CN110767752A - 一种新型结构的底部沟槽栅极GaN-MOSFET器件及其制备方法 - Google Patents

一种新型结构的底部沟槽栅极GaN-MOSFET器件及其制备方法 Download PDF

Info

Publication number
CN110767752A
CN110767752A CN201911050371.XA CN201911050371A CN110767752A CN 110767752 A CN110767752 A CN 110767752A CN 201911050371 A CN201911050371 A CN 201911050371A CN 110767752 A CN110767752 A CN 110767752A
Authority
CN
China
Prior art keywords
type gan
layer
epitaxial layer
thickness
gan epitaxial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911050371.XA
Other languages
English (en)
Inventor
黎大兵
刘新科
孙晓娟
贾玉萍
石芝铭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun Institute of Optics Fine Mechanics and Physics of CAS
Original Assignee
Changchun Institute of Optics Fine Mechanics and Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun Institute of Optics Fine Mechanics and Physics of CAS filed Critical Changchun Institute of Optics Fine Mechanics and Physics of CAS
Priority to CN201911050371.XA priority Critical patent/CN110767752A/zh
Publication of CN110767752A publication Critical patent/CN110767752A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • H01L29/7828Vertical transistors without inversion channel, e.g. vertical ACCUFETs, normally-on vertical MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3738Semiconductor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66666Vertical transistors

Abstract

一种新型结构的底部沟槽栅极GaN‑MOSFET器件及其制备方法涉及高功率开关半导体器件和制造该半导体器件的技术领域,该器件从下至上依次为衬底、n型GaN外延层、P型GaN外延层和在P型GaN外延层中离子注入一层n型GaN,在器件中形成底部沟槽结构,侧壁为SixNy/SiO2结构,沟槽深度穿过P型GaN外延层,到达n型GaN外延层,在沟槽结构底部生长一层P型GaN;在器件上表面和沟槽结构表面制作栅极绝缘层SixNy/SiO2双层结构,制作与上表面P型GaN外延层接触的源极接触电极Ti/Al,与栅极绝缘层SixNy/SiO2接触的栅极电极Ni/Au,与衬底接触的漏极电极Al。本发明保护了底部氧化物,有效降低了底部氧化物的最大电场,其具有更低能耗损失,更高的器件击穿电压,在较高温条件下工作以及器件良好的散热性能等优点。

