JP6357655B2 - 照明装置 - Google Patents

照明装置 Download PDF

Info

Publication number
JP6357655B2
JP6357655B2 JP2015528105A JP2015528105A JP6357655B2 JP 6357655 B2 JP6357655 B2 JP 6357655B2 JP 2015528105 A JP2015528105 A JP 2015528105A JP 2015528105 A JP2015528105 A JP 2015528105A JP 6357655 B2 JP6357655 B2 JP 6357655B2
Authority
JP
Japan
Prior art keywords
light
conversion unit
emitted
light conversion
phosphor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015528105A
Other languages
English (en)
Other versions
JPWO2015011857A1 (ja
Inventor
山中 一彦
一彦 山中
森本 廉
廉 森本
純久 長崎
純久 長崎
白石 誠吾
誠吾 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of JPWO2015011857A1 publication Critical patent/JPWO2015011857A1/ja
Application granted granted Critical
Publication of JP6357655B2 publication Critical patent/JP6357655B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0087Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for illuminating phosphorescent or fluorescent materials, e.g. using optical arrangements specifically adapted for guiding or shaping laser beams illuminating these materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0009Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0052Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a laser diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32341Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm blue laser based on GaN or GaP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Led Device Packages (AREA)
  • Lenses (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Description

本開示は、光源から出射した光を光変換素子に照射することで発生する光を利用する照明装置に関する。
従来この種の照明装置は、図15に示すように、発光素子1001と、蛍光体ホイール1002と、電子駆動ユニット1003とを備える。蛍光体ホイール1002は、発光素子1001から出射された第1の光を受けて第2の光を発する。電子駆動ユニット1003は、発光素子1001から出射される第1の光の光量を制御する。
発光素子1001は、電子駆動ユニット1003のパルス駆動電流によって駆動される。このパルス駆動電流に従って、発光素子1001は、第1の光であるパルス光ビームを発する。第1の光のパルスの長さ及び周波数は、蛍光体ホイール1002が発する第2の光が白色光であるように調整される。
例えば、蛍光体ホイール1002の青色セクションを通過する第1の光のパルス長が増加すると、第2の光の発光色は青色側にずらされる。
なお、この出願に関する先行技術文献情報としては、例えば、特許文献1が知られている。
特表2009−539219号公報
上記のような構成では、蛍光体ホイール1002の回転にパルス駆動電流を同期させることが必要になる。しかし、蛍光体ホイール1002の回転機構が長時間動作により劣化すると、蛍光体ホイール1002の回転とパルス駆動電流との同期が安定しない。そのため、照明装置からの出射光の色温度の調整が安定しない。
本開示の目的は、照明装置の色温度を安定して調整可能とすることである。
上記課題を解決するために本開示の照明装置は、半導体発光素子と、光変換素子とを備える。半導体発光素子が第1の光導波路と第2の光導波路とを有する。光変換素子が第1の光変換部と第2の光変換部とを有する。第1の光導波路から出射される第1の出射光が第1の光変換部に入射し、第2の光導波路から出射される第2の出射光が第2の光変換部に入射する。第1の光導波路に印加される第1の電力と、第2の光導波路に印加される第2の電力とが独立している。
この構成により、第1の光変換部に入射する光の強度と、第2の光変換部に入射する光の強度とを独立して変化させることができる。その際、光変換素子の回転を必要としないため、照明装置からの出射光の色温度を安定して調整することができる。
図1は、本開示の実施の形態1における照明装置の構成を示す模式図である。 図2は、本開示の実施の形態1における照明装置の光変換素子および第2の集光レンズを示す模式図である。 図3Aは、本開示の実施の形態1における照明装置の白色光の色温度が5500Kのときの発光スペクトルを示す図である。 図3Bは、本開示の実施の形態1における照明装置の白色光の色温度が5000Kのときの発光スペクトルを示す図である。 図3Cは、本開示の実施の形態1における照明装置の白色光の色温度が4300Kのときの発光スペクトルを示す図である。 図4は、本開示の実施の形態1における照明装置の発光特性の色度図である。 図5は、本開示の実施の形態1における照明装置の変形例にかかる光変換素子を示す模式図である。 図6は、本開示の実施の形態2における照明装置の構成を示す模式図である。 図7は、本開示の実施の形態2における照明装置の光変換素子及び第2の集光レンズを示す模式図である。 図8は、本開示の実施の形態2における照明装置の発光スペクトルを示す図である。 図9は、本開示の実施の形態2における照明装置の発光特性を示す色度図である。 図10Aは、本開示の実施の形態2における照明装置の変形例にかかる発光スペクトルを示す図である。 図10Bは、本開示の実施の形態2における照明装置の変形例の発光特性を示す色度図である。 図11は、本開示の実施の形態3における照明装置の構成を示す模式図である。 図12は、本開示の実施の形態4における照明装置の構成を示す模式図である。 図13は、本開示の実施の形態4における照明装置の発光特性を示す色度図である。 図14は、本開示の実施の形態5における照明装置の構成を示す模式図である。 図15は、従来の照明装置の構成を示す模式図である。
以下、本開示の実施の形態について、図面を参照しながら説明する。
(実施の形態1)
図1は、実施の形態1における照明装置1の構造を示す模式図である。実施の形態1における照明装置1は、半導体発光素子11と、光変換素子50とを備える。半導体発光素子11が第1の光導波路12aと第2の光導波路12cとを有する。光変換素子50が第1の光変換部51Bと第2の光変換部51Yとを有する。第1の光導波路12aから出射される第1の出射光61aが第1の光変換部51Bに入射し、第2の光導波路12cから出射される第2の出射光61cが第2の光変換部51Yに入射する。第1の光導波路12aに印加される第1の電力と、第2の光導波路12cに印加される第2の電力とが独立している。
この構成により、第1の光変換部51Bに入射する光の強度と、第2の光変換部51Yに入射する光の強度とを独立して変化させることができる。その際、光変換素子50の回転を必要としないため、照明装置からの出射光の色温度を安定して調整することができる。
以下、必須ではない任意の構成をも含めたより具体的な構成について説明する。
(構成)
