WO2015147198A1 - 3-ペンタデシルフェノールの塩化メチレン溶液、その製造方法、及び該溶液を用いるポリカーボネート樹脂の製造方法 - Google Patents

3-ペンタデシルフェノールの塩化メチレン溶液、その製造方法、及び該溶液を用いるポリカーボネート樹脂の製造方法 Download PDF

Info

Publication number
WO2015147198A1
WO2015147198A1 PCT/JP2015/059449 JP2015059449W WO2015147198A1 WO 2015147198 A1 WO2015147198 A1 WO 2015147198A1 JP 2015059449 W JP2015059449 W JP 2015059449W WO 2015147198 A1 WO2015147198 A1 WO 2015147198A1
Authority
WO
WIPO (PCT)
Prior art keywords
pentadecylphenol
methylene chloride
producing
polycarbonate resin
chloride solution
Prior art date
Application number
PCT/JP2015/059449
Other languages
English (en)
French (fr)
Inventor
幸子 長尾
高橋 雅之
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Publication of WO2015147198A1 publication Critical patent/WO2015147198A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/68Purification; separation; Use of additives, e.g. for stabilisation
    • C07C37/88Use of additives, e.g. for stabilisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • C08G64/06Aromatic polycarbonates not containing aliphatic unsaturation
    • C08G64/14Aromatic polycarbonates not containing aliphatic unsaturation containing a chain-terminating or -crosslinking agent

Definitions

  • the present invention relates to a method for producing a methylene chloride solution of 3-pentadecylphenol used as a terminal terminator (molecular weight regulator) in the production of a polycarbonate resin, and methylene chloride of 3-pentadecylphenol obtained by the production method.
  • the present invention relates to a solution and a method for producing a polycarbonate resin using the solution.
  • Polycarbonate resins have excellent characteristics such as transparency, heat resistance, and mechanical properties, and are used in a wide range of applications such as OA / home appliance casings, members in the electrical / electronic field, and optical materials such as lenses. In recent years, it has become necessary to further improve fluidity in response to demands for thinner and larger molded products and improved molding cycles.
  • a method of improving the fluidity of a molding material using a polycarbonate resin a method of using a plasticizer or a resin having excellent fluidity such as a styrene resin such as ABS, HIPS, AS is used. ing.
  • these methods can improve the fluidity of the polycarbonate resin, there is a problem that the excellent impact resistance inherent in the polycarbonate resin is lowered.
  • Patent Documents 1 and 2 disclose a method for producing a polycarbonate using 3-pentadecylphenol as a long-chain alkylphenol as a terminal terminator (molecular weight regulator).
  • the production methods described in these documents only describe a laboratory batch production method. An efficient use method when using 3-pentadecylphenol, in particular, a continuous production of polycarbonate. There is no description on how to use 3-pentadecylphenol in the production process.
  • Pt-Butylphenol which is typically used as a polycarbonate resin terminal terminator (molecular weight regulator), is a crystalline solid, and is used to produce a polycarbonate resin by the interfacial polycondensation method (phosgene method).
  • a methylene chloride solution dissolved in methylene chloride is used with a metering pump. Therefore, in industrial production of polycarbonate resin, it is necessary to prepare and produce this PTBP methylene chloride solution in advance.
  • methylene chloride solution of PTBP is industrially produced, methylene chloride is introduced into a dissolution tank as shown in FIG.
  • PTBP is introduced from a PTBP introduction line installed at the upper part of the dissolution tank.
  • a predetermined amount was introduced to prepare a methylene chloride solution having a predetermined concentration.
  • a rotary valve is provided in the PTBP introduction line, and a funnel-shaped charging port is installed in the upper portion of the rotary valve via the introducing line, and a predetermined amount of PTBP is rotated through the funnel-shaped charging port. Therefore, the methylene chloride vapor inside the dissolution tank does not leak to the upper part through the PTBP introduction line because the rotary valve has a sealing property.
  • PTBP had a melting point of 96 to 101 ° C., and even when frictional heat was generated, the temperature did not exceed this temperature, and PTBP could be introduced through a rotary valve without problems such as melting.
  • a methylene chloride solution of 3-pentadecylphenol it may be introduced directly from the inlet without using such a rotary valve, but the internal methylene chloride vapor leaks from the inlet, There was a risk of worsening the environment.
