JP6490305B2 - 半導体装置および電力変換装置 - Google Patents

半導体装置および電力変換装置 Download PDF

Info

Publication number
JP6490305B2
JP6490305B2 JP2018514108A JP2018514108A JP6490305B2 JP 6490305 B2 JP6490305 B2 JP 6490305B2 JP 2018514108 A JP2018514108 A JP 2018514108A JP 2018514108 A JP2018514108 A JP 2018514108A JP 6490305 B2 JP6490305 B2 JP 6490305B2
Authority
JP
Japan
Prior art keywords
trench
layer
semiconductor
region
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018514108A
Other languages
English (en)
Other versions
JPWO2017187670A1 (ja
Inventor
亘平 足立
亘平 足立
勝俊 菅原
勝俊 菅原
裕 福井
裕 福井
梨菜 田中
梨菜 田中
和也 小西
和也 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2017187670A1 publication Critical patent/JPWO2017187670A1/ja
Application granted granted Critical
Publication of JP6490305B2 publication Critical patent/JP6490305B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Inverter Devices (AREA)

Description

本発明は半導体装置に関し、特に、トレンチゲートを有する半導体装置に関する。
パワーエレクトロニクス機器において、電気モータ等の負荷への電力供給を制御するため、IGBT(Insulated Gate Bipolar Transistor)およびMOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)などの絶縁ゲート型半導体装置と呼ばれるスイッチングデバイスが広く使用されている。
このような絶縁ゲート型半導体装置の1つとして、ゲート電極が半導体層中に埋め込まれたトレンチゲート型MOSFETが挙げられる。トレンチゲート型MOSFETは、半導体層中にトレンチを形成し、その側面をチャネル領域として利用することで、チャネル幅密度を高め、デバイスの性能を向上させることができる。
ここで、高耐圧および低損失を実現できる次世代の半導体装置として、炭化珪素(SiC)などのワイドバンドギャップ半導体を用いた半導体装置(ワイドバンドギャップ半導体装置)が注目されており、トレンチゲート型MOSFETについても適用が進められている。
炭化珪素を半導体材料として使用すると、その高い絶縁破壊電圧により高い耐圧を備える半導体装置の実現が可能となるが、オフ時に高い電圧が印加されるため、ゲート絶縁膜に高電界がかかり、不具合が発生する可能性が高くなる。特にトレンチゲート型は、トレンチ底部が基板近くに位置すると共に、形状的にトレンチ底部に電界が集中しやすく、ゲート絶縁膜の信頼性の低下が懸念される。
トレンチ底部の電界を緩和する方法として、特許文献1に開示されるように、ドリフト層とは逆導電型の不純物層でトレンチ底部を覆って保護層とした構成が提案されている。特許文献1ではn型のドリフト層にトレンチゲートを形成し、その底面に接するようにp型の保護層を形成した構成が開示されており、ドレイン電極−ソース電極間に高バイアスが印加された際の電界からトレンチ底部を保護すると共に、トレンチ底部に形成されているゲート絶縁膜の電界強度を低く保つことができる。
このようにトレンチ底部に保護層を形成することで、トレンチ底部を保護して信頼性を向上することが可能となる。一方で、隣り合うトレンチのそれぞれの底部に形成されたp型の保護層間にはJFET(Junction Field Effect Transistor)領域が形成される。MOSFETの導通時には、このp型の保護層に挟まれたJFET領域をドレイン電流が流れることになるが、導通時であっても保護層からドリフト層内に伸びる空乏層は一定の広がりを有するため電流経路は狭まり、スイッチングデバイスのオン抵抗が増大してしまう。
そのため、特許文献2に開示されるように、p型の保護層の側面に接するようにn型の不純物層を形成して、空乏化を抑制する空乏化抑制層を形成した構成が提案されている。n型の不純物層を形成することで保護層からの空乏層の伸びを抑えることができ、電流経路を広げることが可能となる。しかし、これに伴ってトレンチ底部の電界強度が高まり、ゲート絶縁膜の電界強度を低く保つことができなくなる。特にトレンチ底部の角部はp型の保護層に覆われていないため、電界強度の緩和効果が期待できない。
JFET抵抗を低減しつつオン抵抗を維持(電流経路を確保)するための別の構成として、MOSFETのセル間隔(トレンチゲート間距離)を広げることが挙げられるが、単位面積当たりのトレンチ本数が減少することで電流経路となるチャネル幅密度が減少し、結果としてオン抵抗が高くなる。さらに保護層間距離の増加に伴い、トレンチ底部およびボディ領域底部の電界強度が増加することとなり、デバイス耐圧の低下およびゲート絶縁膜の信頼性低下につながる。
国際公開第2015/072052号 特開2005−236267号公報
上述したように、トレンチゲート型MOSFETでは、オフ時の高電圧印加時に、トレンチ底部に電界が集中しやすい。そのため、特許文献1、2のトレンチゲート型MOSFETのように、トレンチ底部にドリフト層とは逆導電型の保護層を形成した構成が提案されている。
このような構成においては、保護層から伸びる空乏層により、隣り合う保護層間でドレイン電流の電流経路が狭窄し、スイッチングデバイスのオン抵抗が増大する問題がある。
そこで、特許文献2に開示されるように、ドリフト層と同じ導電型で高濃度の空乏化抑制層を保護層の側面に形成すると、空乏層の伸びが抑えられ、オン電流経路が広がってオン抵抗の増加を抑制することはできるものの、トレンチ底部のゲート絶縁膜にドリフト層よりも高濃度の空乏化抑制層が接しているため、トレンチ底部の電界強度が増加することとなる。
このように、トレンチ底部に保護層を設けることによってゲート絶縁膜にかかる電界を緩和する構成を採ると、保護層からドリフト層内に伸びる空乏層によって電流経路が狭窄し、JFET抵抗が増加するが、これを解消しようとすればトレンチ底部の電界強度が増加することとなる。
本発明は上記のような問題を解決するためになされたものであり、トレンチ底部への電界集中の緩和とオン抵抗低減のトレードオフ関係を改善した半導体装置を提供することを目的とする。
本発明に係る半導体装置は、半導体基板と、前記半導体基板の第1の主面上に配設された第1導電型の半導体層と、前記半導体層の上層部に選択的に設けられた第1導電型の第1の半導体領域と、前記半導体層の上層部に前記第1の半導体領域に接して設けられた第2導電型の第2の半導体領域と、前記第1および第2の半導体領域の底面に接して設けられた第2導電型の第3の半導体領域と、前記第1および第3の半導体領域を厚さ方向に貫通して複数設けられた、前記半導体層内に達するトレンチと、前記トレンチの内面を覆うゲート絶縁膜と、前記ゲート絶縁膜で覆われた前記トレンチ内に埋め込まれたゲート電極と、前記トレンチの底部に接するように設けられた第2導電型のトレンチ底部保護層と、隣り合う前記トレンチ底部保護層間に設けられた第1導電型の空乏化抑制層と、前記トレンチおよびその周囲の前記第1の半導体領域の上方を覆い、前記第1および第2の半導体領域の上方にコンタクトホールを有する層間絶縁膜と、前記層間絶縁膜上を覆うと共に、前記コンタクトホール内に埋め込まれた第1の主電極と、前記半導体基板の第2の主面上に配設された第2の主電極と、を備え、前記空乏化抑制層は、隣り合う前記トレンチ底部保護層までの水平方向の距離が等しい中間点を含み、前記第3の半導体領域、前記トレンチおよび前記トレンチ底部保護層の何れとも接しない大きさに形成され、前記トレンチ底部保護層と同じ深さに位置し、同じ厚さを有し、その不純物濃度は前記半導体層よりも高く設定される。

