WO2020140778A1 - 波长转换装置、光源系统与显示设备 - Google Patents

波长转换装置、光源系统与显示设备 Download PDF

Info

Publication number
WO2020140778A1
WO2020140778A1 PCT/CN2019/127266 CN2019127266W WO2020140778A1 WO 2020140778 A1 WO2020140778 A1 WO 2020140778A1 CN 2019127266 W CN2019127266 W CN 2019127266W WO 2020140778 A1 WO2020140778 A1 WO 2020140778A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wavelength conversion
light source
wavelength
conversion element
Prior art date
Application number
PCT/CN2019/127266
Other languages
English (en)
French (fr)
Inventor
田梓峰
徐虎
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2020140778A1 publication Critical patent/WO2020140778A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2053Intensity control of illuminating light

Definitions

  • the invention relates to the field of display technology, in particular to a wavelength conversion device, a light source system and a display device.
  • the main technical solutions that can be adopted include RGB mixed light and fluorescence conversion.
  • the fluorescent conversion scheme uses the emitted light from other light sources (such as but not limited to LED chips) to excite the phosphor to generate a longer-wavelength laser beam.
  • the optical system obtained by the fluorescent conversion scheme has a simple structure, low manufacturing cost, and the product has a very Strong practicality.
  • the red fluorescent powder In the current red light emitting device adopting the fluorescent conversion scheme, due to the large thermal Stokes shift of the red light, the red fluorescent powder easily reaches the thermal saturation state, thereby reducing the red light conversion efficiency.
  • a long-wavelength yellow wavelength conversion material including YAG: Ce 3+ can be used to generate red light in conjunction with a red light filter.
  • the red wavelength conversion material emits
  • the red receiving laser spectrum is 902a
  • the yellow receiving laser spectrum emitted by the yellow wavelength conversion material is 901a. It can be seen that the energy of the yellow receiving laser is greater than that of the red receiving laser (the spectral energy is the area covered by the spectrum).
  • the wavelength range covered by the yellow laser spectrum 901a is approximately 500nm-700nm, and only the spectral components with a wavelength greater than 590nm correspond to red light. It can be seen that in order to obtain a red light output, a red light filter must be used to filter out components in the yellow light spectrum whose wavelength is less than 590 nm. Please refer to FIG. 2, the filtered yellow received laser spectrum is 901b, and the filtered red received laser spectrum is 902b. It can be easily seen from the spectrum that the energy of the yellow laser spectrum 901a is greatly lost during the filtering process.
  • the energy of the red laser spectrum 902a itself is low, most of its energy is concentrated in the wavelength range greater than 590nm, so the energy loss in the filtering process is very small.
  • the luminous flux of the yellow laser spectrum is 4.56 times the luminous flux of the red laser spectrum.
  • the luminous flux of the yellow laser after filtering is only 11.6% before filtering, and the red after filtering
  • the luminous flux of the laser is 53.4% before filtering.
  • the method of generating red light by using yellow wavelength conversion materials in conjunction with red light filters is almost the same as the red light flux emitted by using red wavelength conversion materials directly, although the former uses higher light saturation characteristics YAG: Ce 3+ yellow phosphor, but most of the energy will be lost in the subsequent filtering process, the final filtered monochromatic light flux is also unsatisfactory, the overall energy conversion efficiency is low, and the light source is increased Volume and cost.
  • red light emitting device uses long-wavelength yellow phosphors or short-wavelength red phosphors and red lasers to generate red light.
  • red lasers have high efficiency and brightness, the cost of red lasers is high and the packaging The requirements are higher, and an additional optical path is required, which is not conducive to the compact design of the light source and the display device. Therefore, the existing red light emitting device cannot achieve high brightness and high efficiency at low cost, which is inconvenient to promote.
  • a first aspect of the present invention provides a wavelength conversion device, including:
  • a first wavelength conversion element for converting the first excitation light into the first received laser light
  • a second wavelength conversion element which is used to convert the second excitation light into the second received laser light
  • the first excitation light and the second excitation light are transmitted along different optical paths.
  • the wavelength of the first received laser light is in the first wavelength range
  • the wavelength of the second received laser light is in the second wavelength range.
  • the first wavelength range has a wider bandwidth than the second wavelength range.
  • a second aspect of the present invention provides a light source system, including:
  • a light source for emitting excitation light for emitting excitation light
  • the wavelength conversion device according to the first aspect of the present invention, wherein the first wavelength conversion element and the second wavelength conversion element are used to receive the excitation light and generate the first received laser light and the second received laser light ;
  • the first received laser light and the second received laser light exit the light source system along the same optical path.
  • a third aspect of the present invention provides a display device, including:
  • a light source system as provided in the second aspect of the present invention is provided.
  • the wavelength of the first received laser beam emitted by the wavelength conversion device provided by the present invention is in the first wavelength range, and the wavelength of the emitted second received laser beam is in the second wavelength range, and the first wavelength range is compared to the second
  • the wide bandwidth of the wavelength range is beneficial to improve the brightness and color purity of the illumination light used for display, and the adopted structure has the advantages of simple process and low cost.
  • the invention also provides a light source system and a display device including the wavelength conversion device.
  • Fig. 1 is the excited light spectrum curve of the yellow wavelength conversion material and the red wavelength conversion material.
  • FIG. 3 is a schematic structural diagram of a light source system provided by the present invention.
  • Figure 4 shows the absorption and emission spectra of Eu 3+ doped oxide ceramics.
