されている。駆動ローラR1〜R6は、基板Pの表裏両面を保持しながら回転し、基板Pを回収ロール16に向けて所定の速度で搬送する。駆動ローラR1〜R6は、この順番で、基板Pの搬送方向Sの上流側から下流側に向かって設けられている。なお、この駆動ローラR1〜R6は、図示しないモータ等によって回転する。
駆動ローラR1、R2は、洗浄槽36の+Z方向側に設けられ、駆動ローラR1は、駆動ローラR2に対して搬送方向Sの上流側に設けられている。駆動ローラR3は、送風機32とUV照射装置34との間に設けられ、駆動ローラR4は、UV照射装置34と成膜室50との間に設けられている。駆動ローラR5は、成膜室50と露光装置22との間に設けられ、駆動ローラR6は、露光装置22と回収ロール16との間に設けられている。テンションローラRT1、RT2は、駆動ローラR1と駆動ローラR2との間で搬送される基板Pに対して所定のテンションを与えるとともに、基板Pを洗浄槽36内のアルコール洗浄液に浸す役割を果たす。つまり、テンションローラRT1は、駆動ローラR1より−Z方向であって洗浄槽36内に設けられており、テンションローラRT2は、駆動ローラR2より−Z方向であって洗浄槽36内に設けられている。テンションローラRT1、RT2のZ方向の位置は互いに同一である。
なお、この駆動ローラR4と駆動ローラR5のZ方向の位置を変えることで、基板搬送装置70は、基板Pを水平面に対して任意に傾斜させた状態で成膜装置20(成膜室50内)に搬送することができる。つまり、成膜装置20(成膜室50内)に搬送される基板Pを水平面に対して任意に傾斜させることができる。また、駆動ローラR4と駆動ローラR5のZ方向の位置を同じにすることで、基板搬送装置70は、基板Pを水平面と平行にした状態で成膜装置20(成膜室50内)に搬送することができる。これにより、成膜装置20は、水平面に対して傾斜して搬送されている基板P上、または、水平面と平行に搬送されている基板P上に薄膜を形成することができる。
[実施例]
(実施例1)
図2は、実施例1におけるノズル54および排気部60と基板Pとの配置関係を示す図である。実施例1では、成膜室50内における搬送方向Sにおける基板Pの傾斜角度を0度、つまり、基板Pを水平面と平行に搬送している。なお、ノズル54の噴霧口54aから基板Pに向かって噴霧されるミストの噴霧方向は基板P(水平面)に対して垂直であり、排気部60の排気口60aから排気(吸引)される気体等の排気方向は基板P(水平面)に対して垂直である。すなわち、本実施例1では、ミストは、図2の噴霧方向と付された矢印の方向に噴霧されている。また、気体は、図2の排気方向と付された矢印の方向に排気されている。なお、図2においては、成膜室50の図示を省略している。
また、実施例1では、液体としてITOの微粒子を含む水分散液(Nano Tek(登録商標) Slurry:シーアイ化成製)を用いた。このITOの微粒子の粒子径は、10nm〜50nm、平均粒子径は30nmであり、水分散液中の金属酸化物微粒子の濃度は15wt%であった。また、ミスト供給装置52では、超音波振動子に電圧を印加して超音波振動子を2.4MHzで振動させて液体を霧化し、キャリアガスとして窒素を用い、4NL/minでキャリアガスを供給管56に流しこむことで、霧化したミストをノズル54まで運んだ。基板Pの材質としては、PETを採用した。なお、成膜中は、無加熱とする。この条件下で、薄膜の膜厚が300nmとなるようにミストの噴霧時間を調整して成膜を行った。
形成された2cm(基板Pの幅方向)×10cm(基板Pの搬送方向S)の領域の薄膜に対して、2端子法にて抵抗値を測定して膜厚の均一性を評価した。抵抗値の測定は、2cm×10cmの薄膜に対して、基板Pの搬送方向Sと幅方向とに沿って2cm間隔毎に測定した。膜厚の均一性の評価値は52%となった。求めた膜厚の均一性の評価値は、その値が低いほど膜厚がより均一であることを示している。また、成膜速度は、60nm/minとなった。
なお、膜厚の均一性の評価値を、
膜厚の均一性の評価値=(Rsmax−Rsmin)/Rsmin×100 …(1)
の数式を用いて算出した。但し、Rsmaxは抵抗値の最大値を示し、Rsminは抵抗値の最小値を示す。つまり、2cm×10cmの薄膜に対して測定した複数の抵抗値のうち、最も高い抵抗値Rsmaxと、最も低い抵抗値Rsminとによって算出した。
(比較例1)
図3は、比較例1におけるノズル54および排気部60と基板Pとの配置関係を示す図である。比較例1では、実施例1とは異なり、排気部60を、基板Pより−Z方向側であって、基板Pの搬送方向Sの上流側と下流側とにそれぞれ配置した。その他の種々の条件、例えば、基板Pの材質および傾斜角度、液体の種類、ミストの発生方法、キャリアガスの種類および流量、ノズル54の噴霧方向等の条件は、実施例1と同一である。この条件下で、薄膜の膜厚が300nmとなるようにミストの噴霧時間を調整して成膜を行った。なお、図3においても、成膜室50の図示を省略している。なお、本比較例1では、ミストは、図3の噴霧方向と付された矢印の方向に噴霧されている。また、気体は、図3の排気方向と付された矢印の方向に排気されている。
形成された2cm(基板Pの幅方向)×10cm(基板Pの搬送方向S)の領域の薄膜に対して、2端子法にて抵抗値を測定して膜厚の均一性を評価した。膜厚の均一性の評価値は、120%となり、実施例1に比べ均一性が劣る結果となった。また、成膜速度は、20nm/minとなり、実施例1に比べ遅い結果となった。なお、比較例1における膜厚の均一性の評価値の算出方法は、実施例1と同様とする。
実施例1が比較例1に対して膜厚の均一性が向上する理由としては、排気部60の排気口60aをノズル54の噴霧口54aに対して重力方向とは反対側に設けたことによる。詳しく説明すると、ノズル54の噴霧口54aから噴霧されたミストは、重力によって下方(−Z方向)に移動する。しかしながら、ノズル54の噴霧口54aより上方(+Z方向)にある排気部60の排気口60aによって成膜室50内の気体等が上方(+Z方向)に排気(吸引)される。これにより、基板Pの上方側(表面側または成膜表面近傍)でミストが滞留しやすくなり、膜厚の均一性が向上する。また、ノズル54の噴霧口54aから離れた位置に排気部60の排気口60aを設けるので、噴霧口54aから噴霧されたミストが排気口60aから排気され難くなる。したがって、ミストが基板Pの表面側または成膜表面近傍に滞留しやすくなり、形成される薄膜の膜厚の均一性をさらに向上させることができる。
これに対して、比較例1のように、ノズル54の噴霧口54aより下方(−Z方向)に排気部60の排気口60aを設けると、重力によって下方に移動するミストが、排気部60の排気口60aによる排気(吸引)によってさらに下方に移動する。その結果、基板Pの上方側でミストが滞留し難くなり、膜厚の均一性が低下する。
