WO2016049955A1 - 光线发射模组 - Google Patents

光线发射模组 Download PDF

Info

Publication number
WO2016049955A1
WO2016049955A1 PCT/CN2014/089177 CN2014089177W WO2016049955A1 WO 2016049955 A1 WO2016049955 A1 WO 2016049955A1 CN 2014089177 W CN2014089177 W CN 2014089177W WO 2016049955 A1 WO2016049955 A1 WO 2016049955A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wavelength converting
emitter
wavelength
emitting module
Prior art date
Application number
PCT/CN2014/089177
Other languages
English (en)
French (fr)
Inventor
吴建荣
曾国峰
潘汉滨
Original Assignee
艾笛森光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 艾笛森光电股份有限公司 filed Critical 艾笛森光电股份有限公司
Publication of WO2016049955A1 publication Critical patent/WO2016049955A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate

Definitions

  • the invention relates to a structure of a light emitting module; in particular to a light emitting system which combines an ultraviolet light emitting body and a blue light emitting body with a wavelength converting material to provide white output light.
  • LEDs light emitting diodes
  • LEDs light emitting diodes
  • a light-emitting module that generates a white light by using a light of a blue LED to excite a yellow phosphor or a phosphor; and applying red, blue, and green LEDs. Mixing and forming a white light emitting module and the like.
  • the prior art has also disclosed a blue light emitting diode having a wavelength range of 440 nm to 460 nm to provide a wavelength conversion material (for example, a phosphor having a wavelength of 500 nm to 780 nm or Phosphor), the wavelength conversion material converts the light of the blue LED into green to red colored light, and mixes a deep blue light emitting diode with an emission wavelength ranging from 400 nm to 440 nm, thereby obtaining a "white" white light output effect.
  • a wavelength conversion material for example, a phosphor having a wavelength of 500 nm to 780 nm or Phosphor
  • the above technology enables the wavelength conversion material to convert the light of the blue LED into green to red colored light, and combines a deep blue LED to emit a certain amount of wavelength or a short wavelength of deep blue light to obtain white output light; the light of the deep blue LED
  • the wavelength conversion material is not converted to convert its wavelength, and the light emitted by the deep blue LED is not a normal blue color, so as to achieve the effect of outputting "white" white light of the entire illumination module.
  • these references show the design techniques for related composite structures such as white light emitting modules. If the redesign considers the combination structure of the LED and the wavelength conversion material of the white light emitting module, and the structure is different from the existing structure, it can change its use type, which is different from the old method; in fact, it will also be improved. The application situation, improve its white light display effect and so on. Moreover, the situation in which the prior art produces uneven light mixing is minimized as much as possible. None of these topics have been taught or specifically disclosed in the above references.
  • the main object of the present invention is to provide a light emitting module that provides a better white color rendering property, so that the waveform of the LED light approaches the waveform of the conventional halogen lamp to meet the desired "whiteness" of many applications. "effect.
  • the invention comprises a (circuit) substrate, at least one ultraviolet light emitter disposed on the substrate, and at least one blue light emitter; the ultraviolet light emitter has a light wavelength of 380 nm to 420 nm, and the blue light emitter has a light wavelength of 440 nm to 470 nm.
  • a wavelength conversion layer comprising a first wavelength conversion material and a second wavelength conversion material
  • the first wavelength conversion material is configured to receive the light emitted by the ultraviolet light emitter, and excite the light of the ultraviolet light emitter to generate a visible light
  • the two-wavelength converting material is configured to receive the light emitted by the blue light emitter, convert the light of the blue light emitter into white light, and obtain a white total output spectrum after being mixed.
  • the ultraviolet light emitting body is an ultraviolet light emitting diode; and the blue light emitting body is a blue light emitting diode.
  • the first wavelength converting material of the wavelength conversion layer is mixed with the second wavelength converting material, and the ultraviolet light emitter and the blue light emitter are disposed or coated; and the first wavelength converting material comprises at least one UV fluorescent material, and the second wavelength conversion The material comprises at least one fluorescent material.
  • the first wavelength converting material converts or excites the light of the ultraviolet light emitter to produce a desired visible light (eg, colored light having a color temperature range of 2000 K to 18000 K); the second wavelength converting material converts or excites the light of the blue light emitter to produce a desired Visible light (for example, colored light with a color temperature range of 2000K to 18000K).
  • a desired visible light eg, colored light having a color temperature range of 2000 K to 18000 K
  • the second wavelength converting material converts or excites the light of the blue light emitter to produce a desired Visible light (for example, colored light with a color temperature range of 2000K to 18000K).
  • the ultraviolet light emitting body is an ultraviolet light emitting diode; and the blue light emitting body is a blue light emitting diode.
  • the first wavelength converting material of the wavelength conversion layer forms a first wavelength converting layer
  • the second wavelength converting material forms a second wavelength converting layer
  • the first wavelength converting layer and the second wavelength converting layer are stacked to form a multi-layer structure, and are arranged in
  • the ultraviolet light emitter and the blue light emitter are disposed at a set height from the ultraviolet light emitter and the blue light emitter.
  • FIG. 1 is a schematic structural view of a light guide module of the present invention in which a combined light guide is disposed.
  • FIG. 2 is a partial structural view of FIG. 1; showing the structure of the ultraviolet light emitter, the blue light emitter combined wavelength conversion layer, the substrate, and the like.
  • 2A is a cross-sectional view showing the structure of the embodiment of the present invention; the structure in which the wavelength conversion layer is disposed at a set height from the ultraviolet light emitter and the blue light emitter is depicted.
  • 3 is a schematic cross-sectional view showing the structure of the ultraviolet light emitter and the blue light emitter, respectively.
  • 3A is a schematic diagram of a spectrum of a light emitting module of the present invention; showing a light wavelength output range of a combination of an ultraviolet light emitter and a blue light emitter combined with a wavelength conversion layer.
  • FIG. 3B is another schematic diagram of the spectrum of the light emitting module of the present invention; showing the light wavelength output range of the combined wavelength conversion layer of the ultraviolet light emitter and the blue light emitter.
  • 3C is still another schematic diagram of the spectrum of the light emitting module of the present invention; the wavelength range of the light wavelength of the combined wavelength conversion layer of the ultraviolet light emitter and the blue light emitter is depicted.
  • FIG. 3D is still another schematic diagram of the spectrum of the light emitting module of the present invention; showing the light wavelength output range of the combined wavelength conversion layer of the ultraviolet light emitter and the blue light emitter.