  • 5 is a normalized curve of the absorption spectrum of Eu 3+ doped oxide ceramic and the emission spectrum of the second light source.
  • Yellow laser spectrum 901a Red laser spectrum 902a Filtered yellow laser spectrum 901b Filtered red laser spectrum 902b
  • Light source system 100 light source 110 Wavelength conversion device 120
  • First light source 111 Second light source 112 First wavelength conversion element 121 Second wavelength conversion element 122 Condenser lens 130 Beam splitter 140 First area 141 Second area 142 Thermally conductive substrate 150
  • the invention provides a wavelength conversion device and a light source system including the wavelength conversion device.
  • the light source system can be applied to light source products with low power.
  • the invention also provides a display device including the light source system.
  • the display device can be applied to a projection product, and is particularly suitable for a miniature projector.
  • the light source system and the display device provided by the invention have the characteristics of high light efficiency, high brightness and high color purity, and the wavelength conversion device has a simple structure and manufacturing process, low cost, and has a broad market application prospect.
  • the present invention provides a light source system 100.
  • the light source system 100 includes a light source 110 and a wavelength conversion device 120.
  • the light source 110 is used to emit excitation light
  • the wavelength conversion device 120 is used to receive the excitation light and generate a first received laser light and a second received laser light, and the first received laser light and the second received laser light exit the light source system 100 along the same optical path.
  • the light source 110 includes a first light source 111 for emitting first excitation light and a second light source 112 for emitting second excitation light.
  • the first light source 111 is a blue light emitting diode (Light Emitting Diode, LED)
  • the second light source 112 is a laser light source, such as a blue laser diode (Laser Diode, LD).
  • the first light source 111 may be a blue LED chip
  • the second light source 112 may be a blue LD chip.
  • the types and colors of the first light source 111 and the second light source 112 may be the same or different.
  • the first light source 111 and the second light source 112 may also be an arc lamp light source, a fluorescent light source, etc.
  • the second excitation light may also be white light, ultraviolet light, green light, yellow light, red light, or other colors of light.
  • the wavelength conversion device 120 includes a first wavelength conversion element 121 and a second wavelength conversion element 122.
  • a surface of the first wavelength conversion element 121 facing away from the second wavelength conversion element 122 is bonded to the light exit surface of the first light source 111.
  • the first wavelength conversion element 121 is used to generate the first received laser light in the first wavelength range under the irradiation of the incident light of the first wavelength conversion element 121;
  • the second wavelength conversion element 122 is disposed adjacent to the first wavelength conversion element 121, It is used for generating the second received laser light in the second wavelength range under the irradiation of the incident light of the second wavelength conversion element 122.
  • the first wavelength conversion element 121 and the second wavelength conversion element 122 are stacked.
  • the first wavelength conversion element 121 and the second wavelength conversion element 122 may be spaced apart.
  • the exit direction of the first received laser light is the same as the direction of the first excitation light incident on the first wavelength conversion element 121, and the exit direction of the second received laser light is opposite to the direction of the second excitation light incident on the second wavelength conversion element 122.
  • the first wavelength conversion element 121 includes a mixture of phosphor and silica gel.
  • the phosphor in the first wavelength conversion element 121 is used to generate a first received laser beam under the irradiation of the incident light of the first wavelength conversion element 121.
  • the first wavelength conversion element 121 is obtained by mixing and curing phosphor powder and silica gel.
  • the phosphor powder is a red phosphor powder including (Sr, Ca)AlSiN 3 :Eu 2+ to produce a red first Subject to laser.
  • the silica gel is preferably methylphenyl silica gel having a refractive index of 1.45-1.52.
  • the second wavelength conversion element 122 includes an oxide ceramic.
  • the second wavelength conversion element 122 includes an oxide ceramic doped with Eu 3+ to generate a red second laser beam.
  • the second wavelength conversion element 122 uses the oxide ceramic doped with Eu 3+ to increase the density of the red light ceramic, thereby improving the brightness, efficiency, and color gamut of the red light emitted by the light source system 100.
  • the first wavelength range of the first laser beam is wider than the second wavelength range of the second laser beam.
  • the second wavelength range is 600-620nm
  • the bandwidth of the second wavelength range is 20nm
  • the bandwidth of the first wavelength range is greater than 20nm
  • the first wavelength range may be but not limited to 580-620nm, 590-630nm or 570 -620nm.
  • the second wavelength range is 610-630 nm. It can be understood that the wavelength conversion material in the second wavelength conversion element 122 can be flexibly selected according to the target color gamut, so that the color coordinates of the second received laser light are within the target color gamut.
  • the emission spectrum of oxide ceramics doped with Eu 3+ has a strong 4f-4f sharp line emission in the range of 610-630nm.
  • the narrow-band red light color has higher purity, which exceeds the REC709 red light standard.
  • the preparation process of oxide ceramics doped with Eu 3+ is relatively simple. Generally, high-density ceramics can be prepared in the air, and the cost is relatively low, and Ceramics have high thermal conductivity and stability.
  • the second wavelength conversion element 122 includes an oxide ceramic doped with Eu 3+ , so it can not only reduce the production cost of the light source system 100 and simplify the production process, but also improve the brightness and color purity of the second laser beam Moreover, the conversion efficiency of the second wavelength conversion element 122 to the blue laser is improved, thereby widening the color gamut range of the illumination light emitted from the light source system 100, and improving the light source utilization rate of the illumination light to reduce light consumption.