Description

一种新型结构的底部沟槽栅极GaN-MOSFET器件及其制备方法
技术领域
本发明涉及高功率开关的半导体器件和制造该半导体器件的技术领域,具体涉及一种新型结构的底部沟槽栅极GaN-MOSFET器件及其制备方法。
背景技术
现如今,21世纪大家追求的是高效节约能源,在过去30年间,基于硅的MOSFET器件性能获得了超过两个数量级的改善,但如今也已到达其性能平稳期。除硅基以外,现如今氮化物基半导体来制作也是场效应晶体管很好的选择,在氮化镓(GaN)技术出现之初,它被引进为可以替代MOSFET的卓越技术,之后数年间,GaN技术有希望成为替代日益老化的功率MOSFET的创新技术。基于GaN技术的功率集成电路及模拟集成电路将可以具有与GaN晶体管相同的优势,从而满足新型产品的使用需求,需要采用新型MOSFET结构来解决不断涌现的功率挑战,近年来,具有垂直结构的晶体管作为功率控制晶体管受到关注。在此,提出采用一种新型GaN MOSFET器件结构。
GaN材料的研究与应用是目前全球半导体研究的前沿和热点,GaN是一种直接能隙的半导体,自1990年起常用在发光二极管中,此化合物结构类似纤锌矿,硬度很高。氮化镓的能隙很宽,为3.4电子伏特,可以用在高功率、高速的光电元件中,是研制微电子器件、光电子器件的新型半导体材料,并与SIC、金刚石等半导体材料一起,被誉为是继第一代Ge、Si半导体材料、第二代GaAs、InP化合物半导体材料之后的第三代半导体材料。GaN材料系列具有低的热产生率和高的击穿电场,是研制高温大功率电子器件和高频微波器件的重要材料。目前,随着分子束外延技术在GaN材料应用中的进展和关键薄膜生长技术的突破,成功地生长出了GaN多种异质结构。用GaN材料制备出了金属场效应晶体管(MESFET)、异质结场效应晶体管(HFET)、调制掺杂场效应晶体管(MODFET)等新型器件,其中最重要的是金属氧化物半导体场效应晶体管(MOSFET)器件。
发明内容
为了解决现有技术中存在的问题,本发明提供了一种新型结构的底部沟槽栅极GaN-MOSFET器件及其制备方法,在垂直沟槽下方生长一层P型GaN,保护了底部氧化物,有效降低了底部氧化物的最大电场,实现更低能耗损失,更高的器件击穿电压,具有良好导热性使器件以及能在较高温条件下工作。
本发明解决技术问题所采用的技术方案如下:
一种新型结构的底部沟槽栅极GaN-MOSFET器件,该器件从下至上依次为衬底、n型GaN外延层、P型GaN外延层和在P型GaN外延层中离子注入一层n型GaN,在器件中形成底部沟槽结构,侧壁为SixNy/SiO2结构,沟槽深度穿过P型GaN外延层,到达n型GaN外延层,在所述沟槽结构底部生长一层P型GaN;在器件上表面和沟槽结构表面制作栅极绝缘层SixNy/SiO2双层结构,制作与上表面P型GaN外延层接触的源极接触电极Ti/Al,与栅极绝缘层SixNy/SiO2接触的栅极电极Ni/Au,与衬底接触的漏极电极Al。
优选的,所述衬底的材料为:氮化镓、碳化硅或氯化铝衬底。
优选的,n型GaN外延层、P型GaN外延层和在P型GaN外延层中离子注入一层n型GaN生长方法为金属有机化合物气相沉积或氢化物气相外延或电子束外延法。
优选的,所述n型GaN外延层厚度为400-900nm,载流子浓度约为5x1016-5x1017cm-3;所述p型GaN外延层厚度为300-600nm,载流子浓度约为1x1018-5x1018cm-3;所述离子注入一层n型GaN厚度为100-250nm,载流子浓度约为1x1018-3x1019cm-3,位于沟槽底部的p型GaN层厚度为100-200nm,载流子浓度约为3x1018-5x1019cm-3