  • 3E is a schematic diagram of a spectrum of a light emitting module of the present invention; depicting a light wavelength output range of the ultraviolet light emitter, the blue light emitter combined wavelength conversion layer, and a halogen lamp spectrum.
  • FIG. 4 is a schematic structural view of a modified embodiment of the present invention; showing a structure in which a plurality of arrays of ultraviolet light emitters and blue light emitters are arranged in a substrate.
  • FIG. 5 is a schematic diagram of a spectrum of a light emitting module of the present invention.
  • FIG. 6 is a schematic structural view of another modified embodiment of the present invention; the structure of the ultraviolet light emitter, the blue light emitter, and the plurality of sub-light emitters in which a plurality of arrays are arranged in a substrate is depicted.
  • Figure 7 is a schematic diagram of the spectrum of the embodiment of Figure 6.
  • the light emitting module of the present invention comprises a geometrically shaped substrate, which is denoted by reference numeral 10 .
  • the substrate 10 is selected from a conductive, thermally conductive metal substrate (eg, a copper substrate, an aluminum substrate, etc.) or a circuit substrate, a ceramic substrate, etc.; the substrate 10 is provided with at least one ultraviolet light emitter 20 and at least one blue light emitter 30.
  • the ultraviolet light emitter 20 selects an ultraviolet light emitting diode, and the wavelength range or spectral range of the light is 380 nm to 420 nm; the blue light emitter 30 selects a blue light emitting diode, and the range of the light wavelength or the spectral range is 440 nm to 470 nm. And arranging a wavelength conversion layer 40 for receiving at least the light emitted by the ultraviolet light emitter 20 and the blue light emitter 30; and, the light that excites the ultraviolet light emitter generates a visible light, and converts the light of the blue light emitter into white light. After mixing, a white total output spectrum is obtained.
  • the wavelength conversion layer 40 includes a first wavelength converting material and a second wavelength converting material.
  • the first wavelength converting material converts or excites the ultraviolet light emitter 20 to produce a desired visible light (eg, colored light having a color temperature range of 2000K to 18000K); the second wavelength converting material converts or excites the blue light emitter 30 to produce a desired visible light (eg, , colored light with a color temperature range of 2000K to 18000K).
  • the wavelength conversion layer 40 includes a combination of at least one fluorescent material (eg, a phosphor, a phosphor or a phosphor) and/or a plurality of color UV fluorescent materials; for example, a green, yellow, red phosphor, or the like.
  • at least one fluorescent material eg, a phosphor, a phosphor or a phosphor
  • a plurality of color UV fluorescent materials for example, a green, yellow, red phosphor, or the like.
  • the first wavelength converting material of the wavelength conversion layer 40 comprises at least one UV fluorescent material (for example, a UV phosphor, a UV phosphor or a UV phosphor) or a combination of a plurality of color UV fluorescent materials, and the ultraviolet light emitter can be used.
  • 20 emitted light is converted into white light or other colored light (for example, visible light such as green to red or colored light having an emission wavelength range of 500 nm to 660 nm); and the second wavelength converting material of the wavelength conversion layer 40 contains at least one fluorescent material,
  • the light emitted by the blue emitter 30 is converted into white light, so that the entire light emitting module obtains a white-white total output spectrum.
  • the wavelength range of the visible light includes two main wavelength bands of green visible light of 520 nm to 560 nm and red (orange) visible light of 610 nm to 650 nm.
  • the wavelength conversion layer 40 can also be disposed at a set height from the ultraviolet light emitter 20 and the blue light emitter 30.
  • the first wavelength converting material of the wavelength conversion layer 40 forms the first wavelength converting layer 41; and the second wavelength converting material forms the second wavelength converting layer 42.
  • 2A shows that the first wavelength conversion layer 41 and the second wavelength conversion layer 42 are stacked to form a multi-layer structure, which is disposed at a set height from the ultraviolet light emitter 20 and the blue light emitter 30 (or is disposed in the ultraviolet Light emitter 20 and blue emitter 30).
  • FIG 3 shows a structure in which the first wavelength conversion layer 41 is disposed on the ultraviolet light emitter 20; and the second wavelength conversion layer 42 is disposed on the blue light emitter 30 (or The first wavelength conversion layer 41 and the second wavelength conversion layer 42 are respectively disposed at a set height from the ultraviolet light emitter 20 and the blue light emitter 30).
  • the ultraviolet light emitted from the ultraviolet light emitter 20 excites the UV fluorescent material of the first wavelength conversion layer 41, and is converted to produce white light or green to red visible light (for example, colored light having an emission wavelength range of 500 nm to 660 nm).
  • the second wavelength conversion layer 42 mainly includes a yellow phosphor; the blue light emitted by the blue emitter 30 excites the second wavelength conversion layer 42 to be converted to generate white output light; and the white output light and the ultraviolet emitter 20,
  • the first wavelength conversion layer 41 converts the generated white light or the green to red visible light mixed output, thereby establishing a light emitting module having better white light color rendering properties.
  • the wavelength conversion layer 40 of FIG. 2 can combine at least one fluorescent material with at least one UV fluorescent material;
  • FIG. 2A sets the wavelength conversion layer 40 (or the first wavelength conversion layer 41).
  • the second wavelength conversion layer 42) is provided as a multi-layer or at least two-layer structure;
  • FIG. 3 is disposed on the ultraviolet light emitter 20 and the blue light emitter 30, respectively, of the first wavelength conversion layer 41 and the second wavelength conversion layer 42. structure.
  • 3A depicts the case where the first wavelength converting material or the first wavelength converting layer 41 is applied with a blue UV fluorescent material; the horizontal axis is the wavelength (nm) and the vertical axis is the intensity.
  • the spectrum A in the figure shows the light wavelength output range of the blue light emitter 30 in combination with the second wavelength conversion layer 42; the spectrum B shows the light wavelength output of the ultraviolet light emitter 20 in combination with the first wavelength conversion material or the first wavelength conversion layer 41. range. Therefore, the ultraviolet light emitter 20 and the first wavelength converting material (or the first wavelength converting layer 41) increase the amount of blue light output.
  • FIG. 3B depicts the case where the first wavelength converting material or the first wavelength converting layer 41 is applied with a green UV fluorescent material.
  • the spectrum A in the figure shows the light wavelength output range of the blue light emitter 30 in combination with the second wavelength conversion layer 42; the spectrum C shows the light wavelength output of the ultraviolet light emitter 20 in combination with the first wavelength converting material or the first wavelength converting layer 41. range. Therefore, the ultraviolet light emitter 20 and the first wavelength converting material (or the first wavelength converting layer 41) increase the amount of green light output.