  • the first light source 111 emits blue LED light including a third wavelength range, which may be, but not limited to, 450-465 nm.
  • a third wavelength range which may be, but not limited to, 450-465 nm.
  • (Sr, Ca) AlSiN 3 in the second wavelength conversion element 122: Eu 2+ can efficiently absorb blue LED light in the third wavelength range and convert it into the first received laser light, which is beneficial to improve the first wavelength conversion element 121 The conversion efficiency of the first excitation light, thereby reducing the light consumption to achieve the effect of energy saving.
  • the oxide ceramic doped with Eu 3+ can efficiently absorb light in the fourth wavelength range of the second excitation light, where the fourth wavelength range may be, but not limited to, 462-468 nm.
  • Eu 3+ doped oxide ceramics absorption spectral bandwidth i.e., corresponding to an absorption peak at a wavelength range of one-half
  • the wavelength of the blue laser light emitted by the second light source 112 is in the fourth wavelength range. Specifically, as shown in FIG.
  • the main energy of the emission spectrum of the second light source 112 is concentrated at 463-467 nm, and the bandwidth of the absorption spectrum of Eu 3+ covers the The bandwidth of the second excitation light exceeds the bandwidth of the second laser beam by 1.5nm, so that the second excitation light emitted by the second light source 112 will be converted into the second laser beam by the second wavelength conversion element 122, which is doped with Eu 3+
  • the oxide ceramic is not saturated, the unconverted part of the second excitation light does not exist or has a very small proportion, so it is beneficial to improve the utilization rate of the second excitation light by the second wavelength conversion element 122 and to improve the light source The light effect of the system 100.
  • the light source system 100 further includes a thermally conductive substrate 150, and a surface of the first light source 111 facing away from the first wavelength conversion element 121 is bonded to the thermally conductive substrate 150.
  • the thermally conductive substrate 150 is used to apply heat generated by the first light source 111 Conducted into the surrounding space, the surface of the heat-conducting substrate 150 or the first light source 111 connected to the heat-conducting substrate 150 is used to reflect light, so that the second received laser light and the first received laser light exit the light source system 100 along the same optical path.
  • the thermally conductive substrate 150 is used to reflect light.
  • the thermally conductive substrate 150 can be made of various plates with thermal conductivity, such as glass plates or metal plates.
  • the surface of the first light source 111 connected to the thermally conductive substrate 150 is used to reflect light.
  • the surface can reflect the first excitation light, the first laser beam, the second excitation light, and the second laser beam.
  • the heat accumulated in the wavelength conversion device 120 during the wavelength conversion process can be diffused into the surrounding space through the first light source 111 and the thermally conductive substrate 150 by means of heat transfer, thereby reducing the operating temperature of the wavelength conversion device 120 to avoid the wavelength conversion device 120 As the temperature increases, thermal saturation occurs, which in turn leads to a reduction in conversion efficiency.
  • the light source system 100 further includes a light-receiving lens 130 and a beam-splitting element 140.
  • the light-receiving lens 130 is used to guide the first received laser light and the second received laser light excited on the wavelength conversion device 120 to enter the beam splitting element 140 in parallel.
  • the second excitation light emitted by the second light source 112 is directed to the first region 141 of the second wavelength conversion element 122, and the second region 142 for transmitting the first and second laser beams and emits high brightness and high color saturation Degree of red light.
  • the light source system 100 further includes a uniform light element, which is disposed between the light-receiving lens 130 and the beam splitter element 140 to improve the uniformity of the emitted red light.
  • the uniform light element may be a compound eye lens or a square rod.
  • the light source system 100 excites the red phosphor containing (Sr,Ca)AlSiN 3 :Eu 2+ through the blue LED chip to efficiently excite to form red light with a wide wavelength range, and on the other hand, excites the Eu doped with the blue LD chip 3+ oxide ceramics to form red light with narrower wavelength range with higher brightness and color purity, red light with wider wavelength range and red light with narrower wavelength range combine to form red light with high brightness and high color purity , Solve the problems of high cost, high process requirements and low red light excitation efficiency of the current red light emitting device.
  • the present invention also provides a display device including the light source system 100.
  • the display device may be a projection product, preferably a miniature projector.
  • the phosphor in the first wavelength conversion element 121 includes a green phosphor containing LuAG:Ge 1+ , which is used to generate the green first received laser light in the first wavelength range and the second
  • the wavelength conversion element 122 includes an oxide ceramic doped with Tb 3+ for generating a green second laser beam in the second wavelength range.
  • the main energy of the second excitation light emitted by the second light source 112 is concentrated in the range of 480-486 nm.
  • the first received laser light and the second received laser light are transmitted from the beam splitter 140 to form green light for display.
  • the phosphor in the first wavelength conversion element 121 includes a yellow phosphor containing YAG:Ce 3+ , and the first wavelength conversion element 121 generates a first receptor under the excitation of the first light source 111.
  • the laser light is yellow.
  • the second wavelength conversion element 122 is used to generate a red second received laser light, the first excitation light, the second excitation light, the first received laser light, and the second received laser light pass through the thermally conductive substrate 150 or the first light source 111 and the surface of the thermally conductive substrate 150 After being reflected, it exits the light source system 100 through the beam splitter 140 and forms white light for display.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Projection Apparatus (AREA)
  • Semiconductor Lasers (AREA)
  • Luminescent Compositions (AREA)