优选的,所述底部沟槽结构的倾斜角为50°-90°。
一种新型结构的底部沟槽栅极GaN-MOSFET器件的制备方法,该方法包括如下步骤:
步骤一:在衬底上通过金属有机化合物气相沉积或氢化物气相外延或电子束外延法依次生长n型GaN外延层、p型GaN外延层和在P型GaN外延层中离子注入一层n型GaN;
步骤二:在器件上表面通过等离子体增强化学气相沉积或原子层沉积生长一层SiN;
步骤三:通过干法或者湿法刻蚀去掉部分SiN后,通过干法刻蚀形成底部沟槽结构,其中沟槽深度穿过P型GaN外延层,到达n型GaN外延层,;
步骤四:去掉器件表面剩余的SiN后,在所述沟槽底部生长一层p型GaN;
步骤五:在所述沟槽内和器件的部分上表面用电子回旋共振等离子体沉积SixNy/SiO2组成的双层结构作为栅极绝缘体;
步骤六:在器件的其他部分上表面形成Ni/Au作为栅极电极,使用剥离脱离工艺在600℃烧结形成用于源极接触的电极Ti/Al,在衬底底面形成漏极电极Al,完成一种新型结构的底部沟槽栅极GaN-MOSFET器件的制作方法。
优选的,所述步骤一中述n型GaN外延层厚度为400-900nm,载流子浓度约为5x1016-5x1017cm-3;所述p型GaN外延层厚度为300-600nm,载流子浓度约为1x1018-5x1018cm-3;所述离子注入一层n型GaN厚度为100-250nm,载流子浓度约为1x1018-3x1019cm-3
优选的,所述步骤一中,氢基硅烷用作n型GaN掺杂的Si原料,而环戊二烯基镁可以用作p型GaN掺杂的Mg原料。
优选的,所述位于沟槽底部的p型GaN层厚度为100-200nm,载流子浓度约为3x1018-5x1019cm-3
优选的,所述步骤五中,所述SixNy厚度为1nm-8nm,SiO2厚度为92nm-105nm。
本发明的有益效果是:本发明提出的底部沟槽栅极GaN-MOSFET器件结构,在垂直沟槽下方生长了一层P型GaN,保护了底部氧化物,有效降低了底部氧化物的最大电场,其具有更低能耗损失,更高的器件击穿电压,在较高温条件下工作以及器件良好的散热性能等优点。
附图说明
图1本发明一种新型结构的底部沟槽栅极GaN-MOSFET器件的结构示意图。
图2本发明一种新型结构的底部沟槽栅极GaN-MOSFET器件的制备方法步骤一和步骤二示意图。
图3本发明一种新型结构的底部沟槽栅极GaN-MOSFET器件的制备方法步骤三示意图。
图4本发明一种新型结构的底部沟槽栅极GaN-MOSFET器件的制备方法步骤四示意图。
具体实施方式
下面结合附图和实施例对本发明做进一步详细说明。
如图1所示,一种新型结构的底部沟槽栅极GaN-MOSFET器件,该器件从下至上依次为衬底、n型GaN外延层、P型GaN外延层和在P型GaN外延层中离子注入一层n型GaN,所述衬底的材料为:氮化镓、碳化硅或氯化铝衬底。本实施例中,衬底选用双面抛光的GaN材料。所述n型GaN外延层厚度为400-900nm,载流子浓度约为5x1016-5x1017cm-3,本实施例中,n型GaN外延层厚度为700nm,载流子浓度约为1x1017cm-3;所述p型GaN外延层厚度为300-600nm,载流子浓度约为1x1018-5x1018cm-3,本实施例中,p型GaN外延层厚度为500nm,载流子浓度约为2x1018cm-3;所述离子注入一层n型GaN厚度为100-250nm,载流子浓度约为1x1018-3x1019cm-3,本实施例中,n型GaN外延层厚度为150nm,载流子浓度约为3x1018;在器件中形成底部沟槽结构,侧壁为SixNy/SiO2结构,沟槽深度穿过P型GaN外延层,到达n型GaN外延层,在所述沟槽结构底部生长一层P型GaN;位于沟槽底部的p型GaN层厚度为100-200nm,载流子浓度约为3x1018-5x1019cm-3,本实施例中,p型GaN外延层厚度为100nm,载流子浓度约为1x1019cm-3。所述底部沟槽结构的底角可以为直角,或者其他角度,其中倾斜角的范围为50°-90°。