まず図1および図2を用いて本実施の形態の照明装置の構成について説明する。図1は、実施の形態1における照明装置1の構造を示す図である。発光装置10に搭載される半導体発光素子11は、例えばIII族元素(Al、Ga、In)の窒化物からなる窒化物半導体レーザ素子である。半導体発光素子11は、リッジストライプ形状の第1の光導波路12aと第2の光導波路12cが平行に設けられたマルチストライプ構造を有している。発光装置10の出射方向にはコリメートレンズ20、集光レンズ40が順に配置されている。コリメートレンズ20が、半導体発光素子11からの第1の出射光61aを平行光である第1の出射光62aにし、半導体発光素子11からの第2の出射光61cを平行光である第2の出射光62cにする。その後、集光レンズ40が第1の出射光62aと第2の出射光62cを集光する。集光レンズ40の焦点位置には光変換素子50が配置される。以下、上記の構成要素についてより詳細に説明する。
(発光装置)
発光装置10は、パッケージ19と、パッケージ19に搭載される半導体発光素子11とを有する。パッケージ19は、ポスト15a、ベース15b、第1のリードピン16a、第2のリードピン16c、第3のリードピン16gなどから構成されている。
半導体発光素子11は、基板上に半導体層が積層された構造を有し、波長420nm〜500nmの光を出射する。具体的には、半導体発光素子11は、例えばn型GaN基板である基板上に、III族元素(Al、Ga、In)の窒化物である半導体層が積層された構造を有する。半導体層は、具体的には、n型クラッド層、n型光ガイド層、InGaN量子井戸層、p型光ガイド層、電子ブロック層、p型クラッド層、p型電極コンタクト層が順に積層されて構成されている。このとき窒化物半導体のn型ドーパントとしては、例えばSiやGeなどが好ましく、p型ドーパントとしてはMgなどが好ましい。
半導体発光素子11に形成される第1の光導波路12aおよび第2の光導波路12cは、例えば、半導体レーザのリッジストライプで構成されている。リッジストライプは、例えば半導体リソグラフィーによるパターン形成およびドライエッチングにより形成される。具体的には例えば、半導体層が積層されたウエハ表面に、化学気相蒸着(Chemical Vapor Deposition、略してCVD)などで図示しないSiO膜を成膜する。このSiO膜に対してフォトリソグラフィーを用いてリッジストライプのマスクパターニングを行い、ドライエッチングによりリッジ状の複数のストライプ構造を形成する。したがって、本実施形態に示す第1の光導波路12a、第2の光導波路12cの間隔はフォトリソグラフィーにより正確に制御される。続いて、第1の電極13aおよび第2の電極13cがストライプ構造の上部に形成される。第1の電極13aおよび第2の電極13cは、例えばPd、Pt、Ni、Ti、Auなどの金属のいずれか一つまたは複数を蒸着、パターニングすることで形成される。第1の電極13aと第1のリードピン16aは、金ワイヤーである第1の金属細線17aにより電気的に接続されている。第2の電極13cと第2のリードピン16cは、金ワイヤーである第2の金属細線17cにより電気的に接続されている。第1の電極13a、第2の電極13cは電気的に分離されている。
パッケージ19は、ベース15bと、このベース15bの上に配置されたポスト15aとを有する。ポスト15aには半導体発光素子11が搭載される。ベース15bは、例えば鉄もしくは銅からなる。ポスト15aは、例えば鉄もしくは銅からなる。ベース15bには開口部が形成されている。第1のリードピン16a、第2のリードピン16cが、図示されていない絶縁部材を介して開口部に固定されている。ベース15bには第3のリードピン16gが固定されている。第3のリードピン16gは、ベース15bと電気的に接続されている。第1のリードピン16aの一端が第1の金属細線17aと電気的に接続されている。第2のリードピン16cの一端が第2の金属細線17cと電気的に接続されている。第1のリードピン16aの他端と第2のリードピン16cの他端は、ベース15bに対してポスト15aと反対側に配置された配線により、外部回路71と電気的に接続されている。
なお、発光装置10は、半導体発光素子11を封止するため、窓ガラスが取り付けられたキャップ(図示せず)により気密封止されていてもよい。
(コリメートレンズ)
コリメートレンズ20は、好ましくは、例えばB270などのクラウンガラスやBK7などの硼珪酸ガラスなどからなる球面レンズもしくは非球面レンズである。コリメートレンズ20の表面には、誘電体多層膜で構成された反射防止膜が設けられている。誘電体多層膜は、半導体発光素子11の第1の出射光61a、第2の出射光61cの波長に合わせて構成される。なおコリメートレンズ20は、図示されていない筐体とともに、発光装置10のパッケージ19に固定されていてもよい。
(集光レンズ)
集光レンズ40は、例えばB270などのクラウンガラスやBK7などの硼珪酸ガラスなどの透明材料からなる、球面レンズもしくは非球面レンズである。集光レンズ40は、コリメートレンズ20から出射された第1の出射光62a、第2の出射光62cを光変換素子50の所定の位置に集光する。
(光変換素子)
次に、光変換素子50の構造について図1および図2を用いて説明する。図2は、光変換素子50および第2の集光レンズ54を示す模式図である。光変換素子50は、例えばアルミ合金材料で構成される基台55と、基台55に設けられた第1の貫通孔52B、第2の貫通孔52Yとを有する。第1の貫通孔52Bには第1の光変換部51Bが形成されている。第1の光変換部51Bは、表面に凹凸形状が形成されたガラスなどの透光部材からなる。第2の貫通孔52Yには、第2の光変換部51Yが設けられている。第2の光変換部51Yは、半導体発光素子11からの第2の出射光61cの波長を長波長に変換する蛍光体を有する。具体的には第2の光変換部51Yは、主な波長範囲が420nm〜500nmである光を、主な波長範囲が550nm〜700nmである光に変換する蛍光体を有する。この蛍光体が、例えばシリコーン、エポキシなどの有機材料もしくは、低融点ガラス、酸化アルミニウム、酸化亜鉛などの無機材料で構成されるバインダーに混合されて第2の光変換部51Yを構成している。蛍光体の具体的な例としてはCe賦活ガーネット結晶蛍光体((Y、Gd)(Ga、Al)12:Ce3+蛍光体)、Eu賦活(Ba,Sr)Si蛍光体などが挙げられる。
光変換素子50の基台55における集光レンズ40側の面には、ダイクロイックミラー53が設けられている。ダイクロイックミラー53は、例えば波長430nm以下を透過し、波長430nm以上の光を反射する。ダイクロイックミラー53は、例えばガラスまたはサファイア、窒化アルミニウムなどの透明基板53aと、例えば誘電体多層膜であるフィルタ53bとを有し、フィルタ53bが基台55側に配置されている。
第2の集光レンズ54は、光変換素子50に対して集光レンズ40とは反対側の位置に配置される。第2の集光レンズ54は、例えばB270などのクラウンガラスやBK7などの硼珪酸ガラスなどの透明材料からなる、球面レンズもしくは非球面レンズである。第2の集光レンズ54は、第2の光変換部51Yから放射される蛍光と、第1の光変換部51Bから放射される拡散光とを効率良く取り込むために、十分大きい曲率半径を有することが望ましい。さらに、第2の集光レンズ54の開口数は、第1の光変換部51B、第2の光変換部51Yからの放射光に対して高い開口数(NA)、例えば0.8以上の開口数に設定される。
上述の第1の光変換部51Bと第2の光変換部51Yは、好ましくは直径5mmの円の範囲内に、より好ましくは直径2mmの円の範囲内に配置される。第1の光変換部51Bと第2の光変換部51Yとの間隔は、基台55に形成される第1の貫通孔52Bと第2の貫通孔52Yの配置により決まる。
これらの第1の貫通孔52Bと第2の貫通孔52Yとの間隔は、例えば金型等を用いたプレス加工により正確に調整することができる。
(発光動作)
続いて本実施形態における照明装置1の動作を、図1から図2を用いて説明する。半導体発光素子11の第1の光導波路12aが、例えば波長420nm〜500nmのレーザ光である第1の出射光61aを出射し、第2の光導波路12cが、例えば波長420nm〜500nmのレーザ光である第2の出射光61cを出射する。第1の出射光61aが、コリメートレンズ20により、ほぼ平行な光である第1の出射光62aに変換される。第2の出射光61cが、コリメートレンズ20により、ほぼ平行な光である第2の出射光62cに変換される。第1の出射光62a、第2の出射光62cは集光レンズ40に集光され、光変換素子50の所定の位置に入射する。具体的には、第1の出射光62aは光変換素子50における第1の光変換部51Bに入射し、第2の出射光62cは光変換素子50における第2の光変換部51Yに入射する。第1の光導波路12aと第2の光導波路12cの距離は、例えば200μmに設定されている。また、第1の光変換部51Bと第2の光変換部51Yの距離は、例えば200μmから1mmに設定される。