  • the problem of the present invention is that when 3-pentadecylphenol is used as an end stopper (molecular weight regulator) for polycarbonate resin, 3-pentadecylphenol is efficiently converted into methylene chloride without causing leakage of methylene chloride vapor. It is an object to provide a method for efficiently producing a methylene chloride solution of 3-pentadecylphenol by dissolving well and efficiently producing a polycarbonate resin excellent in moldability by using the solution.
  • the present inventors have found that a methylene chloride solution of 3-pentadecylphenol can be efficiently produced without giving methylene chloride vapor from a dissolution tank without using a rotary valve.
  • the invention has been completed. That is, the present invention relates to the following [1] to [11].
  • a predetermined amount of 3-pentadecylphenol is introduced into a dissolution tank for obtaining a methylene chloride solution of 3-pentadecylphenol from the inlet of the dissolution tank, and then the inlet is closed.
  • the 3-pentadecylphenol introduced from the inlet of the dissolution tank is a granulated product having a bulk density of 0.3 to 0.7 g / cm 3 , or a melt of 3-pentadecylphenol
  • an inert gas is introduced into the dissolution tank, and then a predetermined amount of 3-pentadecylphenol is charged.
  • a methylene chloride solution of 3-pentadecylphenol obtained by the method for producing a methylene chloride solution of 3-pentadecylphenol according to any one of [1] to [7] above.
  • a method for producing a polycarbonate resin wherein the methylene chloride solution of 3-pentadecylphenol as described in [8] above is used as a terminal stopper (molecular weight regulator) for the polycarbonate resin.
  • the method for producing a polycarbonate resin according to the above [9] wherein the method for producing the polycarbonate resin is an interfacial polycondensation method.
  • 3-pentadecylphenol (PDP) used as a polycarbonate resin terminal terminator can be efficiently used as a methylene chloride solution that is easy to handle in the production of the polycarbonate resin. Can be produced without receiving methylene chloride vapor.
  • PDP polycarbonate resin terminal terminator
  • Example 1 The schematic of the container with a stirrer used in Example 1 is shown.
  • the schematic of the container with a stirrer used in the comparative example 1 is shown.
  • 3-pentadecylphenol is introduced into an inlet of a dissolution tank for obtaining a methylene chloride solution of 3-pentadecylphenol, and then the inlet Then, methylene chloride is introduced and stirred to obtain a solution of 3-pentadecylphenol in methylene chloride.
  • a method for producing a methylene chloride solution of 3-pentadecylphenol of the present invention will be described in detail. In the present specification, it is possible to arbitrarily adopt provisions that are preferable, and it can be said that a combination of preferable ones is more preferable.
  • 3-Pentadecylphenol is generally obtained by subjecting a composition mainly composed of cardanol obtained by distillation and extraction from a vegetable oil derived from a natural product such as cashew nut shell oil to a hydrogenation reaction treatment.
  • the purity of commercially available 3-pentadecylphenol is usually 90% by mass or more and less than 97.5% by mass.
  • the purity of 3-pentadecylphenol used in the present invention may be less than 97.5% by mass when the thermal stability and transparency of the polycarbonate resin are not particularly required, and commercially available products can also be used.
  • high-purity 3-pentadecylphenol having a purity of 97.5% by mass or more can be highly purified by crystallization of low-purity 3-pentadecylphenol.
  • the highly purified 3-pentadecylphenol is in a fine needle crystal state. The size is about 200 to 300 ⁇ m in length, the diameter (major axis) is about 50 ⁇ m, and the bulk density has a very small value of about 0.16 g / cm 3 .
  • the flowability is extremely poor, and it takes a lot of time for charging, and in some cases there is a possibility of dust explosion. Cost.
  • 3-pentadecylphenol used in the present invention when 3-pentadecylphenol used in the present invention is in a fine powder state, it is desirable to granulate and use it.
  • a fine powder of 3-pentadecylphenol having a low bulk density is put into a mold having a hollow portion of a predetermined shape (granulated shape), and the fine powder is pressed to granulate into a pellet shape.
  • a roller compactor Using a roller compactor, putting a fine powder of 3-pentadecylphenol with a low bulk density between two rotating rolls, pressing and then pulverizing and granulating into a flake shape, a predetermined shape
  • a method in which 3-pentadecylphenol liquefied at a temperature equal to or higher than its melting point is placed in a mold having a hollow portion having a grain shape), cooled, and granulated into a pellet shape.