  • FIG. 3C depicts the case where the first wavelength converting material or the first wavelength converting layer 41 is applied with a red UV fluorescent material.
  • the spectrum A in the figure shows the light wavelength output range of the blue light emitter 30 in combination with the second wavelength conversion layer 42; the spectrum D shows the light wavelength output of the ultraviolet light emitter 20 in combination with the first wavelength converting material or the first wavelength converting layer 41. range. Therefore, the ultraviolet light emitter 20 and the first wavelength converting material (or the first wavelength converting layer 41) increase the amount of red light output.
  • FIG. 3D depicts the case where the first wavelength converting material or first wavelength converting layer 41 comprises a blue UV fluorescent material, a green UV fluorescent material, and a red UV fluorescent material.
  • the spectrum A in the figure shows the light wavelength output range of the blue light emitter 30 in combination with the second wavelength conversion layer 42; the spectrum B shows that the light of the ultraviolet light emitter 20 excites the blue light of the first wavelength converting material or the first wavelength converting layer 41.
  • the red light wavelength output range of the red light UV fluorescent material that excites the first wavelength converting material or the first wavelength converting layer 41 by the light of the ultraviolet light emitter 20 is shown.
  • the above spectra A, B, C, and D jointly obtain the light wavelength output range of the spectrum E.
  • the figure also shows that the range of the spectrum E is close to the range of the spectrum F of the halogen lamp; therefore, it is understood that the above-described application ultraviolet light emitter 20 and blue light emitter 30 are combined with the wavelength conversion layer 40 (for example, the first wavelength conversion material, The two-wavelength converting material or the first wavelength converting layer 41 and the second wavelength converting layer 42) can obtain a white light developing effect such as a halogen lamp, and is significantly superior to the prior art white light output effect.
  • the wavelength conversion layer 40 for example, the first wavelength conversion material, The two-wavelength converting material or the first wavelength converting layer 41 and the second wavelength converting layer 42
  • the substrate 10 is disposed at a bottom 53 of a light guide 50 .
  • the light guide 50 is an optical reflective component including a reflective wall 51 and a reflective wall 51 . Opening 52 (or light exit aperture).
  • the reflective wall 51 is a reflective layer having a reflective material; for example, a metal surface reflective layer or other material may be selected to constitute a reflective structure.
  • the reflective wall 51 is referenced to a reference axis X to form a bowl-shaped profile, a parabolic profile or other geometric profile.
  • the wavelength conversion layer 40 can be disposed at a set height from the ultraviolet emitter 20 and/or the blue emitter 30; for example, the opening 52 of the light guide 50.
  • a plurality of arranged ultraviolet light emitters 20 and blue light emitters 30 are disposed on the substrate 10 to form electrical connections in series and/or in parallel to jointly establish a light emitting module of the light emitting series;
  • the arrangement ratio of the light emitter 20 and the blue light emitter 30 is 1:2.
  • Figure 5 shows the spectrogram of the output of the light-emitting module; that is, after testing, the embodiment allows the color rendering index (CRI) of the entire light-emitting module to reach 80.
  • a plurality of arranged ultraviolet light emitters 20, blue light emitters 30, and a plurality of secondary light emitters 60 are disposed on the substrate 10 to form electrical connections in series. Establish a light emitting module of the light string.
  • the secondary light emitter 60 selects a red light emitting diode (or a green light emitting diode, a blue light emitting diode) to provide a range of light wavelengths or a spectral range of 610 nm to 650 nm (or 500 nm to 580 nm, 450 nm to 500 nm) to emit the entire light.
  • the color rendering of the module is maximized and the effect of the white object on the original color is increased; for example, the situation depicted by the spectrogram of Figure 7. That is to say, the embodiment disclosed in FIG. 6 allows the color rendering index of the entire light emitting module to reach 90.
  • the secondary light emitter 60 can include a combination of a red light emitting diode, a green light emitting diode, and a blue light emitting diode, and the mixture forms a white light output.
  • the secondary light emitter 60 may also combine the wavelength conversion layer 40 such that the wavelength conversion layer 40 receives the light emitted by the secondary light emitter 60 and converts to produce white light or green to red visible light.
  • the wavelength conversion layer 40 comprises at least three UV fluorescent materials (or UV phosphors, UV phosphors, UV phosphors). Body, etc.; UV fluorescence
  • the material can be selected from red, green, and blue UV phosphors.
  • the light emitted by the ultraviolet light emitter 20 respectively excites the red, green, and blue fluorescent materials of the wavelength conversion layer 40, and converts to generate red light, green light, and blue light, and mix to form a white light output.
  • the wavelength conversion layer 40 is disposed or coated on the plurality of ultraviolet light emitters 20, and the other ultraviolet light emitters 20 are not combined with the wavelength conversion layer 40 to directly emit ultraviolet light;
  • the ultraviolet light emitter 20 provided with the wavelength conversion layer 40 is combined to excite white light formed by red light, green light and blue light; the white light is mixed with the ultraviolet light emitted by the other ultraviolet light emitters 20 Output.
  • the light-emitting module has the following advantages and considerations compared to existing methods under the condition of providing white light output:
  • the light emitting module or its associated bonding component for example, the ultraviolet light emitter 20, the blue light emitter 30 combines the wavelength conversion layer 40 or the light emitted by the ultraviolet light emitter 20 and the blue light emitter 30 respectively excites the inclusion
  • the first wavelength conversion material (first wavelength conversion layer 41) and the second wavelength conversion material (second wavelength conversion portion 42) of the UV phosphor; the light guide 50 and the like are disposed in the mating substrate 10) in use and structural design, organization Relationships, etc., have been redesigned to make it different from the conventional combination of LED and wavelength conversion materials, and different from the existing methods; and, changing its use type and application range, it has also significantly improved it.
  • the white light shows the effect that the prior art produces uneven light mixing, which is minimized as much as possible.
  • the white light output effect or color rendering property provided by the light emitting module can be understood, and the prior art can obviously improve the white light display effect according to the product property, the environment or the application condition. Or the case of the wavelength output range.
  • the present invention provides an effective light emitting module, which has different technical features from the prior art, and has advantages that are unmatched in the prior art, and exhibits considerable progress, and has fully complied with the requirements of the invention patent.