Abstract

一种波长转换装置、包含波长转换装置的光源系统及显示设备,包括第一波长转换元件(121),用于将第一激发光转换为第一受激光;以及第二波长转换元件(122),用于将第二激发光转换为第二受激光,第一激发光和第二激发光沿不同的光路传输,第一受激光的波长处于第一波长范围内,第二受激光的波长处于第二波长范围内,第一波长范围相较于第二波长范围的带宽较宽,有利于提升用于显示的照明光的亮度以及色纯度,且所采用的结构具有工艺简单、成本低廉的优点。

Description

波长转换装置、光源系统与显示设备 技术领域
本发明涉及显示技术领域,尤其涉及一种波长转换装置、光源系统与显示设备。
背景技术
目前,获得各种颜色光源(尤其白光光源)的方法除了采用相应颜色发光二极管外,还可以采用的主要技术方案包括RGB混光和荧光转换两种。其中,荧光转换方案利用来自其它光源(例如但不限于LED芯片)的发射光来激发荧光粉产生较长波长的受激光,采用荧光转换方案得到的光学系统结构简单、制造成本低,产品具有很强的实用性。
目前采用荧光转换方案的红光发光装置中,由于红光的热斯托克斯位移较大,造成红色荧光粉容易达到热饱和状态,进而降低了红光转化效率。在实际应用中,可以采用包括YAG:Ce 3+的长波长的黄色波长转换材料配合红光滤光片的方式产生红光,请参阅图1,在相同的激发功率下,红色波长转换材料发出的红色受激光光谱是902a,黄色波长转换材料发出的黄色受激光光谱是901a,可以看出黄色受激光的能量比红色受激光的能量大(光谱能量即为光谱所覆盖的面积)。然而,黄色受激光光谱901a的覆盖的波长范围大约为500nm-700nm,而其中只有波长大于590nm的光谱成分对应于红光。可以看出,为了得到红光输出,必须使用红光滤光片将黄光光谱中的波长小于590nm的成分过滤掉。请参阅图2,过滤后的黄色受激光光谱为901b,过滤后的红色受激光光谱为902b。从光谱可以简单看出,黄色受激光光谱901a在过滤过程中的能量损失很大。而红色受激光光谱902a本身虽然能量较低,但是其大部分能量都集中于波长大于590nm的波段范围,所以在过滤过程中的能量损失很小。过滤前,黄色受激光光谱的光通量是红色受激光光谱光通量的4.56倍,然而经过过滤达到相同的红色 色坐标后,过滤后的黄色受激光的光通量只有过滤前的11.6%,而过滤后的红色受激光的光通量是过滤前的53.4%。最终,采用黄色波长转换材料配合红光滤光片的方式产生红光的方法对比直接用红色波长转换材料产生红光的方法所出射的红光光通量几乎相同,虽然前者使用了光饱和特性更高的YAG:Ce 3+黄色荧光粉,但在后续的过滤过程中会损失大部分的能量,最终过滤后的单色光的光通量也不能令人满意,总体能量转换效率低,并且增加了光源的体积和成本。
另外一种已知的高亮度红光发光装置是采用长波长黄色荧光粉或者短波长红色荧光粉以及红色激光产生红光,虽然红激光效率和亮度较高,但是红激光的成本较高且封装要求较高,并且需要额外增加光路,不利于光源及显示设备体积的小型化设计,因而现有的红光发光装置无法利用低成本实现高亮度与高效率,不便推广。
发明内容
本发明第一方面提供一种波长转换装置,包括:
第一波长转换元件,用于将第一激发光转换为第一受激光;以及
第二波长转换元件,用于将第二激发光转换为第二受激光;
所述第一激发光和所述第二激发光沿不同的光路传输,所述第一受激光的波长处于第一波长范围内,所述第二受激光的波长处于第二波长范围内,所述第一波长范围相较于所述第二波长范围的带宽较宽。
本发明第二方面提供一种光源系统,包括:
光源,用于发出激发光;以及
如本发明第一方面提供的波长转换装置,其中所述第一波长转换元件与所述第二波长转换元件用于接收所述激发光并产生所述第一受激光和所述第二受激光;
所述第一受激光和所述第二受激光沿相同光路自所述光源系统出射。
本发明第三方面提供一种显示设备,包括:
如本发明第二方面提供的光源系统。
本发明提供的波长转换装置出射的第一受激光的波长处于第一波 长范围内,出射的第二受激光的波长处于第二波长范围内,所述第一波长范围相较于所述第二波长范围的带宽较宽,有利于提升用于显示的照明光的亮度以及色纯度,且所采用的结构具有工艺简单、成本低廉的优点。本发明还提供了包含所述波长转换装置的光源系统及显示设备。
附图说明
为了更清楚地说明本发明实施例/方式技术方案,下面将对实施例/方式描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例/方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为黄色波长转换材料与红色波长转换材料的受激发光光谱曲线。
图2为黄色波长转换材料与红色波长转换材料的受激发光经过滤光装置后的光谱曲线。
图3为本发明提供的光源系统的结构示意图。
图4为Eu 3+掺杂的氧化物陶瓷的吸收光谱和发射光谱曲线。