本発明によれば、トレンチ底部への電界集中の緩和とオン抵抗低減のトレードオフ関係を改善することができる。また、ボディ領域である第3の半導体領域底部の電界強度を増加させず、耐圧を維持できる。
本発明に係る実施の形態1のMOSFETの1つのセルの構成を示す断面図である。 本発明に係る実施の形態1のMOSFETのオン時に形成される空乏層を示す図である。 空乏化抑制層を設けない場合にMOSFETのオン時に形成される空乏層を示す図である。 本発明に係る実施の形態1のMOSFETと従来のMOSFETにおけるシミュレーション結果を示す図である。 本発明に係る実施の形態1のMOSFETと従来のMOSFETにおけるシミュレーション結果を示す図である。 本発明に係る実施の形態1のMOSFETの製造工程を説明する断面図である。 本発明に係る実施の形態1のMOSFETの製造工程を説明する断面図である。 本発明に係る実施の形態1のMOSFETの製造工程を説明する断面図である。 本発明に係る実施の形態1のMOSFETの製造工程を説明する断面図である。 本発明に係る実施の形態1のMOSFETの製造工程を説明する断面図である。 本発明に係る実施の形態1のMOSFETの製造工程を説明する断面図である。 本発明に係る実施の形態1のMOSFETの製造工程を説明する断面図である。 本発明に係る実施の形態1のMOSFETの製造工程を説明する断面図である。 本発明に係る実施の形態1のMOSFETのセルの平面パターンの一例を示す図である。 本発明に係る実施の形態1のMOSFETのセルの平面パターンの一例を示す図である。 本発明に係る実施の形態1のMOSFETのセルの平面パターンの一例を示す図である。 トレンチ底部保護層とソース電極との電位固定部の構成を示す平面図である。 トレンチ底部保護層とソース電極との電位固定部の構成を示す断面図である。 電位固定部の形成工程を説明する断面図である。 電位固定部の形成工程を説明する断面図である。 電位固定部の形成工程を説明する断面図である。 本発明に係る実施の形態1の変形例1のMOSFETの1つのセルの構成を示す断面図である。 本発明に係る実施の形態1の変形例2のMOSFETの1つのセルの構成を示す断面図である。 本発明に係る実施の形態1の変形例3のMOSFETの1つのセルの構成を示す断面図である。 本発明に係る実施の形態1の変形例4のMOSFETの1つのセルの構成を示す断面図である。 本発明に係る実施の形態2のMOSFETの1つのセルの構成を示す断面図である。 トレンチの側壁と結晶面との関係を示す図である。 本発明に係る実施の形態2のMOSFETのセルの平面パターンの一例を示す図である。 本発明に係る実施の形態2のMOSFETのセルの平面パターンの一例を示す図である。 本発明に係る実施の形態2のMOSFETのセルの平面パターンの一例を示す図である。 本発明に係る実施の形態3のMOSFETの1つのセルの構成を示す断面図である。 本発明に係る実施の形態3の変形例のMOSFETのセルの平面パターンの一例を示す図である。 トレンチ底部保護層とソース電極との電位固定部の構成を示す断面図である。 トレンチ底部保護層とソース電極との電位固定部の構成を示す断面図である。 本発明に係る実施の形態5の電力変換システムの構成を示すブロック図である。
<はじめに>
以下、本発明に係る実施の形態について説明する。なお、本発明は以下の記述に限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。また、以下に示す図面においては、理解の容易のため、各部材の縮尺が実際とは異なる場合がある。これは各図面間においても同様である。
また、「MOS」という用語は、古くは金属/酸化物/半導体の接合構造に用いられており、Metal-Oxide-Semiconductorの頭文字を採ったものとされている。しかしながら特にMOS構造を有する電界効果トランジスタ(以下、単に「MOSトランジスタ」と称す)においては、近年の集積化や製造プロセスの改善などの観点からゲート絶縁膜やゲート電極の材料が改善されている。
例えばMOSトランジスタにおいては、主としてソース・ドレインを自己整合的に形成する観点から、ゲート電極の材料として金属の代わりに多結晶シリコンが採用されてきている。また電気的特性を改善する観点から、ゲート絶縁膜の材料として高誘電率の材料が採用されるが、当該材料は必ずしも酸化物には限定されない。
従って「MOS」という用語は必ずしも金属/酸化物/半導体の積層構造のみに限定されて採用されているわけではなく、本明細書でもそのような限定を前提としない。すなわち、技術常識に鑑みて、ここでは「MOS」とはその語源に起因した略語としてのみならず、広く導電体/絶縁体/半導体の積層構造をも含む意義を有する。
また、以下の記載では、不純物の導電型に関して、n型を「第1導電型」、p型を「第2導電型」として一般的に定義するが、その逆の定義でも構わない。
<実施の形態1>
<装置構成>
図1はSiC基板上に形成されたMOS構造を有する電界効果トランジスタ(SiC−MOSFET)100の部分構成を模式的に示す断面図である。なお、図1では「セル」と呼称されるMOSの最小単位構造を破線で囲んで示しており、実際のSiC−MOSFET100は、複数のセルによって構成されている。
図1に示すように、SiC−MOSFET100は、n型(第1導電型)不純物を1×1018〜1×1021cm−3の範囲で比較的高濃度に含むSiC基板1上に形成されている。
SiC基板1の主面上には、n型不純物を1×1014〜1×1017cm−3の範囲で比較的低濃度に含むドリフト層2(半導体層)が形成されている。ドリフト層2は、例えばエピタキシャル成長により形成される。
ドリフト層2の上層部には、1×1019cm−3程度のn型不純物(ドナー不純物)を含むソース領域3(第1の半導体領域)が配設され、また、ソース領域3に挟まれるように、1×1020cm−3程度のp型(第2導電型)不純物(アクセプタ不純物)を含むボディコンタクト領域4(第2の半導体領域)が配設されている。
そして、ソース領域3およびボディコンタクト領域4の底面に接するように、p型不純物を1×1014〜1×1018cm−3の範囲で比較的低濃度に含むボディ領域5(第3の半導体領域)が設けられている。
また、ソース領域3およびボディ領域5を厚さ方向に貫通してドリフト層2内に達する2つのトレンチ6が、ボディコンタクト領域4を間に挟むように設けられている。そして、トレンチ6の内面を覆うようにゲート絶縁膜9が設けられ、ゲート絶縁膜9で覆われたトレンチ6内にゲート電極10が埋め込まれている。そして、トレンチ6およびその周囲のソース領域3の上方が層間絶縁膜16で覆われ、層間絶縁膜16にはソース領域3およびボディコンタクト領域4に達するコンタクトホールCHが設けられている。なお、ゲート電極10は層間絶縁膜16で覆われているが図示されない部分に設けられた層間絶縁膜16の開口部を介してゲート電圧が供給される構成となっている。
また、層間絶縁膜16上を覆うと共に、コンタクトホールCH内を埋め込むようにソース電極11(第1の主電極)が設けられ、ソース電極11が設けられた側とは反対側のSiC基板1の主面上にはドレイン電極12(第2の主電極)が設けられている。
また、ドリフト層2内にはトレンチ6の底面に接するように、トレンチ6の幅と同程度の幅を有するトレンチ底部保護層7が設けられている。トレンチ底部保護層7は、p型不純物を1×1017〜1×1019cm−3の範囲で比較的高濃度に含んでおり、その厚さは0.1〜2.0μmの範囲に設定される。
そして、隣り合うトレンチ底部保護層7間のドリフト層2内には、隣り合う2つのトレンチ底部保護層7までの水平方向(基板主面に平行な方向)の距離が等しい中間点を含むように、ドリフト層2よりも高い不純物濃度を有するn型の空乏化抑制層8が設けられている。空乏化抑制層8は、ボディ領域5、トレンチ6およびトレンチ底部保護層7の何れとも接しない大きさとなるように形成される。なお、図1においては空乏化抑制層8は、その水平方向の中央が、トレンチ底部保護層7間の水平方向の中央と一致する、すなわちどちらのトレンチ底部保護層7に対しても空乏化抑制層8から等距離となるように設けられている。
ドリフト層2より高濃度にn型不純物を含む空乏化抑制層8を設けた場合、空乏化抑制層8内では空乏層の伸びを抑えることができ、2つのトレンチ6から伸びる空乏層が共に重なり合わないようにすることができる。一方、空乏化抑制層8を設けることで、トレンチ6底部の電界はわずかに増加することになるので、空乏化抑制層8の不純物濃度は、MOSFETのオン時に隣り合う2つのトレンチ底部保護層7から伸びる空乏層が、共に重なり合わないようにするための濃度より高く設定し、かつMOSFETのオフ時の高バイアス印加時に、トレンチ6の底部の電界の増加量を例えば30%以下に抑える程度の濃度、例えば、1×1016〜1×1018cm−3の範囲、またはドリフト層2に対して2倍〜100倍の範囲に設定される。
また、空乏化抑制層8の幅は、高バイアス印加時にトレンチ6の底部が高電界とならないようにするために、MOSFETのセルピッチ(トレンチゲートの中心間距離)の5〜50%の範囲に設定される。そして空乏化抑制層8は、MOSFETのオン時にはトレンチ底部保護層7から水平方向に伸びる空乏層を抑制し、かつオフ時にはドリフト層2内に空乏層が充分に伸びることで耐圧を維持するために、トレンチ底部保護層7と同じ深さに位置するように設けることが望ましく、厚さはトレンチ底部保護層7と同じ0.1〜2.0μmの範囲となるように設定される。
図2においてはMOSFETのオン時に形成される空乏層DLを破線で示しており、隣り合う2つのトレンチ底部保護層7からの空乏層の伸びが抑制されている。また、図3には空乏化抑制層8を設けない場合にMOSFETのオン時に形成される空乏層DLを破線で示しており、トレンチ底部保護層7から空乏層DLがトレンチゲート間の中央部まで伸びている。この空乏層DLの影響で、隣り合うトレンチ底部保護層7間に形成されるJFET領域が狭くなり、オン電流経路が狭くなってJFET抵抗が増大する。