Abstract

一种光线发射模组,提供一较佳的白光显色性,以符合许多应用场合所期望的"显白"效果。包括一基板(10)、设置在基板(10)上的至少一紫外光发射体(20)和至少一蓝光发射体(30);该紫外光发射体(20)的光线波长是380nm~420nm,蓝光发射体(30)的光线波长是440nm~470nm。以及,布置一波长转换层(40),包含第一波长转换材料(41)和第二波长转换材料(42),用以接收紫外光发射体(20)和蓝光发射体(30)发射的光线,激发紫外光发射体(20)的光线产生一可见光,将蓝光发射体(30)的光线转换成白光,经混光后而获得一洁白的总输出光谱。

Description

光线发射模组 技术领域
本发明有关于一种光线发射模组的结构;特别是指一种使紫外光发射体、蓝光发射体组合波长转换材料,提供白色输出光的光线发射系统的技术。
背景技术
应用发光二极管(Light Emitting Diode,或称LED)形成光源或照明装置,已为现有技术,而被广泛使用在许多场合或环境。在现有技术中,为了获得白色输出光,投射在展示的环境或商品上,包括了应用蓝光LED的光线激发黄色荧光粉或磷光体,产生白光的发光模组;应用红、蓝、绿色LED混合组成白光发光模组等手段。
为了获得良好的白光显色性或白色光显现效果,现有技术也已揭示了一种应用波长范围在440nm~460nm的蓝光发光二极管设置一波长转换材料(例如,波长500nm~780nm的荧光粉或磷光体),使波长转换材料将蓝光LED的光线转换成绿~红色的有色光,混合一发光波长范围在400nm~440nm的深蓝光发光二极管,而可获得“洁白”的白光输出效果。
上述技术使波长转换材料将蓝光LED的光线转换成绿~红色的有色光,组合一深蓝光LED发射出一定量波长或短波长的深蓝光,而获得白色输出光;所述深蓝光LED的光线没有经过波长转换材料来转换它的波长,并且所述深蓝光LED发射的光线不是正常的蓝色,才能达到整个发光模组输出“洁白”白光的效果。
一个有关这类白光发射模组在结构和应用方面的课题是,现有技术无法依据商品属性、环境或应用条件,调整白光发射模组的白光显现效果或混光不均匀的情形。
代表性的来说,这些参考资料显示了有关白光发射模组等相关组合结构的设计技艺。如果重行设计考量该白光发射模组的LED和波长转换材料的组合结构,使其构造不同于现有构造,将可改变它的使用型态,而有别于旧法;实质上,也会改善它的应用情形,提高它的白光显现效果等作用。并且,使现有技术产生混光不均匀的情形,被尽可能的降到最低。而这些课题在上述的参考资料中均未被教示或具体揭露。
发明内容
本发明的主要目的即在于提供一种光线发射模组,提供一较佳的白光显色性,使LED光线的波形趋近于传统卤素灯的波形,以符合许多应用场合所期望的“显白”效果。包括一(电路)基板、设置在基板上的至少一紫外光发射体和至少一蓝光发射体;该紫外光发射体的光线波长是380nm~420nm,蓝光发射体的光线波长是440nm~470nm。以及,布置一波长转换层,包含第一波长转换材料和第二波长转换材料;第一波长转换材料用以接收该紫外光发射体发射的光线,激发紫外光发射体的光线产生一可见光;第二波长转换材料用以接收该蓝光发射体发射的光线,将蓝光发射体的光线转换成白光,经混光后而获得一洁白的总输出光谱。
根据本发明的光线发射模组,紫外光发射体为一紫外光发光二极管;该蓝光发射体为一蓝光发光二极管。该波长转换层的第一波长转换材料混合第二波长转换材料,设置或包覆该紫外光发射体和蓝光发射体;以及,第一波长转换材料包含至少一种UV荧光材料,第二波长转换材料包含至少一种荧光材料。第一波长转换材料转换或激发紫外光发射体的光线,产生一期望的可见光(例如,色温范围2000K~18000K的有色光);第二波长转换材料转换或激发蓝光发射体的光线,产生一期望的可见光(例如,色温范围2000K~18000K的有色光)。
根据本发明的光线发射模组,紫外光发射体为一紫外光发光二极管;该蓝光发射体为一蓝光发光二极管。该波长转换层的第一波长转换材料形成第一波长转换层,第二波长转换材料形成第二波长转换层;第一波长转换层和第二波长转换层相叠合成一复层结构,布置在紫外光发射体和蓝光发射体上或设置在距离该紫外光发射体和蓝光发射体一设定高度的位置。
附图说明
图1为本发明光线发射模组设置组合导光器的结构示意图。
图2为图1的局部结构示意图;显示了该紫外光发射体、蓝光发射体组合波长转换层、基板等部分的结构情形。
图2A为本发明的一实施例的结构剖视示意图;描绘了该波长转换层设置在距离紫外光发射体、蓝光发射体一设定高度的结构情形。
图3为本发明的一实施例的结构剖视示意图;描绘了该紫外光发射体、蓝光发射体分别设置波长转换层的结构情形。
图3A为本发明光线发射模组的一光谱示意图;显示紫外光发射体、蓝光发射体组合波长转换层的光线波长输出范围。
图3B为本发明光线发射模组的另一光谱示意图;显示紫外光发射体、蓝光发射体组合波长转换层的光线波长输出范围。
图3C为本发明光线发射模组的又一光谱示意图;描绘紫外光发射体、蓝光发射体组合波长转换层的光线波长输出范围。
图3D为本发明光线发射模组的再一光谱示意图;显示紫外光发射体、蓝光发射体组合波长转换层的光线波长输出范围。