第1の光導波路12aの出射部と第2の光導波路12cの出射部との距離がhであり、第1の光変換部51Bと第2の光変換部51Yとの距離がh’であり、コリメートレンズ20と集光レンズ40とで構成される光学系の横倍率がβであるとすると、hとh’とβは、h’=β×hの関係を満たすように設定されている。したがって、光学系の横倍率を1倍から5倍に設定することで、上述の距離hと距離h’を容易に設計することができる。このため、第1の出射光62aを第1の光変換部51Bに容易に入射させることができ、第2の出射光62cを第2の光変換部51Yに容易に入射させることができる。
また、第1の出射光62a、第2の出射光62cが集光レンズ40へ入射する領域は、集光レンズ40の瞳径に対して十分に小さい。このようにすることで、第1の出射光62aが第1の光変換部51Bに入射する角度を小さくすることができるため、横倍率の設計をより自由に設定することが出来る。
第1の光変換部51Bに入射した第1の出射光62aは、第1の光変換部51Bの凹凸部によりコヒーレンスが低下した第1の放射光70Bとなる。また、第2の光変換部51Yに入射した第2の出射光62cの一部は、第2の光変換部51Yに含まれる蛍光体により、例えば、放射光の主な波長範囲が550nm〜700nmである第2の放射光70Yに変換される。第1の放射光70B、第2の放射光70Yは、第2の集光レンズ54側に出射される。第1の放射光70B、第2の放射光70Yはいわゆる放射角度がランバーシアンの放射光である。第1の放射光70B、第2の放射光70Yが第2の集光レンズ54に入射すると、第2の集光レンズ54において混合され、指向性の高い白色光70となり、照明装置1の外部に出射される。この構成により照明装置1から白色光70を効率良く外部に出射することができる。さらに、第1の光変換部51Bが第1の出射光62aのコヒーレンスを低下させるため、第1の出射光62aの干渉ノイズを低減させることができ、第1の出射光62aの一部を放射光として利用することができる。
(調光動作)
続いて図3A、図3B、図3C、および図4を用いて本実施形態の照明装置の発光スペクトルおよび色温度について説明する。本実施形態の照明装置の発光スペクトルおよび色温度は任意に偏光させることが可能である。
図3Aは、白色光70の色温度が約5500Kのときの発光スペクトルを表す。図3Bは、白色光70の色温度が約5000Kのときの発光スペクトルを表す。図3Cは、白色光70の色温度が約4300Kのときの発光スペクトルを表す。図3A、図3B、図3Cに示すように、白色光70の色温度は、青色光が主成分である第1の放射光70Bの出力と、黄色光が主成分である第2の放射光70Yの出力との比率を変化させることにより容易に変化させることができる。本実施例においては、半導体発光素子11の第1の光導波路12aに印加する電力と第2の光導波路12cに印加する電力との比率を変化させることで、第1の放射光70B、第2の放射光70Yの比率を変化させることができる。そのため、容易に照明装置1から出射される白色光70の色温度を変化させることができる。
さらに図4に示す色度座標を用いて本実施形態の効果を説明する。白色光70の色温度が5500K、5000K、4300K、4000Kのときの色度点が、色度座標上にプロットされている。また、日本工業規格などで決められている車両前照灯に用いられる白色光の色度範囲もプロットされている。図4から、例えば色温度の範囲が5500Kから4300Kである場合は、色温度を変化させることが可能な照明装置として、車両前照灯に用いることができることがわかる。
なお、上記構成において、第2の光変換部51Yから放射される第2の放射光70Yは、第2の出射光62cが第2の光変換部51Yの蛍光体で変換され出射される光と、第2の出射光62cが第2の光変換部51Yの内部を多重反射し放射される光とが混合された光であってもよい。この場合、第2の放射光70Yは、主な波長範囲が550nm〜700nmである光と、主な波長範囲が420nm〜500nmである光とが混合された光となる。
(変形例)
続いて図5を用いて実施の形態1の変形例について説明する。本変形例においける照明装置が、上記照明装置と異なる部分についてのみ説明する。本変形例においては、光変換素子50および第2の集光レンズ54の構成が上述した構成と異なる。光変換素子50は、基台55と、基台55に設けられる第1の貫通孔52Y1、第2の貫通孔52Y2と、を備える。
第1の貫通孔52Y1には第1の光変換部51Y1が埋め込まれ、第2の貫通孔52Y2には第2の光変換部51Y2が埋め込まれている。第1の光変換部51Y1、および第2の光変換部51Y2は、主な波長範囲が波長420nm〜500nmである光を、主な波長範囲が波長550nm〜700nmである光に変換する蛍光体を含有する。第1の光変換部51Y1、および第2の光変換部51Y2は、上述の蛍光体が、例えばシリコーン、エポキシなどの有機材料もしくは、低融点ガラス、酸化アルミニウム、酸化亜鉛などの無機材料で構成されるバインダーに混合されてなる。蛍光体の具体的な例としてはCe賦活ガーネット結晶蛍光体((Y、Gd)(Ga、Al)12:Ce3+蛍光体)、Eu賦活(Ba,Sr)Si蛍光体などが挙げられる。さらに第1の光変換部51Y1、第2の光変換部51Y2は例えば図5に示すように異なる厚みで設定される。
上記の構成において、第1の出射光62aが第1の光変換部51Y1に入射する。第1の出射光62aの一部が、第1の光変換部51Y1の蛍光体によりその波長範囲が変換される。第2の出射光62cが第2の光変換部51Y2に入射する。第2の出射光62cの一部が、第2の光変換部51Y2の蛍光体によりその波長範囲が変換される。第1の光変換部51Y1から放射される第1の放射光70Y1は、主な波長範囲が550nm〜700nmである光と、主な波長範囲が420nm〜500nmである光とが混合された光である。この第1の放射光70Y1の色温度は5500Kであり、第1の放射光70Y1は図3Aに示すような発光スペクトルを有する。また第2の光変換部51Y2から放射される第2の放射光70Y2は、主な波長範囲が550nm〜700nmである光と、主な波長範囲が420nm〜500nmである光とが混合された光である。この第2の放射光70Y2の色温度は4300Kであり、第2の放射光70Y2は図3Cに示すような発光スペクトルを有する。このとき、半導体発光素子11の第1の光導波路12aに印加される第1の電力と、第2の光導波路12cに印加される第2の電力とを独立して変化させ、第1の電力と第2の電力との電力比率を変化させる。その結果、第1の放射光70Y1と第2の放射光70Y2の強度比率を変化させることができ、照明装置1の出射光の色温度を変化させることができる。
なお、本変形例における第2の集光レンズ54は、光変換素子50側の面が凹面である。なお、本変形例においては、第1の光変換部51Y1の厚みと第2の光変換部51Y2の厚みとを異ならせる例を用いて説明したが、この限りではない。例えば、第1の光変換部51Y1におけるバインダーに対する蛍光体の濃度と、第2の光変換部51Y2におけるバインダーに対する蛍光体の濃度とを異ならせることで、照明装置1の出射光の色温度を変化させる構成としても良い。また、第1の光変換部51Y1に用いるバインダーの種類と、第2の光変換部51Y2に用いるバインダーの種類とを異ならせることで、照明装置1の出射光の色温度を変化させる構成としても良い。また、第1の光変換部51Y1に用いる蛍光体の組成と、第2の光変換部51Y2に用いる蛍光体の組成とを異ならせることで、照明装置1の出射光の色温度を変化させる構成としても良い。
(実施の形態2)
以下、本開示の実施の形態2における照明装置101について、図6から図9を参照しながら説明する。本実施形態においては、実施の形態1の照明装置1と異なる部分についてのみ説明する。
図6は、実施の形態2における照明装置101の構造を示す模式図である。図7は、照明装置101の光変換素子150、及び第2の集光レンズ154を示す模式図である。本実施形態においては、光変換素子150が第1の光変換部151Bと第2の光変換部151Yとを有する。第1の光変換部151Bは主な発光波長が430nm〜500nmの範囲にある蛍光体を有している。第2の光変換部151Yは主な発光波長が520nm〜700nmの範囲にある蛍光体を有している。半導体発光素子11から出射される第1の出射光61a、及び第2の出射光61cの波長は、380nm〜430nmの範囲にある。