在器件上表面和沟槽结构表面制作栅极绝缘层SixNy/SiO2双层结构,其中SixNy厚度范围可以从1nm至8nm,本实施例中,SixNy厚度约为1nm,SiO2厚度范围可以从92nm-105nm,本实施例中,SiO2的厚度约为99nm。制作与上表面P型GaN外延层接触的源极接触电极Ti/Al,本实施例中,Ti的厚度为10nm,Al的厚度为240nm,与栅极绝缘层SixNy/SiO2接触的栅极电极Ni/Au,本实施例中,Ni的厚度为15nm,Au的厚度为125nm,与衬底接触的漏极电极Al,本实施例中,Al的厚度为250nm。
一种新型结构的底部沟槽栅极GaN-MOSFET器件的制备方法,该方法包括如下步骤:
步骤一:选用双面抛光的GaN衬底,在所述GaN衬底上通过金属有机化合物气相沉积(MOCVD)或氢化物气相外延或电子束外延法(MBE)依次生长n型GaN外延层、p型GaN外延层和在P型GaN外延层中离子注入一层n型GaN;所述n型GaN外延层厚度为400-900nm,载流子浓度约为5x1016-5x1017cm-3,本实施例中,n型GaN外延层厚度为700nm,载流子浓度约为1x1017cm-3;所述p型GaN外延层厚度为300-600nm,载流子浓度约为1x1018-5x1018cm-3,本实施例中,p型GaN外延层厚度为500nm,载流子浓度约为2x1018cm-3;所述离子注入一层n型GaN厚度为100-250nm,载流子浓度约为1x1018-3x1019cm-3,本实施例中,n型GaN外延层厚度为150nm,载流子浓度约为3x1018。氢基硅烷用作n型GaN掺杂的Si原料,而环戊二烯基镁可以用作p型GaN掺杂的Mg原料。
步骤二:利用等离子体增强化学气相沉积(PECVD)或原子层沉积(ALD)方法在GaN基器件结构表面生长一层20nm的SiN,以保护结构表面。
步骤三:通过干法或者湿法刻蚀去掉部分SiN后,通过Cl2/SiCl4干法刻蚀形成底部沟槽结构,侧壁为SixNy/SiO2结构,其中沟槽深度穿过P型GaN外延层,到达n型GaN外延层,沟槽底角的范围为50°-90°,本实施例中,底角的值为90°;
步骤四:在所述沟槽底部生长一层p型GaN后,去掉器件表面剩余的SiN;位于沟槽底部的p型GaN层厚度为100-200nm,载流子浓度约为3x1018-5x1019cm-3,本实施例中,p型GaN外延层厚度为100nm,载流子浓度约为1x1019cm-3
步骤五:在所述沟槽内和器件的部分上表面用电子回旋共振(ECR)等离子体沉积SixNy/SiO2组成的双层结构作为栅极绝缘体,其中SixNy厚度范围为1nm至8nm,SiO2厚度范围为92nm-105nm,本实施例中,SixNy厚度约为1nm,SiO2约为99nm。
步骤六:在器件的其他部分上表面形成Ni/Au作为栅极电极,使用剥离脱离工艺在600℃烧结形成用于源极接触的电极Ti/Al,在衬底底面形成漏极电极Al,本实施例中,Ti的厚度为10nm,Al的厚度为240nm,与栅极绝缘层SixNy/SiO2接触的栅极电极Ni/Au,本实施例中,Ni的厚度为15nm,Au的厚度为125nm,与衬底接触的漏极电极Al,本实施例中,Al的厚度为250nm,完成一种新型结构的底部沟槽栅极GaN-MOSFET器件的制作方法。