图3E为本发明光线发射模组的一光谱示意图;描绘紫外光发射体、蓝光发射体组合波长转换层的光线波长输出范围和卤素灯光谱的情形。
图4为本发明的一修正实施例的结构示意图;显示了基板配置了复数个排列配置的紫外光发射体、蓝光发射体的结构情形。
图5为本发明光线发射模组的一光谱示意图。
图6为本发明的另一修正实施例的结构示意图;描绘了基板配置了复数个排列配置的紫外光发射体、蓝光发射体和复数个副光发射体的结构情形。
图7为图6实施例的光谱示意图。
附图符号说明:
10   基板
20   紫外光发射体
30   蓝光发射体
40   波长转换层
41   第一波长转换层
42   第二波长转换层
50   导光器
51   反射壁
52   开口
53   底部
60   副光线发射体
A、B、C、D、E、F   光谱
X    参考轴
具体实施方式
请参阅图1、图2及图3,本发明的光线发射模组包括一成几何形轮廓的基板,概以参考编号10表示之。基板10选择一可导电、导热的金属基板(例如,铜基板、铝基板...等)或电路基板、陶瓷基板等;基板10上设置有至少一紫外光发射体20和至少一蓝光发射体30。该紫外光发射体20选择一紫外光发光二极管,光线波长的范围或光谱范围是380nm~420nm;蓝光发射体30选择一蓝光发光二极管,光线波长的范围或光谱范围是440nm~470nm。以及,布置一波长转换层40,用以至少接收紫外光发射体20及蓝光发射体30发射的光线;并且,激发紫外光发射体的光线产生一可见光,将蓝光发射体的光线转换成白光,经混光后而获得一洁白的总输出光谱。
请参考图1、图2,在所采的实施例中,波长转换层40包含第一波长转换材料和第二波长转换材料。第一波长转换材料转换或激发紫外光发射体20产生一期望的可见光(例如,色温范围2000K~18000K的有色光);第二波长转换材料转换或激发蓝光发射体30产生一期望的可见光(例如,色温范围2000K~18000K的有色光)。波长转换层40包括有至少一种荧光材料(例如,荧光粉、荧光剂或磷光体)及/或多种色彩UV荧光材料的组合;例如,绿色、黄色、红色荧光粉等。
因此,波长转换层40的第一波长转换材料包含至少一种UV荧光材料(例如,UV荧光粉、UV荧光剂或UV磷光体)或多种色彩UV荧光材料的组合,可将紫外光发射体20发射的光线转换成白光或其他有色光(例如,绿~红色等可见光或发光波长范围500nm~660nm的有色光);以及,波长转换层40的第二波长转换材料包含至少一种荧光材料,将蓝光发射体30发射的光线转换成白光,而使整个光线发射模组获得洁白白色的总输出光谱。
较佳的,上述可见光的波长范围包括了520nm~560nm的绿色可见光和610nm~650nm的红(橙)色可见光等两个主要波段。
图2描绘了波长转换层40的第一波长转换材料混合第二波长转换材料,设置或包覆该紫外光发射体20和蓝光发射体30的结构型态。可了解的是,波长转换层40也可设置在距离紫外光发射体20和蓝光发射体30一设定高度的位置。
请参阅图2A、图3,在一个可行的实施例中,该波长转换层40的第一波长转换材料形成第一波长转换层41;第二波长转换材料形成第二波长转换层42。图2A显示了第一波长转换层41和第二波长转换层42相叠合成一复层结构,设置在距离该紫外光发射体20和蓝光发射体30一设定高度的位置(或布置在紫外光发射体20和蓝光发射体30上)。图3显示了第一波长转换层41布置在紫外光发射体20上;第二波长转换层42布置在蓝光发射体30上的结构型态(或使 第一波长转换层41和第二波长转换层42分别设置在距离该紫外光发射体20和蓝光发射体30一设定高度的位置)。
因此,紫外光发射体20发射的紫外光激发第一波长转换层41的UV荧光材料,而转换产生白光或绿~红色可见光(例如,发光波长范围500nm~660nm的有色光)。第二波长转换层42主要包括有黄色荧光粉;蓝光发射体30发射的蓝光激发第二波长转换层42,而转换产生白色输出光;并且,所述白色输出光和上述紫外光发射体20、第一波长转换层41转换产生的白光或绿~红色可见光混合输出,而建立一具有较佳的白光显色性的光线发射模组。
从图2、图2A、图3可了解到,图2的波长转换层40可将至少一种荧光材料组合至少一种UV荧光材料;图2A将波长转换层40(或第一波长转换层41、第二波长转换层42)设成复层或至少二层的结构;图3将第一波长转换层41、第二波长转换层42分别设置在紫外光发射体20、蓝光发射体30上的结构。
图3A描绘了该第一波长转换材料或第一波长转换层41应用了蓝光UV荧光材料的情形;横轴是波长(nm),纵轴是强度。图中的光谱A显示了蓝光发射体30组合第二波长转换层42的光线波长输出范围;光谱B显示了紫外光发射体20组合第一波长转换材料或第一波长转换层41的光线波长输出范围。因此,紫外光发射体20和第一波长转换材料(或第一波长转换层41)提高了蓝光输出量。
图3B描绘了该第一波长转换材料或第一波长转换层41应用了绿光UV荧光材料的情形。图中的光谱A显示了蓝光发射体30组合第二波长转换层42的光线波长输出范围;光谱C显示了紫外光发射体20组合第一波长转换材料或第一波长转换层41的光线波长输出范围。因此,紫外光发射体20和第一波长转换材料(或第一波长转换层41)提高了绿光输出量。