光変換素子150は、例えばアルミ合金板からなる基台157と、基台157に設けられた第1の貫通孔152B、第2の貫通孔152Yを有する。第1の貫通孔152Bには第1の光変換部151Bが埋め込まれている。第2の貫通孔152Yには第2の光変換部151Yが埋め込まれている。第1の光変換部151B、第2の光変換部151Yは、蛍光体と、この蛍光体が混合されたバインダーとを有する。バインダーは、例えばシリコーンなどの有機透明材料や、低融点ガラスなどの無機透明材料などである。光変換素子150の基台157における半導体発光素子11側の面には、ダイクロイックミラー153が設けられている。ダイクロイックミラー153は、ガラス153aと、ガラス153a上に設けられた誘電体多層膜153bとを有する。ガラス153aが基台157と接している。誘電体多層膜153bは、例えば波長430nm以下を透過し、波長430nm以上の光を反射する。さらに基台157における半導体発光素子11と反対側には、第2の集光レンズ154が配置されている。第2の集光レンズ154は透明ガラスで構成され、第1の光変換部151B、第2の光変換部151Yが配置された領域よりも十分大きい曲率半径を有する。本実施形態では、第2の集光レンズ154は2枚組みのレンズとして記載しているがこの限りではない。
また第1の光変換部151Bが有する蛍光体は、例えば波長430nmから500nmの間に蛍光ピークを有するいわゆる青色蛍光体であることが好ましい。第1の光変換部151Bが有する具体的な蛍光体は、例えば、SrMgSi:Eu2+蛍光体、(Sr,Ba)MgSi:Eu2+蛍光体、BaMgAl1017:Eu2+蛍光体、(Sr,Ca,Ba,Mg)10,(POl2:Eu2+蛍光体などである。第2の光変換部151Yが有する蛍光体は、例えば波長540nmから610nmの間に蛍光ピークを有するいわゆる黄色蛍光体が好ましい。第2の光変換部151Yが有する具体的な蛍光体は、例えば、SrSiO:Eu2+蛍光体、(Ca1−xSr(SiOl2:Eu2+蛍光体、(Y,Gd)(Al,Ga)5O12:Ce3+蛍光体、(Ba,Sr)Si:Eu2+蛍光体などである。
第1の出射光62aは、コリメートレンズ20、集光レンズ40の光学倍率により、位置精度良く、第1の光変換部151Bに入射される。第2の出射光62cは、コリメートレンズ20、集光レンズ40の光学倍率により、位置精度良く、第2の光変換部151Yに入射される。第1の出射光62aの第1の光変換部151Bへの入射と、第2の出射光62cの第2の光変換部151Yへの入射とは同時に行うことができる。そして、第1の光変換部151Bは、例えば青色光である第1の放射光170Bを放射し、第2の光変換部151Yは、例えば黄色光である第2の放射光170Yを放射する。第2の集光レンズ154、及び第3の集光レンズ155が第1の放射光170Bと第2の放射光170Yとを集光する。集光された第1の放射光170Bと第2の放射光170Yは、ロッドインテグレータ156に入射し、ロッドインテグレータ156の内部で混色されて、白色光170として照明装置101より放射される。
(機能および効果)
上記の構成において、半導体発光素子11から出射された第1の出射光61aを第1の光変換部151Bに、第2の出射光61cを第2の光変換部151Yに、同時に、位置精度良く入射させることができる。さらに、例えば第1の光変換部151Bが青色蛍光体を有し、第2の光変換部151Yが黄色蛍光体を有することにより、第1の光変換部151Bから青色光、第2の光変換部151Yから黄色光を発光させることができる。このため、半導体発光素子11の第1の光導波路12aから出射される第1の出射光61aと、第2の光導波路12cから出射される第2の出射光61cの強度比を制御することにより、白色光170の色温度、スペクトルなどを容易に制御することができる。さらに、照明装置101を構成後においても、第1の出射光61aと第2の出射光61cの強度比を変えることにより、照明装置101が出射する白色光170の色温度を変えることができる。
さらに光変換素子150を構成する基台157は、例えばアルミ合金材料などの可視光を反射する材料からなる。そして、第1の光変換部151Bが、基台157内に設けられた第1の貫通孔152Bに埋め込まれている。第2の光変換部151Yが、基台157内に設けられた第2の貫通孔152Yに埋め込まれている。このため、例えば第1の光変換部151Bから放射される第1の放射光170Bは、第2の光変換部151Yに含まれる蛍光体に吸収されない。つまり、第1の放射光170Bが第2の光変換部151Yによって再吸収されてしまうのを抑制することができ、第2の放射光170Yが第1の光変換部151Bによって再吸収されてしまうのを抑制することができ、発光効率が低下することを抑制することができる。その結果、第1の光変換部151Bからの第1の放射光170B、第2の光変換部151Yからの第2の放射光170Yを効率よく照明装置101の外部へ取り出すことができる。そのため、照明装置101が発光効率のよい白色光170を出射することができる。
上記効果を図8および図9を用いて、より具体的に説明する。図8は、第1の放射光170B、第2の放射光170Y、そして色温度約5000Kの白色光170のスペクトルを示す。図8に示すスペクトル図を得るために用いた条件としては、励起光が波長405nmのレーザ光であり、第1の光変換部151Bを構成する蛍光体がSrMgSi:Eu2+蛍光体であり、第2の光変換部151Yを構成する蛍光体が(Ba,Sr)Si:Eu2+蛍光体である。
図9における実線は、上記構成において、第1の光変換部151Bから出射される第1の放射光170Bと、第2の光変換部151Yから出射される第2の放射光170Yとの強度比を変化させることで実現できる色度を表す。さらに実施の形態1において示したスペクトル特性を比較するため、図9における破線が、実施の形態1に示す構成で実現できる色度を表す。図9の色度図から、本実施の形態に示す照明装置101を用いることにより、照明装置101の出射光の色温度を4300Kから6500Kの範囲で実現することができることがわかる。また、図9に示すように、照明装置101の出射光が、実施の形態1の出射光よりも広い範囲で、黒体輻射に近い色度を実現していることがわかる。
(変形例)
続いて図10Aおよび図10Bを用いて実施の形態2の変形例について説明する。本変形例に示す構成は、上述した構成に対して、第1の光変換部151Bおよび第2の光変換部151Yに含まれる蛍光体材料が異なる。本変形例においては、第1の光変換部151Bに含まれる蛍光体の主な発光波長範囲が430nm〜550nmにあり、蛍光体の発光色が青緑色である。具体的な蛍光体材料は、例えば(Sr,Ba,Ca)(POCl:Eu2+蛍光体、(Ba,Sr)MgSi:Eu2+蛍光体などである。さらに本変形例においては、第2の光変換部151Yに含まれる蛍光体の主な発光波長範囲が550nm〜650nmにあり、蛍光体の発光色が橙色である。具体的な蛍光体材料は、例えば(Ba,Sr)SiO:Eu2+蛍光体、(Ba,Sr)Si:Eu2+蛍光体、α−SiAlON:Eu2+蛍光体、(Sr、Ca)AlSiN:Eu2+蛍光体などである。この場合、色温度5000Kとなる白色光170のスペクトルは図10Aの実線に示すようになる。また、第1の光変換部151Bからの第1の放射光170Bと第2の光変換部151Yからの第2の放射光170Yとの比率を変えて実現できる色度範囲は図10Bの実線で示される。つまり、本変形例の色度調整範囲は、色温度2700Kから6500Kと広範囲に設定することができる。また、色度調整範囲を黒体輻射に近接する領域で変化させることができるため、より色度調整範囲を広くすることができる。
(実施の形態3)
以下、本開示の実施の形態3における照明装置201について、図11を参照しながら説明する。本実施形態においては、第1の実施形態の照明装置1と異なる部分についてのみ説明する。
図11は、実施の形態3における照明装置201の構造を示す図である。本実施形態の照明装置201は、主に光変換素子250と集光レンズ240、ダイクロイックミラー230の構成もしくは機能が、実施の形態1の照明装置1と異なる。
光変換素子250は、例えばアルミ合金などからなる基台255と、基台255における半導体発光素子11側に設けられた第1の開口部252A、第2の開口部252Cとを有する。第1の開口部252Aには蛍光体を含む第1の光変換部251Aが埋め込まれており、第2の開口部252Cには蛍光体を含む第2の光変換部251Cが埋め込まれている。半導体発光素子11は、第1の光導波路12a、第2の光導波路12cを有し、例えば波長405nmのレーザ光を出射する。第1の光変換部251Aは実施の形態1および実施の形態2で説明した青色蛍光体を用いて構成される。第2の光変換部251Cは実施の形態1および実施の形態2で説明した黄色蛍光体を用いて構成される。半導体発光素子11と光変換素子250の間にはコリメートレンズ20、ダイクロイックミラー230および集光レンズ240が配置されている。