Claims (10)

1.一种新型结构的底部沟槽栅极GaN-MOSFET器件,该器件从下至上依次为衬底、n型GaN外延层、P型GaN外延层和在P型GaN外延层中离子注入一层n型GaN,其特征在于,在器件中形成底部沟槽结构,侧壁为SixNy/SiO2结构,沟槽深度穿过P型GaN外延层,到达n型GaN外延层,在所述沟槽结构底部生长一层P型GaN;在器件上表面和沟槽结构表面制作栅极绝缘层SixNy/SiO2双层结构,制作与上表面P型GaN外延层接触的源极接触电极Ti/Al,与栅极绝缘层SixNy/SiO2接触的栅极电极Ni/Au,与衬底接触的漏极电极Al。
2.根据权利要求1所述的一种新型结构的底部沟槽栅极GaN-MOSFET器件,其特征在于,所述衬底的材料为:氮化镓、碳化硅或氯化铝衬底。
3.根据权利要求1所述的一种新型结构的底部沟槽栅极GaN-MOSFET器件,其特征在于,n型GaN外延层、P型GaN外延层和在P型GaN外延层中离子注入一层n型GaN生长方法为金属有机化合物气相沉积或氢化物气相外延或电子束外延法。
4.根据权利要求1所述的一种新型结构的底部沟槽栅极GaN-MOSFET器件,其特征在于,所述n型GaN外延层厚度为400-900nm,载流子浓度约为5x1016-5x1017cm-3;所述p型GaN外延层厚度为300-600nm,载流子浓度约为1x1018-5x1018cm-3;所述离子注入一层n型GaN厚度为100-250nm,载流子浓度约为1x1018-3x1019cm-3,位于沟槽底部的p型GaN层厚度为100-200nm,载流子浓度约为3x1018-5x1019cm-3
5.根据权利要求1所述的一种新型结构的底部沟槽栅极GaN-MOSFET器件,其特征在于,所述底部沟槽结构的倾斜角为50o-90o。
6.基于权利要求1-5所述的一种新型结构的底部沟槽栅极GaN-MOSFET器件的制备方法,其特征在于,该方法包括如下步骤:
步骤一:在衬底上通过金属有机化合物气相沉积或氢化物气相外延或电子束外延法依次生长n型GaN外延层、p型GaN外延层和在P型GaN外延层中离子注入一层n型GaN;
步骤二:在器件上表面通过等离子体增强化学气相沉积或原子层沉积生长一层SiN;
步骤三:通过干法或者湿法刻蚀去掉部分SiN后,通过干法刻蚀形成底部沟槽结构,侧壁为SixNy/SiO2结构,其中沟槽深度穿过P型GaN外延层,到达n型GaN外延层,;
步骤四:在所述沟槽底部生长一层p型GaN后,去掉器件表面剩余的SiN;
步骤五:在所述沟槽内和器件的部分上表面用电子回旋共振等离子体沉积SixNy/SiO2组成的双层结构作为栅极绝缘体;
步骤六:在器件的其他部分上表面形成Ni/Au作为栅极电极,使用剥离脱离工艺在600℃烧结形成用于源极接触的电极Ti/Al,在衬底底面形成漏极电极Al,完成一种新型结构的底部沟槽栅极GaN-MOSFET器件的制作方法。
7.根据权利要求6所述的制作方法,其特征在于,所述步骤一中述n型GaN外延层厚度为400-900nm,载流子浓度约为5x1016-5x1017cm-3;所述p型GaN外延层厚度为300-600nm,载流子浓度约为1x1018-5x1018cm-3;所述离子注入一层n型GaN厚度为100-250nm,载流子浓度约为1x1018-3x1019cm-3
8.根据权利要求6所述的制作方法,其特征在于,所述步骤一中,氢基硅烷用作n型GaN掺杂的Si原料,而环戊二烯基镁可以用作p型GaN掺杂的Mg原料。
9.根据权利要求6所述的制作方法,其特征在于,所述步骤四中,所述位于沟槽底部的p型GaN层厚度为100-200nm,载流子浓度约为3x1018-5x1019cm-3
10.根据权利要求6所述的制作方法,其特征在于,所述步骤五中,所述SixNy厚度为1nm-8nm,SiO2厚度为92nm-105nm。
CN201911050371.XA 2019-10-31 2019-10-31 一种新型结构的底部沟槽栅极GaN-MOSFET器件及其制备方法 Pending CN110767752A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911050371.XA CN110767752A (zh) 2019-10-31 2019-10-31 一种新型结构的底部沟槽栅极GaN-MOSFET器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911050371.XA CN110767752A (zh) 2019-10-31 2019-10-31 一种新型结构的底部沟槽栅极GaN-MOSFET器件及其制备方法

Publications (1)

Publication Number Publication Date
CN110767752A true CN110767752A (zh) 2020-02-07

Family

ID=69334871

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911050371.XA Pending CN110767752A (zh) 2019-10-31 2019-10-31 一种新型结构的底部沟槽栅极GaN-MOSFET器件及其制备方法

Country Status (1)