なお、排気部60の排気口60aを、ノズル54の噴霧口54aに対して重力が働く方向とは反対側に配置しなくても、排気部60の排気口60aを、基板Pに対して重力が働く方向とは反対側に配置すれば、比較例1に比べ、基板Pの上方側でミストが滞留しやすくなるので、膜厚の均一性が向上する。
[第2の実施の形態]
第1の実施の形態では、排気部60の排気口60aをノズル54の噴霧口54aに対して重力方向とは反対側に配置することで膜厚の均一性が向上することを述べた。本第2の実施の形態においては、排気口60aを噴霧口54aに対して重力方向とは反対側に配置した状態で、さらに、図4に示す、水平面に対するノズル54の噴霧方向の噴霧角度α、水平面に対する基板Pの傾斜角度β、および、水平面に対する排気部60の排気方向の排気角度γを、任意に変えたときの膜厚の均一性について説明する。
図4は、噴霧角度αは、基板Pの搬送方向S側からの水平面に対するノズル54によって噴霧されるミストの噴霧方向の角度を示している。また、傾斜角度βは、基板Pの搬送方向S側からの水平面に対する基板Pの傾斜角度を示し、排気角度γは、基板Pの搬送方向S側からの水平面に対する排気部60によって排気される気体等の排気方向の角度を示している。したがって、ノズル54の噴霧方向と排気部60の排気方向との角度差は|α−γ|で表される。また、基板Pに対するノズル54の噴霧方向の角度は|α−β|で表され、基板Pに対する排気部60の排気方向の角度は|γ−β|で表される。なお、本実施形態では、ミストは、図4の噴霧方向と付された矢印の方向に噴霧されている。また、気体は、図4の排気方向と付された矢印の方向に排気されている。第2の実施の形態において、特に説明しない限り、成膜装置20を含む基板処理装置12の構成は、上記第1の実施の形態と同様とする。
なお、基板Pの傾斜角度βは、上述したように、基板搬送装置70の駆動ローラR4と駆動ローラR5のZ方向の位置を変えることで、成膜室50内に搬送される基板Pを水平面に対して任意に傾斜させることができる。また、ノズル54の噴霧角度αは、供給管56に設けるノズル54の配置角度を変えることで任意に変えることができるし、ノズル54の前記可動部によって噴霧角度αを任意に変えることもできる。また、排気角度γは、成膜室50に設けられる排気部60の配置角度を変えることで任意に変えることができる。
[実施例]
(実施例2)
実施例2では、ノズル54の噴霧方向を基板Pに対して垂直にし(α−β=90度)、排気部60の排気方向を水平面に対して垂直にした(γ=90度)状態で、基板Pの傾斜角度βを0度〜105度まで変化させたときの膜厚の均一性を評価した。図5にその実験結果のグラフを示す。なお、実施例2では、基板Pの材質としてソーダライムガラスを用いたが、ノズル54の噴霧角度αおよび基板Pの傾斜角度β以外のその他の種々の条件、例えば、液体の種類、ミストの発生方法、キャリアガスの種類および流量、排気部60の排気角度γ等の条件は、実施例1と同一である。また、薄膜の膜厚が300nmとなるようにミストの噴霧時間を調整して成膜を行っている。
実施例2では、ノズル54の噴霧方向は基板Pに対して垂直であり、排気部60の排気方向は水平面に対して垂直なので、基板Pの傾斜角度βと、ノズル54の噴霧方向と排気部60の排気方向との角度差(α−γ)とは等しくなる。つまり、β=α−γとなる。図5中の線100は、基準値を示している。この基準値は、成膜装置20のノズル54および排気部60が基準姿勢(ノズル54の噴霧角度αが90度および排気部60の排気角度γが90度)で、基板Pを傾斜させない(基板Pの傾斜角度βが0度)ときに評価した膜厚の均一性の評価値(51.3%)である。つまり、この基準値は、図2に示すノズル54および排気部60と基板Pとの配置関係のときに評価した膜厚の均一性の評価値である。この基準値(51.3%)が、実施例1での膜厚の均一性の評価値(52%)と異なるのは、基板Pの材質が異なるからである。また、図5中の複数の丸い黒点は、複数の傾斜角度βで得られた膜厚の均一性の評価値を表し、曲線102は、この複数の丸い黒点から求めた近似曲線である。なお、実施例2における膜厚の均一性の評価値の算出方法は、実施例1と同様とする。
図5の実験結果を示すグラフから、基板Pの傾斜角度β(ノズル54の噴霧方向と排気部60の排気方向との角度差(α−γ))が0度以上、85度以下の場合は、基板Pを傾斜させない条件と略同等若しくはそれより優れた膜厚の均一性が得られることが確認できた。その理由としては、基板Pが傾斜している場合は、ノズル54の噴霧口54aから噴霧されたミストは、重力によって基板Pの表面に沿って斜め下方に移動し、基板Pの傾斜角度βが0度より大きく、85度以下の範囲内である場合は、噴霧されたミストが基板Pの表面側または成膜表面近傍に滞留する時間がさらに長くなるからである。また、排気部60による排気によってさらに噴霧されたミストが基板Pの表面側または成膜表面近傍に滞留する時間が長くなる。これにより、膜厚の均一性がより一層向上する。
好ましくは、基板Pの傾斜角度β(ノズル54の噴霧方向と排気部60の排気方向との角度差(α−γ))を10度以上、75度以下の範囲内にするとよい。これにより、得られる膜厚の均一性の評価値を略40%以下にすることができる。また、基板Pの傾斜角度β(ノズル54の噴霧方向と排気部60の排気方向との角度差(α−γ))を20度以上、70度以下の範囲内にすると、得られる膜厚の均一性の評価値を略30%以下にすることができ、より好ましい。基板Pの傾斜角度β(角度差(α−γ))が、40度〜60度の範囲内である場合では、均一性の評価値が略20%以下となり、さらに好ましい。これにより、さらに優れた膜厚の均一性を得ることができる。
(実施例3)
実施例3では、ノズル54の噴霧方向を基板Pに対して45度傾斜させ(α−β=45度)、排気部60の排気方向を水平面に対して垂直にした(γ=90度)状態で、基板Pの傾斜角度βを0度〜105度まで変化させたときの膜厚の均一性を評価した。図6にその実験結果のグラフを示す。なお、実施例3では、ノズル54の噴霧角度αおよび基板Pの傾斜角度β以外のその他の種々の条件、例えば、基板Pの材質、液体の種類、ミストの発生方法、キャリアガスの種類および流量、排気部60の排気角度γ等の条件は、実施例2と同一である。また、薄膜の膜厚が300nmとなるようにミストの噴霧時間を調整して成膜を行っている。
実施例3では、ノズル54の噴霧方向は基板Pに対して45度傾斜しており、排気部60の排気方向は水平面に対して垂直なので、ノズル54の噴霧方向と排気部60の排気方向との角度差(α−γ)は、基板Pの傾斜角度βに比べ45度小さくなる。つまり、β−45=α−γ、となる。図6中の線100は、実施例2で説明した基準値(51.3%)を示している。また、図6中の複数の丸い黒点は、複数の傾斜角度βで得られた膜厚の均一性の評価値を表し、曲線104は、この複数の丸い黒点から求めた近似曲線である。なお、実施例3における膜厚の均一性の評価値の算出方法は、実施例1と同様とする。