  • the temperature when pressing with a roller compactor is usually 30 to 48 ° C., and the pressure is usually 0.1 to 1 ton per 1 cm of roll width.
  • the bulk density can be reduced to about 0.3 to 0.7 g / cm 3. It is preferable to use the above.
  • the size of the granulated product is not particularly limited, but the maximum diameter or length is preferably 0.5 to 10 mm, more preferably 0.5 to 5 mm.
  • the shape of the granulated product is not particularly limited, but may be a cylindrical shape, a rectangular parallelepiped shape, a cubic shape, an elliptical shape, a spherical shape, a flake shape, or the like.
  • 3-pentadecylphenol When introducing 3-pentadecylphenol after introducing methylene chloride into the dissolution tank, 3-pentadecylphenol immediately penetrates into methylene chloride, so the bulk density of 3-pentadecylphenol is low. Does not affect the content of the dissolution tank.
  • 3-pentadecylphenol when 3-pentadecylphenol is introduced before methylene chloride is introduced into the dissolution tank, if the bulk density is low, fine powder of 3-pentadecylphenol overflows from the dissolution tank. It is necessary to increase the capacity of the dissolution tank so that it does not come out. From this viewpoint, the capacity of the dissolution tank can be reduced by increasing the bulk density of 3-pentadecylphenol.
  • FIG. 1 shows a dissolution tank having a stirring function used in the present invention.
  • An inlet for introducing 3-pentadecylphenol is provided on the upper side of the dissolution tank.
  • the introduction position of methylene chloride as a solvent is not particularly limited, but an introduction line is preferably installed on the upper side from the viewpoint of preventing backflow. There is also a solution extraction line.
  • a jacket for maintaining the temperature of the melting tank to about 15 to 35 ° C., preferably about 20 to 35 ° C., on the side wall of the melting tank.
  • a line for introducing an inert gas such as nitrogen, or to prevent the pressure in the dissolution tank from rising is preferable to install the gas discharge line at the top.
  • a funnel may be used, or the container or bag containing 3-pentadecylphenol is opened and introduced directly from the charging part. May be.
  • the container or bag in which 3-pentadecylphenol is stored can be made small, can be introduced into the dissolution tank in a short time, and can be suspended. It is preferable because dust can be reduced.
  • highly purified 3-pentadecylphenol is in a fine acicular crystal state having a length of 200 to 300 ⁇ m and a major axis of about 50 ⁇ m, and its bulk density is about 0.16 g / cm 3. It has a very small value. When such fine powdery 3-pentadecylphenol is used, the fluidity is extremely poor and the handling becomes difficult. Therefore, as described above, a granulated product is preferable.
  • the inlet After introducing a predetermined amount of 3-pentadecylphenol into the dissolution tank, the inlet is closed and a predetermined amount of methylene chloride is introduced from the methylene chloride introduction line.
  • the concentration of 3-pentadecylphenol is usually prepared in the range of 5 to 35% by mass, preferably in the range of 15 to 35% by mass.
  • the dissolution tank may be stirred while introducing methylene chloride or after completing the introduction of methylene chloride.
  • the temperature in the dissolution tank is usually maintained at 15 to 35 ° C., preferably 20 to 35 ° C. By setting the temperature in the dissolution tank to 15 to 35 ° C., a uniform solution can be obtained in a relatively short time.
  • the temperature in the dissolution tank is 15 to 35 ° C.
  • the stirring time is usually 1 to 30 minutes.
  • the stirring speed is not particularly limited, but is usually 50 to 400 rpm.
  • the methylene chloride solution of 3-pentadecylphenol obtained by the method described above may be extracted from the extraction line and transferred to a separate container, and used as a terminal terminator in the production of polycarbonate resin. May be used directly as a terminal terminator in the production of polycarbonate resin.
  • the manufacturing method of the polycarbonate resin of this invention is demonstrated.
  • the methylene chloride solution of 3-pentadecylphenol produced in the present invention is used as a terminal stopper (molecular weight regulator) of the polycarbonate resin.
  • the polycarbonate resin obtained by the production method of the present invention is preferably an aromatic polycarbonate resin, and the main chain contains a repeating unit represented by the following general formula (I).