Country Link
CN (1) CN110767752A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102184960A (zh) * 2011-04-22 2011-09-14 上海宏力半导体制造有限公司 功率金属氧化物半导体场效应管及其形成方法
CN102386223A (zh) * 2011-11-01 2012-03-21 中山大学 GaN高阈值电压增强型MOSHFET器件及制备方法
CN103262248A (zh) * 2010-12-10 2013-08-21 三菱电机株式会社 半导体装置及其制造方法
US20180061934A1 (en) * 2016-08-24 2018-03-01 Fuji Electric Co., Ltd. Vertical mosfet
CN108962995A (zh) * 2018-07-17 2018-12-07 深圳大学 复合GaN基膜和MOSFET器件
CN109075201A (zh) * 2016-04-27 2018-12-21 三菱电机株式会社 半导体装置及电力变换装置
CN110366782A (zh) * 2017-03-06 2019-10-22 三菱电机株式会社 碳化硅半导体装置、电力变换装置、碳化硅半导体装置的制造方法以及电力变换装置的制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103262248A (zh) * 2010-12-10 2013-08-21 三菱电机株式会社 半导体装置及其制造方法
CN102184960A (zh) * 2011-04-22 2011-09-14 上海宏力半导体制造有限公司 功率金属氧化物半导体场效应管及其形成方法
CN102386223A (zh) * 2011-11-01 2012-03-21 中山大学 GaN高阈值电压增强型MOSHFET器件及制备方法
CN109075201A (zh) * 2016-04-27 2018-12-21 三菱电机株式会社 半导体装置及电力变换装置
US20180061934A1 (en) * 2016-08-24 2018-03-01 Fuji Electric Co., Ltd. Vertical mosfet
CN110366782A (zh) * 2017-03-06 2019-10-22 三菱电机株式会社 碳化硅半导体装置、电力变换装置、碳化硅半导体装置的制造方法以及电力变换装置的制造方法
CN108962995A (zh) * 2018-07-17 2018-12-07 深圳大学 复合GaN基膜和MOSFET器件

Similar Documents

Publication Publication Date Title
US10347723B2 (en) Method of manufacturing a semiconductor device having graphene material
US11699748B2 (en) Normally-off HEMT transistor with selective generation of 2DEG channel, and manufacturing method thereof
CN107851663B (zh) 半导体器件和用于制造半导体器件的方法
US8487316B2 (en) Method of manufacturing an integrated semiconductor substrate structure with device areas for definition of GaN-based devices and CMOS devices
US7915646B2 (en) Nitride semiconductor material, semiconductor element, and manufacturing method thereof
US20150270356A1 (en) Vertical nitride semiconductor device
US10734486B2 (en) Lateral high electron mobility transistor with integrated clamp diode
CN111512415B (zh) 用于工程化衬底上的集成式器件的系统和方法
CN101022128A (zh) 氮化物半导体装置及其制作方法
US9391186B2 (en) Semiconductor device
JP2012094688A (ja) 半導体装置およびその製造方法
CN109390212A (zh) 氮化物半导体器件的形成工艺
KR20160100918A (ko) 헤테로 접합으로부터 제조된 hemt
CN115472689A (zh) 一种具有超结结构的高电子迁移率晶体管及其制备方法
US10297456B2 (en) Dielectric structures for nitride semiconductor devices
TWI483397B (zh) 功率裝置及製造該功率裝置之方法
CN109300974B (zh) 一种非极性InAlN/GaN高电子迁移率晶体管及制备方法
CN212542443U (zh) 一种氮化镓晶体管结构及氮化镓基外延结构
CN110767752A (zh) 一种新型结构的底部沟槽栅极GaN-MOSFET器件及其制备方法
CN116153993A (zh) 半导体结构及其形成方法
US20240021724A1 (en) GaN TRENCH MOSFET AND FABRICATION METHOD
TWI763272B (zh) 增強型電晶體及其製造方法
KR101375685B1 (ko) 질화물 반도체 소자 및 그 제조 방법
JP2011210781A (ja) 縦型AlGaN/GaN−HEMTおよびその製造方法
TWI726004B (zh) 鑽石電子元件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200207