第1の光導波路12aから出射される第1の出射光61aはコリメートレンズ20によりコリメートされた第1の出射光62aとなる。第2の光導波路12cから出射される第2の出射光61cは、コリメートレンズ20によりコリメートされた第2の出射光62cとなる。第1の出射光62aと第2の出射光62cはダイクロイックミラー230を通過し、集光レンズ240の瞳における中央部分付近に入射する。第1の出射光62a、第2の出射光62cは集光レンズ240により集光される。集光された第1の出射光62aは、光変換素子250の第1の光変換部251Aに精度良く入射する。集光された第2の出射光62cは、光変換素子250の第2の光変換部251C精度良く入射する。第1の出射光62aの第1の光変換部251Aへの入射は、第2の出射光62cの第2の光変換部251Cへの入射と同時に行うことができる。
第1の光変換部251Aにおいて、第1の出射光62aは、例えば青色光である第1の放射光270Aに変換される。第2の光変換部251Cにおいて、第2の出射光62cは、例えば黄色光である第2の放射光270Cに変換される。
第1の放射光270Aと第2の放射光270Cは、基台255により集光レンズ240側に反射される。
第1の放射光270Aと第2の放射光270Cは、集光レンズ240によって集光される。第1の放射光270Aと第2の放射光270Cは、集光レンズ240内で混合され白色光270となる。白色光270は、ダイクロイックミラー230により照明装置201の外部へ反射される。ここでダイクロイックミラー230は、ガラス板と、ガラス板の上に設けられた誘電体多層膜とを有する。誘電体多層膜は、膜形成面に対して45°方向から入射した光の内、例えば波長430nm以下の光を透過し、波長430nm以上の光を透過する。
(機能および効果)
このような構成により、第1の光導波路12aから出射された第1の出射光61aが第1の光変換部251Aに精度良く入射する。また、第2の光導波路12cから出射された第2の出射光61cが第2の光変換部251Cに精度良く入射する。また、第1の光変換部251Aから放射された第1の放射光270Aは、他の光変換部に入射することなく照明装置201から放射される。第2の光変換部251Cから放射された第2の放射光270Cは、他の光変換部に入射することなく照明装置201から放射される。したがって、第1の放射光270Aと第2の放射光270Cが、蛍光体によって再吸収されることを抑制することができ、その結果として照明装置201の効率を向上させることができる。また、第1の放射光270A、第2の放射光270Cは、微小領域から、放射される。その結果、発光効率が良くかつ、後段に配置される光学系との結合効率が高い白色光270を得ることができる。さらに、第1の光導波路12aに印加される第1の電力と、第2の光導波路12cに印加される第2の電力とを独立に変化させ、第1の電力と第2の電力との電力比率を変化させることにより、白色光270の色温度を変化させることができる。
なお、半導体発光素子11からの第1の出射光61a、第2の出射光61cの波長範囲が430nmから500nmの間にあり、第1の出射光61a、第2の出射光61cが青色光である構成としてもかまわない。その場合、光変換素子250の第1の光変換部251Aを、出射光のコヒーレンスを低下させる光変換部で構成し、第2の光変換部251Cを、出射光の一部もしくは全部の光の波長を蛍光体により変化させる光変換部で構成する。この構成により、第1の出射光61aのコヒーレンスを低下させることができるため、第1の出射光61aの干渉ノイズを低減させることができ、第1の出射光61aの一部を放射光として利用することができる。
(実施の形態4)
続いて、本開示の実施の形態4における照明装置301について、図12および図13を参照しながら説明する。本実施形態においては、第2の実施形態と異なる部分についてのみ説明する。
本実施形態において半導体発光素子311は第1の光導波路312a、第2の光導波路312b、第3の光導波路312cを備え、光変換素子350は第1の光変換部351A、第2の光変換部351B、第3の光変換部351Cを備える。
第1の光導波路312aは第1の出射光361aを出射し、第2の光導波路312bは第2の出射光361bを出射し、第3の光導波路312cは第3の出射光361cを出射する。第1の出射光361a、第2の出射光361b、第3の出射光361cの波長は例えば405nmである。第1の出射光361aは、コリメートレンズ20によりコリメートされ、第1の出射光362aとなる。第2の出射光361bは、コリメートレンズ20によりコリメートされ、第2の出射光362bとなる。第3の出射光361cは、コリメートレンズ20によりコリメートされ、第3の出射光362cとなる。第1の出射光361a、第2の出射光361b、第3の出射光361cは、集光レンズ40の瞳における中央部分付近に入射し、集光レンズ40により集光され、光変換素子350に入射する。光変換素子350は、基台355と、基台355に接して配置されたダイクロイックミラー353とを備えており、ダイクロイックミラー353が半導体発光素子311側に配置されている。第1の出射光362aはダイクロイックミラー353を透過し、第1の光変換部351Aに入射する。第2の出射光362bはダイクロイックミラー353を透過し、第2の光変換部351Bに入射する。第3の出射光362cはダイクロイックミラー353を透過し、第3の光変換部351Cに入射する。第1の出射光362aは、第1の光変換部351Aによって、例えば赤色光である第1の放射光370Aに変換される。第2の出射光362bは、第2の光変換部351Bによって、例えば緑色光である第2の放射光370Bに変換される。第3の出射光362cは、第3の光変換部351Cによって、例えば青色光である第3の放射光370Cに変換される。レンズ354が、基台355に対して半導体発光素子311と反対側に配置されている。第1の放射光370Aは、基台355に設けられた第1の貫通孔352Aの側壁と、ダイクロイックミラー353により反射され、レンズ354に入射する。第2の放射光370Bは、基台355に設けられた第2の貫通孔352Bの側壁と、ダイクロイックミラー353により反射され、レンズ354に入射する。第3の放射光370Cは、基台355に設けられた第3の貫通孔352Cの側壁と、ダイクロイックミラー353により反射され、レンズ354に入射する。第1の放射光370A、第2の放射光370B、第3の放射光370Cは、レンズ354内で混合され、平行光に近い白色光370となり、照明装置301の外部に出射される。
(機能および効果)
このような構成により、第1の光導波路312aから出射された第1の出射光361aは、第1の光変換部351Aに、精度良く入射する。第2の光導波路312bから出射された第2の出射光361bは、第2の光変換部351Bに、精度良く入射する。第3の光導波路312cから出射された第3の出射光361cは、第3の光変換部351Cに、精度良く入射する。また、第1の光変換部351Aから放射された第1の放射光370A、第2の光変換部351Bから放射された第2の放射光370B、第3の光変換部351Cから放射された第3の放射光370Cは、他の光変換部に入射することなく照明装置301から出射される。したがって、第1の放射光370A、第2の放射光370B、第3の放射光370Cが、蛍光体によって再吸収されることを抑制することができ、その結果として、照明装置301効率を向上させることができる。また、第1の放射光370A、第2の放射光370B、第3の放射光370Cは、微小領域から放射される。その結果、発光効率が良くかつ、後段に配置される光学系との結合効率が高い白色光370を得ることができる。さらに、第1の光導波路312aに印加される第1の電力、第2の光導波路312bに印加される第2の電力、第3の光導波路312cに印加される第3の電力を独立して変化させ、第1の電力、第2の電力、第3の電力の電力比率を変化させることにより、白色光370の色度を変化させることができる。図13は、第1の放射光370A、第2の放射光370B、第3の放射光370Cを用いて実現することができる色度範囲を示す。第1の放射光370Aを得るために、第1の光変換部351AはSrMgSi:Eu2+蛍光体を有する。第2の放射光370Bを得るために、第2の光変換部351Bはβ−SiAlON:Eu2+蛍光体を有する。第3の放射光370Cを得るために、第3の光変換部351CはCaAlSiN:Eu2+蛍光体を有する。白色光370の色度は、第1の放射光370Aの色度点、第2の放射光370Bの色度点、第3の放射光370Cの色度点で囲まれた三角形の範囲で変化させることができる。