图5为Eu 3+掺杂的氧化物陶瓷吸收光谱与第二光源发射光谱归一化曲线。
主要元件符号说明
黄色受激光光谱 901a
红色受激光光谱 902a
过滤后的黄色受激光光谱 901b
过滤后的红色受激光光谱 902b
光源系统 100
光源 110
波长转换装置 120
第一光源 111
第二光源 112
第一波长转换元件 121
第二波长转换元件 122
收光透镜 130
分光元件 140
第一区域 141
第二区域 142
导热基板 150
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施例对本发明进行详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
本发明提供一种波长转换装置以及包括该波长转换装置的光源系统,该光源系统可应用于小功率的光源产品中。本发明还提供一种包括该光源系统的显示设备,该显示设备可应用于投影产品,尤其适用于微型投影仪。本发明提供的光源系统和显示设备具有高光效、高亮度与高色纯度的特点,且该波长转换装置结构与制作工艺简单,成本低廉,具有广泛的市场应用前景。
请参阅图3,本发明提供一种光源系统100,光源系统100包括光源110和波长转换装置120。其中,光源110用于发出激发光,波长转换装置120用于接收激发光并产生第一受激光和第二受激光,第一受激光和第二受激光沿相同光路自光源系统100出射。
进一步地,光源110包括用于发出第一激发光的第一光源111以及包括用于发出第二激发光的第二光源112。本实施方式中,第一光源111为蓝色发光二极管(Light Emitting Diode,LED),第二光源112为激光光源,例如:蓝色激光二极管(Laser Diode,LD)。一种实施方式中,第一光源111可为蓝色LED芯片,第二光源112可为蓝色LD芯片。在其他实施方式中,第一光源111和第二光源112的种类和颜色可以相同,也可以不同,第一光源111和第二光源112还可以是弧光灯光源、荧光光源等,第一激发光和第二激发光还可以为白光、紫外光、绿光、黄光、红光或其他颜色的光。
波长转换装置120包括第一波长转换元件121和第二波长转换元件122,第一波长转换元件121背离第二波长转换元件122的一侧表面粘接第一光源111的出光面。第一波长转换元件121用于在第一波长转换元件121的入射光的照射下产生第一波长范围内的第一受激光;第二波长转换元件122与第一波长转换元件121相邻设置,用于在第二波长转换元件122的入射光的照射下产生第二波长范围内的第二受激光。具体地,第一波长转换元件121与第二波长转换元件122层叠设置。在其他实施方式中,第一波长转换元件121与第二波长转换元件122可以间隔设置。第一受激光的出射方向与入射至第一波长转换元件121的第一激发光的方向相同,第二受激光的出射方向与入射至第二波长转换元件122的第二激发光的方向相反。
第一波长转换元件121包括荧光粉和硅胶的混合物,第一波长转换元件121中的荧光粉用于在第一波长转换元件121的入射光的照射下产生第一受激光。本实施方式中,第一波长转换元件121为荧光粉与硅胶混合固化而成,优选地,荧光粉为包括(Sr,Ca)AlSiN 3:Eu 2+的红色荧光粉,以产生红色的第一受激光。为了兼顾第一波长转换元件121的转换效率以及使第一光源111和第二波长转换元件122粘连 的可靠性,硅胶优选为折射率为1.45-1.52的甲基苯基硅胶。第二波长转换元件122包括氧化物陶瓷,本实施方式中,第二波长转换元件122包括掺杂有Eu 3+的氧化物陶瓷,以产生红色的第二受激光。第二波长转换元件122利用掺杂有Eu 3+的氧化物陶瓷提高红光陶瓷的致密度,进而提升光源系统100出射红光的亮度、效率和色域。
具体地,第一受激光的第一波长范围相较于第二受激光的第二波长范围的带宽较宽。本实施方式中,第二波长范围为600-620nm,第二波长范围的带宽为20nm,第一波长范围的带宽大于20nm,第一波长范围可为但不限于580-620nm、590-630nm或570-620nm。在变更实施方式中,第二波长范围为610-630nm。可以理解的是,可以根据目标色域来灵活选择第二波长转换元件122中的波长转换材料,使得第二受激光的色坐标位于目标色域范围内。
请参阅图4,掺杂有Eu 3+的氧化物陶瓷的发射光谱在610-630nm范围内出现较强的4f-4f锐线发射,其发射谱的色坐标中X=0.64-0.68,发射的窄带红光色纯度较高,超出了REC709红光标准,另外掺杂有Eu 3+的氧化物陶瓷制备工艺较简单,一般在空气中即可制备形成高致密度陶瓷,成本也较为低廉,且陶瓷的热导率和稳定性较高。本实施方式中,第二波长转换元件122包括掺杂有Eu 3+的氧化物陶瓷,因此不仅能够降低光源系统100的生产成本、简化生产工艺,还能够提升第二受激光的亮度、色纯度且提高第二波长转换元件122对蓝激光的转换效率,从而扩宽自光源系统100出射的照明光的色域范围,提高照明光的光源利用率以降低光耗。