图3C描绘了该第一波长转换材料或第一波长转换层41应用了红光UV荧光材料的情形。图中的光谱A显示了蓝光发射体30组合第二波长转换层42的光线波长输出范围;光谱D显示了紫外光发射体20组合第一波长转换材料或第一波长转换层41的光线波长输出范围。因此,紫外光发射体20和第一波长转换材料(或第一波长转换层41)提高了红光输出量。
图3D描绘了该第一波长转换材料或第一波长转换层41包含有蓝光UV荧光材料、绿光UV荧光材料和红光UV荧光材料的情形。图中的光谱A显示了蓝光发射体30组合第二波长转换层42的光线波长输出范围;光谱B显示了紫外光发射体20的光线激发第一波长转换材料或第一波长转换层41的蓝光UV荧光材料的蓝光波长输出范围;光谱C显示了紫外光发射体20的光线激发第一波长转换材料或第一波长转换层41的绿光UV荧光材料的绿光波长输出范围;光谱D 显示了紫外光发射体20的光线激发第一波长转换材料或第一波长转换层41的红光UV荧光材料的红光波长输出范围。
请参阅图3E,上述光谱A、B、C、D共同获得了光谱E的光线波长输出范围。图中也显示了光谱E的范围接近于卤素灯的光谱F的范围;因此,可了解上述应用紫外光发射体20和蓝光发射体30组合波长转换层40(例如,第一波长转换材料、第二波长转换材料或第一波长转换层41、第二波长转换层42),可获得如卤素灯的白光显现效果,而明显优于现有技术的白光输出效果。
请参阅图1、图2及图3,显示了该基板10设置在一导光器50的底部53;所述导光器50为一光学反射元件,包括有一反射壁51和连接反射壁51的开口52(或出光孔径)。反射壁51为一具有反射材料的反射层;例如,可选择金属表面反射层或其他材料构成反射效果的组织结构。以及,反射壁51以一参考轴X为基准,形成一碗状轮廓、抛物线轮廓或其他几何形轮廓的型态。
在一个可行的实施例中,该波长转换层40可设置在距离紫外光发射体20及/或蓝光发射体30一设定高度的位置;例如,导光器50的开口52位置。
请参考图4,基板10上设置了复数个排列配置的紫外光发射体20和蓝光发射体30,形成串联及/或并联的电连接,而共同建立一发光串列的光线发射模组;紫外光发射体20和蓝光发射体30的设置比例是1∶2。图5显示了该光线发射模组输出的光谱图;也就是说,经测试后,所述实施例可让整个光线发射模组的色彩显现指数(CRI)达到80。
请参阅图6,在一个修正的实施例中,基板10上设置了复数个排列配置的紫外光发射体20、蓝光发射体30和复数个副光线发射体60,形成串联的电连接,而共同建立一发光串列的光线发射模组。副光线发射体60选择一红光发光二极管(或绿光发光二极管、蓝光发光二极管),提供光线波长的范围或光谱范围是610nm~650nm(或500nm~580nm、450nm~500nm),使整个光线发射模组的演色性被尽可能的提高,并且增加白色物品显现原色彩的效果;例如,图7的光谱图所描绘的情形。也就是说,图6揭示的实施例可让整个光线发射模组的色彩显现指数达到90。
可了解的是,副光线发射体60可包括红光发光二极管、绿光发光二极管、蓝光发光二极管的组合,而混合形成白光输出。副光线发射体60也可组合波长转换层40,使波长转换层40接收该副光线发射体60发射的光线,而转换产生白光或绿~红色可见光。
在一个衍生的实施例中,假设基板10上只设置了(复数个)紫外光发射体20,并且使波长转换层40包含至少三种UV荧光材料(或UV荧光粉、UV荧光剂、UV磷光体等);UV荧光 材料可选择红光、绿光、蓝光UV荧光粉等。紫外光发射体20发射的光线会分别激发波长转换层40的红光、绿光、蓝光荧光材料,转换产生红光光线、绿光光线、蓝光光线,而混合形成白光输出。
在上述的衍生实施例中,假设波长转换层40设置或包覆在数个紫外光发射体20上,其他的紫外光发射体20没有组合设置波长转换层40,而直接发射出紫外光;则组合设置有波长转换层40的紫外光发射体20会激发出红光光线、绿光光线、蓝光光线所共同形成的白光;所述白光会和上述其他紫外光发射体20发射出的紫外光混合输出。
代表性的来说,这光线发射模组在具备有提供白光输出效果的条件下,相较于现有方法而言,包括了下列的优点和考量:
1、该光线发射模组或其相关结合组件(例如,紫外光发射体20、蓝光发射体30组合波长转换层40或使紫外光发射体20、蓝光发射体30发射的光线分别激发该包含有UV荧光粉的第一波长转换材料(第一波长转换层41)、第二波长转换材料(第二波长转换部42);配合基板10设置导光器50等部分)在使用和结构设计、组织关系等,已被重行设计考量,使其不同于习用的LED和波长转换材料的组合结构,而有别于现有方法;并且,改变了它的使用型态和应用范围,也明显提高了它的白光显现效果,使现有技术产生混光不均匀的情形,被尽可能的降到最低。
2、特别是,从上述图3A~图3E可了解这光线发射模组提供的白光输出效果或显色性等,明显可改善现有技术无法依据商品属性、环境或应用条件,调整白光显现效果或波长输出范围的情形。
因此,本发明提供了一有效的光线发射模组,其技术特征不同于现有技术,且具有现有方法中无法比拟的优点,展现了相当大的进步,诚已充分符合发明专利的要件。
但是,以上所述,仅为本发明的可行实施例而已,并非用来限定本发明实施的范围,即凡依本发明申请专利范围所作的均等变化与修饰,皆为本发明专利范围所涵盖。