本実施形態においては、半導体発光素子311から出射される第1の出射光361a、第2の出射光361b、第3の出射光361cの波長が405nmであり、光変換素子350が第1の光変換部351A、第2の光変換部351B、第3の光変換部351Cを有し、第1の光変換部351A、第2の光変換部351B、第3の光変換部351Cが有する蛍光体が、照明装置301からの出射光の色度範囲を決定する構成とした。しかし、半導体発光素子311が光導波路および光変換部を4つ以上有し、より自由に出射光の色度を調整することが可能な構成としてもよい。さらに半導体発光素子311から出射される光の波長範囲を430nmから500nmに設定し、複数の光変換部の内の少なくとも一つが半導体発光素子311から出射される光のコヒーレンスを低下させる光変換部であってもよい。
(実施の形態5)
続いて、本開示の実施の形態5における照明装置401について、図14を参照しながら説明する。本実施形態においては、第2の実施形態と異なる部分についてのみ説明する。本実施形態においては、半導体発光素子11が複数の光導波路を有し、光変換素子450が複数の光変換部を有する。照明装置401は第1の光ファイバー440A、第2の光ファイバー440Cを有する第1の光ファイバー440A、第2の光ファイバー440Cが、複数の光導波路からの出射光を複数の光変換部に伝達する。以下、より具体的な構成について説明する。
本実施形態においては、半導体発光素子11が第1の光導波路12a、第2の光導波路12cを有し、光変換素子450が第1の光変換部451B、第2の光変換部451Yを有する。照明装置401は第1の光ファイバー440A、第2の光ファイバー440Cを有する。第1の光ファイバー440Aが、第1の光導波路12aからの第1の出射光61aを第1の光変換部451Bに伝達し、第2の光ファイバー440Cが、第2の光導波路12cからの第2の出射光61cを第2の光変換部451Yに伝達する。第1の光ファイバー440Aは、第1のコア440Aaと、第1のコア440Aaの屈折率と異なる屈折率を有する第1のクラッド440Abとを備える。第2の光ファイバー440Cは、第2のコア440Caと、第2のコア440Caの屈折率と異なる屈折率を有する第2のクラッド440Cbとを備える。第1の光ファイバー440Aは、第1の光導波路12aと第1の光変換部451Bとの間に配置され、第2の光ファイバー440Cは、第2の光導波路12cと第2の光変換部451Yとの間に配置される。
光変換素子450は、透明基板453と、この透明基板453上に設けられた基台455とを備える。透明基板453が基台455に対して半導体発光素子11側に配置されている。透明基板453は、例えばガラスまたはサファイア、窒化アルミニウムなどからなる。基台455は、アルミ合金板からなる。基台455は、第1の貫通孔452B、第2の貫通孔452Yを有する。第1の光変換部451Bが第1の貫通孔452Bに設けられ、第2の光変換部451Yが第2の貫通孔452Yに設けられている。
なお、一つの光ファイバーが2つのコアを有し、一方のコアに第1の光変換部451Bを対応させ、他方のコアに第2の光変換部451Yを対応させてもよい。
また、半導体発光素子11が3つ以上の光導波路を有し、光変換素子450が3つ以上の光変換部を有し、半導体発光素子11と光変換素子450との間が3つ以上の光ファイバーで接続されてもよい。また、半導体発光素子11と光変換素子450との間を複数のコアを有する光ファイバーを単数または複数本用いて接続してもよい。
(機能および効果)
半導体発光素子11の第1の光導波路12aは第1の出射光61aを出射し、第2の光導波路12cは第2の出射光61cを出射する。第1の出射光61a、第2の出射光61cは、例えばその波長が405nmのレーザ光である。第1の出射光61a、第2の出射光61cはコリメートレンズ20によりコリメートされ、第1の出射光62a、第2の出射光62cとなる。第1の出射光62aは第1の光ファイバー440Aの第1のコア440Aaに入射し、同時に、第2の出射光62cは第2の光ファイバー440Cの第2のコア440Caに入射する。さらに第1のコア440Aaを伝搬した第1の出射光62aは、第1の光ファイバー440Aに対して半導体発光素子11と反対側に取り付けられた光変換素子450の第1の光変換部451Bに入射する。第2のコア440Caを伝搬した第2の出射光62cは、第2の光ファイバー440Cに対して半導体発光素子11と反対側に取り付けられた光変換素子450の第2の光変換部451Yに入射する。第1の光変換部451Bに入射した第1の出射光62aは、例えば青色光である第1の放射光470Bに変換される。第2の光変換部451Yに入射した第2の出射光62cは、例えば黄色光である第2の放射光470Yに変換される。第1の放射光470Bと第2の放射光470Yは、球面レンズ454に入射する。第1の放射光470Bと第2の放射光470Yは、球面レンズ454において混合され、指向性の高い白色光470となり、照明装置401から出射される。
このような構成により、第1の放射光470Bが第2の光変換部451Yに再吸収されることを抑制することができ、第2の放射光470Yが第1の光変換部451Bに再吸収されることを抑制することができるため、輝度の高い白色光470を放射することができる。第1の光導波路12aに印加される第1の電力と、第2の光導波路12cに印加される第2の電力とを独立して変化させることで、第1の電力と第2の電力との電力比率を変化させることができる。その結果として、白色光470の色温度を変化させることができる。
なお、第1の出射光61aの波長範囲が430nmから500nmの間であり、第1の出射光61aが青色光であってもよい。その場合、第1の光変換部451Bは、表面に凹凸が形成された透明部材で構成される。この透明部材が、半導体発光素子11からの第1の出射光61aのコヒーレンスを低下させる。この構成により、第1の光変換部451Bが第1の出射光61aのコヒーレンスを低下させるため、第1の出射光61aの干渉ノイズを低減させることができ、第1の出射光61aの一部を放射光として利用することができる。
なお上記の構成は、第5の実施形態だけでなく、第1〜第3の実施形態の照明装置にも適用可能である。
なお上記第1から第5の実施形態において、光変換素子の基台を構成する材料がアルミ合金である例を用いて説明したが、この限りではない。光変換部の蛍光体で発生した熱を排熱するため、基台の材料は熱伝導率が高い材料であることが好ましい。さらに、基台の材料は、光変換部から放射される可視光を反射するものが好ましく、例えば銅の表面に銀メッキを施したもの等を用いることができる。
なお、上記第1から第5の実施形態において、半導体発光素子が半導体レーザである例を用いて説明したが、半導体発光素子がスーパールミネッセントダイオードなどの指向性の高い出射光を放射する半導体発光素子であっても良い。
なお、上記第1から第5の実施形態においては照明装置から放出される光が白色光である例を用いて説明したが、白色光に限らず、色温度が低い光や、色温度の高い光であっても良い。色温度が低い光は、例えば電球色とよばれる燈色に近い色や黄白色などである。色温度の高い光とは、例えば青に近い色である。
本開示の照明装置は、出射光の色温度を容易に変えることが出来るため、特に、投射照明用途の光源、プロジェクターやヘッドランプ(車両前照灯)、医療用光源として有用である。
1,101,201,301,401 照明装置
10 発光装置
11,311 半導体発光素子
12a,312a 第1の光導波路
12c,312b 第2の光導波路
13a 第1の電極
13c 第2の電極
15a ポスト
15b ベース
16a 第1のリードピン
16c 第2のリードピン
16g 第3のリードピン
17a 第1の金属細線
17c 第2の金属細線
19 パッケージ
20 コリメートレンズ
40,240 集光レンズ
50,150,250,350,450 光変換素子
51B,51Y1,151B,251A,351A,451B 第1の光変換部
51Y,51Y2,151Y,251C,351B,451Y 第2の光変換部
52B,52Y1,152B,352A,452B 第1の貫通孔
52Y,52Y2,152Y,352B,452Y 第2の貫通孔
53,153,230,353 ダイクロイックミラー
53a,453 透明基板
53b フィルタ
54,154 第2の集光レンズ
55,157,255,355,455 基台
61a,62a,361a,362a 第1の出射光
61c,62c,361b,362b 第2の出射光
70B,70Y1,170B,270A,370A,470B 第1の放射光
70Y,70Y2,170Y,270C,370B,470Y 第2の放射光
70,170,270,370,470 白色光
155 第3の集光レンズ
156 ロッドインテグレータ
312c 第3の光導波路
351C 第3の光変換部
352C 第3の貫通孔
354 レンズ
361c,362c 第3の出射光
370C 第3の放射光
440A 第1の光ファイバー
440Aa 第1のコア
440Ab 第1のクラッド
440C 第2の光ファイバー
440Ca 第2のコア
440Cb 第2のクラッド