図6の実験結果を示すグラフから、基板Pの傾斜角度βが15度以上、75度以下の場合、つまり、角度差(α−γ)が−30度以上、30度以下の場合は、基準値(51.3%)と略同等若しくはそれより低い評価値が得られることが確認できた。すなわち、基板Pの傾斜角度βが15度〜75度の範囲内である場合は、成膜装置20のノズル54および排気部60が基準姿勢で、基板Pを傾斜させない条件と略同等若しくはそれより優れた膜厚の均一性が得られる。その理由としては、基板Pの傾斜角度βが15度〜75度の範囲内である場合は、噴霧されたミストが基板Pの表面側または成膜表面近傍に滞留する時間がさらに長くなるからである。また、排気部60による排気によってさらに噴霧されたミストが基板Pの表面側または成膜表面近傍に滞留する時間が長くなる。これにより、膜厚の均一性がより一層向上する。
好ましくは、基板Pの傾斜角度βを20度以上、70度以下、つまり、角度差(α−γ)を−25度以上、25度以下の範囲内にするとよい。これにより、得られる膜厚の均一性の評価値を略40%以下にすることができる。また、基板Pの傾斜角度βを23度以上、65度以下、つまり、角度差(α−γ)を−22度以上、20度以下の範囲内にすると、得られる膜厚の均一性の評価値を略30%以下にすることができ、より好ましい。基板Pの傾斜角度βが25度〜60度の範囲内である場合、つまり、角度差(α−γ)が−20度〜15度の範囲内である場合では、膜厚の均一性の評価値が略20%以下となり、さらに好ましい。これにより、さらに優れた膜厚の均一性を得ることができる。
(実施例4)
実施例4では、ノズル54の噴霧方向を基板Pに対して135度傾斜させ(α−β=135度)、排気部60の排気方向を水平面に対して垂直にした(γ=90度)状態で、基板Pの傾斜角度βを0度〜105度まで変化させたときの膜厚の均一性を評価した。図7にその実験結果のグラフを示す。なお、実施例4では、ノズル54の噴霧角度αおよび基板Pの傾斜角度β以外のその他の種々の条件、例えば、基板Pの材質、液体の種類、ミストの発生方法、キャリアガスの種類および流量、排気部60の排気角度γ等の条件は、実施例2と同一である。また、薄膜の膜厚が300nmとなるようにミストの噴霧時間を調整して成膜を行っている。
実施例4では、ノズル54の噴霧方向は基板Pに対して135度傾斜しており、排気部60の排気方向は水平面に対して垂直なので、基板Pの傾斜角度βは、ノズル54の噴霧方向と排気部60の排気方向との角度差(α−γ)に比べ45度小さくなる。つまり、β+45=α−γ、となる。なお、図7中の線100は、実施例2で説明した基準値(51.3%)を示している。また、図7中の複数の四角状の黒点は、複数の傾斜角度βで得られた膜厚の均一性の評価値を表し、曲線106は、この複数の四角状の黒点から求めた近似曲線である。なお、実施例4における膜厚の均一性の評価値の算出方法は、実施例1と同様とする。
図7の実験結果を示すグラフから、基板Pの傾斜角度βが10度以上で、45度以下の場合、つまり、角度差(α−γ)が55度以上で、90度以下の場合は、基準値(51.3%)と略同等若しくはそれより低い評価値が得られることが確認できた。すなわち、基板Pの傾斜角度βが10度〜45度の範囲内である場合は、成膜装置20のノズル54および排気部60が基準姿勢で、基板Pを傾斜させない条件と略同等若しくはそれより優れた膜厚の均一性が得られる。その理由としては、基板Pの傾斜角度βが10度〜45度の範囲内である場合は、噴霧されたミストが基板Pの表面側または成膜表面近傍に滞留する時間がさらに長くなるからである。また、排気部60による排気によってさらに噴霧されたミストが基板Pの表面側または成膜表面近傍に滞留する時間が長くなる。これにより、膜厚の均一性がより一層向上する。
好ましくは、基板Pの傾斜角度βを13度以上、35度以下、つまり、角度差(α−γ)を58度以上、80度以下の範囲内にするとよい。これにより、得られる均一性の評価値を略40%以下にすることができる。また、基板Pの傾斜角度βが17度〜30度の範囲内である場合、つまり、角度差(α−γ)が62度〜75度の範囲内である場合では、膜厚の均一性の評価値が略30%以下となり、さらに好ましい。これにより、さらに優れた膜厚の均一性を得ることができる。
(実施例5)
実施例5では、ノズル54の噴霧方向と排気部60の排気方向との角度差|α−γ|(||は絶対値を示す)を、0度、45度、75度、90度のそれぞれに固定した状態で、基板Pの傾斜角度βを0度〜105度まで変化させたときの膜厚の均一性を評価した。図8にその実験結果のグラフを示す。なお、実施例5では、ノズル54の噴霧角度α、基板Pの傾斜角度β、および、排気部60の排気角度γ以外のその他の種々の条件、例えば、基板Pの材質、液体の種類、ミストの発生方法、キャリアガスの種類および流量等の条件は、実施例2と同一である。
図8中の線100は、実施例2で説明した基準値(51.3%)を示している。図8中の複数の三角(△)状の黒点は、角度差|α−γ|が0度の状態で、複数の傾斜角度βで得られた膜厚の均一性の評価値を表し、曲線108は、この複数の三角状の黒点から求めた近似曲線である。図8中の複数の丸い黒点は、角度差|α−γ|が45度の状態で、複数の傾斜角度βで得られた膜厚の均一性の評価値を表し、曲線110は、この複数の丸い黒点から求めた近似曲線である。図8中の複数の逆三角(▽)状の黒点は、角度差|α−γ|が75度の状態で、複数の傾斜角度βで得られた膜厚の均一性の評価値を表し、曲線112は、この複数の逆三角状の黒点から求めた近似曲線である。図8中の四角状の黒点は、角度差|α−γ|が90度の状態で、複数の傾斜角度βで得られた膜厚の均一性の評価値を表し、曲線114は、この複数の四角状の黒点から求めた近似曲線である。なお、実施例5における膜厚の均一性の評価値の算出方法は、実施例1と同様とする。
図8の実験結果を示すグラフから、ノズル54の噴霧方向と排気部60の排気方向との角度差|α−γ|が90度を超えると、基板Pの傾斜角度βにかかわらず、膜厚の均一性の評価値は、基準値(51.3%)より高くなることが確認できた。すなわち、角度差|α−γ|が90度を超えると、基板Pの傾斜角度βにかかわらず、膜厚の均一性は、成膜装置20のノズル54および排気部60が基準姿勢で基板Pを傾斜させない条件のときより劣る。