本实施方式中,第一光源111发出包括第三波长范围的蓝色LED光,第三波长范围可为但不限于450-465nm。第二波长转换元件122中的(Sr,Ca)AlSiN 3:Eu 2+能高效吸收在第三波长范围内的蓝色LED光并转换为第一受激光,有利于提高第一波长转换元件121对第一激发光的转换效率,从而降低光耗达到节能的效果。
请参阅图5,掺杂Eu 3+的氧化物陶瓷能高效吸收第二激发光的第四波长范围内的光,其中第四波长范围可为但不限于462-468nm。掺杂Eu 3+的氧化物陶瓷的吸收谱带宽(即吸收峰值的二分之一处对应的 波长范围)为4-5nm,掺杂Eu 3+的氧化物陶瓷在第四波长范围内呈现较强的4f-4f锐线吸收。第二光源112发出的蓝激光的波长为第四波长范围,具体地,如图5所示,第二光源112的发射谱主要能量集中在463-467nm,Eu 3+的吸收谱的带宽覆盖第二激发光的带宽并超出第二受激光带宽1.5nm,从而第二光源112发出的第二激发光均会被第二波长转换元件122转换为第二受激光,在掺杂有Eu 3+的氧化物陶瓷未饱和的情况下,第二激发光中未被转换的部分不存在或占比极小,因此有利于提高第二波长转换元件122对第二激发光的利用率,有利于提高光源系统100的光效。
如图3所示,光源系统100还包括导热基板150,第一光源111背离第一波长转换元件121的一侧表面与导热基板150粘接,导热基板150用于将第一光源111产生的热量传导至周围空间中,导热基板150或第一光源111与导热基板150连接的表面用于反射光线,以使第二受激光与第一受激光沿相同光路自光源系统100出射。在一种实施方式中,导热基板150用于反射光线,导热基板150可选用各种具备导热性能的板材制成,例如玻璃板或金属板。在一种实施方式中,第一光源111连接导热基板150的表面用于反射光线,比如所述表面可反射第一激发光、第一受激光、第二激发光以及第二受激光,可以理解的是,波长转换装置120在波长转换过程积聚的热量可以通过热传递的方式经由第一光源111与导热基板150扩散至周围空间中,从而降低波长转换装置120的工作温度,以避免波长转换装置120随着温度的升高出现热饱和现象,进而导致转换效率降低。
光源系统100还包括收光透镜130和分光元件140,收光透镜130用于引导波长转换装置120上激发的第一受激光和第二受激光平行入射至分光元件140,分光元件140包括用于引导第二光源112发射的第二激发光入射至第二波长转换元件122的第一区域141,以及用于透射第一受激光和第二受激光的第二区域142并出射高亮度高色饱和度的红光。可选地,光源系统100还包括匀光元件,设置于收光透镜130和分光元件140之间,提高出射的红光的均匀性,匀光元件可为复眼透镜或方棒。
光源系统100一方面通过蓝光LED芯片激发含有(Sr,Ca)AlSiN 3:Eu 2+的红色荧光粉以高效激发形成波长范围较宽的红光,另一方面通过蓝光LD芯片激发掺杂有Eu 3+的氧化物陶瓷以形成亮度和色纯度较高的波长范围较窄的红光,波长范围较宽的红光和波长范围较窄的红光合光后形成高亮度、高色纯度红光,解决了目前红光发光装置成本高、工艺要求高、红光激发效率低的问题。本发明还提供了一种包括光源系统100的显示设备,显示设备可为投影产品,优选为微型投影仪。
在另一种变更实施方式中,第一波长转换元件121中的荧光粉包括含有LuAG:Ge 1+的绿色荧光粉,用于产生在第一波长范围内的绿色的第一受激光,第二波长转换元件122包括掺杂有Tb 3+的氧化物陶瓷,用于产生在第二波长范围内的绿色的第二受激光。第二光源112发出的第二激发光的主要能量集中在480-486nm的范围。第一受激光与第二受激光自分光元件140透射后形成用于显示的绿光。
在一种变更的实施方式中,第一波长转换元件121中的荧光粉包括含有YAG:Ce 3+的黄色荧光粉,第一波长转换元件121在第一光源111的激发下产生的第一受激光为黄光。第二波长转换元件122用于产生红色的第二受激光,第一激发光、第二激发光、第一受激光以及第二受激光经过导热基板150或第一光源111与导热基板150连接表面的反射后,穿过分光元件140自光源系统100出射并形成用于显示的白光。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化涵括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。此外,显然“包括”一词不排除其他单元或步骤,单数不排除复数。装置权利要求中陈述的多个装置也可以由同一个装置或系统通过软件或者硬件来实现。第一,第二等词语用 来表示名称,而并不表示任何特定的顺序。
最后应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或等同替换,而不脱离本发明技术方案的精神和范围。