Claims (22)

  1. 一种光线发射模组,其特征在于,包括:
    一基板;
    设置在基板上的至少一紫外光发射体和至少一蓝光发射体;所述紫外光发射体的光线波长是380nm~420nm,蓝光发射体的光线波长是440nm~470nm;
    在紫外光发射体和蓝光发射体的光线路径上,布置一波长转换层,波长转换层具有第一波长转换材料和第二波长转换材料;第一波长转换材料包含至少一种UV荧光材料,第二波长转换材料包含至少一种荧光材料;
    第一波长转换材料接收转换紫外光发射体的光线,产生一色温范围2000K~18000K的有色光;第二波长转换材料接收激发蓝光发射体的光线,将蓝光发射体的光线转换产生一色温范围2000K~18000K的有色光;经混光后而获得一白光总输出光谱。
  2. 如权利要求1所述的光线发射模组,其特征在于,所述紫外光发射体是一紫外光发光二极管;蓝光发射体是一蓝光发光二极管;
    该第一波长转换材料包括蓝光、绿光、红光UV荧光材料的至少其中之一;以及
    该第二波长转换材料包括黄、绿、红荧光材料的至少其中之一。
  3. 如权利要求1或2所述的光线发射模组,其特征在于,该第一波长转换材料混合第二波长转换材料,设置在紫外光发射体、蓝光发射体上和波长转换层设置在距离紫外光发射体、蓝光发射体一高度位置的其中之一。
  4. 如权利要求1或2所述的光线发射模组,其特征在于,该波长转换层的第一波长转换材料形成第一波长转换层;第二波长转换材料形成第二波长转换层;
    第一波长转换层和第二波长转换层相叠合成一复层结构;以及
    第一波长转换层,第二波长转换层设置在紫外光发射体、蓝光发射体上和第一波长转换层,第二波长转换层设置在距离紫外光发射体、蓝光发射体一高度位置的其中之一。
  5. 如权利要求1或2所述的光线发射模组,其特征在于,该波长转换层的第一波长转换材料形成第一波长转换层;第二波长转换材料形成第二波长转换层;
    第一波长转换层布置在紫外光发射体上和设置在距离该紫外光发射体一高度位置的其中之一;
    第二波长转换层布置在蓝光发射体上和设置在距离该蓝光发射体一高度位置的其中之一。
  6. 如权利要求1或2所述的光线发射模组,其特征在于,该波长转换层的第一波长转换材料将紫外光发射体发射的光线转换成有色光;所述的有色光包含白光、绿到红色可见光的其中之一,其发光波长范围是500nm~660nm;以及
    该第二波长转换材料将蓝光发射体的光线转换成白光输出。
  7. 如权利要求3所述的光线发射模组,其特征在于,该波长转换层的第一波长转换材料将紫外光发射体发射的光线转换成有色光;所述的有色光包含白光、绿到红色可见光的其中之一,其发光波长范围是500nm~660nm;以及
    该第二波长转换材料将蓝光发射体的光线转换成白光输出。
  8. 如权利要求4所述的光线发射模组,其特征在于,该波长转换层的第一波长转换材料将紫外光发射体发射的光线转换成有色光;所述的有色光包含白光、绿到红色可见光的其中之一,其发光波长范围是500nm~660nm;以及
    该第二波长转换材料将蓝光发射体的光线转换成白光输出。
  9. 如权利要求5所述的光线发射模组,其特征在于,该波长转换层的第一波长转换材料将紫外光发射体发射的光线转换成有色光;所述的有色光包含白光、绿到红色可见光的其中之一,其发光波长范围是500nm~660nm;以及
    该第二波长转换材料将蓝光发射体的光线转换成白光输出。
  10. 如权利要求1或2所述的光线发射模组,其特征在于,该波长转换层的第一波长转换材料将紫外光发射体发射的光线转换成的有色光包括了520nm~560nm的绿色可见光和610nm~650nm的红色可见光两个波段。
  11. 如权利要求3所述的光线发射模组,其特征在于,该波长转换层的第一波长转换材料将紫外光发射体发射的光线转换成的有色光包括了520nm~560nm的绿色可见光和610nm~650nm的红色可见光两个波段。
  12. 如权利要求4所述的光线发射模组,其特征在于,该波长转换层的第一波长转换材料将紫外光发射体发射的光线转换成的有色光包括了520nm~560nm的绿色可见光和610nm~650nm的红色可见光两个波段。
  13. 如权利要求5所述的光线发射模组,其特征在于,该波长转换层的第一波长转换材料将紫外光发射体发射的光线转换成的有色光包括了520nm~560nm的绿色可见光和610nm~650nm的红色可见光两个波段。
  14. 如权利要求1或2所述的光线发射模组,其特征在于,该紫外光发射体组合第一波长转换材料、蓝光发射体组合第二波长转换材料,共同获得一光谱;以及所述光谱的范围相同于卤素灯的光谱范围。
  15. 如权利要求3所述的光线发射模组,其特征在于,该紫外光发射体组合第一波长转换材料、蓝光发射体组合第二波长转换材料,共同获得一光谱;以及所述光谱的范围相同于卤素灯的光谱范围。
  16. 如权利要求4所述的光线发射模组,其特征在于,该紫外光发射体组合第一波长转换材料、蓝光发射体组合第二波长转换材料,共同获得一光谱;以及所述光谱的范围相同于卤素灯的光谱范围。
  17. 如权利要求5所述的光线发射模组,其特征在于,该紫外光发射体组合第一波长转换材料、蓝光发射体组合第二波长转换材料,共同获得一光谱;以及所述光谱的范围相同于卤素灯的光谱范围。
  18. 如权利要求1或2所述的光线发射模组,其特征在于,该基板是一金属基板、电路基板和陶瓷基板的其中之一,设置在一导光器的底部;
    导光器为一光学反射元件,包括有一反射壁和连接反射壁的开口;反射壁为一具有反射材料的反射层;以及
    反射壁以一参考轴为基准,形成一几何形轮廓的结构。
  19. 如权利要求1或2所述的光线发射模组,其特征在于,该基板设置了复数个排列配置的紫外光发射体和蓝光发射体,形成串联和并联至少其中之一的电连接,而共同建立一发光串列的光线发射模组。
  20. 如权利要求3所述的光线发射模组,其特征在于,该基板上设置了复数个排列配置的紫外光发射体和蓝光发射体,形成串联和并联至少其中之一的电连接,而共同建立一发光串列的光线发射模组。
  21. 如权利要求4所述的光线发射模组,其特征在于,该基板上设置了复数个排列配置的紫外光发射体和蓝光发射体,形成串联和并联至少其中之一的电连接,而共同建立一发光串列的光线发射模组。
  22. 如权利要求5所述的光线发射模组,其特征在于,该基板上设置了复数个排列配置的紫外光发射体和蓝光发射体,形成串联和并联至少其中之一的电连接,而共同建立一发光串列的光线发射模组。
PCT/CN2014/089177 2014-09-29 2014-10-22 光线发射模组 WO2016049955A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410512595.9 2014-09-29
CN201410512595.9A CN105449081A (zh) 2014-09-29 2014-09-29 光线发射模块