また、少なくともノズル54の噴霧方向と排気部60の排気方向との角度差|α−γ|が75度以下の場合は、基板Pの傾斜角度βが一定の角度範囲内(少なくとも、15度以上、75度以下)にあることを条件として、基準値(51.3%)と同等若しくはそれより低い評価値が得られることが確認できた。すなわち、角度差|α−γ|が75度以下で、且つ、基板Pの傾斜角度βが一定の角度範囲内にある場合は、噴霧されたミストが基板Pの表面側または成膜表面近傍に滞留する時間がさらに長くなるので、成膜装置20のノズル54および排気部60が基準姿勢で、基板Pを傾斜させない条件と同等若しくはそれより優れた膜厚の均一性が得られる。したがって、少なくともノズル54の噴霧方向と排気部60の排気方向との角度差|α−γ|が75度以下の場合に、成膜装置20が、水平面に対して15度〜75度の範囲内で傾斜して搬送されている基板P上に薄膜を形成することで、より優れた膜厚の均一性が得られる。
なお、少なくとも角度差|α−γ|が75度以下で、且つ、基板Pの傾斜角度βが一定の角度範囲内(少なくとも、15度〜75度の範囲内)であれば、基準値(51.3%)と同等若しくはそれより低い評価値が得られることは、上記実施例2〜実施例4で示した図5〜図7の実験結果のグラフからも確認することができる。
(実施例6)
実施例6では、上記実施例5の実験結果も踏まえ、基板Pの傾斜角度βを60度に固定した状態で、ノズル54の噴霧方向と排気部60の排気方向との角度差|α−γ|を0度〜90度まで変化させたときの膜厚の均一性を評価した。図9にその実験結果のグラフを示す。なお、実施例6では、ノズル54の噴霧角度α、基板Pの傾斜角度β、および、排気部60の排気角度γ以外のその他の種々の条件、例えば、基板Pの材質、液体の種類、ミストの発生方法、キャリアガスの種類および流量等の条件は、実施例2と同一である。
図9中の線100は、実施例2で説明した基準値(51.3%)を示している。また、図9中の複数の四角状の白点(□)は、複数の角度差|α−γ|で得られた膜厚の均一性の評価値を表し、曲線116は、この複数の四角状の白点から求めた近似曲線である。なお、実施例6における膜厚の均一性の評価値の算出方法は、実施例1と同様とする。
図9の実験結果を示すグラフからも、基板Pの傾斜角度βが、15度〜75度の範囲内である60度のときに、少なくとも角度差|α−γ|が75度以下の場合には、基準値(51.3%)と同等若しくはそれより低い評価値が得られることが確認できた。
[第3の実施の形態]
第3の実施の形態では、少なくとも基板Pの搬送方向Sに沿って複数のノズル54を設けることで、成膜速度の向上を図っている。なお、第3の実施の形態において、特に説明しない限り、成膜装置20を含む基板処理装置12の構成は、上記第1の実施の形態と同様とする。
図10は、第3の実施の形態におけるノズル54、供給管56、排気部60、および、基板Pの配置構成を示す図である。なお、図10においても、成膜室50の図示を省略している。第3の実施の形態においては、基板Pの搬送方向Sにおいて、基板Pを水平面に対して傾斜させ、傾斜した基板Pの搬送方向Sに沿って複数のノズル54を配置している。具体的には、基板Pの傾斜角度βを15度〜75度の範囲内にある45度とし、傾斜した基板Pの搬送方向Sに沿って3つのノズル54を配置した。
ノズル54の噴霧方向は基板Pに対して直角、つまり、ノズル54の噴霧角度αは135度であり、排気部60の排気角度γは90度である。したがって、ノズル54の噴霧方向と排気部60の排気方向との角度差|α−γ|は、75度以下である45度となる。すなわち、本第3の実施の形態では、ミストは、図10の噴霧方向と付された矢印の方向に噴霧されている。また、気体は、図10の排気方向と付された矢印の方向に排気されている。
この排気部60は、その軸心が水平面に対して垂直となるように設けられ、供給管56は、その軸心が水平面に対して垂直となるように排気部60の中を貫通した後に、基板Pの表面と平行に、基板Pの上流側に向かって延びた延出部56aを有する。この延出部56aに、噴霧方向が基板Pに対して垂直となるように3つのノズル54が基板Pの表面と平行に設けられている。なお、少なくとも排気部60の排気口60a、延出部56a、および、ノズル54は、成膜室50の内側に設けられている。
[実施例]
(実施例7)
実施例7においては、図10に示すノズル54、供給管56、排気部60、および、基板Pの配置関係を採用した。実施例7では、ノズル54の数および噴霧角度αと傾斜角度β以外のその他の種々の条件、例えば、基板Pの材質、液体の種類、ミストの発生方法、キャリアガスの種類および流量、排気角度γ等の条件は、実施例1と同一である。この条件下で、2分間ミストをノズル54から噴霧したところ、得られた薄膜の膜厚は300nmであった。
形成された2cm(基板Pの幅方向)×10cm(基板Pの搬送方向S)の領域の薄膜に対して、2端子法にて抵抗値を測定して膜厚の均一性を評価した。膜厚の均一性の評価値は18%となり、上記実施例1(均一性の評価値は52%)に比べ膜厚の均一性が飛躍的に向上した。また、成膜速度は150nm/minとなり、上記実施例1(60nm/min)に比べ高い成膜速度が得られることが確認できた。なお、実施例7における膜厚の均一性の評価値の算出方法は、実施例1と同様とする。
(比較例2)
図11は、比較例2におけるノズル54、供給管56、排気部60、および、基板Pの配置関係を示す図である。比較例2では、実施例7とは異なり、排気部60を、基板Pより−Z方向側であって、基板Pの搬送方向Sの上流側と下流側とにそれぞれ配置した。その他の種々の条件、例えば、液体の種類、ミストの発生方法、キャリアガスの種類および流量、ノズル54の数および噴霧角度α、基板Pの材質および傾斜角度β等の条件は、実施例7と同一である。この条件下で、薄膜の膜厚が300nmとなるようにミストの噴霧時間を調整して成膜を行った。なお、図11においても、成膜室50の図示を省略している。なお、本比較例2では、ミストは、図11の噴霧方向と付された矢印の方向に噴霧されている。また、気体は、図11の排気方向と付された矢印の方向に排気されている。
形成された2cm(基板Pの幅方向)×10cm(基板Pの搬送方向S)の領域の薄膜に対して、2端子法にて抵抗値を測定して膜厚の均一性を評価した。膜厚の均一性の評価値は130%となり、実施例1(均一性の評価値は52%)および実施例7(均一性の評価値は18%)に比べ膜厚の均一性が劣る結果となった。また、成膜速度は30nm/minとなり、実施例7(150nm/min)に比べ遅い結果となった。比較例2における膜厚の均一性の評価値の算出方法は、実施例1と同様とする。
なお、排気部60の排気口60aを、ノズル54の噴霧口54aに対して重力が働く方向とは反対側に配置しなくても、排気部60の排気口60aを、基板Pに対して重力が働く方向とは反対側に配置すれば、比較例2に比べ、基板Pの上方側でミストが滞留しやすくなるので、膜厚の均一性が向上する。
(比較例3)