一方、図2に示すように、ドリフト層2の不純物濃度よりも高い不純物濃度を有する空乏化抑制層8をトレンチ底部保護層7間に設けた場合は、空乏層DLの伸びが縮小され、オン電流経路が拡大することで、JFET抵抗が減少する。
また、オン電流経路が拡大することで、従来よりもセルピッチを狭めてもJFET抵抗の増加の影響を受けにくくなり、JFET抵抗増加を回避するためのセルピッチ拡大によるチャネル幅密度の減少を抑制でき、オン抵抗の増加を抑制できる。また、セルピッチの縮小によりトレンチ底部保護層7間の距離が小さくなることで、トレンチ6底部の電界強度を低減し、耐圧およびゲート絶縁膜9の信頼性を向上することができる。これによって、より高いオン抵抗低減効果が得られる。また、空乏層の幅は温度上昇とともに広くなるが、空乏化抑制層8によってJFET抵抗の増加を抑えられるため、オン抵抗の温度特性も改善できる。
図4および図5は、p型の保護層の側面に接するようにn型の不純物層が形成された従来の構成と、図1に示すSiC−MOSFET100の構成におけるシミュレーション結果を示す図である。
図4は、MOSFETのオフ時のドレイン電圧(任意単位)の変化に対するゲート絶縁膜の電界強度(任意単位)の特性を示す図であり、図5は、MOSFETのオフ時のドレイン電圧(任意単位)の変化に対するドレイン電流(任意単位)の特性を示す図であり、両図とも従来の構成における特性を破線で示し、図1の構成における特性を実線で示している。
図4および図5より、従来の構成に比べ、トレンチ6およびトレンチ底部保護層7から離れた位置に空乏化抑制層8を設けた図1の構成では、トレンチ底部の電界強度が低減され、ゲート絶縁膜の電界強度およびMOSFETのオフ時のドレイン電流が低減されていることが分かる。この結果、耐圧およびゲート絶縁膜9の信頼性が向上することとなる。
また、空乏化抑制層8はボディ領域5とも離れた位置に形成されるため、ボディ領域5底部におけるオフ時の電界強度が増加せず、耐圧を低下させずにゲート絶縁膜9の信頼性が向上することとなる。
以上説明したように、空乏化抑制層8を設けることで、デバイスオン時にトレンチ底部保護層7からドリフト層2中に水平方向に伸びる空乏層幅が縮小され、JFET領域におけるオン電流経路が拡大し、トレンチ底部保護層7間に生じるJFET抵抗を低減することができ、MOSFETのオン抵抗を低減することができる。
また、空乏化抑制層8をボディ領域5、トレンチ6、トレンチ底部保護層7から離れて配置することで、従来の空乏化抑制層とトレンチ底部保護層が隣接した構造に比べて耐圧の向上とゲート絶縁膜9の電界強度の低減が可能となる。
さらに、セルピッチの縮小が可能となり、チャネル幅密度の増加とトレンチ底部の電界緩和が可能になる。これらの効果で、オン抵抗の低減と、ゲート絶縁膜の信頼性および耐圧が向上し、デバイスのオン特性とオフ特性のトレードオフを改善できる。
<製造方法>
次に、製造工程を順に示す断面図である図6〜図13を用いて、SiC−MOSFET100の製造方法を説明する。なお、以下の説明で例として挙げる材料は同等の機能を有する材料に適宜変更可能である。
まず、図6に示す工程において、n型不純物を1×1018〜1×1021cm−3の範囲で含むSiC基板1を準備し、SiC基板1の一方の主面上に、n型炭化珪素層をエピタキシャル成長させてドリフト層2とする。ドリフト層2の不純物濃度は1×1014〜1×1017cm−3の範囲とする。なお、SiC基板1の厚みは50〜400μmであり、ドリフト層2の厚みは5〜150μmである。
次に、図7に示す工程において、ドリフト層2の上層部にボディ領域5を形成し、ボディ領域5の上層部にソース領域3およびボディコンタクト領域4を選択的に形成する。ボディ領域5、ソース領域3およびボディコンタクト領域4は、イオン注入またはエピタキシャル成長により形成することができ、形成の順序は問わない。一例としては、ボディ領域5をイオン注入またはエピタキシャル成長により形成した後、ボディ領域5の上層部にn型不純物のイオン注入によりソース領域3を選択的に形成した後、ソース領域3の一部にp型不純物のイオン注入によりボディコンタクト領域4を選択的に形成する。なお、ボディ領域5の不純物濃度は1×1014〜1×1018cm−3の範囲に設定され、厚さは0.2〜1.0μmの範囲に設定される。なお、濃度や厚みは均一でなくても良い。また、ソース領域3の不純物濃度は1×1019cm−3程度に設定され、厚さは0.2〜0.5μmの範囲に設定され、ボディコンタクト領域4の不純物濃度は1×1020cm−3程度に設定され、厚さはソース領域3と同程度に設定される。
次に、図8に示す工程において、ソース領域3等が形成された状態のSiC基板1上に、フォトリソグラフィ技術を用いて空乏化抑制層8の形成領域の上方が開口部となったパターンを有するレジストマスクRM1を形成し、レジストマスクRM1の上方からn型不純物のイオン注入を行って、ドリフト層2中に空乏化抑制層8を形成する。なお、このイオン注入は、ドリフト層2の形成後であれば、ソース領域3、ボディコンタクト領域4、ボディ領域5の形成の前後は問わない。
また、ドリフト層2の形成途中にイオン注入を実施して空乏化抑制層8を形成しても良い。すなわち、ドリフト層2のエピタキシャル成長の途中であって、ドリフト層2の厚みが空乏化抑制層8の上面位置よりも厚くなった時点で選択的にn型不純物のイオン注入を行って空乏化抑制層8を形成する。その後、再度、ドリフト層2のエピタキシャル成長を開始し、空乏化抑制層8がドリフト層2の中に埋め込まれた構成を得る。この方法を採る場合、イオン注入時の注入深さを浅くできるため、低い加速電圧での注入が可能となり、高エネルギーイオンの注入による過度の拡散、結晶欠陥生成等を抑えることができる。さらに、高加速電圧のイオン注入が不要になるため、イオン注入に係る設備コストを抑えることができるという利点もある。
なお、上記の方法を採る場合、イオン注入による結晶欠陥等のダメージを回復させるために、イオン注入後に熱処理(アニール)を行う、あるいはイオン注入後のドリフト層2の表面に酸化膜を形成(犠牲酸化)した後、エッチングにより酸化膜を除去することで、酸化膜と共にドリフト層2の表面のダメージを除去する工程を行い、その後、再度のエピタキシャル成長を行って、ドリフト層2を所定の高さまで成長させるようにしても良い。
レジストマスクRM1を除去した後、図9に示す工程において、SiC基板1上にシリコン酸化膜を形成し、当該シリコン酸化膜上にフォトリソグラフィ技術を用いて、トレンチ6を形成する領域の上方が開口部となったパターンを有するレジストマスクを形成する。そして、当該レジストマスクをエッチングマスクとして、シリコン酸化膜をエッチング処理によりパターニングすることで、トレンチ6を形成する領域の上方が開口部となったエッチングマスクEM1を得る。そして当該エッチングマスクEM1を用いて反応性イオンエッチングによりソース領域3およびボディ領域5を厚さ方向に貫通するトレンチ6を形成する。トレンチ6の深さはボディ領域5の深さ以上であり、1.0〜6.0μmの深さに設定される。
次に、図10に示す工程において、エッチングマスクEM1を注入マスクとして用いて、トレンチ6の底面より下のドリフト層2内にp型不純物をイオン注入してトレンチ底部保護層7を形成する。トレンチ底部保護層7のp型不純物の濃度は1×1017〜1×1019cm−3の範囲に設定され、その厚さは0.1〜2.0μmの範囲に設定される。
なお、イオン注入の代わりに、トレンチ6をトレンチ底部保護層7の厚さ分(0.1〜2.0μm)だけ深く形成した後、エピタキシャル成長によりトレンチ6内にトレンチ底部保護層7を形成しても良い。なお、トレンチ底部保護層7の濃度や厚みは均一でなくても良い。
エッチングマスクEM1を除去した後、熱処理装置(アニール装置)を用いて、これまでの工程でイオン注入した不純物を活性化させるアニールを行う。このアニールは、アルゴン(Ar)ガスなどの不活性ガス雰囲気中、または真空中で、1300℃〜1900℃の温度範囲で30秒〜1時間行う。
次に、図11に示す工程において、少なくともトレンチ6の内面を覆うように例えば酸化シリコンで絶縁膜20を形成した後、絶縁膜20上に例えば導電性を有するポリシリコンで導電膜21を形成し、トレンチ6内に導電膜21を埋め込む。その後、トレンチ6内のみにゲート絶縁膜9とゲート電極10が残るように導電膜21および絶縁膜20をパターニング、またはエッチバックする。
ここで、トレンチ6の底部における絶縁膜20の膜厚は、トレンチ6の側面部における絶縁膜20の膜厚より厚くても良い。図1に示したゲート絶縁膜9は側面部、底部とも同じ厚さとしているが、実際にゲート絶縁膜としてMOSFETの動作に寄与するのは側面部のみであり、底部はMOSFETとしての動作に寄与しない。加えて前述のとおりトレンチ6底部には電界が集中しやすく、絶縁破壊が起こりやすい。従って、トレンチ底部保護層7の設置に加えて底部のゲート絶縁膜を選択的に厚くすることで、ゲート絶縁膜9に加わる電界の影響をさらに緩和することができる。
次に、図12に示す工程において、SiC基板1上を覆うように例えば酸化シリコンで絶縁膜22を形成し、ソース領域3の表面に露出するトレンチ6内のゲート絶縁膜9およびゲート電極10を覆う。そして、フォトリソグラフィ技術を用いて、ソース領域3およびボディコンタクト領域4の上方が開口部となり、トレンチ6およびその周囲のソース領域3の上方を覆うパターンを有するレジストマスクRM2を形成する。そして、当該レジストマスクRM2をエッチングマスクとして絶縁膜22をエッチング処理によりパターニングすることで、図13に示すようにソース領域3およびボディコンタクト領域4に達するコンタクトホールCHを有し、トレンチ6およびその周囲のソース領域3の上方を覆う層間絶縁膜16を形成する。