Publications (1)

Publication Number Publication Date
WO2016049955A1 true WO2016049955A1 (zh) 2016-04-07

Family

ID=55559054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/089177 WO2016049955A1 (zh) 2014-09-29 2014-10-22 光线发射模组

Country Status (2)

Country Link
CN (1) CN105449081A (zh)
WO (1) WO2016049955A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10918747B2 (en) 2015-07-30 2021-02-16 Vital Vio, Inc. Disinfecting lighting device
CN106704866A (zh) * 2016-07-11 2017-05-24 广州市新晶瓷材料科技有限公司 受激光激发转化成白光的方法、装置及其应用
CN106098904A (zh) * 2016-08-19 2016-11-09 浙江阳光照明电器集团股份有限公司 一种led灯珠及使用该led灯珠的led灯具
US10413626B1 (en) * 2018-03-29 2019-09-17 Vital Vio, Inc. Multiple light emitter for inactivating microorganisms
US11369704B2 (en) 2019-08-15 2022-06-28 Vyv, Inc. Devices configured to disinfect interiors
US11878084B2 (en) 2019-09-20 2024-01-23 Vyv, Inc. Disinfecting light emitting subcomponent

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060138435A1 (en) * 2003-05-01 2006-06-29 Cree, Inc. Multiple component solid state white light
CN1866550A (zh) * 2005-05-18 2006-11-22 宏齐科技股份有限公司 多波长白光发光二极管
CN1981388A (zh) * 2004-05-06 2007-06-13 首尔Opto仪器股份有限公司 发光装置
CN101946115A (zh) * 2008-02-21 2011-01-12 皇家飞利浦电子股份有限公司 仿gls的led光源
US20130258653A1 (en) * 2012-03-28 2013-10-03 Edison Opto Corporation Light device and its light emitting diode module
CN203386804U (zh) * 2013-09-27 2014-01-08 内蒙古科技大学 一种紫外及蓝光led双驱动白光照明装置
CN203983273U (zh) * 2013-12-18 2014-12-03 扬州艾笛森光电有限公司 发光模块及其发光装置
CN204167359U (zh) * 2014-09-29 2015-02-18 艾笛森光电股份有限公司 光线发射模块

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100448004C (zh) * 2006-06-06 2008-12-31 任慰 白光二极管光源的荧光粉及其制造方法
US8740400B2 (en) * 2008-03-07 2014-06-03 Intematix Corporation White light illumination system with narrow band green phosphor and multiple-wavelength excitation
CN101866992A (zh) * 2009-04-15 2010-10-20 苏忠杰 白光发光二极管
CN102458019B (zh) * 2010-10-26 2014-01-22 财团法人工业技术研究院 光色调制方法及发光二极管光源模块
CN102185042A (zh) * 2011-03-28 2011-09-14 北京大学深圳研究生院 Led封装方法、封装器件、光调节方法及系统
CN104303595B (zh) * 2011-12-16 2017-06-09 马维尔国际贸易有限公司 用于基于发光二极管的照明系统的电流平衡电路

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060138435A1 (en) * 2003-05-01 2006-06-29 Cree, Inc. Multiple component solid state white light
CN1981388A (zh) * 2004-05-06 2007-06-13 首尔Opto仪器股份有限公司 发光装置
CN1866550A (zh) * 2005-05-18 2006-11-22 宏齐科技股份有限公司 多波长白光发光二极管
CN101946115A (zh) * 2008-02-21 2011-01-12 皇家飞利浦电子股份有限公司 仿gls的led光源
US20130258653A1 (en) * 2012-03-28 2013-10-03 Edison Opto Corporation Light device and its light emitting diode module
CN203386804U (zh) * 2013-09-27 2014-01-08 内蒙古科技大学 一种紫外及蓝光led双驱动白光照明装置
CN203983273U (zh) * 2013-12-18 2014-12-03 扬州艾笛森光电有限公司 发光模块及其发光装置
CN204167359U (zh) * 2014-09-29 2015-02-18 艾笛森光电股份有限公司 光线发射模块

Also Published As

Publication number Publication date
CN105449081A (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
TWI575181B (zh) 光線發射模組
WO2016049955A1 (zh) 光线发射模组
JP6063500B2 (ja) 色質の向上した固体照明システム
JP5005712B2 (ja) 発光装置
JP5624031B2 (ja) 混合光を含むソリッドステート照明デバイス
US7804103B1 (en) White lighting device having short wavelength semiconductor die and trichromatic wavelength conversion layers
RU2632263C2 (ru) Светопреобразующий блок, лампа и светильник
JP3185959U (ja) 2チップ発光ダイオード
US20100177495A1 (en) Illumination system, collimator and spotlight
JP2017502493A (ja) 向上された蛍光増白及び色彩選好のためのランプ
JP5443959B2 (ja) 照明装置
WO2017069206A1 (ja) 屋内用光源および照明装置
JP2005019997A (ja) 白色発光デバイス
TW201211442A (en) Lighting device and method of making
JP2008071806A (ja) 発光装置
JP7025424B2 (ja) 発光装置および照明装置
JP2010147306A (ja) 発光装置、この発光装置を用いた照明器具及び表示器具
JP2012191225A (ja) 発光装置
US9989222B2 (en) Light-emitting device
JP6583572B2 (ja) 発光装置
JP2014150293A (ja) 発光装置
JP2014112621A (ja) 半導体発光装置及び照明装置
JP2016100429A (ja) 光線放射モジュール
TWM498272U (zh) 光線發射模組
CN204167359U (zh) 光线发射模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14902915

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14902915

Country of ref document: EP

Kind code of ref document: A1