Claims (16)

  1. 一种波长转换装置,其特征在于,包括:
    第一波长转换元件,用于将第一激发光转换为第一受激光;以及
    第二波长转换元件,用于将第二激发光转换为第二受激光;
    所述第一激发光和所述第二激发光沿不同的光路传输,所述第一受激光的波长处于第一波长范围内,所述第二受激光的波长处于第二波长范围内,所述第一波长范围相较于所述第二波长范围的带宽较宽。
  2. 如权利要求1所述的波长转换装置,其特征在于,所述第一波长转换元件用于将入射的第三波长范围内的光转换为所述第一受激光,所述第二波长转换元件用于将入射的第四波长范围内的光转换为所述第二受激光,所述第三波长范围相较于所述第四波长范围的带宽较宽。
  3. 如权利要求1所述的波长转换装置,其特征在于,所述第一波长转换元件包括荧光粉和硅胶的混合物,所述荧光粉用于将入射至所述第一波长转换元件的光线转换为所述第一受激光。
  4. 如权利要求3所述的波长转换装置,其特征在于,所述荧光粉包括(Sr,Ca)AlSiN 3:Eu 2+、YAG:Ce 3+或LuAG:Ge 3+
  5. 如权利要求3所述的波长转换装置,其特征在于,所述硅胶包括折射率为1.45-1.52的甲基苯基硅胶。
  6. 如权利要求1所述的波长转换装置,其特征在于,所述第二波长转换元件包括氧化物陶瓷。
  7. 如权利要求6所述的波长转换装置,其特征在于,所述氧化物陶瓷掺杂有Eu 3+或Tb 3+
  8. 如权利要求1所述的波长转换装置,其特征在于,所述第一波长转换元件与所述第二波长转换元件层叠设置。
  9. 如权利要求1所述的波长转换装置,其特征在于,所述第一受激光的出射方向与所述第一激发光的方向相同,所述第二受激光的出射方向与所述第二激发光的方向相反。
  10. 一种光源系统,其特征在于,包括:
    光源,用于发出激发光;以及
    如权利要求1-9任一项所述的波长转换装置,其中所述第一波长转换元件与所述第二波长转换元件分别用于接收所述激发光并产生所述第一受激光和所述第二受激光;
    所述第一受激光和所述第二受激光沿相同光路自所述光源系统出射。
  11. 如权利要求10所述的光源系统,其特征在于,所述光源包括第一光源和第二光源,其中所述第一光源用于发出所述第一激发光,所述第一激发光入射至所述第一波长转换元件后产生所述第一受激光;所述第二光源用于发出所述第二激发光,所述第二激发光入射至所述第二波长元件后产生所述第二受激光。
  12. 如权利要求11所述的光源系统,所述第一光源包括发光二极管,所述第二光源包括激光光源。
  13. 如权利要求11所述的光源系统,其特征在于,所述第一波长转换元件背离所述第二波长转换元件的一侧表面粘接所述第一光源的出光面。
  14. 如权利要求11所述的光源系统,其特征在于,所述光源系统还包括导热基板,所述第一光源背离所述第一波长转换元件的一侧表面与所述导热基板粘接,所述导热基板用于将所述第一光源产生的热量传导至周围空间中。
  15. 如权利要求14所述的光源系统,其特征在于,所述导热基板或所述第一光源与所述导热基板连接的表面用于反射光线,以使所述第二受激光与所述第一受激光沿相同光路自所述光源系统出射。
  16. 一种显示设备,其特征在于,包括如权利要求10-15任一项所述的光源系统。
PCT/CN2019/127266 2019-01-04 2019-12-23 波长转换装置、光源系统与显示设备 WO2020140778A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910008220.1A CN111413841B (zh) 2019-01-04 2019-01-04 波长转换装置、光源系统与显示设备
CN201910008220.1 2019-01-04

Publications (1)

Publication Number Publication Date
WO2020140778A1 true WO2020140778A1 (zh) 2020-07-09

Family

ID=71406546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/127266 WO2020140778A1 (zh) 2019-01-04 2019-12-23 波长转换装置、光源系统与显示设备

Country Status (2)

Country Link
CN (1) CN111413841B (zh)
WO (1) WO2020140778A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7070300B2 (en) * 2004-06-04 2006-07-04 Philips Lumileds Lighting Company, Llc Remote wavelength conversion in an illumination device
US20130314893A1 (en) * 2012-05-24 2013-11-28 Lumen Dynamics Group Inc. High brightness illumination system and wavelength conversion module for microscopy and other applications
CN103988502A (zh) * 2011-12-16 2014-08-13 欧司朗有限公司 具有荧光材料元件的照明单元
CN106324855A (zh) * 2010-11-24 2017-01-11 青岛海信电器股份有限公司 投影机光源及投影机
CN107298975A (zh) * 2016-04-14 2017-10-27 中原大学 荧光粉组成及使用荧光粉组成的发光二极管装置
CN107515510A (zh) * 2017-03-23 2017-12-26 光显科技株式会社 一种光源装置以及投影显示装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102563543B (zh) * 2011-05-09 2015-01-07 深圳市绎立锐光科技开发有限公司 基于光波长转换产生高亮度单色光的方法及光源
CA2851241A1 (en) * 2011-10-07 2013-04-11 Cymtec Ltd Radiation generating apparatus and a method of generating radiation
CN102540656B (zh) * 2011-11-15 2014-12-31 深圳市光峰光电技术有限公司 发光装置及投影系统
CN102830582B (zh) * 2012-06-04 2014-08-06 深圳市绎立锐光科技开发有限公司 发光装置及其相关投影系统
CN104020632B (zh) * 2013-02-28 2016-08-24 深圳市绎立锐光科技开发有限公司 发光装置及相关投影系统
CN106195924B (zh) * 2013-06-08 2019-05-03 深圳光峰科技股份有限公司 一种波长转换装置及其制作方法、相关发光装置
CN203586091U (zh) * 2013-10-15 2014-05-07 吴震 波长转换装置和光源
CN104980721B (zh) * 2014-04-02 2019-03-29 深圳光峰科技股份有限公司 一种光源系统及投影系统
CN106523955B (zh) * 2015-09-14 2019-10-11 中强光电股份有限公司 照明系统及投影装置
CN107272312A (zh) * 2016-04-06 2017-10-20 上海蓝湖照明科技有限公司 发光装置及相关投影系统与照明系统
CN107272313A (zh) * 2016-04-06 2017-10-20 上海蓝湖照明科技有限公司 发光装置及相关投影系统与照明系统
CN106200235B (zh) * 2016-07-22 2019-01-25 明基智能科技(上海)有限公司 投影机及应用其的投影方法
EP3306392B1 (en) * 2016-10-06 2021-05-05 Coretronic Corporation Illumination system and projection apparatus
CN207049630U (zh) * 2017-04-05 2018-02-27 深圳市绎立锐光科技开发有限公司 一种荧光模块及光源系统
CN208239781U (zh) * 2018-04-28 2018-12-14 中强光电股份有限公司 波长转换模块及投影装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7070300B2 (en) * 2004-06-04 2006-07-04 Philips Lumileds Lighting Company, Llc Remote wavelength conversion in an illumination device
CN106324855A (zh) * 2010-11-24 2017-01-11 青岛海信电器股份有限公司 投影机光源及投影机
CN103988502A (zh) * 2011-12-16 2014-08-13 欧司朗有限公司 具有荧光材料元件的照明单元
US20130314893A1 (en) * 2012-05-24 2013-11-28 Lumen Dynamics Group Inc. High brightness illumination system and wavelength conversion module for microscopy and other applications
CN107298975A (zh) * 2016-04-14 2017-10-27 中原大学 荧光粉组成及使用荧光粉组成的发光二极管装置
CN107515510A (zh) * 2017-03-23 2017-12-26 光显科技株式会社 一种光源装置以及投影显示装置

Also Published As

Publication number Publication date
CN111413841B (zh) 2023-08-11
CN111413841A (zh) 2020-07-14

Similar Documents

Publication Publication Date Title
US10746374B2 (en) Nearly index-matched luminescent glass-phosphor composites for photonic applications
US9772072B2 (en) Illumination apparatus
US9388960B2 (en) Lighting unit comprising a phosphor element
US8436527B2 (en) Light emitting device
US10139053B2 (en) Solid-state light source device
WO2017148344A1 (zh) 一种波长转换装置和光源系统
CN106206904A (zh) 一种波长转换装置、荧光色轮及发光装置
CN107515511A (zh) 光源系统及投影设备
TW201123548A (en) A multi-layer stacked LED package
CN106098900B (zh) 高密度led光源结构及其制备方法
JP2022545426A (ja) 高いcriを有する高強度光源
US20150167906A1 (en) Light source unit, projection-type display device, lighting equipment and light emission method
CN104654052A (zh) 照明设备
JPWO2019124046A1 (ja) 発光装置
US10758937B2 (en) Phosphor device comprising plural phosphor agents for converting waveband light into plural color lights
WO2020140778A1 (zh) 波长转换装置、光源系统与显示设备
US11934088B2 (en) Light-emitting systems including dual primary red LEDs
CN110207025A (zh) 光源系统及照明装置
CN113126412B (zh) 一种高亮度的多通道光机架构
CN104683775A (zh) 蓝光合成方法及系统
JP7016034B2 (ja) 発光装置
WO2018010231A1 (zh) 受激光激发转化成白光的方法、装置及其应用
WO2021037225A1 (zh) 光源系统及照明装置
WO2020066839A1 (ja) 暖色複合蛍光体、波長変換体及び発光装置
JP2020086428A (ja) 蛍光体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19906618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19906618

Country of ref document: EP

Kind code of ref document: A1