次に、層間絶縁膜16上を覆うと共に、コンタクトホールCH内を埋め込むソース電極11を形成する。ソース電極11はソース領域3およびボディコンタクト領域4とオーミック接触させるために、まず、コンタクトホールCH内を含むドリフト層2の全面に、例えばNi(ニッケル)を主成分とする金属膜をスパッタリング法等で形成し、600℃〜1100℃の熱処理で炭化珪素と反応させてオーミック電極となるニッケルシリサイド膜(図示省略)を形成する。その後、層間絶縁膜16上の未反応の金属膜をウェットエッチングで除去する。層間絶縁膜16上の金属膜を除去した後に、再度熱処理を行っても良い。この場合は、先の熱処理よりも高温で行うことで、さらに低コンタクト抵抗なオーミック接触が形成される。そして、シリサイド膜上および層間絶縁膜16上を覆うように、Al(アルミニウム)合金等の金属膜をスパッタリング法等で形成することで、層間絶縁膜16上およびコンタクトホールCH上にソース電極11を形成する。
これによりソース電極11は、オーミック電極となるニッケルシリサイド膜を介してソース領域3およびボディコンタクト領域4と電気的に接続されるので、実質的にソース電極11がソース領域3およびボディコンタクト領域4とオーミック接触していることになり、接触抵抗を低減することができる。
最後に、ソース電極11が設けられた側とは反対側のSiC基板1の主面上に、スパッタリング法等によりAl合金等の金属膜を形成することでドレイン電極12とし、図1に示すセル構造を有するSiC−MOSFET100を得る。
ここで、SiC−MOSFET100のセルの平面パターンの一例を図14に示す。図14は、トレンチ6がストライプ状となった平面パターンのセルを示しており、図14のA−A線で示す矢視断面が図1の断面図に対応する。なお、図14においては簡単化のため、ソース領域3およびボディコンタクト領域4より上の構成は省略しており、ボディ領域5と、トレンチ6内のゲート絶縁膜9およびゲート電極10を上方から見た図となっているが、便宜的に空乏化抑制層8を破線で囲んで示している。
図14に示されるように空乏化抑制層8は、トレンチ6の延在方向に沿って設けられているが、トレンチ6の長さと同じではなく、予め定めた長さで分断された構成となっている。
図15は、SiC−MOSFET100のセルの平面パターンの他の例を示す図であり、トレンチ6が格子状となった平面パターンのセルを示している。トレンチ6が格子状となった場合、格子状のトレンチ6に囲まれたセルの平面視形状は4角形となるが、正方形に限らず長方形でも良く、多角形あるいは角部が曲率を有していても良い。また、4角形のセルがジグザグに配置された構成となるようにトレンチ6を形成しても良い。
図16は、SiC−MOSFET100のセルの平面パターンの他の例を示す図であり、トレンチ6がストライプ状となった平面パターンにおいて、トレンチ6の延在方向に沿って4角形の空乏化抑制層8が不連続で設けられている。このような配置をアイランド状と呼称する。
なお、図14〜図16において図示はされていないが、トレンチ底部保護層7はトレンチ6の延在方向に沿ってトレンチ6の長さと同じ長さに設けられており、ソース領域3およびボディコンタクト領域4は、トレンチ6の形状に合わせてストライプ状またはアイランド状に設けられている。
空乏化抑制層8は、空乏化抑制層8を囲むトレンチ底部保護層7からの水平方向の距離が等しくなるように、図示されないトレンチ底部保護層7間の中央部に設けられていれば良く、図14に示すようなストライプ状、図15および図16に示すようなアイランド状に形成される。なお、空乏化抑制層8の平面視形状は正方形や長方形に限らず、多角形、あるいは角部が曲率を有していても良い。
また、トレンチ底部保護層7はソース電極11と接続され、電位が固定(接地)されていることが望ましい。トレンチ底部保護層7とソース電極11との接続部分(電位固定部)の構成を図17および図18を用いて説明する。
図17は電位固定部の構成を示す平面図であり、図18は図17におけるB−B線での断面構成を示す断面図である。図17においては、トレンチ6がストライプ状となった平面パターンにおいて空乏化抑制層8がアイランド状に配置された構成を例示しており、平面視形状がトレンチ6でストライプ状に規定される複数のボディ領域5のうち、1つのボディ領域5が途中でトレンチ60で分断された構成となっており、そこが電位固定部17となっている。
すなわち、図18に示すように電位固定部17においては、トレンチ6よりも幅の広いトレンチ60がセル間に渡るように設けられ、トレンチ60の底面に接するように、トレンチ60の幅と同程度の幅を有するトレンチ底部保護層7が設けられている。トレンチ60の側面はゲート絶縁膜9で覆われると共にゲート絶縁膜9を介してゲート電極10で覆われている。そして、ゲート電極10を含むようにトレンチ60内面を層間絶縁膜16が覆っているが、トレンチ60の底部には、層間絶縁膜16を貫通してトレンチ底部保護層7に達するコンタクトホールCH1が設けられている。ソース電極11は、内面が層間絶縁膜16で覆われたトレンチ60内を埋め込むように設けられ、コンタクトホールCH1を介してトレンチ底部保護層7に電気的に接続されて、トレンチ底部保護層7の電位をソース電位に固定することができる。
次に、図19〜図21を用いて電位固定部17の形成工程を説明する。なお、図19〜図21は、先に図11〜図13を用いて説明した製造工程における電位固定部の形成工程を示す断面図であり、図11〜図13を用いて説明した構成と同一の構成については同一の符号を付し、重複する説明は省略する。
図6〜図10を用いて説明した工程を経てトレンチ6および60を形成した後、図19に示す工程において、トレンチ6および60の内面を覆うように絶縁膜20を形成し、絶縁膜20上に導電膜21を形成してトレンチ6内に導電膜21を埋め込むと共に、トレンチ60の内面を導電膜21で覆う。その後、トレンチ6および60内のみにゲート絶縁膜9とゲート電極10が残るように導電膜21および絶縁膜20をパターニング、またはエッチバックする。ここで、トレンチ60の側面に形成される導電膜21は、側面から水平方向に堆積される導電膜と底面から垂直方向に堆積される導電膜とが重なるため、トレンチ底面などの平坦部分に形成される導電膜21に比べて厚く形成される。このため、エッチバック時間を制御することで、平坦部分の導電膜21は除去され、トレンチ60の側面には導電膜21を残してゲート電極10とすることができる。
次に、図20に示す工程において、SiC基板1上を覆うように絶縁膜22を形成し、ソース領域3の表面に露出するトレンチ6内のゲート絶縁膜9およびゲート電極10と、トレンチ60の内面と共に側面のゲート電極10を覆う。そして、フォトリソグラフィ技術を用いて、ソース領域3およびボディコンタクト領域4の上方およびトレンチ60の底面中央部が開口部となったレジストマスクRM2を形成する。そして、当該レジストマスクRM2をエッチングマスクとして絶縁膜22をエッチング処理によりパターニングすることで、図21に示すようにソース領域3およびボディコンタクト領域4に達するコンタクトホールCHと、トレンチ60の底面中央部においてトレンチ底部保護層7に達するコンタクトホールCH1を有した層間絶縁膜16を形成する。
その後、層間絶縁膜16上を覆うと共に、コンタクトホールCHおよびCH1内を埋め込むソース電極11を形成することで図18に示した電位固定部17が得られ、トレンチ底部保護層7の電位はソース電位に固定され、トレンチ底部のゲート絶縁膜9の電界強度を低く保つことができる。なお、図17では電位固定部17は1箇所しか示していないが、トレンチ6がストライプ状の場合は1つの電位固定部で2本のトレンチ6の底部のトレンチ底部保護層7の電位を固定するので、残りのトレンチ6については、2本ごとに1つの電位固定部を設けることとなる。
なお、ソース電極11の形成に際しては、先に説明したように、まずオーミック電極となるニッケルシリサイド膜をコンタクトホールCHの底面に形成する。これは、コンタクトホールCH1においても同じであり、ソース電極11は、オーミック電極となるシリサイド膜を介してトレンチ底部保護層7と電気的に接続され、実質的にソース電極11がトレンチ底部保護層7とオーミック接触していることになり、接触抵抗を低減することができる。
<変形例1>
次に、図22を用いて、実施の形態1の変形例1に係るSiC−MOSFET100Aの構成を説明する。なお、図22においては、図1を用いて説明したSiC−MOSFET100と同一の構成については同一の符号を付し、重複する説明は省略する。
図22に示すようにSiC−MOSFET100Aは、ボディ領域5の下部のドリフト層2内に、ボディ領域5の底面と接するように設けられた不純物領域15を備えている。不純物領域15は、n型不純物をドリフト層2よりも5倍〜100倍の範囲で高濃度に有しており、より具体的にはn型不純物を1×1016〜1×1018cm−3の範囲で有している。なお、不純物領域15の厚さは0.1〜2μmの範囲に設定される。
ボディ領域5とトレンチ底部保護層7との間にはJFET抵抗が形成されるが、この不純物領域15の形成によりボディ領域5からドリフト層2への空乏層の伸びが抑制され、電流経路が広がってJFET抵抗を低減することができる。
<変形例2>
図23は、実施の形態1の変形例2に係るSiC−MOSFET100Bの構成を示す断面図である。なお、図23においては、図1を用いて説明したSiC−MOSFET100と同一の構成については同一の符号を付し、重複する説明は省略する。
図23に示すようにSiC−MOSFET100Bは、ボディ領域5の下部のドリフト層2内に、ボディ領域5の底面と接するように設けられた不純物領域151を備えている。不純物領域151は、ボディ領域5の底面全域を覆うのではなく、ボディ領域5の底面の中央部分は覆わないように構成されている。なお、不純物濃度および厚さはSiC−MOSFET100Aの不純物領域15と同じである。
このように、ボディ領域5の底面の中央部分に不純物領域151を設けない理由は、中央部分は電流経路とはならないため、空乏層が広がっても電流経路の狭窄を起こしにくく、抵抗が増加しにくいということに加え、p型のボディ領域5からn型のドリフト層2へと伸びる空乏層により耐圧を高め、ゲート絶縁膜9に加わる電界を抑制できるためである。
<変形例3>
図24は、実施の形態1の変形例3に係るSiC−MOSFET100Cの構成を示す断面図である。なお、図24においては、図1を用いて説明したSiC−MOSFET100と同一の構成については同一の符号を付し、重複する説明は省略する。
図24に示すようにSiC−MOSFET100Cにおいては、隣り合うトレンチ底部保護層7間のドリフト層2内に設けられた空乏化抑制層8Aが、不純物濃度が均一ではなく、濃度分布を有して不均一となっている。
すなわち、図24に示す空乏化抑制層8Aは、水平方向において中央部81の不純物濃度が最も高く、中央部81の左右サイドにおいては中央部81よりも不純物濃度が低くなっている。このような不純物濃度分布を得るには、斜めイオン注入または分散角を広げたイオン注入により横方向(水平方向)の濃度が不均一な注入層を形成することができる。
このように、空乏化抑制層8Aを中央部81の不純物濃度が最も高い不純物濃度分布とすることで、トレンチ底部保護層7から水平方向に広がる空乏層の伸びを、最も空乏層が伸びる部分で確実に押さえることができ、耐圧とオン抵抗のトレードオフを改善することができる。なお、空乏化抑制層8Aは水平方向において濃度が異なる多層構造としても良い。
<変形例4>
図25は、実施の形態1の変形例4に係るSiC−MOSFET100Dの構成を示す断面図である。なお、図25においては、図1を用いて説明したSiC−MOSFET100と同一の構成については同一の符号を付し、重複する説明は省略する。
図25に示すようにSiC−MOSFET100Dにおいては、隣り合うトレンチ底部保護層7間のドリフト層2内に設けられた空乏化抑制層8Bが、不純物濃度が均一ではなく、濃度分布を有して不均一となっている。
すなわち、図25に示す空乏化抑制層8Bは、垂直方向(基板主面に垂直な方向)において中央部82の不純物濃度が最も高く、中央部82の上下サイドにおいては中央部82よりも不純物濃度が低くなっている。このような不純物濃度分布を得るには、イオン注入時の加速エネルギーを、中央部82で注入ピークとなるように設定することで、縦方向(垂直方向)の濃度が不均一な注入層を形成することができる。
このように、空乏化抑制層8Bを不均一な濃度分布の不純物層とすることで、トレンチ底部保護層7から水平方向に広がる空乏層の伸びを、最も空乏層が伸びる部分で確実に押さえることができ、また、トレンチ6の底部に近い部分では不純物濃度が低くなるのでトレンチ6に加わる電界強度を減少させることができる。
なお、空乏化抑制層8Bは垂直方向において濃度が異なる多層構造としても良い。また、空乏化抑制層8Bは、中央部82の上下サイドにおいて、一方の不純物濃度が他方よりも低くなっていても良い。少なくとも中央部82の不純物濃度が充分に高ければ、空乏化抑制層8内で空乏層の伸びを抑えることができる。
<実施の形態2>
図26はSiC基板上に形成されたSiC−MOSFET200の部分構成を模式的に示す断面図である。なお、図26においては、図1を用いて説明したSiC−MOSFET100と同一の構成については同一の符号を付し、重複する説明は省略する。
図26に示すようにSiC−MOSFET200においては、隣り合うトレンチ底部保護層7間のドリフト層2内に設けられた空乏化抑制層8が、隣り合うトレンチ底部保護層7との水平方向の距離が等しい中間点を含むと共に、一方のトレンチ6の側壁61までの距離d1と、他方のトレンチ6の側壁62までの距離d2とが異なる位置に設けられている。すなわち、どちらかのトレンチ6の側に偏って位置するように空乏化抑制層8が設けられている。なお、隣り合うトレンチ底部保護層7間における空乏化抑制層8の水平方向の位置は、図8を用いて説明した工程におけるレジストマスクRM1の開口部の位置により設定されるので、レジストマスクRM1の開口部の位置を変更すれば容易に位置をずらすことができる。
このように、特定の1方向でトレンチ6の側壁と空乏化抑制層8との距離を、他の方向とは異なった距離とすることで、実施の形態1の効果に加えて、基板のオフ角の影響による結晶面の違いに依存したオン時の電流ばらつきを低減することができる。これについて、トレンチ6の側壁と結晶面との関係を示す図27を用いて説明する。
図27に示すようにSiC基板1が4H−SiC基板である場合、SiC基板1の主面は、<0001>c軸が法線方向Nから<11−20>方向に角度θ分だけ傾いている。この角度θをオフ角と呼称し、オフ角の影響により、トレンチ6の側壁61と側壁62とは異なる面方位を有している。より具体的には、トレンチ6の側壁61は、(11−20)面が(0001)面方向にオフ角分傾いた面であり、トレンチ6の側壁62は、(11−20)面が(000−1)面方向にオフ角分傾いた面となっている。
このような構成においては、それぞれの側壁面に形成されるMOSFETのチャネルの電子移動度が異なることとなり、側壁61と側壁62とではオン時の電流密度が異なってしまう。ここで、電子移動度の高い結晶面(第1の電子移動度を有する結晶面)で構成される側壁を側壁61、電子移動度の低い結晶面(第2の電子移動度を有する結晶面)で構成される側壁を側壁62とすると、距離d1を距離d2よりも広くすることで、側壁61の近傍と空乏化抑制層8との間の空乏層の幅は、側壁62近傍と空乏化抑制層8との間の空乏層の幅に比べて広くなり、電流経路が狭くなる。すなわち、空乏層の伸びによる電流経路の幅が、トレンチ6の側壁と空乏化抑制層8との距離に応じて変化する。
トレンチ6の側壁の面方位に合わせて空乏化抑制層8との距離を変えることで、トレンチ6の側壁の面方位ごとの電流密度を調整し、電流ばらつきの影響を低減させることができる。この結果、デバイス内の電流ばらつきが低減され、デバイスの信頼性を向上することができる。なお、ここでは側壁61が(0001)面方向にオフ角分傾いた面とし、側壁61と空乏化抑制層8との距離d1をd2よりも広くしたが、これに限定するものではなく、(000−1)面方向に傾いた側壁62と空乏化抑制層8との距離d2を距離d1より広くする構成としても構わない。
図28は、トレンチ6がストライプ状となった平面パターンのセルを示しており、図28のC−C線で示す矢視断面が図26の断面図に対応する。図28に示すように、空乏化抑制層8を間に挟んで平行して設けられた2つのトレンチのうち、一方のトレンチ6の側壁61と空乏化抑制層8との間の距離が、他方のトレンチ6の側壁62と空乏化抑制層8との間の距離よりも広くなるように空乏化抑制層8の位置が設定されている。
図29は、トレンチ6が格子状となった平面パターンのセルを示している。図29に示すように、トレンチ6が格子状となった場合、格子状のトレンチ6に囲まれたセルの平面視形状は4角形となり、空乏化抑制層8の平面視形状もセルに相似した4角形となる。この場合、空乏化抑制層8を間に挟んで設けられた2つのトレンチのうち、一方のトレンチ6の側壁61と空乏化抑制層8との間の距離が、他方のトレンチ6の側壁62と空乏化抑制層8との間の距離よりも広くなるように空乏化抑制層8の位置が設定されている。
また、トレンチ6が格子状となった平面パターンの場合、セルは4つのトレンチ6で囲まれるが、基板結晶の面方位の違いによりトレンチ6の側壁ごとに結晶面の面方位が異なることとなり、側壁面ごとに電子移動度が異なって、電流がばらつくこととなる。
そこで、電流ばらつきを低減させるために、図30に示されるように、空乏化抑制層8をセルの1つの角部寄りの位置に配置することで、2方向以上でトレンチ6の側壁と空乏化抑制層8との距離を異なった距離としても良い。図30の構成では、空乏化抑制層8の4つの側壁と、それぞれが対向する4つのトレンチ6の側壁との距離がそれぞれ異なっている。ただし、この場合も空乏化抑制層8の位置は、隣り合うトレンチ底部保護層7との水平方向の距離が等しい中間点を含むように設定されなければならない。なお、空乏化抑制層8の平面視形状は正方形や長方形に限らず、多角形、あるいは角部が曲率を有していても良い。
<実施の形態3>
図31はSiC基板上に形成されたSiC−MOSFET300の部分構成を模式的に示す断面図である。なお、図30においては、図1を用いて説明したSiC−MOSFET100と同一の構成については同一の符号を付し、重複する説明は省略する。
図30に示すようにSiC−MOSFET300においては、隣り合うトレンチ底部保護層7間のドリフト層2内に設けられた空乏化抑制層8が、水平方向の中央部分にp型不純物を含んだ耐圧維持層19を有した構成となっている。
このような構成を採ることで、トレンチ底部保護層7に加わっていたオフ時の電界を、耐圧維持層19にも分担させることができ、ボディ領域5の底部、トレンチ6の底部共に電界強度を減少させ耐圧を維持することができる。
すなわち、耐圧維持層19を有さない場合、トレンチ底部保護層7にオフ時の電界が加わることとなる。トレンチ底部保護層7の面積が広ければ電界集中が起こりにくくなるが、トレンチ底部保護層7の面積はトレンチ6の底面積で規定されるので狭く、電界集中が起こりやすい。しかし、トレンチ6間に耐圧維持層19を設けることで、トレンチ底部保護層7だけに加わっていた電界が、耐圧維持層19にも加わることとなり、トレンチ底部への電界集中が緩和することとなる。なお、耐圧維持層19を設けることで、ボディ領域5の底部への電界集中も緩和することとなる。
なお、耐圧維持層19の厚さは空乏化抑制層8よりも薄くても厚くても良い。耐圧維持層19の厚さが空乏化抑制層8よりも薄い場合は、耐圧維持層19の上または下を空乏化抑制層8で覆うことで、空乏化抑制層8との段差を無くす構成としても良い。また、耐圧維持層19を空乏化抑制層8で囲む構成としても良い。
また、耐圧維持層19の厚さを空乏化抑制層8以上の厚さとする場合、上方のボディ領域5に接続される厚さとしても良い。
また、耐圧維持層19の幅はトレンチ底部保護層7の幅と同等かトレンチ底部保護層7の幅よりも小さい方が望ましい。
なお、耐圧維持層19は、図8を用いて説明した工程におけるレジストマスクRM1を用いて空乏化抑制層8を形成した後、耐圧維持層19形成のための開口部を有するレジストマスクを用いて空乏化抑制層8の中央部分にp型不純物をイオン注入することで形成でき、その不純物濃度は、1×1016〜1×1019cm−3の範囲とする。
<変形例>
次に、図32を用いて、実施の形態3の変形例に係るSiC−MOSFET300Aの構成を説明する。図32は、SiC−MOSFET300Aのセルの平面パターンを示す図であり、トレンチ6がストライプ状となった平面パターンにおいて、空乏化抑制層8がトレンチ6に沿ってストライプ状に配置された構成を例示している。そして、平面視形状がトレンチ6でストライプ状に規定される複数のボディ領域5のうち、1つのボディ領域5が途中でトレンチ60で分断された構成となっており、そこが図18を用いて説明した電位固定部17と同様の構成となっている。
図32に示すように、ストライプ状の空乏化抑制層8の幅方向中央部には空乏化抑制層8に沿ってストライプ状の耐圧維持層19が設けられており、空乏化抑制層8および耐圧維持層19は電位固定部17が設けられた部分以外では分断されずに延在している。
一方、ボディ領域5が途中でトレンチ60で分断された部分では、空乏化抑制層8はトレンチ60の手前で分断されるが、耐圧維持層19はトレンチ60の側面下方まで延在し、トレンチ60の底部に設けられたトレンチ底部保護層7の側面に接続される構成となっている。換言すると、セル間に渡るように設けられたトレンチ60の底部に設けられたトレンチ底部保護層7と耐圧維持層19とが接続された構成となっている。
このような構成を採ることで、耐圧維持層19はトレンチ底部保護層7を介してソース電極11と電気的に接続されることとなり、耐圧維持層19はトレンチ底部保護層7と同電位となるため、MOSFETのオフ時にトレンチ底部付近でより平面的に電界を受け、電界集中を緩和して耐圧を維持することができる。また、耐圧維持層19がトレンチ底部保護層7を介してソース電極11と電気的に接続されることで、電荷の応答速度が速くなることから、スイッチング速度の向上によるスイッチング損失の低減が期待できる。
図33は、図32におけるD−D線での断面構成を示す断面図であり、図34は、図32におけるE−E線での断面構成を示す断面図である。図33に示すように、ストライプ状の空乏化抑制層8の水平方向の中央部分に耐圧維持層19を有した構成となっている。
なお、耐圧維持層19の厚さは空乏化抑制層8よりも薄くても厚くても良いが、トレンチ底部保護層7の厚さとは同じ程度かそれ以下とすることが望ましい。
なお、以上の説明において使用した「AとBとが電気的に接続される」という表現は、構成Aと構成Bとの間で双方向に電流が流れることを意味する。また、同じ厚さ、同じ深さとは、完全に一致している場合に限定されず、−20%〜+20%の範囲で異なっている場合を含むものとする。
<他の適用例>
以上説明した実施の形態1〜3においては、本発明をドリフト層2とSiC基板1(バッファ層含む)とが同じ導電型を有するMOSFETに適用した例を示したが、本発明はドリフト層2とSiC基板1とが異なる導電型を有するIGBTに対しても適用可能である。
例えば、図1に示した構成に対し、n型のドリフト層2に対してSiC基板1をp型とすればIGBTの構成となる。その場合、MOSFETのソース領域3およびソース電極11は、それぞれIGBTのエミッタ領域およびエミッタ電極に対応し、MOSFETのドレイン電極12はコレクタ電極に対応することになる。
また、本発明は、SiC基板1を機械的または化学的またはその他の方法によって除去し、ドリフト層2(エピタキシャル成長層)のみによって構成されるフリースタンディング基板(自立基板)に適用することもできる。なお、エピタキシャル成長層のみで構成されるフリースタンディング基板も「SiC基板」と言うことができる。フリースタンディング基板の一方の主面にソース領域、ソース電極等を形成し、他方の主面にドレイン電極を形成すればMOSFETが得られ、フリースタンディング基板の一方の主面にエミッタ領域、エミッタ電極等を形成し、他方の主面にコレクタ領域、コレクタ電極を形成すればIGBTが得られる。
また、実施の形態1〜3では、本発明を炭化珪素半導体に適用した例を示したが、本発明は、他のワイドバンドギャップ半導体、例えば窒化ガリウム(GaN)、ダイヤモンド(C)などに対しても適用可能である。炭化珪素を含むワイドバンドギャップ半導体を半導体材料として使用した場合でも、トレンチ底部の電界を緩和し、ゲート絶縁膜の信頼性および耐圧を向上できる。
<実施の形態4>
本実施の形態は、上述した実施の形態1〜3に係る半導体装置を電力変換装置に適用したものである。本発明は特定の電力変換装置に限定されるものではないが、以下、実施の形態4として、三相のインバータに本発明を適用した場合について説明する。
図35は、本実施の形態に係る電力変換装置を適用した電力変換システムの構成を示すブロック図である。
図35に示す電力変換システムは、電源500、電力変換装置600、負荷700で構成される。電源500は、直流電源であり、電力変換装置600に直流電力を供給する。電源500は種々のもので構成することが可能であり、例えば、直流系統、太陽電池、蓄電池で構成することができ、また、交流系統に接続された整流回路やAC/DCコンバータで構成しても良い。また、電源500を、直流系統から出力される直流電力を所定の電力に変換するDC/DCコンバータによって構成しても良い。
電力変換装置600は、電源500と負荷700の間に接続された三相のインバータであり、電源500から供給された直流電力を交流電力に変換し、負荷700に交流電力を供給する。電力変換装置600は、図35に示すように、直流電力を交流電力に変換して出力する主変換回路601と、主変換回路601の各スイッチング素子を駆動する駆動信号を出力する駆動回路602と、駆動回路602を制御する制御信号を駆動回路602に出力する制御回路603とを備えている。
負荷700は、電力変換装置600から供給された交流電力によって駆動される三相の電動機である。なお、負荷700は特定の用途に限られるものではなく、各種電気機器に搭載された電動機であり、例えば、ハイブリッド自動車、電気自動車、鉄道車両、エレベーター、もしくは、空調機器向けの電動機として用いられる。
以下、電力変換装置600の詳細を説明する。主変換回路601は、スイッチング素子と還流ダイオードを備えており(図示せず)、スイッチング素子がスイッチングすることによって、電源500から供給される直流電力を交流電力に変換し、負荷700に供給する。主変換回路601の具体的な回路構成は種々のものがあるが、本実施の形態に係る主変換回路601は2レベルの三相フルブリッジ回路であり、6つのスイッチング素子とそれぞれのスイッチング素子に逆並列された6つの還流ダイオードで構成することができる。主変換回路601の各スイッチング素子には、上述した実施の形態1〜3の何れかに係る半導体装置を適用する。6つのスイッチング素子は2つのスイッチング素子ごとに直列接続され上下アームを構成し、各上下アームはフルブリッジ回路の各相(U相、V相、W相)を構成する。そして、各上下アームの出力端子、すなわち主変換回路601の3つの出力端子は、負荷700に接続される。
駆動回路602は、主変換回路601のスイッチング素子を駆動する駆動信号を生成し、主変換回路601のスイッチング素子の制御電極に供給する。具体的には、後述する制御回路603からの制御信号に従い、スイッチング素子をオン状態にする駆動信号とスイッチング素子をオフ状態にする駆動信号とを各スイッチング素子の制御電極に出力する。スイッチング素子をオン状態に維持する場合、駆動信号はスイッチング素子の閾値電圧以上の電圧信号(オン信号)であり、スイッチング素子をオフ状態に維持する場合、駆動信号はスイッチング素子の閾値電圧以下の電圧信号(オフ信号)となる。
制御回路603は、負荷700に所望の電力が供給されるよう主変換回路601のスイッチング素子を制御する。具体的には、負荷700に供給すべき電力に基づいて主変換回路601の各スイッチング素子がオン状態となるべき時間(オン時間)を算出する。例えば、出力すべき電圧に応じてスイッチング素子のオン時間を変調するPWM制御によって主変換回路601を制御することができる。そして、各時点においてオン状態となるべきスイッチング素子にはオン信号を、オフ状態となるべきスイッチング素子にはオフ信号が出力されるよう、駆動回路602に制御指令(制御信号)を出力する。駆動回路602は、この制御信号に従い、各スイッチング素子の制御電極にオン信号又はオフ信号を駆動信号として出力する。
本実施の形態に係る電力変換装置では、主変換回路601のスイッチング素子として実施の形態1〜3のいずれかに係る半導体装置を適用するため、トレンチ底部への電界集中の緩和とオン抵抗低減のトレードオフ関係を改善することができる。また、ボディ領域である第3の半導体領域底部の電界強度を増加させず、耐圧を維持できる。
本実施の形態では、2レベルの三相インバータに本発明を適用する例を説明したが、本発明は、これに限られるものではなく、種々の電力変換装置に適用することができる。本実施の形態では、2レベルの電力変換装置としたが3レベルやマルチレベルの電力変換装置であっても構わないし、単相負荷に電力を供給する場合には単相のインバータに本発明を適用しても構わない。また、直流負荷等に電力を供給する場合にはDC/DCコンバータやAC/DCコンバータに本発明を適用することも可能である。
また、本発明を適用した電力変換装置は、上述した負荷が電動機の場合に限定されるものではなく、例えば、放電加工機やレーザー加工機、又は誘導加熱調理器や非接触器給電システムの電源装置として用いることもでき、さらには太陽光発電システムや蓄電システム等のパワーコンディショナーとして用いることも可能である。
この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。
なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。