  • R 1 and R 2 each independently represent a halogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkoxy group having 1 to 6 carbon atoms.
  • X is a single bond, an alkylene group having 1 to 8 carbon atoms, an alkylidene group having 2 to 8 carbon atoms, a cycloalkylene group having 5 to 15 carbon atoms, a cycloalkylidene group having 5 to 15 carbon atoms, a fluorenediyl group, a carbon
  • Examples of the halogen atom independently represented by R 1 and R 2 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • Examples of the alkyl group independently represented by R 1 and R 2 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and various butyl groups (“various” means linear and all branched ones). And the same applies hereinafter), various pentyl groups, and various hexyl groups.
  • Examples of the alkoxy group independently represented by R 1 and R 2 include a case where the alkyl group moiety is the alkyl group.
  • R 1 and R 2 are each preferably an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms.
  • Examples of the alkylene group represented by X include a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, a hexamethylene group, and the like, and an alkylene group having 1 to 5 carbon atoms is preferable.
  • Examples of the alkylidene group represented by X include an ethylidene group and an isopropylidene group.
  • Examples of the cycloalkylene group represented by X include a cyclopentanediyl group, a cyclohexanediyl group, and a cyclooctanediyl group, and a cycloalkylene group having 5 to 10 carbon atoms is preferable.
  • Examples of the cycloalkylidene group represented by X include a cyclohexylidene group, a 3,5,5-trimethylcyclohexylidene group, a 2-adamantylidene group and the like, and a cycloalkylidene group having 5 to 10 carbon atoms is preferable.
  • a cycloalkylidene group having 5 to 8 carbon atoms is more preferred.
  • Examples of the aryl moiety of the arylalkylene group represented by X and the aryl moiety of the arylalkylidene group represented by X include aryl groups having 6 to 14 ring carbon atoms such as a phenyl group, a naphthyl group, a biphenyl group, and an anthryl group.
  • a and b each independently represent an integer of 0 to 4, preferably 0 to 2, more preferably 0 or 1.
  • a terminal stopper other than 3-pentadecylphenol may be used in combination with 3-pentadecylphenol.
  • conventionally used end terminators for producing polycarbonate resins can be used, such as phenol, p-cresol, pt-butylphenol, p-cumylphenol, Examples include tribromophenol, nonylphenol, pt-octylphenol, and the like. Of these, pt-butylphenol and p-cumylphenol are particularly preferred.
  • the molar ratio of (3-pentadecylphenol) :( other terminal terminator) is preferably 99: 1 to 10:90, more preferably 90:10 to 10:90.
  • dihydric phenol for constituting the main chain.
  • Various known dihydric phenols can be used as the dihydric phenol, but it is preferable to use a dihydric phenol represented by the following general formula (1).
  • R 1 , R 2 , X, a and b are the same as described above.
  • the dihydric phenol represented by the general formula (1) is not particularly limited, but 2,2-bis (4-hydroxyphenyl) propane [common name: bisphenol A] is preferable.
  • dihydric phenols other than bisphenol A include bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 2,2-bis (4-hydroxyphenyl) butane, 2,2 -Bis (4-hydroxyphenyl) octane, bis (4-hydroxyphenyl) phenylmethane, bis (4-hydroxyphenyl) diphenylmethane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, bis (4- Hydroxyphenyl) naphthylmethane, 1,1-bis (4-hydroxy-t-butylphenyl) propane, 2,2-bis (4-hydroxy-3-bromophenyl) propane, 2,2-bis (4-hydroxy-) 3,5-dimethylphenyl) propane, 2,2-bis (4-hydroxy-3-chlorophenyl) Bis
  • the dihydric phenol not contained in the dihydric phenol represented by the general formula (1) is represented by the general formula (1)
  • the dihydric phenol containing the structural unit represented by the following formula (2) is represented by the general formula (1).
  • the dihydric phenol containing a structural unit represented by the following general formula (2) is represented by a polyorganosiloxane represented by the following general formula (2-1).
  • R 7 , R 8 , R 9 and R 10 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, or 1 carbon atom.
  • Z represents a phenol residue having a trimethylene group, which is derived from a phenol compound having an allyl group.
  • n represents 70 to 1000.
  • the polyorganosiloxane represented by the general formula (2-1) is obtained by modifying the terminal of a polyorganosiloxane having a hydrogen end with a phenol compound having an allyl group such as 2-allylphenol and eugenol. .
  • the polyorganosiloxane modified with a phenol compound having an allyl group at the end can be synthesized by the method described in Japanese Patent No. 2662310.
  • dimethylsiloxane is preferred.
  • a branching agent may be used to have a branched structure in the main chain of the polycarbonate resin.
  • the amount of the branching agent added is preferably 0.01 to 3 mol%, more preferably 0.1 to 1.0 mol%, based on the dihydric phenol.
  • branching agent examples include 1,1,1-tris (4-hydroxyphenyl) ethane, 4,4 ′-[1- [4- [1- (4-hydroxyphenyl) -1-methylethyl] phenyl ] Ethylidene] bisphenol, ⁇ , ⁇ ′, ⁇ ′′ -tris (4-hydroxyphenyl) -1,3,5-triisopropylbenzene, 1- [ ⁇ -methyl- ⁇ - (4′-hydroxyphenyl) ethyl]- Examples include compounds having three or more functional groups such as 4- [ ⁇ ′, ⁇ ′-bis (4 ′′ -hydroxyphenyl) ethyl] benzene, phloroglucin, trimetic acid, and isatin bis (o-cresol).
  • the polycarbonate resin produced in the present invention is obtained by reacting a carbonate raw material with a dihydric phenol.
  • a carbonate raw material is a compound which can produce
  • the polycarbonate resin in the present invention can be produced using a method commonly used in the production of ordinary polycarbonate resins, but is preferably produced using an interfacial polycondensation method, and the polycarbonate resin is produced continuously. It is preferable. In the production of a polycarbonate resin by an interfacial polycondensation method, phosgene or a phosgene derivative is used as a carbonate raw material.
  • phosgene triphosgene, bromophosgene, bis (2,4,6-trichlorophenyl) carbonate are used.
  • Phosgene derivatives such as bis (2,4-dichlorophenyl) carbonate, bis (2-cyanophenyl) carbonate, and trichloromethyl chloroformate.
  • a polycarbonate oligomer of the dihydric phenol is synthesized in advance from the dihydric phenol and phosgene or a phosgene derivative, and the oligomer is dissolved in the methylene chloride solution.
  • the dihydric phenol is dissolved in an aqueous solution of an alkali metal hydroxide, and an alkaline aqueous solution of dihydric phenol (aqueous solution such as sodium hydroxide). Adjust. Subsequently, phosgene or a phosgene derivative is introduced into a mixed solution of the alkaline aqueous solution and an inert organic solvent (an organic solvent such as methylene chloride) to synthesize the polycarbonate oligomer of the dihydric phenol.
  • an organic solvent such as methylene chloride
  • the alkali concentration of the aqueous alkali solution is preferably in the range of 1 to 15% by mass, and the volume ratio of the organic phase to the aqueous phase is usually 5: 1 to 1: 7, preferably 2: 1 to 1: 4. It is desirable to be in range.
  • the reaction temperature is selected from the range of 0 to 70 ° C., preferably 5 to 40 ° C., with cooling in a water bath, and the reaction time is usually about 15 minutes to 4 hours, preferably about 30 minutes to 2 hours.
  • the degree of polymerization of the polycarbonate oligomer thus obtained is usually 20 or less, preferably about 2 to 10.
  • the reactor used for the production of the polycarbonate oligomer is not particularly limited, but a tubular reactor (pipe reactor), a tank reactor, a column reactor, etc. can be used, for example, phosgene and An organic solvent and an alkaline aqueous solution of a dihydric phenol such as bisphenol A are continuously introduced into a tubular reactor for reaction, or the raw material is continuously introduced into a tank reactor with a stirrer, as necessary.
  • Polycarbonate oligomers can be continuously produced by circulating them with a pump and a heat exchanger and reacting them.
  • an alkali aqueous solution of the dihydric phenol, a terminal stopper containing the methylene chloride solution of the 3-pentadecylphenol, and optionally an inert organic solvent are added.
  • the contact polycondensation is carried out by stirring or the like, and interfacial polycondensation is usually carried out at a temperature in the range of 0-50 ° C., preferably 5-40 ° C., usually for about 10 minutes to 6 hours.
  • the alkali concentration of the aqueous alkali solution is preferably 1 to 15% by mass, and the volume ratio of the organic phase to the aqueous phase is usually 7: 1 to 2: 1, preferably 4: 1 to 2: 1. It is desirable.
  • the ratio of the dihydric phenol to the polycarbonate oligomer is such that the molar ratio of (dihydric phenol) / (chloroformate group of the polycarbonate oligomer) is usually 0.4 to 0.55, preferably 0.45 to 0. .5 is chosen.
  • the ratio of alkali metal hydroxide and polycarbonate oligomer is such that the molar ratio of (alkali metal hydroxide) / (chloroformate group of polycarbonate oligomer) is usually 1.0 to 2.0, preferably 1. It is selected to be 2 to 1.7.
  • the amount of the terminal stopper used is such that the molar ratio of (terminal stopper) / (chloroformate group of polycarbonate oligomer) is usually 0.02 to 0.20, preferably 0.04 to 0.17. So chosen.
  • a catalyst can be used as desired.
  • the amount of catalyst used is such that the molar ratio of (catalyst) / (chloroformate group of polycarbonate oligomer) is usually 1.0 ⁇ 10 ⁇ 3 to 10.0 ⁇ 10 ⁇ 3 , preferably 1.0 ⁇ 10 ⁇ 3. It is selected to be ⁇ 5.0 ⁇ 10 ⁇ 3 .
  • alkali metal hydroxide used in the method for producing a polycarbonate resin of the present invention examples include sodium hydroxide, potassium hydroxide, lithium hydroxide, and cesium hydroxide. Of these, sodium hydroxide and potassium hydroxide are preferred.
  • quaternary ammonium salts examples include quaternary ammonium salts, quaternary phosphonium salts, and tertiary amines.
  • the quaternary ammonium salt examples include trimethylbenzylammonium chloride, triethylbenzylammonium chloride, tributylbenzylammonium chloride, trioctylmethylammonium chloride, tetrabutylammonium chloride, tetrabutylammonium bromide and the like.
  • the quaternary phosphonium salt examples include tetrabutylphosphonium chloride and tetrabutylphosphonium bromide.
  • tertiary amine examples include triethylamine, tributylamine, N, N-dimethylcyclohexylamine, pyridine, and dimethylaniline. Etc.
  • tertiary amines are preferable, and triethylamine is particularly preferable.
  • the organic solvent solution containing the polycarbonate resin thus obtained is separated into an aqueous phase and an organic phase.
  • an organic phase obtained after the separation is preferably washed with an alkali solution, which is first washed with an alkaline aqueous solution. A trace amount of the dihydric phenolic compound contained in the organic phase can be removed by the alkali washing.
  • alkaline compound used in the aqueous alkaline solution examples include alkali metal hydroxides exemplified in the production of the polycarbonate, and it is preferable to use the same compounds as those used in the production of the polycarbonate.
  • After washing with alkali it is separated into an aqueous phase and an organic phase.
  • separate It is preferable to make it isolate
  • a polymerization catalyst and a trace amount of an alkaline compound that may be contained in the organic phase can be removed.
  • the acid used for the preparation of the acidic aqueous solution include hydrochloric acid, phosphoric acid, and the like, and hydrochloric acid is preferable, but is not particularly limited thereto.
  • the aqueous phase and the organic phase are separated.
  • separate It is preferable to make it isolate
  • the organic phase obtained by the separation tends to contain the acid or inorganic substance used in the washing, it is preferably washed with water once or more (hereinafter sometimes referred to as water washing).
  • the cleanliness of the organic phase can be evaluated by the electrical conductivity of the water phase after washing.
  • the target electric conductivity is preferably 1 mS / m or less, more preferably 0.5 mS / m or less.
  • After washing with water it is separated into an aqueous phase and an organic phase.
  • the separation method is not particularly limited, and may be stationary separation.
  • a polycarbonate resin can be obtained by concentrating, pulverizing, drying, or further granulating the organic phase that has undergone the washing step described above.
  • the washing step after the polymerization when the separation between the aqueous phase and the organic phase is poor and a clear interface is not formed, the production efficiency is remarkably reduced, but the purity preferably contains 3-pentadecylphenol of 97.5% by mass or more.