Claims (3)

  1. 半導体発光素子と、
    光変換素子と、を備え、
    前記半導体発光素子が第1の光導波路と第2の光導波路とを有し、
    前記光変換素子が第1の蛍光体を含有する第1の光変換部と第2の蛍光体を含有する第2の光変換部とを有し、
    前記第1の光変換部および前記第2の光変換部は互いに異なる厚みであり、
    前記半導体発光素子と前記光変換素子との間には、前記半導体発光素子の出射方向にコリメータレンズと集光レンズとが順に配置され、
    前記第1の光導波路から出射される第1の出射光が、前記コリメータレンズ及び前記集光レンズを通って前記第1の光変換部に入射し、
    前記第1の光変換部は前記第1の蛍光体により波長変換された光を含む第1の放射光を放射し、
    前記第2の光導波路から出射される第2の出射光が、前記コリメータレンズ及び前記集光レンズを通って前記第2の光変換部に入射し、
    前記第2の光変換部は前記第2の蛍光体により波長変換された光を含む第2の放射光を放射し、
    前記第1の光導波路に印加される第1の電力と、前記第2の光導波路に印加される第2の電力とが独立している照明装置。
  2. 前記第1の蛍光体により波長変換された光および前記第2の蛍光体により波長変換された光の波長範囲は、ともに550nm〜700nmであることを特徴とする、請求項1に記載の照明装置。
  3. 前記第1の変換部の厚みは、前記第2の変換部の厚みより小さく、
    前記第1の放射光の色温度は、前記第2の放射光の色温度よりも高いことを特徴とする、請求項1または請求項2に記載の照明装置。
JP2015528105A 2013-07-25 2014-04-02 照明装置 Expired - Fee Related JP6357655B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013154257 2013-07-25
JP2013154257 2013-07-25
PCT/JP2014/001917 WO2015011857A1 (ja) 2013-07-25 2014-04-02 照明装置