図12は、比較例3におけるノズル54、供給管56、および、基板Pの配置関係を示す図である。比較例3では、実施例7とは異なり、排気部60を設けていない。また、比較例3では、キャリアガスの流量を1NL/min〜5NL/minまで変化させた。その他の種々の条件、例えば、液体の種類、ミストの発生方法、キャリアガスの種類、ノズル54の数および噴霧角度α、基板Pの材質および傾斜角度β等の条件は、実施例7と同一である。この条件下で、キャリアガスの流量毎に、薄膜の膜厚が300nmとなるようにミストの噴霧時間を調整して成膜を行った。なお、図12においても、成膜室50の図示を省略している。なお、本比較例3では、ミストは、図12の噴霧方向と付された矢印の方向に噴霧されている。
その結果、キャリアガスの流量毎に、形成された2cm(基板Pの幅方向)×10cm(基板Pの搬送方向S)の領域の薄膜に対して、2端子法にて抵抗値を測定して膜厚の均一性を評価した。その膜厚の均一性の評価結果を図13に示す。なお、比較例3における膜厚の均一性の評価値の算出方法は、実施例1と同様とする。
図13に示すように、キャリアガスの流量が1NL/minの場合は、膜厚の均一性の評価値は165%となり、成膜速度は140nm/minとなった。キャリアガスの流量が2NL/minの場合は、膜厚の均一性の評価値は154%となり、成膜速度は135nm/minとなった。キャリアガスの流量が3NL/minの場合は、膜厚の均一性の評価値は145%となり、成膜速度は132nm/minとなった。また、キャリアガスの流量が4NL/minの場合は、膜厚の均一性の評価値は140%となり、成膜速度は130nm/minとなった。キャリアガスの流量が5NL/minの場合は、膜厚の均一性の評価値は120%となり、成膜速度は130nm/minとなった。
以上のことから、キャリアガスの流量が5NL/minのときに膜厚の均一性の評価値が120%となり、最も優れる。しかしながら、膜厚の均一性が最も優れたものであっても、実施例1(均一性の評価値は52%)および実施例7(均一性の評価値は18%)と比べると膜厚の均一性は劣る結果となった。また、キャリアガスの流量が4NL/minまたは5NL/minのときは、成膜速度が130nm/minとなり最も速くなるが、実施例7(150nm/min)と比べると成膜速度も遅い結果となった。
このように、実施例7が比較例2、3に対して膜厚の均一性が向上する理由としては、上記第1の実施の形態で説明したように、排気部60の排気口60aをノズル54の噴霧口54aに対して重力方向とは反対側に離間して設けたことによる。また、実施例7が、上記実施例1に対して膜厚の均一性が向上する理由としては、上記第2の実施の形態で説明したように、基板Pを15度〜75度の範囲内で傾斜させ、ノズル54の噴霧方向と排気部60の排気方向との角度差|α−γ|を75度以下にしたからである。
(変形例1)
なお、変形例1では、図10に示すノズル54、供給管56、排気部60、および、基板Pの配置関係において、薄膜原料としてのSiO2の微粒子をIPA分散媒に分散させた液体(分散液)を用いて成膜した場合について説明する。変形例1では、液体の種類以外のその他の種々の条件、例えば、ミストの発生方法、キャリアガスの種類および流量、ノズル54の数および噴霧角度α、基板Pの材質および傾斜角度β、排気部60の排気角度γ等の条件は、実施例7と同一である。この条件下で、5分間ミストをノズル54から噴霧したところ、得られた薄膜の膜厚は300nmであった。なお、変形例1では、基板P上に形成されたZnO:Al(アルミニウムが添加された酸化亜鉛)の膜上に、SiO2の薄膜を形成した。
形成されたSiO2の薄膜のうち、2cm(基板Pの幅方向)×10cm(基板Pの搬送方向S)の領域に対して、触針式の膜厚計によって直接膜厚を測定して膜厚の均一性を評価した。膜厚の測定は、2cm×10cmの薄膜に対して、基板Pの搬送方向Sと幅方向とに沿って2cm間隔毎に測定した。膜厚の均一性の評価値は、15%となった。求めた膜厚の均一性の評価値は、その値が低いほど膜厚がより均一であることを示している。また、成膜速度は、60nm/minとなった。
なお、変形例1においては、膜厚の均一性の評価値を、
膜厚の均一性の評価値=(Tmax−Tmin)/Tmin×100 …(2)
の数式を用いて算出した。但し、Tmaxは測定した膜厚の最大値を示し、Tminは測定した膜厚の最小値を示す。つまり、2cm×10cmの薄膜に対して測定した複数の膜厚のうち、膜厚が最も高い最大値Tmaxと、膜厚が最も低い最小値Tminとによって算出した。
図14に、基板P上に形成されたZnO:Al(アルミニウムが添加された酸化亜鉛)の膜上に、SiO2の薄膜を形成して得られたデバイスの構造を示す。このZnO:Alの膜のキャリア密度は、8×1019/cm3である。そして、このデバイス(SiO2の薄膜が形成された基板P)を1時間300度大気雰囲気にて焼成した。このZnO:Alのキャリア生成の一因は、酸素空孔により発生する電子となっており、酸化雰囲気に曝されることによって欠陥が補填されてキャリア密度が減少する。しかしながら、ZnO:Alの膜上にSiO2の膜を形成したので、焼成後のZnO:Alの膜のキャリア密度は6.8×1019/cm3となり、焼成前のキャリア密度と然程変わらない値となっている。したがって、形成したSiO2の薄膜が酸素バリア膜としての効果を発揮していることが確認できた。
このように、本発明の態様によれば、成膜装置20の排気部60の排気口60aを、ノズル54の噴霧口54aに対して、重力が働く方向とは反対側に配置したので、薄膜原料が基板Pの表面側または成膜表面近傍に滞留しやすくなり、基板Pに形成される薄膜の膜厚の均一性を向上させることができる。
成膜装置20は、重力が働く方向と直交する水平面に対して15度〜75度の範囲で傾斜している基板Pに対して薄膜を形成し、ノズル54の噴霧方向と排気部60の排気方向との角度差|α−γ|は、75度以下であるので、薄膜原料が基板Pの表面側または成膜表面近傍に滞留する時間がさらに長くなり、形成される薄膜の膜厚の均一性をさらに向上させることができる。
排気口60aは、ノズル54の噴霧口54aから離れた位置の供給管56に設けられているので、噴霧された薄膜原料は排気口60aから排気され難くなる。したがって、薄膜原料が基板Pの表面側または成膜表面近傍に滞留しやすくなり、基板Pに形成される薄膜の膜厚の均一性を向上させることができる。また、ノズル54は、少なくとも基板Pの搬送方向Sに沿って複数配置されているので、成膜速度を速くすることができる。
なお、上記第1〜第3の実施の形態では、成膜装置20は、搬送されている基板Pに対して、薄膜を形成する成膜処理を行うようにしたが、停止している基板Pに対して成膜を行ってもよい。成膜装置20の排気部60の排気口60aを、ノズル54の噴霧口54aに対して、重力が働く方向とは反対側に配置しているので、停止している基板Pに対して成膜を行っても、基板Pに形成される薄膜の膜厚の均一性を向上させることができる。

Claims (9)

  1. 基板上に薄膜を形成する成膜装置であって、
    薄膜原料を噴霧する噴霧部と、
    気体を排気する排気部と、
    を備え、
    前記排気部の排気口は、前記基板に対して、重力が働く方向とは反対側に配置され、
    前記噴霧部は、前記基板に対して、前記排気部と同じ側に配置され、
    前記成膜装置は、重力が働く方向と直交する水平面に対して15度〜75度の範囲で傾斜している前記基板に対して薄膜を形成し、
    前記噴霧部による前記薄膜原料の噴霧方向と前記排気部による前記気体の排気方向のそれぞれの方向に沿った線分のなす角度は、75度以下である、成膜装置。
  2. 請求項1に記載の成膜装置であって、
    前記排気部の排気口は、前記噴霧部の噴霧口に対して、重力が働く方向とは反対側に配置されている、成膜装置。
  3. 請求項1または2に記載の成膜装置であって、
    前記成膜装置は、
    前記水平面に対して25度〜60度の範囲内で傾斜している前記基板上に薄膜を形成し、
    前記噴霧方向と前記排気方向のそれぞれの方向に沿った線分のなす角度が40度〜60度の範囲となるように、前記噴霧部と前記排気部とが設けられている、成膜装置。
  4. 請求項1〜3のいずれか1項に記載の成膜装置であって、
    前記噴霧部は、薄膜原料を供給する供給管に設けられ、
    前記排気部の排気口は、前記噴霧部の噴霧口から離れた位置の前記供給管に設けられている、成膜装置。
  5. 請求項1〜4のいずれか1項に記載の成膜装置であって、
    前記基板に薄膜を形成するための成膜室を備え、
    前記噴霧部は、前記成膜室内に挿入され、
    前記排気部は、前記成膜室の外壁に設けられて、前記成膜室内の気体を排気する、成膜装置。
  6. 請求項1〜5のいずれか1項に記載の成膜装置であって、
    前記噴霧部は、少なくとも前記基板の搬送方向に沿って複数配置されている、成膜装置。
  7. 請求項1〜6のいずれか1項に記載の成膜装置と、
    前記成膜装置によって薄膜が形成された前記基板に光を照射して、所定のパターンを前記基板に露光する露光装置と、
    を備える基板処理装置。
  8. 請求項7に記載の基板処理装置であって、
    前記基板を重力が働く方向と直交する水平面に対して15度〜75度の範囲内で傾斜させた状態で、前記成膜装置に前記基板を搬送する基板搬送装置をさらに備える、基板処理装置。
  9. デバイスを製造するデバイス製造方法であって、
    請求項1〜6のいずれか1項に記載の成膜装置を用いて、前記基板上に薄膜を形成する成膜工程と、
    前記成膜工程で成膜された前記基板に光を照射して、所定のパターンを前記基板に露光する露光工程と、
    を備える、デバイス製造方法。
JP2016513844A 2014-04-18 2015-04-17 成膜装置、基板処理装置、および、デバイス製造方法 Active JP6717191B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014086033 2014-04-18
JP2014086033 2014-04-18
PCT/JP2015/061898 WO2015159983A1 (ja) 2014-04-18 2015-04-17 成膜装置、基板処理装置、および、デバイス製造方法

Publications (2)

Publication Number Publication Date
JPWO2015159983A1 JPWO2015159983A1 (ja) 2017-04-13
JP6717191B2 true JP6717191B2 (ja) 2020-07-01

Family

ID=54324184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016513844A Active JP6717191B2 (ja) 2014-04-18 2015-04-17 成膜装置、基板処理装置、および、デバイス製造方法

Country Status (4)

Country Link
US (1) US12096678B2 (ja)
JP (1) JP6717191B2 (ja)
CN (1) CN106232867B (ja)
WO (1) WO2015159983A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6811015B2 (ja) * 2016-02-02 2021-01-13 株式会社アドテックエンジニアリング ロールツーロール両面露光装置
KR20210158882A (ko) * 2016-03-11 2021-12-31 가부시키가이샤 니콘 미스트 발생장치, 성막장치, 미스트 발생 방법, 성막 방법, 및 디바이스 제조 방법
WO2018146981A1 (ja) * 2017-02-07 2018-08-16 東京エレクトロン株式会社 成膜システム、成膜方法及びコンピュータ記憶媒体
KR102527442B1 (ko) 2018-08-01 2023-04-28 가부시키가이샤 니콘 미스트 발생 장치, 그리고 미스트 성막 방법, 및 미스트 성막 장치
KR102131933B1 (ko) * 2018-08-17 2020-07-09 주식회사 넥서스비 원자층 증착 장치 및 이를 이용한 원자층 증착 방법
JP6875336B2 (ja) * 2018-08-27 2021-05-26 信越化学工業株式会社 成膜方法
CN112114499B (zh) * 2019-06-19 2022-02-11 上海微电子装备(集团)股份有限公司 一种曝光装置、光刻设备及太阳能电池电极的制备方法
CN113277466A (zh) * 2021-05-19 2021-08-20 上海芯物科技有限公司 一种小角度斜坡结构及其制作方法

Family Cites Families (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2297607A (en) * 1937-09-11 1942-09-29 Mallory & Co Inc P R Electrolytic condenser and method of making the same
US2994618A (en) * 1957-01-22 1961-08-01 Trion Inc Method and apparatus for electrostatic coating
NL282696A (ja) * 1961-08-30 1900-01-01
US3475198A (en) * 1965-04-07 1969-10-28 Ransburg Electro Coating Corp Method and apparatus for applying a binder material to a prearranged web of unbound,non-woven fibers by electrostatic attraction
US4124437A (en) * 1976-04-05 1978-11-07 Buckbee-Mears Company System for etching patterns of small openings on a continuous strip of metal
US4321299A (en) * 1977-09-15 1982-03-23 Nasa Strong thin membrane structure for use as solar sail comprising substrate with reflective coating on one surface and an infra red emissivity increasing coating on the other surface
US4327119A (en) * 1981-02-03 1982-04-27 Radiation Monitoring Devices, Inc. Method to synthesize and produce thin films by spray pyrolysis
US4605574A (en) * 1981-09-14 1986-08-12 Takashi Yonehara Method and apparatus for forming an extremely thin film on the surface of an object
US4490409A (en) * 1982-09-07 1984-12-25 Energy Sciences, Inc. Process and apparatus for decorating the surfaces of electron irradiation cured coatings on radiation-sensitive substrates
US4425869A (en) * 1982-09-07 1984-01-17 Advanced Systems Incorporated Fluid flow control mechanism for circuit board processing apparatus
US4825229A (en) * 1986-03-20 1989-04-25 Tokyo Electric Company, Ltd. Method and apparatus for ink jet printing
JPS6354725A (ja) * 1986-08-25 1988-03-09 Fuji Photo Film Co Ltd スピンコ−テイング方法及びその装置
JPS644272A (en) * 1987-06-24 1989-01-09 Hideo Nagasaka Electrostatic powder coating device
DE3925539A1 (de) * 1989-08-02 1991-02-07 Hoechst Ag Verfahren und vorrichtung zum beschichten eines schichttraegers
JPH0390579A (ja) * 1989-08-31 1991-04-16 Taiyo Yuden Co Ltd 薄膜形成装置
US4976810A (en) * 1990-03-06 1990-12-11 Kabushiki Kaisha Toshiba Method of forming pattern and apparatus for implementing the same
US5063951A (en) * 1990-07-19 1991-11-12 International Business Machines Corporation Fluid treatment device
DE4110875A1 (de) * 1991-04-04 1992-10-08 Voith Gmbh J M Trockenpartie
SG130022A1 (en) * 1993-03-25 2007-03-20 Tokyo Electron Ltd Method of forming coating film and apparatus therefor
US6022414A (en) * 1994-07-18 2000-02-08 Semiconductor Equipment Group, Llc Single body injector and method for delivering gases to a surface
JP3116297B2 (ja) * 1994-08-03 2000-12-11 東京エレクトロン株式会社 処理方法及び処理装置
TW285779B (ja) * 1994-08-08 1996-09-11 Tokyo Electron Co Ltd
JP3276278B2 (ja) * 1994-12-08 2002-04-22 キヤノン株式会社 記録液定着装置およびこれを具備する液体噴射記録装置
US5725668A (en) * 1995-09-06 1998-03-10 International Business Machines Corporation Expandable fluid treatment device for tublar surface treatments
JP3332700B2 (ja) * 1995-12-22 2002-10-07 キヤノン株式会社 堆積膜形成方法及び堆積膜形成装置
JPH09173946A (ja) * 1995-12-22 1997-07-08 Pioneer Electron Corp スピンコーティング装置
DE19634448C2 (de) * 1996-08-26 1999-06-24 Voith Sulzer Papiermasch Gmbh Verfahren und Vorrichtung zum Auftragen eines flüssigen oder pastösen Mediums auf eine laufende Materialbahn
AUPO204596A0 (en) * 1996-08-30 1996-09-26 Bhp Steel (Jla) Pty Limited Block feeding means
US6258167B1 (en) * 1996-11-27 2001-07-10 Tokyo Electron Limited Process liquid film forming apparatus
US6207231B1 (en) * 1997-05-07 2001-03-27 Tokyo Electron Limited Coating film forming method and coating apparatus
JP2963993B1 (ja) * 1998-07-24 1999-10-18 工業技術院長 超微粒子成膜法
CN1239269C (zh) * 1999-11-26 2006-02-01 旭硝子株式会社 有机材料的制膜方法及装置
KR100363362B1 (ko) * 1999-12-28 2002-12-05 가시오게산키 가부시키가이샤 수지막형성방법 및 그 방법에 이용하는 수지막형성장치
JP2001261373A (ja) * 2000-03-22 2001-09-26 Central Glass Co Ltd 薄膜の形成方法および薄膜付き板ガラス
JP3541294B2 (ja) 2000-09-01 2004-07-07 独立行政法人 科学技術振興機構 有機エレクトロルミネッセンス薄膜の作製方法と作製装置
US6709699B2 (en) * 2000-09-27 2004-03-23 Kabushiki Kaisha Toshiba Film-forming method, film-forming apparatus and liquid film drying apparatus
JP2002217530A (ja) * 2001-01-19 2002-08-02 Olympus Optical Co Ltd フラックス塗布方法及びフラックス塗布装置
JP3969698B2 (ja) * 2001-05-21 2007-09-05 株式会社半導体エネルギー研究所 発光装置の作製方法
JP4110952B2 (ja) * 2002-01-16 2008-07-02 株式会社村田製作所 誘電体薄膜の形成方法
JP3838964B2 (ja) * 2002-03-13 2006-10-25 株式会社リコー 機能性素子基板の製造装置
JP4437544B2 (ja) * 2003-02-05 2010-03-24 株式会社半導体エネルギー研究所 半導体装置の作製方法
US6878207B2 (en) * 2003-02-19 2005-04-12 Energy Conversion Devices, Inc. Gas gate for isolating regions of differing gaseous pressure
JP4124046B2 (ja) * 2003-07-10 2008-07-23 株式会社大阪チタニウムテクノロジーズ 金属酸化物被膜の成膜方法および蒸着装置
KR100958573B1 (ko) * 2003-10-06 2010-05-18 엘지디스플레이 주식회사 액정표시패널의 제조장치 및 제조방법
US7241080B2 (en) * 2004-03-22 2007-07-10 Durr Industries, Inc. Pump for transferring particulate material
US7235278B2 (en) * 2004-03-31 2007-06-26 Mcneil-Ppc, Inc. Method and apparatus for applying particulate material to a substrate
DE102004019048A1 (de) * 2004-04-16 2005-11-10 Nordson Corp., Westlake Verfahren zum Auftragen eines Films auf ein flächiges Substrat, Umlenkelement und Vorrichtung zum Auftragen eines Films auf ein flächiges Substrat
JP4464763B2 (ja) * 2004-08-20 2010-05-19 東京エレクトロン株式会社 現像装置及び現像方法
CN100524639C (zh) * 2005-02-07 2009-08-05 株式会社荏原制作所 基板处理方法、基板处理装置及控制程序
US7384816B2 (en) * 2005-03-03 2008-06-10 Eastman Kodak Company Apparatus and method for forming vias
JP4258663B2 (ja) * 2005-04-15 2009-04-30 セイコーエプソン株式会社 塗布装置および成膜装置
JP4553376B2 (ja) * 2005-07-19 2010-09-29 東京エレクトロン株式会社 浮上式基板搬送処理装置及び浮上式基板搬送処理方法
JP2007176150A (ja) * 2005-11-29 2007-07-12 Seiko Epson Corp 液滴吐出装置
JP4997229B2 (ja) * 2006-05-01 2012-08-08 株式会社アルバック 印刷装置
JP2008302298A (ja) * 2007-06-07 2008-12-18 Toppan Printing Co Ltd 塗布膜の乾燥装置および乾燥方法、それらを用いた塗布物の製造装置および製造方法
US8039052B2 (en) * 2007-09-06 2011-10-18 Intermolecular, Inc. Multi-region processing system and heads
US8062922B2 (en) * 2008-03-05 2011-11-22 Global Solar Energy, Inc. Buffer layer deposition for thin-film solar cells
GB0805023D0 (en) * 2008-03-18 2008-04-16 Renishaw Plc Apparatus and method for fluid dispensing
GB0805021D0 (en) * 2008-03-18 2008-04-16 Renishaw Plc Apparatus and method for electronic circuit manufacture
JP2009240994A (ja) * 2008-03-31 2009-10-22 Nippon Zeon Co Ltd 積層体の製造方法及び製造装置
JP5081712B2 (ja) * 2008-05-02 2012-11-28 富士フイルム株式会社 成膜装置
US8236376B2 (en) * 2008-09-02 2012-08-07 Pascale Industries, Inc. Production of nanoparticle-coated yarns
JP4865893B2 (ja) * 2009-09-28 2012-02-01 パナソニック株式会社 ダイヘッドおよび液体塗布装置
US20110143019A1 (en) * 2009-12-14 2011-06-16 Amprius, Inc. Apparatus for Deposition on Two Sides of the Web
JP5518500B2 (ja) * 2010-01-20 2014-06-11 昭和電工株式会社 はんだ粉末付着装置および電子回路基板に対するはんだ粉末の付着方法
US9457376B2 (en) * 2010-07-14 2016-10-04 Konica Minolta Holdings, Inc. Method of manufacturing gas barrier film, gas barrier film, and organic photoelectric conversion element
WO2012010546A1 (en) * 2010-07-19 2012-01-26 F. Hoffmann-La Roche Ag Blood plasma biomarkers for bevacizumab combination therapies for treatment of pancreatic cancer
US8840958B2 (en) * 2011-02-14 2014-09-23 Veeco Ald Inc. Combined injection module for sequentially injecting source precursor and reactant precursor
JP5575706B2 (ja) * 2011-06-17 2014-08-20 東京エレクトロン株式会社 疎水化処理装置、疎水化処理方法、プログラム及びコンピュータ記録媒体。
JP6317547B2 (ja) * 2012-08-28 2018-04-25 株式会社Screenホールディングス 基板処理方法
JP6132094B2 (ja) * 2013-07-23 2017-05-24 セイコーエプソン株式会社 記録装置
KR102090712B1 (ko) * 2013-07-25 2020-03-19 삼성디스플레이 주식회사 박막 증착 장치와, 이를 이용한 증착 방법 및 유기 발광 표시 장치의 제조 방법
CN105283784B (zh) * 2013-08-01 2018-04-17 株式会社Lg化学 用于制造偏振膜的方法、偏振膜制造装置和使用其制造的偏振膜
US9855579B2 (en) * 2014-02-12 2018-01-02 Taiwan Semiconductor Manufacturing Company Spin dispenser module substrate surface protection system
TWI626701B (zh) * 2014-02-27 2018-06-11 斯克林集團公司 基板處理裝置及基板處理方法