Claims (11)

  1. 半導体基板と、
    前記半導体基板の第1の主面上に配設された第1導電型の半導体層と、
    前記半導体層の上層部に選択的に設けられた第1導電型の第1の半導体領域と、
    前記半導体層の上層部に前記第1の半導体領域に接して設けられた第2導電型の第2の半導体領域と、
    前記第1および第2の半導体領域の底面に接して設けられた第2導電型の第3の半導体領域と、
    前記第1および第3の半導体領域を厚さ方向に貫通して複数設けられた、前記半導体層内に達するトレンチと、
    前記トレンチの内面を覆うゲート絶縁膜と、
    前記ゲート絶縁膜で覆われた前記トレンチ内に埋め込まれたゲート電極と、
    前記トレンチの底部に接するように設けられた第2導電型のトレンチ底部保護層と、
    隣り合う前記トレンチ底部保護層間に設けられた第1導電型の空乏化抑制層と、
    前記トレンチおよびその周囲の前記第1の半導体領域の上方を覆い、前記第1および第2の半導体領域の上方にコンタクトホールを有する層間絶縁膜と、
    前記層間絶縁膜上を覆うと共に、前記コンタクトホール内に埋め込まれた第1の主電極と、
    前記半導体基板の第2の主面上に配設された第2の主電極と、を備え、
    前記空乏化抑制層は、
    隣り合う前記トレンチ底部保護層までの水平方向の距離が等しい中間点を含み、前記第3の半導体領域、前記トレンチおよび前記トレンチ底部保護層の何れとも接しない大きさに形成され、前記トレンチ底部保護層と同じ深さに位置し、同じ厚さを有し、その不純物濃度は前記半導体層よりも高く設定される半導体装置。
  2. 半導体基板と、
    前記半導体基板の第1の主面上に配設された第1導電型の半導体層と、
    前記半導体層の上層部に選択的に設けられた第1導電型の第1の半導体領域と、
    前記半導体層の上層部に前記第1の半導体領域に接して設けられた第2導電型の第2の半導体領域と、
    前記第1および第2の半導体領域の底面に接して設けられた第2導電型の第3の半導体領域と、
    前記第3の半導体領域の底面に接するように設けられた第1導電型の不純物領域と、
    前記第1および第3の半導体領域を厚さ方向に貫通して複数設けられた、前記半導体層内に達するトレンチと、
    前記トレンチの内面を覆うゲート絶縁膜と、
    前記ゲート絶縁膜で覆われた前記トレンチ内に埋め込まれたゲート電極と、
    前記トレンチの底部に接するように設けられた第2導電型のトレンチ底部保護層と、
    隣り合う前記トレンチ底部保護層間に設けられた第1導電型の空乏化抑制層と、
    前記トレンチおよびその周囲の前記第1の半導体領域の上方を覆い、前記第1および第2の半導体領域の上方にコンタクトホールを有する層間絶縁膜と、
    前記層間絶縁膜上を覆うと共に、前記コンタクトホール内に埋め込まれた第1の主電極と、
    前記半導体基板の第2の主面上に配設された第2の主電極と、を備え、
    前記空乏化抑制層は、
    隣り合う前記トレンチ底部保護層までの水平方向の距離が等しい中間点を含み、前記第3の半導体領域、前記トレンチおよび前記トレンチ底部保護層の何れとも接しない大きさに形成され、その不純物濃度は前記半導体層よりも高く設定され、前記不純物領域は、前記空乏化抑制層とは離れた位置に設けられる半導体装置。
  3. 前記不純物領域は、
    前記トレンチ底部保護層間における前記第3の半導体領域の底面のうち、水平方向の中央部分を除く領域に設けられる、請求項記載の半導体装置。
  4. 前記トレンチ底部保護層は、前記第1の主電極と電気的に接続される、請求項1から請求項3の何れか1項に記載の半導体装置。
  5. 半導体基板と、
    前記半導体基板の第1の主面上に配設された第1導電型の半導体層と、
    前記半導体層の上層部に選択的に設けられた第1導電型の第1の半導体領域と、
    前記半導体層の上層部に前記第1の半導体領域に接して設けられた第2導電型の第2の半導体領域と、
    前記第1および第2の半導体領域の底面に接して設けられた第2導電型の第3の半導体領域と、
    前記第1および第3の半導体領域を厚さ方向に貫通して複数設けられた、前記半導体層内に達するトレンチと、
    前記トレンチの内面を覆うゲート絶縁膜と、
    前記ゲート絶縁膜で覆われた前記トレンチ内に埋め込まれたゲート電極と、
    前記トレンチの底部に接するように設けられた第2導電型のトレンチ底部保護層と、
    隣り合う前記トレンチ底部保護層間に設けられた第1導電型の空乏化抑制層と、
    前記トレンチおよびその周囲の前記第1の半導体領域の上方を覆い、前記第1および第2の半導体領域の上方にコンタクトホールを有する層間絶縁膜と、
    前記層間絶縁膜上を覆うと共に、前記コンタクトホール内に埋め込まれた第1の主電極と、
    前記半導体基板の第2の主面上に配設された第2の主電極と、を備え、
    前記空乏化抑制層は、
    隣り合う前記トレンチ底部保護層までの水平方向の距離が等しい中間点を含み、前記第3の半導体領域、前記トレンチおよび前記トレンチ底部保護層の何れとも接しない大きさに形成され、
    前記空乏化抑制層の水平方向の位置は、前記トレンチの側壁までの水平方向の距離が、前記トレンチの側壁の結晶面の面方位に合わせて異なるように設定され、その不純物濃度は前記半導体層よりも高く設定される半導体装置。
  6. 前記空乏化抑制層の位置は、
    第1の電子移動度を有する結晶面で構成される第1の側壁までの水平方向の距離が、前記第1の電子移動度よりも低い第2の電子移動度を有する結晶面で構成される第2の側壁までの水平方向の距離よりも広くなるように設定される、請求項記載の半導体装置。
  7. 前記空乏化抑制層は、
    第2導電型の耐圧維持層を有する、請求項1から請求項6の何れか1項に記載の半導体装置。
  8. 前記耐圧維持層は、前記トレンチ底部保護層と接続される、請求項記載の半導体装置。
  9. 前記耐圧維持層は、
    前記空乏化抑制層の水平方向の中央部分に設けられる、請求項7または請求項8記載の半導体装置。
  10. 前記第1の主電極は、
    前記コンタクトホールを介して前記第1および第2の半導体領域とオーミック接触するように設けられる、請求項1から請求項9の何れか1項に記載の半導体装置。
  11. 請求項1から請求項10の何れか1項に記載の半導体装置を有し、入力される電力を変換して出力する主変換回路と、
    前記半導体装置を駆動する駆動信号を前記半導体装置に出力する駆動回路と、
    前記駆動回路を制御する制御信号を前記駆動回路に出力する制御回路と、を備えた電力変換装置。
JP2018514108A 2016-04-27 2017-01-18 半導体装置および電力変換装置 Active JP6490305B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016088733 2016-04-27
JP2016088733 2016-04-27
PCT/JP2017/001444 WO2017187670A1 (ja) 2016-04-27 2017-01-18 半導体装置および電力変換装置