Publications (2)

Publication Number Publication Date
JPWO2015011857A1 JPWO2015011857A1 (ja) 2017-03-02
JP6357655B2 true JP6357655B2 (ja) 2018-07-18

Family

ID=52392927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015528105A Expired - Fee Related JP6357655B2 (ja) 2013-07-25 2014-04-02 照明装置

Country Status (3)

Country Link
US (1) US9772072B2 (ja)
JP (1) JP6357655B2 (ja)
WO (1) WO2015011857A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150192272A1 (en) * 2014-01-06 2015-07-09 John S. Berg System for producing color transformable light
KR101847932B1 (ko) * 2015-04-23 2018-04-11 엘지전자 주식회사 발광모듈
KR102390254B1 (ko) * 2015-06-24 2022-05-06 현대모비스 주식회사 차량용 레이저 헤드램프
JP6549026B2 (ja) * 2015-12-10 2019-07-24 パナソニック株式会社 発光装置および照明装置
DE102016104616B4 (de) * 2016-03-14 2021-09-23 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Halbleiterlichtquelle
JP6737150B2 (ja) * 2016-11-28 2020-08-05 セイコーエプソン株式会社 波長変換素子、光源装置及びプロジェクター
JP6766617B2 (ja) * 2016-11-29 2020-10-14 セイコーエプソン株式会社 光源装置及びプロジェクター
JP2018190664A (ja) * 2017-05-10 2018-11-29 ウシオ電機株式会社 蛍光光源装置
CN111727534A (zh) 2018-02-20 2020-09-29 亮锐控股有限公司 具有受约束的光转换器的光转换设备
US11231569B2 (en) * 2018-06-13 2022-01-25 Panasonic Corporation Light-emitting device and illumination device
JP2020136672A (ja) * 2019-02-21 2020-08-31 シャープ株式会社 発光装置
JP7238506B2 (ja) * 2019-03-18 2023-03-14 セイコーエプソン株式会社 波長変換素子、光源装置及びプロジェクター
DE102022108232A1 (de) 2022-04-06 2023-10-12 Webasto SE Beleuchtungsvorrichtung für ein Fahrzeug und Verfahren zum Betreiben einer Beleuchtungsvorrichtung für ein Fahrzeug

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101726149B1 (ko) 2006-06-02 2017-04-26 코닌클리케 필립스 엔.브이. 유색 광 및 백색 광을 발생시키는 조명 장치
JP2008147451A (ja) * 2006-12-11 2008-06-26 Mitsubishi Electric Corp 照明用光源装置および画像表示装置
JP5019289B2 (ja) 2007-08-10 2012-09-05 オリンパス株式会社 光ファイバ照明装置
JP2010166022A (ja) 2008-09-26 2010-07-29 Sanyo Electric Co Ltd 半導体レーザ装置および表示装置
JP2010109331A (ja) * 2008-09-30 2010-05-13 Sanyo Electric Co Ltd 半導体レーザ装置および表示装置
JP2010166023A (ja) * 2008-09-30 2010-07-29 Sanyo Electric Co Ltd 半導体レーザ装置および表示装置
JP5327529B2 (ja) * 2009-04-22 2013-10-30 カシオ計算機株式会社 光源装置及びプロジェクタ
JP4991001B2 (ja) 2009-12-28 2012-08-01 シャープ株式会社 照明装置
CN102667317B (zh) * 2010-07-30 2014-11-26 索尼公司 照明单元和显示装置
JP5673247B2 (ja) * 2011-03-15 2015-02-18 セイコーエプソン株式会社 光源装置及びプロジェクター
JP2012204671A (ja) * 2011-03-25 2012-10-22 Panasonic Corp 半導体発光素子
JP5750581B2 (ja) * 2011-06-20 2015-07-22 パナソニックIpマネジメント株式会社 光照射装置
JP2013120735A (ja) * 2011-12-08 2013-06-17 Sharp Corp 光源装置
JP6532870B2 (ja) * 2013-11-01 2019-06-19 シグニファイ ホールディング ビー ヴィ ベンズイミダゾキサンテノイソキノリノン誘導体をベースとした新しいクラスのled照明用緑色/黄色発光蛍光体

Also Published As

Publication number Publication date
US9772072B2 (en) 2017-09-26
WO2015011857A1 (ja) 2015-01-29
US20160116123A1 (en) 2016-04-28
JPWO2015011857A1 (ja) 2017-03-02

Similar Documents

Publication Publication Date Title
JP6357655B2 (ja) 照明装置
JP6347050B2 (ja) 固体光源装置
US9644803B2 (en) Light source and image projection apparatus
US7501749B2 (en) Vehicle lamp using emitting device for suppressing color tone difference according to illumination conditions
JP5613309B2 (ja) 光学素子及びそれを用いた半導体発光装置
US9537060B2 (en) Semiconductor light emitting device package
WO2019097817A1 (ja) 蛍光光源装置
US9970621B2 (en) Lighting apparatus having electrodes that change the focal position on a wavelength conversion element, vehicle having the same and method of controlling the same
JP5435854B2 (ja) 半導体発光装置
JP2007059864A (ja) 照明装置および発光ダイオード装置
JP5443959B2 (ja) 照明装置
TW200947757A (en) Lighting device
US10443800B2 (en) Laser-based light source with heat conducting outcoupling dome
JP2011513964A (ja) 発光ダイオードデバイス
KR20160117696A (ko) 발광 소자
JP2011523225A (ja) Ledモジュール
WO2016049955A1 (zh) 光线发射模组
JP2007258466A (ja) 照明装置及び発光装置
JP2011014852A (ja) 発光装置
US20240168366A1 (en) Wavelength converter, light source device, and projector
WO2021187207A1 (ja) 照明装置
WO2020140778A1 (zh) 波长转换装置、光源系统与显示设备
JP2021039358A (ja) 蛍光体装置
JP2020136671A (ja) 発光装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180521

R151 Written notification of patent or utility model registration

Ref document number: 6357655

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees