JP6357408B2 - 分岐ポリカーボネートの製造方法 - Google Patents

分岐ポリカーボネートの製造方法 Download PDF

Info

Publication number
JP6357408B2
JP6357408B2 JP2014227409A JP2014227409A JP6357408B2 JP 6357408 B2 JP6357408 B2 JP 6357408B2 JP 2014227409 A JP2014227409 A JP 2014227409A JP 2014227409 A JP2014227409 A JP 2014227409A JP 6357408 B2 JP6357408 B2 JP 6357408B2
Authority
JP
Japan
Prior art keywords
polycarbonate
branched polycarbonate
organic solvent
group
dihydric phenol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014227409A
Other languages
English (en)
Other versions
JP2016089102A (ja
Inventor
和宏 関口
和宏 関口
高橋 雅之
雅之 高橋
佐々木 健志
健志 佐々木
幸子 長尾
幸子 長尾
律行 久西
律行 久西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2014227409A priority Critical patent/JP6357408B2/ja
Priority to US15/523,918 priority patent/US10030101B2/en
Priority to TW104136723A priority patent/TWI675863B/zh
Priority to CN201580059760.2A priority patent/CN107075102B/zh
Priority to PCT/JP2015/081309 priority patent/WO2016072491A1/ja
Publication of JP2016089102A publication Critical patent/JP2016089102A/ja
Application granted granted Critical
Publication of JP6357408B2 publication Critical patent/JP6357408B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/22General preparatory processes using carbonyl halides
    • C08G64/24General preparatory processes using carbonyl halides and phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • C08G64/06Aromatic polycarbonates not containing aliphatic unsaturation

Description

本発明は、分岐ポリカーボネートの製造方法に関する。詳しくは、界面重合法による、生産効率に優れた分岐ポリカーボネートの製造方法に関する。
ポリカーボネートは、透明性、耐熱性、機械特性など優れた特徴を有し、OA・家電の筐体や電気・電子分野の部材、レンズなどの光学材料など、幅広い用途に使用されている。この幅広い用途に使用されているポリカーボネートの多くは、二価フェノールとホスゲン等のカーボネート前駆物質を反応させて得られる線状重合体であるが、該重合体は溶融加工条件下ではニュートン流動挙動を示し、ブロー成形、押出し成形、発泡成形を行う際には自重によるドローダウンが生じ易く、特に大型成形の場合には問題が生じる。
このような問題点を改善するために、上記の成形用途には溶融加工条件下で非ニュートン流動性を示し溶融時にドローダウンを生じ難い分岐ポリカーボネートが好ましく採用されている。
この分岐ポリカーボネートを製造する方法として、界面重合法やエステル交換法を用いて製造することが知られている。エステル交換法を用いて製造する場合、原料成分を高温下で溶融させエステル交換反応させて重合させるため、使用される重合触媒による影響等により、得られる分岐ポリカーボネートが着色し易くなる。従って、透明性が必要とされる用途に、エステル交換法を用いて分岐ポリカーボネートを製造することは、好ましくない。
界面重合法を用いて、分岐ポリカーボネートを製造する方法として、特許文献1では、分岐剤を組み込んだポリカーボネートオリゴマーを使用して、このポリカーボネートオリゴマーと二価フェノール類とを反応させて分岐ポリカーボネートを得る方法と分岐剤を組み込まないポリカーボネートオリゴマーを使用し、このポリカーボネートオリゴマーと分岐剤及び二価フェノール類とを反応させて分岐ポリカーボネートを得る方法の2つの製造方法が開示されている。
前者の分岐剤を組み込んだポリカーボネートオリゴマーを使用して、このポリカーボネートオリゴマーと二価フェノール類とを反応させて分岐ポリカーボネートを得る方法は、後者の分岐剤を組み込まないポリカーボネートオリゴマーを使用し、このポリカーボネートオリゴマーと分岐剤及び二価フェノール類とを反応させて分岐ポリカーボネートを得る方法に比較して、分岐ポリカーボネート中の分岐剤由来の単位がより均一となり、後者の製造方法より物性が均一となるので好ましい方法である。
しかしながら、分岐剤を組み込んだポリカーボネートオリゴマーを使用して、このポリカーボネートオリゴマーと二価フェノール類とを反応させて分岐ポリカーボネートを得る方法は、分岐剤を組み込んだポリカーボネートオリゴマーを連続的に製造するに当り、分岐剤を組み込んだポリカーボネートオリゴマーを含む反応液を、該ポリカーボネートオリゴマーを含む有機溶媒相と水相とに分離させる際に、中間層が発生して分離性が悪化し、生産効率が大きく低下するという問題点があった。
特公平7−103235号公報
本発明は、界面重合法を用いて、分岐ポリカーボネートを製造するに当り、分岐剤を組み込んだポリカーボネートオリゴマーを使用して、このポリカーボネートオリゴマーと二価フェノール類とを反応させて、生産効率よく分岐ポリカーボネートを製造する方法を提供することを目的とするものである。
本発明者等は、鋭意検討した結果、該ポリカーボネートオリゴマーを製造する際に、添加する重合触媒の添加量と該ポリカーボネートオリゴマーのクロロフォーメート基量との関係を特定な比率とすることにより、上記目的が達成されることを見出し、本発明を完成させるに至った。
すなわち、本発明は、下記[1]〜[11]に関する。
[1]二価フェノールのアルカリ水溶液、ホスゲン及び分岐剤を有機溶媒の存在下でホスゲン化反応させて、反応液を得る工程(a)と、前記工程(a)から得られる該反応液に、二価フェノールのアルカリ水溶液及び重合触媒を添加し、ポリカーボネートオリゴマーを含む反応液を得る工程(b)と、前記工程(b)で得られたポリカーボネートオリゴマーを含む反応液を、ポリカーボネートオリゴマーを含む有機溶媒相と水相に分離する工程(c)と、前記工程(c)で分離されたポリカーボネートオリゴマーを含む有機溶媒相と二価フェノールのアルカリ水溶液を反応させて、分岐ポリカーボネートを含む反応液を得る工程(d)を有する分岐ポリカーボネートの製造方法であって、前記工程(b)に添加される重合触媒の添加量をxモル/hrとし、前記工程(b)から得られる反応液に含まれるポリカーボネートオリゴマーのクロロフォーメート基量をyモル/hrとするときに、(x/y)が0.0035以上である、分岐ポリカーボネートの製造方法。
[2]前記ポリカーボネートオリゴマーの重量平均分子量が5000以下である、上記[1]に記載の分岐ポリカーボネートの製造方法。
[3]分岐剤が下記一般式(I)で表わされる化合物である、上記[1]又は[2]に記載の分岐ポリカーボネートの製造方法。
Figure 0006357408
[式中、Rは水素原子又は炭素数1〜5のアルキル基であり、R〜Rは、それぞれ水素原子又は炭素数1〜5のアルキル基あるはハロゲン原子を示す。]
[4]前記一般式(I)で表わされる化合物が、1,1,1−トリス(4−ヒドロキシフェニル)エタンである、上記[3]に記載の分岐ポリカーボネートの製造方法。
[5]前記二価フェノールが、下記一般式(1)で表わされる化合物である、上記[1]〜[4]のいずれかに記載の分岐ポリカーボネートの製造方法。
Figure 0006357408
[式中、R11及びR12は、それぞれ独立にハロゲン原子、炭素数1〜6のアルキル基又は炭素数1〜6のアルコキシ基を示す。Zは、単結合、炭素数1〜8のアルキレン基、炭素数2〜8のアルキリデン基、炭素数5〜15のシクロアルキレン基、炭素数5〜15のシクロアルキリデン基、フルオレンジイル基、炭素数7〜15のアリールアルキレン基、炭素数7〜15のアリールアルキリデン基、−S−、−SO−、−SO−、−O−又は−CO−を示す。a及びbは、それぞれ独立に0〜4の整数を示す。]
[6]前記一般式(1)で表わされる化合物が、2,2−ビス(4−ヒドロキシフェニル)プロパンである、上記[5]に記載の分岐ポリカーボネートの製造方法。
[7]前記工程(a)から得られる該反応液に、さらに末端停止剤を添加する、上記[1]〜[6]のいずれかに記載の分岐ポリカーボネートの製造方法。
[8]前記工程(d)で得られた分岐ポリカーボネートを含む反応液を、分岐ポリカーボネートを含む有機溶媒相と未反応の二価フェノールを含む水相に分離する工程(e)を有する、上記[1]〜[7]のいずれかに記載の分岐ポリカーボネートの製造方法。
[9]前記工程(b)に添加される二価フェノールのアルカリ水溶液として、前記工程(e)で分離された未反応の二価フェノールを含む水相の少なくとも一部を使用する、上記[8]に記載の分岐ポリカーボネートの製造方法。
[10]前記工程(b)から抜き出される反応液に含まれるポリカーボネートオリゴマーのクロロフォーメート基量を、前記工程(c)で分離されたポリカーボネートオリゴマーを含む有機溶媒相の単位時間当たりのモル量とする、上記[1]〜[9]のいずれかに記載の分岐ポリカーボネートの製造方法。
[11]前記重合触媒がトリエチルアミンである、上記[1]〜[10]のいずれかに記載の分岐ポリカーボネートの製造方法。
本発明によれば、ポリカーボネートオリゴマーを含む反応液を、ポリカーボネートオリゴマーを含む有機溶媒相と水相に分離させる際に、中間層の発生を低減することができるので、分離性がよくなり、分岐ポリカーボネートの生産効率を上げることができる。
本発明の分岐ポリカーボネートの製造工程の概略図を示す。
本発明の分岐ポリカーボネートの製造方法は、二価フェノールのアルカリ水溶液、ホスゲン及び分岐剤を有機溶媒の存在下でホスゲン化反応させて、反応液を得る工程(a)と、前記工程(a)から得られる該反応液に、二価フェノールのアルカリ水溶液及び重合触媒を添加し、ポリカーボネートオリゴマーを含む反応液を得る工程(b)と、前記工程(b)で得られたポリカーボネートオリゴマーを含む反応液を、ポリカーボネートオリゴマーを含む有機溶媒相と水相に分離する工程(c)と、前記工程(c)で分離されたポリカーボネートオリゴマーを含む有機溶媒相と二価フェノールのアルカリ水溶液を反応させて、分岐ポリカーボネートを含む反応液を得る工程(d)を有する分岐ポリカーボネートの製造方法であって、前記工程(b)に添加される重合触媒の添加量をxモル/hrとし、前記工程(b)から抜き出される反応液に含まれるポリカーボネートオリゴマーのクロロフォーメート基量をyモル/hrとするときに、(x/y)を0.0035以上とするものである。
以下、本発明の分岐ポリカーボネートの製造方法について詳細に説明する。なお、本明細書において、好ましいとされている規定は任意に採用することができ、好ましいもの同士の組み合わせはより好ましいと言える。
[工程(a)]
工程(a)は、二価フェノールのアルカリ水溶液、ホスゲン及び分岐剤を有機溶媒の存在下でホスゲン化反応させて、反応液を得る工程である。この工程(a)に使用される原料、反応条件について説明する。
<二価フェノールのアルカリ水溶液>
二価フェノールとしては、ポリカーボネートの製造に使用される二価フェノールが用いられる。前記二価フェノールとしては、下記一般式(1)で表される二価フェノールを用いることが好ましい。
Figure 0006357408
上記一般式(1)中、R11及びR12は、それぞれ独立にハロゲン原子、炭素数1〜6のアルキル基又は炭素数1〜6のアルコキシ基を示す。Zは、単結合、炭素数1〜8のアルキレン基、炭素数2〜8のアルキリデン基、炭素数5〜15のシクロアルキレン基、炭素数5〜15のシクロアルキリデン基、フルオレンジイル基、炭素数7〜15のアリールアルキレン基、炭素数7〜15のアリールアルキリデン基、−S−、−SO−、−SO−、−O−又は−CO−を示す。a及びbは、それぞれ独立に0〜4の整数を示す。
一般式(1)で表される二価フェノールとしては、特に限定されないが、2,2−ビス(4−ヒドロキシフェニル)プロパン〔通称:ビスフェノールA〕が好適である。
ビスフェノールA以外の二価フェノールとしては、例えば、ビス(4−ヒドロキシフェニル)メタン、1,1−ビス(4−ヒドロキシフェニル)エタン、2,2−ビス(4−ヒドロキシフェニル)ブタン、2,2−ビス(4−ヒドロキシフェニル)オクタン、ビス(4−ヒドロキシフェニル)フェニルメタン、ビス(4−ヒドロキシフェニル)ジフェニルメタン、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、ビス(4−ヒドロキシフェニル)ナフチルメタン、1,1−ビス(4−ヒドロキシ−t−ブチルフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−ブロモフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−クロロフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3,5−ジクロロフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3,5−ジブロモフェニル)プロパン等のビス(ヒドロキシアリール)アルカン類、1,1−ビス(4−ヒドロキシフェニル)シクロペンタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,5,5−トリメチルシクロヘキサン、2,2−ビス(4−ヒドロキシフェニル)ノルボルナン、1,1−ビス(4−ヒドロキシフェニル)シクロドデカン等のビス(ヒドロキシアリール)シクロアルカン類、4,4’−ジヒドロキシジフェニルエーテル、4,4’−ジヒドロキシ−3,3’−ジメチルフェニルエーテル等のジヒドロキシアリールエーテル類、4,4’−ジヒドロキシジフェニルスルフィド、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルフィド等のジヒドロキシジアリールスルフィド類、4,4’−ジヒドロキシジフェニルスルホキシド、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルホキシド等のジヒドロキシジアリールスルホキシド類、4,4’−ジヒドロキシジフェニルスルホン、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルホン等のジヒドロキシジアリールスルホン類、4,4’−ジヒドロキシジフェニル等のジヒドロキシジフェニル類、9,9−ビス(4−ヒドロキシフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン等のジヒドロキシジアリールフルオレン類、1,3−ビス(4−ヒドロキシフェニル)アダマンタン、2,2−ビス(4−ヒドロキシフェニル)アダマンタン、1,3−ビス(4−ヒドロキシフェニル)−5,7−ジメチルアダマンタン等のジヒドロキシジアリールアダマンタン類、4,4’−[1,3−フェニレンビス(1−メチルエチリデン)]ビスフェノール、10,10−ビス(4−ヒドロキシフェニル)−9−アントロン、1,5−ビス(4−ヒドロキシフェニルチオ)−2,3−ジオキサペンタン等が挙げられる。
これらの二価フェノールは、単独で又は二種以上を混合して用いてもよい。
前記二価フェノールは、アルカリ水溶液として使用されるが、この際に使用されるアルカリとしては、水酸化アルカリ、特に強塩基性の水酸化物、例えば、水酸化ナトリウム、水酸化カリウムを挙げることができる。アルカリ水溶液のアルカリ濃度としては、通常、1〜15質量%のものが好ましく用いられる。また、アルカリ水溶液中の二価フェノールの含有量は、通常0.5〜20質量%の範囲で選ばれる。
<ホスゲン>
工程(a)で使用されるホスゲンは、通常、塩素および一酸化炭素を、塩素1モルに対し一酸化炭素1.01〜1.3モルの割合で触媒として活性炭を使用して反応させて得られる化合物である。使用するホスゲン中には、ホスゲンガスとして使用する場合、未反応の一酸化炭素を1〜30容量%程度含んだホスゲンガスを使用することができる。また、液化状態のホスゲンも使用することができる。
<分岐剤>
工程(a)で使用される分岐剤は、特に限定されるものではなく、公知の分岐剤を用いることができる。公知の分岐剤の中でも、下記一般式(I)で表わされる化合物を用いることにより、溶融時にドローダウンを生じ難い分岐ポリカーボネートを得ることができる。
Figure 0006357408
[式中、Rは水素原子又は炭素数1〜5のアルキル基であり、R〜Rは、それぞれ水素原子又は炭素数1〜5のアルキル基あるいはハロゲン原子を示す。]
上記一般式(I)中、Rが炭素数1〜5のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基などである。また、R〜Rが炭素数1〜5のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基などであり、ハロゲン原子である場合は、塩素原子、臭素原子、フッ素原子などである。一般式(I)の分岐剤は、具体的には、一般式(A)の分岐剤は、さらに具体的には1,1,1−トリス(4−ヒドロキシフェニル)−メタン;1,1,1−トリス(4−ヒドロキシフェニル)−エタン;1,1,1−トリス(4−ヒドロキシフェニル)−プロパン;1,1,1−トリス(2−メチル−4−ヒドロキシフェニル)−メタン;1,1,1−トリス(2−メチル−4−ヒドロキシフェニル)−エタン;1,1,1−トリス(3−メチル−4−ヒドロキシフェニル)−メタン;1,1,1−トリス(3−メチル−4−ヒドロキシフェニル)−エタン;1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)−メタン;1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)−エタン;1,1,1−トリス(3−クロロ−4−ヒドロキシフェニル)−メタン;1,1,1−トリス(3−クロロ−4−ヒドロキシフェニル)エタン;1,1,1−トリス(3,5−ジクロロ−4−ヒドロキシフェニル)−メタン;1,1,1−トリス(3,5−ジクロロ−4−ヒドロキシフェニル)−エタン;1,1,1−トリス(3−ブロモ−4−ヒドロキシフェニル)−メタン;1,1,1−トリス(3−ブロモ−4−ヒドロキシフェニル)−エタン;1,1,1−トリス(3,5−ジブロモ−4−ヒドロキシフェニル)−メタン;1,1,1−トリス(3,5−ジブロモ−4−ヒドロキシフェニル)−エタンなどである。上記一般式(I)の分岐剤の中でも、1,1,1−トリス(4−ヒドロキシフェニル)−エタン[以下、THPEと称することもある。]を用いることが、分岐ポリカーボネートの分岐性の観点から、特に好ましい。
<有機溶媒>
工程(a)で使用される有機溶媒としては、ポリカーボネートオリゴマーおよびポリカーボネート樹脂を溶解する溶媒が挙げられる。具体的にはジクロロメタン(塩化メチレン)、ジクロロエタン、トリクロロエタン、テトラクロロエタン、ペンタクロロエタン、ヘキサクロロエタン、ジクロロエチレン、クロロベンゼン、ジクロロベンゼンなどのハロゲン化炭化水素溶媒が挙げられ、特にジクロロメタン(塩化メチレン)が好ましい。
<反応器>
工程(a)では、二価フェノールのアルカリ水溶液及び分岐剤とホスゲンとが激しく反応して、発熱を伴うため、副反応を抑制するために反応生成物を0〜50℃に冷却することが望ましい。従って、工程(a)に使用する反応器としては、反応生成物を冷却するための冷却設備を備えた反応器を用いることが好ましい。また、二価フェノールのアルカリ水溶液、ホスゲン、分岐剤及び有機溶媒を連続的に反応器に導入した際に、反応器内で反応液が乱流状態となるような状態でホスゲン化反応させることが好ましい。このような反応器としては、混合反応器を用いることが望ましく、混合反応器としては、静止型混合器、即ちスタティックミキサーであることが好ましい。静止型混合器は、流体を分割、転換、反転させる作用を有するエレメントを内部に有した管状の反応器であることが好ましく、エレメントは一般的に、長方形の板を180度ねじった形状を有する。反応器内に導入された反応混合物は、ひとつのエレメントを通過するごとに2分割される。また、反応混合物流体又は反応生成物流体は、エレメント内のねじれ面に沿って管中央部から壁部へ、管壁部から中央部へと並び替えられる。また、流体は、1エレメントごとに回転方向が替わり、急激な慣性力の反転を受け乱流撹拌される。
上記に記載の管状の静止型混合器を反応器として用いた場合、反応器内では、液体中の気泡が微細化され、接触界面が大きくなり、これにより反応効率が飛躍的に高まる。
<反応器への各原料の導入比率>
工程(a)に使用する反応器には、二価フェノールのアルカリ水溶液、ホスゲン、分岐剤及び有機溶媒を導入し、混合してホスゲン化反応させるが、有機溶媒の使用量は、有機溶媒相と水相の容量比が5/1〜1/7、好ましくは2/1〜1/4となるように選定するのが望ましい。また、ホスゲンの使用量は、二価フェノール1モルに対して、通常1.05〜1.5モル、好ましくは、1.1〜1.3モルとなるように、ホスゲンを過剰に使用することが好ましい。また、二価フェノールと分岐剤との使用モル比率は、通常、二価フェノール:分岐剤が、99:1〜90:10の範囲内のモル比率で、好ましくは98:2〜92:8の範囲内のモル比率で使用することが好ましい。分岐剤は、使用する分岐剤により相違するが、前記一般式(I)で表わされる分岐剤は、アルカリ水溶液に溶解させることができるので、アルカリ水溶液に溶解させて導入することが望ましい。また、アルカリ水溶液に溶解させることが困難な分岐剤は、塩化メチレン等の有機溶媒に溶解させて導入することが望ましい。
ホスゲン化反応器内では、二価フェノール及び分岐剤の末端基がホスゲンによりクロロフォーメート化される反応やホスゲンがアルカリにより分解される反応により、発熱し反応生成物の温度が高くなるので、反応生成物の温度が0〜80℃、好ましくは5〜70℃となるように冷却することが好ましい。前述した管状の静止型混合器を反応器として用いた場合、二価フェノールのアルカリ水溶液及び分岐剤とホスゲンとの合流点から発熱反応するので、この合流点においても冷却しておくことが好ましい。管状の静止型混合器の反応器内を反応生成物が反応器出口に流れるに従い、ホスゲンは消費されていき、激しい反応熱も発生しなくなる。この工程(a)での反応の主目的は、二価フェノール及び分岐剤の末端基をホスゲンによりクロロフォーメート化することであり、オリゴマー化反応はほとんど進行していない。
[工程(b)]
工程(b)は、前記工程(a)から得られる該反応液に、二価フェノールのアルカリ水溶液及び重合触媒を添加し、ポリカーボネートオリゴマーを含む反応液を得る工程である。この工程(b)に使用される原料、反応条件について説明する。
前述したとおり、工程(a)では、オリゴマー化反応はほとんど進行していないため、工程(b)でオリゴマー化反応させることで分子量を上げて、ポリカーボネートオリゴマーを製造する。この工程(b)では、工程(a)から得られる反応液に、二価フェノールのアルカリ水溶液及び重合触媒を添加し、オリゴマー化反応を行うが、使用される二価フェノールのアルカリ水溶液としては、工程(a)で説明した二価フェノールのアルカリ水溶液が使用される。
<重合触媒>
工程(b)で使用する重合触媒としては、ポリカーボネート樹脂の界面重合時に使用される公知の触媒を用いることができる。触媒としては、相間移動触媒、例えば三級アミン又はその塩、四級アンモニウム塩、四級ホスホニウム塩などを好ましく用いることができる。三級アミンとしては、例えばトリエチルアミン、トリブチルアミン、N,N−ジメチルシクロヘキシルアミン、ピリジン、ジメチルアニリンなどが挙げられ、また三級アミン塩としては、例えばこれらの三級アミンの塩酸塩、臭素酸塩などが挙げられる。四級アンモニウム塩としては、例えばトリメチルベンジルアンモニウムクロリド、トリエチルベンジルアンモニウムクロリド、トリブチルベンジルアンモニウムクロリド、トリオクチルメチルアンモニウムクロリド、テトラブチルアンモニウムクロリド、テトラブチルアンモニウムブロミドなどが、四級ホスホニウム塩としては、例えばテトラブチルホスホニウムクロリド、テトラブチルホスホニウムブロミドなどが挙げられる。これらの触媒は、それぞれ単独で用いてもよく、二種以上を組み合わせて用いてもよい。前記触媒の中では、三級アミンが好ましく、特にトリエチルアミンが好適である。これらの触媒は、液体状態ものであればそのまま、または有機溶媒や水に溶解させて導入することができる。また固体状態ものは、有機溶媒や水に溶解させて導入することができる。
工程(b)に用いられる反応器としては、一般的に攪拌槽が用いられる。攪拌槽としては、攪拌機を有する槽型の攪拌槽であれば特に限定されない。
このオリゴマー化反応を進めるための反応器には、工程(a)から得られた反応液が導入される。工程(a)から得られた反応液中には、未反応の二価フェノール及び残留するアルカリ成分の残存量は少なく、オリゴマー化反応を進めるためには、二価フェノール及びアルカリ成分を追加して反応させることが必要である。
工程(b)のオリゴマー化反応は、用いられる反応器内において、工程(a)から得られた反応液中に含まれる二価フェノール及び分岐剤の末端基がホスゲンによりクロロフォーメート化された化合物と二価フェノールとが、アルカリの存在下で反応することにより進行する。本発明のポリカーボネートの製造方法では、前記二価フェノールは、工程(a)で使用される予め調製しておいた二価フェノールのアルカリ水溶液を反応器に導入したり、さらにこれに加えて、予め調製されたアリカリ水溶液を反応器に導入する等して、オリゴマー化反応を進めることができる。
また、別の方法として、重縮合工程後に得られた分岐ポリカーボネートを含む反応液を有機溶媒相と水相に分離したうちの水相[後述する工程(e)で得られた水相)]をリサイクルして、工程(b)の反応器に導入して、オリゴマー化反応を進めることができる。工程(e)で得られた水相中には、未反応の二価フェノール及びアルカリが含まれており、該水相をリサイクル使用することにより、二価フェノール及びアルカリを有効活用することができる。
工程(b)に添加される二価フェノール濃度は、通常0.05〜0.15モル/リットル、好ましくは0.06〜0.12モル/リットル、より好ましくは0.06〜0.08モル/リットルとして添加することが望ましく、工程(b)に添加されるアルカリ濃度は、通常0.03〜0.25モル/リットル、好ましくは0.05〜0.21モル/リットル、より好ましくは0.12〜0.15モル/リットルとして添加することが望ましい。この工程(b)の反応液中の有機溶媒の使用量は、通常、有機相と水相との容量比が、好ましくは5/1〜1/7、より好ましくは2/1〜1/4となるように選択される。
工程(b)は、ポリカーボネートオリゴマーを含む反応液を得る工程であるが、重量平均分子量の上限値は5000であり、下限値は、通常、約500程度である。工程(b)では、ポリカーボネートオリゴマーの重量平均分子量を5000以下とするために、末端停止剤を添加することが好ましい。末端停止剤の添加量で、工程(b)におけるポリカーボネートオリゴマーの重量平均分子量を5000以下に調整することが容易になる。末端停止剤としては、特に限定されるものではなく、ポリカーボネートの製造に使用されるものを用いることができる。具体的には、末端停止剤に用いられる化合物としては、例えば、フェノール,p−クレゾール,p−tert−ブチルフェノール,p−tert−オクチルフェノール,p−クミルフェノール,3−ペンタデシルフェノール,ブロモフェノール,トリブロモフェノール,ノニルフェノールなどの一価フェノールを挙げることができる。これらの中で、経済性、入手の容易さなどの点から、p−tert−ブチルフェノール、p−クミルフェノールおよびフェノールが好ましい。これらの末端停止剤は、塩化メチレン等の有機溶媒に溶解させて、工程(a)から得られる反応液に添加して、工程(b)に導入してもよいし、工程(b)に使用される反応器に直接添加して導入してもよい。
工程(b)での反応器内の温度は、通常、5〜50℃、好ましくは5〜40℃の範囲内の温度に保ち反応させる。攪拌条件は、比較的緩やかな、層流となる条件で攪拌される。反応器内における反応液の滞留時間は、目的とするポリカーボネートオリゴマーの分子量、工程(a)から得られた反応液の性状等によって相違するが、一般的には、15〜60分間である。
本発明の分岐ポリカーボネートの製造方法では、工程(b)に添加される重合触媒の添加量をxモル/hrとし、前記工程(b)から得られる反応液に含まれるポリカーボネートオリゴマーのクロロフォーメート基量をyモル/hrとするときに、(x/y)が0.0035以上になることを要す。(x/y)が0.0035未満であると、前記工程(b)から得られる反応液を、工程(c)でポリカーボネートオリゴマーを含む有機溶媒相と水相に分離させる際に、中間相が多く発生して反応液の分離性が悪化し、分岐ポリカーボネートの生産効率が低下するので好ましくない。(x/y)は、好ましくは、0.0038以上、より好ましくは、0.0042以上である。(x/y)の上限は、中間相発生量の低減効果が変化しなくなる観点から通常、0.023以下である。(x/y)を上記の値となるようにするためには、通常、工程(b)から抜き出される反応液に含まれるポリカーボネートオリゴマーのクロロフォーメート基量に応じて、工程(b)に添加される重合触媒の添加量を調整すればよい。
なお、工程(b)から得られる反応液に含まれるポリカーボネートオリゴマーのクロロフォーメート基量の測定は、工程(b)から得られる反応液をサンプリングし、静置分離や遠心分離等により、ポリカーボネートオリゴマーを含む有機溶媒相と水相に分離して、得られた有機溶媒相中に含まれるポリカーボネートオリゴマーのクロロフォーメート基濃度を求め、そのクロロフォーメート基濃度と工程(b)から得られる反応液の抜き出し量から求めることができる。また、工程(b)から得られる反応液を工程(c)で分離して、分離したポリカーボネートオリゴマーを含む有機溶媒相の抜き出し量とそのクロロフォーメート基濃度からも求めることもできる。
[工程(c)]
工程(c)は、前記工程(b)で得られたポリカーボネートオリゴマーを含む反応液を、ポリカーボネートオリゴマーを含む有機溶媒相と水相に分離する工程である。工程(c)に用いられる機器としては、静置分離槽が好ましく使用される。工程(b)で得られた反応液は、静置分離槽内に導入され、比重差により、ポリカーボネートオリゴマーを含む有機溶媒相と水相に分離される。下層のポリカーボネートオリゴマーを含む有機溶媒相は、静置分離槽の下側から連続的にあるいは断続的に抜き出される。上層の水相は、連続的にあるいは断続的に抜き出され、静置分離槽内の各相のレベルは、一定のレベル範囲内となるように保たれる。工程(c)では、ポリカーボネートオリゴマーを含む有機溶媒相が、静置分離槽の下側から連続的にあるいは断続的に抜き出されるが、前述したとおり、この有機溶媒相に含まれるポリカーボネートオリゴマーのクロロフォーメート基濃度を求め、かつ、その抜き出し量とから、前記(x/y)の値を求めることができる。
[工程(d)]
工程(d)は、工程(c)で分離されたポリカーボネートオリゴマーを含む有機溶媒相と二価フェノールのアルカリ水溶液を反応させて、分岐ポリカーボネートを含む反応液を得る工程である。この工程(d)では、ポリカーボネートオリゴマーと二価フェノールとを重縮合反応させて、分子量は、目的の分子量範囲に調整される。得られる分岐ポリカーボネートの分子量は、粘度平均分子量で、通常、10,000〜50,000程度の範囲内となるまで、重縮合反応を行う。この工程(d)では、アルカリ水溶液及び有機溶媒の存在下に、ポリカーボネートオリゴマーと二価フェノールとを重縮合反応させる工程である。
具体的には、工程(c)で分離されたポリカーボネートオリゴマーを含む有機溶媒相と、所望により用いられる末端停止剤と、所望により用いられる触媒と、有機溶媒と、アルカリ水溶液と、二価フェノールのアルカリ水溶液とを混合し、通常0〜50℃、好ましくは20〜40℃の範囲の温度において界面重縮合させる。
工程(d)で使用するアルカリ水溶液のアルカリ、有機溶媒、末端停止剤及び触媒としては、前記工程(b)で説明したものと同じものを挙げることができる。また、この工程(d)において、界面重縮合における有機溶媒の使用量は、通常、有機相と水相との容量比が、好ましくは7/1〜1/1、より好ましくは5/1〜2/1となるように選択される。
なお、工程(d)で使用される反応器は、反応器の能力次第では1基の反応器のみで反応を完結することができるが、必要に応じてさらに、それに後続する2基目の反応器、更には3基目の反応器等の複数の反応器を構築して、使用することができる。これらの反応器としては、撹拌槽,多段塔型撹拌槽,無撹拌槽,スタティックミキサー,ラインミキサー,オリフィスミキサー,配管などを用いることができる。これらの反応器は、任意に組み合わせて、複数の反応器として用いてもよい。
上記で説明したとおり、工程(a)〜工程(d)により、分岐ポリカーボネートを含む反応液が得られる。本発明の分岐ポリカーボネートの製造方法では、下記工程(e)からの未反応の二価フェノールを含む水相を工程(b)に添加される二価フェノールのアルカリ水溶液として使用することが好ましい。以下、工程(e)について説明する。
[工程(e)]
工程(e)は、前記工程(d)で得られた分岐ポリカーボネートを含む反応液を、分岐ポリカーボネートを含む有機溶媒相と未反応の二価フェノールを含む水相に分離する工程である。この工程(e)で、分岐ポリカーボネートを含む有機溶媒相と未反応の二価フェノールを含む水相に分離するために使用される機器としては、静置分離槽や遠心分離機を挙げることができる。この工程(e)で分離された分岐ポリカーボネートを含む有機溶媒相は、アルカリ洗浄、酸洗浄及び純水洗浄を順に行い精製された分岐ポリカーボネートを含む有機溶媒相を得る。精製されたポリカーボネートを含む有機溶媒相は、必要に応じて濃縮され、精製されたポリカーボネートを含む有機溶媒溶液とし、ニーダー処理したり、温水造粒等を行い、分岐ポリカーボネート粉体を得ることができる。得られた分岐ポリカーボネート粉体中には、有機溶媒が残留しているので、加熱処理等の乾燥処理を行うことにより、有機溶媒を除去した分岐ポリカーボネート粉体を得ることができる。得られた分岐ポリカーボネート粉体は、ペレタイザー等を使用してペレット化して、各種の成形体とすることができる。
工程(e)で分離された水相中には、未反応の二価フェノール及びアルカリを含んでおり、原材料を有効的に利用する観点から、工程(b)にその全量もしくは一部をリサイクルさせることが好ましい。
以下に実施例を挙げ、本発明をさらに詳しく説明する。なお、本発明はこれらの例によって限定されるものではない。なお、実施例及び比較例中の測定評価は以下に示す方法で行った。
<重量平均分子量(Mw)の測定>
重量平均分子量(Mw)は、展開溶媒としてTHF(テトラヒドロフラン)を用い、GPC〔カラム:TOSOH TSK−GEL MULTIPORE HXL−M(2本)+Shodex KF801(1本)、温度40℃、流速1.0ml/分、検出器:RI〕にて、標準ポリスチレン換算分子量(重量平均分子量:Mw)として測定した。
<クロロフォーメート基濃度(CF値)の測定>
塩素イオン濃度基準で、JIS K8203を参考とし、酸化・還元滴定、硝酸銀滴定を用いて測定した。
<オリゴマー化反応液の静置分離槽における評価>
オリゴマー化反応液の静置分離槽における分離性については、60分静置後の有機溶媒相中の水分濃度と中間相の厚みを測定した。それぞれの数値が大きいほど分離性が悪いことを示す。また、水相中の固形分含有率は、水相に塩化メチレンを入れて混合した後、油水分離して得られた塩化メチレン相を蒸発乾固し、残渣分の重量を測定し溶液中の質量分率とすることにより求めた。固形分含有率が大きいほど中間相が水相側に流出していることを示す。
<粘度平均分子量(Mv)の測定>
ポリカーボネートの粘度平均分子量(Mv)は、ウベローデ型粘度計を用いて、20℃における塩化メチレン溶液の粘度を測定し、これより極限粘度[η]を求め、次式にて算出するものである。
[η]=1.23×10−5Mv0.83
実施例1
<ポリカーボネートオリゴマーの製造>
ポリカーボネートオリゴマーの製造は、図1に示す流れに沿って製造した。
まず、6.0質量%の水酸化ナトリウム水溶液を調製し、さらにこれにビスフェノールA(BPAと略する。)を溶解して、13.5質量%(固形物換算)のBPA水酸化ナトリウム水溶液を調製した。次に、p−tert−ブチルフェノール(PTBP)を塩化メチレンに溶解し、24質量%の溶液を調製した。
次いで、内径6mm、長さ26mの管型反応器に、上記BPA水酸化ナトリウム水溶液を36リットル/hrの流量で、塩化メチレンを15.4リットル/hrの流量で、PTBP溶液を310ミリリットル/hrの流量で、さらに分岐剤として1,1,1−トリス(4−ヒドロキシフェニル)−エタン(THPEと略する。)を5.1質量%の水酸化ナトリウムで溶解して調製した11質量%(固形物換算)のTHPE水酸化ナトリウム水溶液を0.7リットル/hrの流量で連続的に供給した。これと同時にホスゲンを3.1kg/hrの流量で連続的に上記管型反応器に吹き込んで、ホスゲン化反応を行い、ホスゲン化反応生成物を含有する反応液を得た。なお、ホスゲンは、一酸化炭素(CO)と塩素(Cl)から別途合成したものを用いた。
次いで、内容積100リットルの攪拌機を有するオリゴマー化反応器[工程(b)]に、上記反応液と、触媒としてあらかじめ調製したトリエチルアミン(TEAと略する。)の3質量%水溶液を210ミリリットル/hr(0.062モル/hr)を、連続的に供給すると共に、後述する重縮合反応[工程(d)]から得られた反応液を水相とポリカーボネートを含む有機溶媒相とに分離する工程[工程(e)]から得られたリサイクル水相を15.7リットル/hrをオリゴマー化反応器に導入して、オリゴマー化反応を行った。なお、オリゴマー化反応器に導入する前の水相『[工程(e)]からのリサイクル水相と濃度調整のために追加導入する水相(純水)の合流後の水相]』中のBPA濃度は、0.07モル/リットルであり、水酸化ナトリウム濃度は、0.13モル/リットルであり、炭酸ナトリウム濃度は、0.08モル/リットルであった。このオリゴマー化反応器内を350rpmで回転させ、層流状態でオリゴマー化反応を行った。オリゴマー化反応器の底部から抜き出した反応液を、移送配管[SUS製、配管径12.7mm(1/2インチ)]を通じて、横型静置分離槽(内径350mm、内容積100リットル)に連続的に供給し、水相と有機溶媒相との分離[工程(c)]を行った。ポリカーボネートオリゴマーを含有する反応液は、横型静置分離槽で水相及び有機溶媒相に分離した。横型静置分離槽から有機溶媒相を20リットル/hrの流量で連続的に抜出し、抜き出した有機溶媒相中のクロロフォーメート基濃度は0.72モル/リットルであった。また、有機溶媒相中のボリカーボネートオリゴマーの重量平均分子量は、3,100であった。上記連続運転を24時間実施した後に、横型静置分離槽内の水相及び有機溶媒相を観察したところ、水相及び有機溶媒相との間には中間相がわずかに発生したが、その中間相の厚みは、約9.0mm(3.2リットルに相当)であり、連続して静置分離を行っても、中間相の厚みは増大せず、良好に水相と有機溶媒相とに分離することができた。なお、分離後の有機溶媒相中の水分量は2000質量ppmであり、分離後の水相中の固形分量は、10質量ppm未満であった。横型静置分離槽から連続的に抜出された有機溶媒相中に含まれるボリカーボネートオリゴマーのクロロフォーメート基量(y)は、20×0.72=14.4モル/hrである。また、重合触媒として用いたTEAのオリゴマー化反応器への添加量(x)は、0.062モル/hrであり、(x/y)=0.0043であった。
<分岐ポリカーボネートの製造>
上記の横型静置分離槽から分離されたボリカーボネートオリゴマーを含む有機溶媒相(PCOと略することがある。)を使用して図1に示す流れで、工程(d)で重縮合反応を行った。前記ボリカーボネートオリゴマーを含む有機溶媒相(PCO)を20リットル/hr、BPAの水酸化ナトリウム溶液(ポリカーボネートオリゴマーの製造に使用したもの)を9.8L/hr、触媒として濃度3質量%のTEA水溶液を0.10リットル/hr、末端停止剤としてPTBP溶液を0.34リットル/hr、濃度20質量%の水酸化ナトリウム水溶液を1.3リットル/hr、溶媒として塩化メチレンを13.5リットル/hrの流量で工程(d)の重縮合反応器に導入し重縮合反応を行った。重縮合反応器に使用した反応器は、ラインミキサー及び塔型反応器の2基の反応器を用いた。塔型反応器の上部からオーバーフローして出てきた反応混合物を静置分離させ、水相と有機溶媒相に分離した[工程(e)]。分離された水相の全量を工程(b)のオリゴマー化反応器に導入しリサイクルした。また、得られた有機溶媒相は、pHを13.5に調製した水酸化ナトリウム水溶液、pHを1.5に調製した塩酸水溶液、および純水を使用して順次洗浄して、清澄な分岐ポリカーボネートの塩化メチレン溶液を得た。
得られた分岐ポリカーボネートの塩化メチレン溶液をニーダーで塩化メチレンを蒸発除去し、分岐ポリカーボネート粉末を得た。さらに、残留する塩化メチレンを加熱乾燥して100ppm以下まで除去し、白色の分岐ポリカーボネート粉末を得た。この粉末について,粘度平均分子量(Mv)を測定したところ、23,000であった。
実施例2
実施例1において、オリゴマー化反応器[工程(b)]に、添加したTEAの3質量%水溶液を310ミリリットル/hr(0.092モル/hr)に変更し、(x/y)=0.0064とした以外は、実施例1と同様に実施した。その際の水相及び有機溶媒相との間には中間相がわずかに発生したが、その中間相の厚みは、約4mm(1.4リットルに相当)であり、連続して静置分離を行っても、中間相の厚みは増大せず、良好に水相と有機溶媒相とに分離することができた。得られた分岐ポリカーボネートの粘度平均分子量(Mv)を測定したところ、23,000であった。
比較例1
実施例1において、オリゴマー化反応器[工程(b)]に、添加したTEAの3質量%水溶液を110ミリリットル/hr(0.033モル/hr)に変更し、(x/y)=0.0023とした以外は、実施例1と同様に実施した。その際の水相及び有機溶媒相との間には中間相が多量に発生し、その中間相の厚みは、約42mm(14.8リットルに相当)に達した。このように中間相が多量に発生することにより、連続して静置分離を行うことが不可能となり、連続して分岐ポリカーボネートを製造することが困難となった。
参考例1
実施例1において、ホスゲン化反応時に、THPEの水酸化ナトリウム水溶液を供給せずに、ホスゲン化反応を行った。得られたホスゲン化反応生成物を含有する反応液をオリゴマー化反応器[工程(b)]に、添加したTEAの3質量%水溶液を110ミリリットル/hr(0.033モル/hr)に変更し、(x/y)=0.0023とした以外は、実施例1と同様に実施した。その際の水相及び有機溶媒相との間には中間相がわずかに発生したが、その中間相の厚みは、約4mm(1.4リットルに相当)であり、連続して静置分離を行っても、中間相の厚みは増大せず、良好に水相と有機溶媒相とに分離することができた。得られた非分岐ポリカーボネートの粘度平均分子量(Mv)を測定したところ、23,000であった。
本発明の実施例1、2及び比較例1から、分岐ポリカーボネートを製造するに際して、ポリオーボネートオリゴマーを含む反応液を得る工程において、添加される重合触媒量と抜き出される反応液に含まれるポリオーボネートオリゴマーのクロロフォーメート基量との比率が0.0035以上である実施例1、2は、中間相の発生が少なく、連続して静置分離を行うことができることが示された。一方、その比率が0.0035未満である比較例1では、中間相が多量に発生することにより、連続して静置分離を行うことが不可能となることが示された。また、分岐剤を使用しない参考例1では、重合触媒量が比較例1と同じであっても、実施例1及び2と同様に、中間相の発生が少なく、連続して静置分離を行うことができることが示されている。
本発明の分岐ポリカーボネートの製造方法では、ポリオーボネートオリゴマーを含む反応液の分離工程において、反応液の分離性が良好であり、分岐ポリカーボネートの生産効率を上げることができる。

Claims (11)

  1. 二価フェノールのアルカリ水溶液、ホスゲン及び分岐剤を有機溶媒の存在下でホスゲン化反応させて、反応液を得る工程(a)と、
    前記工程(a)から得られる該反応液に、二価フェノールのアルカリ水溶液及び重合触媒を添加し、ポリカーボネートオリゴマーを含む反応液を得る工程(b)と、
    前記工程(b)で得られたポリカーボネートオリゴマーを含む反応液を、ポリカーボネートオリゴマーを含む有機溶媒相と水相に分離する工程(c)と、
    前記工程(c)で分離されたポリカーボネートオリゴマーを含む有機溶媒相と二価フェノールのアルカリ水溶液を反応させて、分岐ポリカーボネートを含む反応液を得る工程(d)を有する分岐ポリカーボネートの製造方法であって、
    前記工程(b)に添加される重合触媒の添加量をxモル/hrとし、前記工程(b)から得られる反応液に含まれるポリカーボネートオリゴマーのクロロフォーメート基量をyモル/hrとするときに、(x/y)が0.0035以上である、分岐ポリカーボネートの製造方法。
  2. 前記ポリカーボネートオリゴマーの重量平均分子量が5000以下である、請求項1に記載の分岐ポリカーボネートの製造方法。
  3. 分岐剤が下記一般式(I)で表わされる化合物である、請求項1又は2に記載の分岐ポリカーボネートの製造方法。
    Figure 0006357408
    [式中、Rは水素原子又は炭素数1〜5のアルキル基であり、R〜Rは、それぞれ水素原子又は炭素数1〜5のアルキル基あるいはハロゲン原子を示す。]
  4. 前記一般式(I)で表わされる化合物が、1,1,1−トリス(4−ヒドロキシフェニル)エタンである、請求項3に記載の分岐ポリカーボネートの製造方法。
  5. 前記二価フェノールが、下記一般式(1)で表わされる化合物である、請求項1〜4のいずれかに記載の分岐ポリカーボネートの製造方法。
    Figure 0006357408
    [式中、R11及びR12は、それぞれ独立にハロゲン原子、炭素数1〜6のアルキル基又は炭素数1〜6のアルコキシ基を示す。Zは、単結合、炭素数1〜8のアルキレン基、炭素数2〜8のアルキリデン基、炭素数5〜15のシクロアルキレン基、炭素数5〜15のシクロアルキリデン基、フルオレンジイル基、炭素数7〜15のアリールアルキレン基、炭素数7〜15のアリールアルキリデン基、−S−、−SO−、−SO−、−O−又は−CO−を示す。a及びbは、それぞれ独立に0〜4の整数を示す。]
  6. 前記一般式(1)で表わされる化合物が、2,2−ビス(4−ヒドロキシフェニル)プロパンである、請求項5に記載の分岐ポリカーボネートの製造方法。
  7. 前記工程(a)から得られる該反応液に、さらに末端停止剤を添加する、請求項1〜6のいずれかに記載の分岐ポリカーボネートの製造方法。
  8. 前記工程(d)で得られた分岐ポリカーボネートを含む反応液を、分岐ポリカーボネートを含む有機溶媒相と未反応の二価フェノールを含む水相に分離する工程(e)を有する、請求項1〜7のいずれかに記載の分岐ポリカーボネートの製造方法。
  9. 前記工程(b)に添加される二価フェノールのアルカリ水溶液として、前記工程(e)で分離された未反応の二価フェノールを含む水相の少なくとも一部を使用する、請求項8に記載の分岐ポリカーボネートの製造方法。
  10. 前記工程(b)から抜き出される反応液に含まれるポリカーボネートオリゴマーのクロロフォーメート基量を、前記工程(c)で分離されたポリカーボネートオリゴマーを含む有機溶媒相の単位時間当たりのモル量とする、請求項1〜9のいずれかに記載の分岐ポリカーボネートの製造方法。
  11. 前記重合触媒がトリエチルアミンである、請求項1〜10のいずれかに記載の分岐ポリカーボネートの製造方法。
JP2014227409A 2014-11-07 2014-11-07 分岐ポリカーボネートの製造方法 Active JP6357408B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014227409A JP6357408B2 (ja) 2014-11-07 2014-11-07 分岐ポリカーボネートの製造方法
US15/523,918 US10030101B2 (en) 2014-11-07 2015-11-06 Branched polycarbonate production method
TW104136723A TWI675863B (zh) 2014-11-07 2015-11-06 分枝聚碳酸酯之製造方法
CN201580059760.2A CN107075102B (zh) 2014-11-07 2015-11-06 支化聚碳酸酯的制造方法
PCT/JP2015/081309 WO2016072491A1 (ja) 2014-11-07 2015-11-06 分岐ポリカーボネートの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014227409A JP6357408B2 (ja) 2014-11-07 2014-11-07 分岐ポリカーボネートの製造方法

Publications (2)

Publication Number Publication Date
JP2016089102A JP2016089102A (ja) 2016-05-23
JP6357408B2 true JP6357408B2 (ja) 2018-07-11

Family

ID=55909214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014227409A Active JP6357408B2 (ja) 2014-11-07 2014-11-07 分岐ポリカーボネートの製造方法

Country Status (5)

Country Link
US (1) US10030101B2 (ja)
JP (1) JP6357408B2 (ja)
CN (1) CN107075102B (ja)
TW (1) TWI675863B (ja)
WO (1) WO2016072491A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6976716B2 (ja) * 2017-05-23 2021-12-08 本州化学工業株式会社 芳香族ポリカーボネートオリゴマー固形体

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4415722A (en) * 1982-03-19 1983-11-15 General Electric Company Branched aromatic polycarbonate from aliphatic polyol
JPS59191717A (ja) * 1983-04-13 1984-10-30 Mitsubishi Gas Chem Co Inc 分岐化ポリカ−ボネ−トの製造法
JP2628562B2 (ja) * 1989-08-03 1997-07-09 出光石油化学株式会社 分岐状ポリカーボネート及びその製造方法
US5104964A (en) * 1989-08-03 1992-04-14 Idemitsu Petrochemical Co., Ltd. Branched polycarbonate having branching parameter and degree of branching
JPH07103235B2 (ja) * 1989-12-13 1995-11-08 出光石油化学株式会社 分岐ポリカーボネート及びその製造方法
JP3026707B2 (ja) * 1993-10-05 2000-03-27 出光石油化学株式会社 分岐状ポリカーボネートの製造方法
JP3995945B2 (ja) * 2002-02-04 2007-10-24 出光興産株式会社 直鎖状ポリカーボネートの製造方法
JP2005126478A (ja) * 2003-10-21 2005-05-19 Teijin Chem Ltd 分岐状ポリカーボネート樹脂及びその製造方法
JP4490703B2 (ja) * 2004-02-26 2010-06-30 出光興産株式会社 ポリカーボネートの製造方法
CN101525431B (zh) * 2008-01-30 2011-06-29 赵云 管道式高剪切分散乳化机连续界面光气法合成聚碳酸酯
EP2487194A4 (en) * 2009-10-07 2015-05-27 Teijin Chemicals Ltd BRANCHED POLYCARBONATE RESIN AND METHOD FOR PRODUCING THE SAME
CN101735443B (zh) * 2009-11-30 2011-07-06 中国蓝星(集团)股份有限公司 聚碳酸酯的制备方法
JP5775347B2 (ja) * 2011-03-31 2015-09-09 出光興産株式会社 ポリカーボネートオリゴマー連続製造の制御方法
CN102516519B (zh) * 2011-11-18 2014-05-21 万华化学(宁波)有限公司 一种制备聚碳酸酯的方法
JP2015229766A (ja) * 2014-06-06 2015-12-21 出光興産株式会社 ポリカーボネートの製造方法

Also Published As

Publication number Publication date
US10030101B2 (en) 2018-07-24
WO2016072491A1 (ja) 2016-05-12
CN107075102B (zh) 2019-06-11
US20170313817A1 (en) 2017-11-02
JP2016089102A (ja) 2016-05-23
TWI675863B (zh) 2019-11-01
TW201619236A (zh) 2016-06-01
CN107075102A (zh) 2017-08-18

Similar Documents

Publication Publication Date Title
JP6711502B2 (ja) ポリカーボネート−ポリオルガノシロキサン共重合体の製造方法
WO2015186773A1 (ja) ポリカーボネートの製造方法
WO2016088814A1 (ja) ポリカーボネート-ポリオルガノシロキサン共重合体の製造方法
US10738154B2 (en) Method for producing polycarbonate-polyorganosiloxane copolymer
JP6357408B2 (ja) 分岐ポリカーボネートの製造方法
WO2016104532A1 (ja) ポリカーボネートの製造方法
JP6657543B2 (ja) ポリカーボネートの製造方法
WO2015147198A1 (ja) 3-ペンタデシルフェノールの塩化メチレン溶液、その製造方法、及び該溶液を用いるポリカーボネート樹脂の製造方法
WO2015159958A1 (ja) ポリカーボネート樹脂の製造方法
WO2016080382A1 (ja) ポリカーボネート-ポリオルガノシロキサン共重合体の製造方法
CN112204072B (zh) 聚碳酸酯系树脂及其制造方法、以及聚碳酸酯系树脂组合物
JP6035182B2 (ja) ポリカーボネート共重合体及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180618

R150 Certificate of patent or registration of utility model

Ref document number: 6357408

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150