Publications (2)

Publication Number Publication Date
JPWO2017187670A1 JPWO2017187670A1 (ja) 2018-09-27
JP6490305B2 true JP6490305B2 (ja) 2019-03-27

Family

ID=60161360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018514108A Active JP6490305B2 (ja) 2016-04-27 2017-01-18 半導体装置および電力変換装置

Country Status (5)

Country Link
US (1) US11158704B2 (ja)
JP (1) JP6490305B2 (ja)
CN (1) CN109075201B (ja)
DE (1) DE112017002221T5 (ja)
WO (1) WO2017187670A1 (ja)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7033889B2 (ja) * 2017-11-10 2022-03-11 三菱電機株式会社 電力用半導体装置、電力用半導体装置の製造方法および電力変換装置
JP7143085B2 (ja) * 2018-01-31 2022-09-28 三菱電機株式会社 半導体装置、電力変換装置及び半導体装置の製造方法
JP7207512B2 (ja) * 2018-01-31 2023-01-18 三菱電機株式会社 半導体装置、電力変換装置及び半導体装置の製造方法
JP7076222B2 (ja) * 2018-02-21 2022-05-27 三菱電機株式会社 半導体装置およびその製造方法、電力変換装置
DE112018007243T5 (de) 2018-03-08 2020-11-19 Mitsubishi Electric Corporation Halbleiterelement, halbleitereinheit, leistungswandlervorrichtung und verfahren zur herstellung eines halbleiterelements
US11251299B2 (en) * 2018-03-28 2022-02-15 Mitsubishi Electric Corporation Silicon carbide semiconductor device and manufacturing method of same
JP7055052B2 (ja) * 2018-04-05 2022-04-15 三菱電機株式会社 半導体装置および電力変換装置
JP7259215B2 (ja) * 2018-06-01 2023-04-18 富士電機株式会社 絶縁ゲート型半導体装置及び絶縁ゲート型半導体装置の製造方法
JP7210182B2 (ja) * 2018-07-26 2023-01-23 株式会社東芝 半導体装置、インバータ回路、駆動装置、車両、及び、昇降機
US10833174B2 (en) * 2018-10-26 2020-11-10 Nxp Usa, Inc. Transistor devices with extended drain regions located in trench sidewalls
US10749023B2 (en) 2018-10-30 2020-08-18 Nxp Usa, Inc. Vertical transistor with extended drain region
US10749028B2 (en) 2018-11-30 2020-08-18 Nxp Usa, Inc. Transistor with gate/field plate structure
JP7279394B2 (ja) 2019-02-15 2023-05-23 富士電機株式会社 半導体装置および半導体装置の製造方法
CN110767752A (zh) * 2019-10-31 2020-02-07 中国科学院长春光学精密机械与物理研究所 一种新型结构的底部沟槽栅极GaN-MOSFET器件及其制备方法
US11387348B2 (en) 2019-11-22 2022-07-12 Nxp Usa, Inc. Transistor formed with spacer
US11329156B2 (en) 2019-12-16 2022-05-10 Nxp Usa, Inc. Transistor with extended drain region
JP7458217B2 (ja) * 2020-03-19 2024-03-29 株式会社東芝 半導体装置、半導体装置の製造方法、インバータ回路、駆動装置、車両、及び、昇降機
US11075110B1 (en) 2020-03-31 2021-07-27 Nxp Usa, Inc. Transistor trench with field plate structure
US11217675B2 (en) 2020-03-31 2022-01-04 Nxp Usa, Inc. Trench with different transverse cross-sectional widths
EP3930006A1 (en) 2020-06-24 2021-12-29 Infineon Technologies AG Semiconductor device including trench gate structure and buried shielding region and method of manufacturing
WO2022202041A1 (ja) * 2021-03-23 2022-09-29 ローム株式会社 半導体装置
CN113972264B (zh) * 2021-12-27 2022-03-15 南京芯舟科技有限公司 一种电流防护型半导体器件
JP2023172270A (ja) * 2022-05-23 2023-12-06 株式会社 日立パワーデバイス 半導体装置およびそれを用いた電力変換装置
CN116646383A (zh) * 2023-07-27 2023-08-25 深圳芯能半导体技术有限公司 一种具高短路承受力的沟槽栅igbt芯片及其制作方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH675966A5 (ja) * 1987-02-20 1990-11-30 Firmenich & Cie
US5488236A (en) * 1994-05-26 1996-01-30 North Carolina State University Latch-up resistant bipolar transistor with trench IGFET and buried collector
JP3859821B2 (ja) * 1997-07-04 2006-12-20 株式会社半導体エネルギー研究所 半導体装置
JP4564362B2 (ja) 2004-01-23 2010-10-20 株式会社東芝 半導体装置
JP2009094203A (ja) 2007-10-05 2009-04-30 Denso Corp 炭化珪素半導体装置
CN101694850B (zh) * 2009-10-16 2011-09-14 电子科技大学 一种具有p型浮空层的载流子存储槽栅igbt
CN102969350B (zh) * 2012-12-07 2016-04-20 株洲南车时代电气股份有限公司 一种沟槽栅型igbt芯片
DE112013006303T5 (de) * 2012-12-28 2015-09-17 Mitsubishi Electric Corporation Siliciumcarbid-Halbleitervorrichtung und Verfahren zum Herstellen derselben
US9337271B2 (en) * 2012-12-28 2016-05-10 Mitsubishi Electric Corporation Silicon-carbide semiconductor device and manufacturing method therefor
WO2014207793A1 (ja) * 2013-06-24 2014-12-31 株式会社日立製作所 半導体装置およびその製造方法
JP2015072999A (ja) * 2013-10-02 2015-04-16 株式会社デンソー 炭化珪素半導体装置
WO2015049815A1 (ja) * 2013-10-04 2015-04-09 三菱電機株式会社 炭化珪素半導体装置およびその製造方法
JP6207627B2 (ja) 2013-11-13 2017-10-04 三菱電機株式会社 半導体装置
CN107078159B (zh) * 2014-09-26 2020-07-10 三菱电机株式会社 半导体装置
US10468487B2 (en) * 2015-10-16 2019-11-05 Mitsubishi Electric Corporation Semiconductor device
JP7214508B2 (ja) * 2019-03-01 2023-01-30 株式会社東芝 半導体装置

Also Published As

Publication number Publication date
CN109075201B (zh) 2021-05-07
CN109075201A (zh) 2018-12-21
WO2017187670A1 (ja) 2017-11-02
DE112017002221T5 (de) 2019-01-10
US11158704B2 (en) 2021-10-26
JPWO2017187670A1 (ja) 2018-09-27
US20190206987A1 (en) 2019-07-04

Similar Documents

Publication Publication Date Title
JP6490305B2 (ja) 半導体装置および電力変換装置
CN110709997B (zh) 半导体装置以及电力变换装置
US11637184B2 (en) Silicon carbide semiconductor device, power converter, method of manufacturing silicon carbide semiconductor device, and method of manufacturing power converter
JP7068916B2 (ja) 炭化珪素半導体装置、電力変換装置、および炭化珪素半導体装置の製造方法
WO2017175460A1 (ja) 半導体装置および電力変換装置
WO2021014570A1 (ja) 炭化珪素半導体装置、電力変換装置および炭化珪素半導体装置の製造方法
JP6641523B2 (ja) 半導体装置および電力変換装置
JP6991370B2 (ja) 半導体装置及び電力変換装置
WO2020084736A1 (ja) 半導体装置、電力変換装置及び半導体装置の製造方法
JP7275407B1 (ja) 炭化珪素半導体装置、電力変換装置および炭化珪素半導体装置の製造方法
WO2022168240A1 (ja) 炭化珪素半導体装置および電力変換装置
JP6377309B1 (ja) 炭化珪素半導体装置、電力変換装置、炭化珪素半導体装置の製造方法、および電力変換装置の製造方法
JP7370476B2 (ja) 炭化珪素半導体装置の製造方法、炭化珪素半導体装置および電力変換装置
JP6947338B1 (ja) 炭化珪素半導体装置および電力変換装置の製造方法
JP7127748B2 (ja) 炭化珪素半導体装置、電力変換装置および炭化珪素半導体装置の製造方法
JP7094439B2 (ja) 炭化珪素半導体装置および電力変換装置
WO2022249397A1 (ja) 半導体装置及び電力変換装置
WO2024038504A1 (ja) 炭化珪素半導体装置、電力変換装置および炭化珪素半導体装置の製造方法
WO2024024073A1 (ja) 半導体装置、電力変換装置および半導体装置の製造方法
WO2022034636A1 (ja) 炭化珪素半導体装置および電力変換装置
JP2023136823A (ja) 半導体装置、半導体装置の製造方法、インバータ回路、駆動装置、車両、及び、昇降機

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180521

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190226

R150 Certificate of patent or registration of utility model

Ref document number: 6490305

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250