Also Published As

Publication number Publication date
US12096678B2 (en) 2024-09-17
US20170025644A1 (en) 2017-01-26
CN106232867A (zh) 2016-12-14
WO2015159983A1 (ja) 2015-10-22
CN106232867B (zh) 2019-01-08
JPWO2015159983A1 (ja) 2017-04-13

Similar Documents

Publication Publication Date Title
JP6717191B2 (ja) 成膜装置、基板処理装置、および、デバイス製造方法
JP7260006B2 (ja) ミスト成膜装置及びミスト成膜方法
JP6984587B2 (ja) ミスト発生装置、ミスト成膜装置およびミスト発生方法
WO2016133131A1 (ja) 薄膜製造装置、及び薄膜製造方法
TW201719738A (zh) 基板處理方法及基板處理裝置
JP4940614B2 (ja) パターン形成体の製造方法およびパターン形成体製造用装置
US11369990B2 (en) Film forming method
US11318495B2 (en) Film forming method
JP2015202997A (ja) 基板、基板製造システム、剥離装置、基板製造方法および剥離方法
JP5600871B2 (ja) エキシマランプ装置
JPH10209097A (ja) 基板洗浄方法及び装置
JP2007180117A (ja) 基板洗浄方法と装置
TWI345260B (en) Resist elimination device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200525

R150 Certificate of patent or registration of utility model

Ref document number: 6717191

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250