  • the terminal terminator it is possible to form a clear interface with good separation between the aqueous phase and the organic phase in each of the washing steps of alkali washing, acid washing, and water washing after polymerization.
  • the method for producing a polycarbonate resin of the present invention uses a methylene chloride solution of 3-pentadecylphenol as a terminal stopper, and the obtained polycarbonate resin has a terminal group derived from 3-pentadecylphenol.
  • the viscosity average molecular weight of the polycarbonate resin obtained by the production method of the present invention is not particularly limited, but preferably from 8,000 to 30 from the viewpoint of maintaining fluidity and strength when molding a thin molded product. It is desirable to set it to 1,000, more preferably 8,000 to 22,000, still more preferably 8,000 to 19,000, and particularly preferably 8,000 to 14,000.
  • the yellow index (YI) of the polycarbonate resin obtained by the method for producing a polycarbonate resin of the present invention is preferably 1.5 or less.
  • YI of the polycarbonate resin is 1.5 or less, it can be suitably used for a liquid crystal member that is excellent in color tone and requires transparency.
  • YI of the polycarbonate resin obtained in the present invention is more preferably 1.3 or less, and further preferably 1.1 or less.
  • the polycarbonate resin obtained by the method for producing a polycarbonate resin of the present invention can be mixed with an aromatic polycarbonate resin other than the polycarbonate resin at an arbitrary ratio to obtain a polycarbonate resin composition.
  • the aromatic polycarbonate resin is not particularly limited, and various known aromatic polycarbonate resins can be used.
  • the polycarbonate resin or the polycarbonate resin composition includes an antioxidant, an ultraviolet absorber, a flame retardant, a release agent, an inorganic filler (glass fiber, talc, titanium oxide, mica, etc.), a colorant, as necessary. Additives such as light diffusing agents can be used depending on the properties required for the intended use.
  • the polycarbonate resin or the polycarbonate resin composition can be formed into a molded body by various molding methods such as injection molding, injection compression molding, extrusion molding, and blow molding.
  • the molded body formed by molding the polycarbonate resin or the polycarbonate resin composition can be preferably used as a liquid crystal device member of a liquid crystal display device used for a mobile phone, a liquid crystal television, a personal computer, an electronic dictionary, an electronic book, and the like.
  • the polycarbonate resin obtained by the present invention is excellent in fluidity, it is desirable to form it by injection molding, particularly when manufacturing a thin molded body, and it is a resin for a light guide plate or a light diffusion plate of a liquid crystal display device. Can be suitably used.
  • McMahon Packing (Mc. MAHON Packing, standard size: 6 mm) is packed in a column with an inner diameter of 30 mm and a volume of 500 mL to form a rectification column, which is attached to a 2 L flask equipped with an internal temperature measuring device, and a reflux ratio ( A device for adjusting the reflux amount / distillation amount), a device for measuring the tower top temperature, and a depressurization degree adjusting device were attached.
  • the acicular crystals had an average length of 280 ⁇ m and a cross-sectional major axis of 50 ⁇ m.
  • the purity of 3-pentadecylphenol in the 3-pentadecylphenol fine powder was 97.75% by mass, and the bulk density of the 3-pentadecylphenol fine powder was 0.16 g / cm 3 .
  • 3-Pentadecylphenol fine powder with a purity of 97.75% by mass is put into a roller compactor, and after applying a load of 0.2 tons per 1 cm roll width, it is pulverized to obtain a granulated product having a maximum diameter of 3 mm. It was.
  • the powder temperature after granulation was 23.4 ° C.
  • the bulk density of this granulated product was 0.46 g / cm 3 .
  • Production Example 2 ⁇ Production of high-purity 3-pentadecylphenol> 70 g of 3-pentadecylphenol (purity 97.75 mass%) obtained by the method shown in Production Example 1 was melted in a 60 ° C. hot water bath, weighed 70 g in a standard bottle, and then 420 g of n-hexane was added. Dissolved. The mixture was allowed to stand at room temperature for 12 hours, and the precipitated solid was filtered under reduced pressure, and then dried under reduced pressure at room temperature for 8 hours to obtain 54 g of 3-pentadecylphenol fine powder having needle-like crystals.
  • the purity of 3-pentadecylphenol in this compound was 99.33% by mass, and the bulk density of the fine powder of 3-pentadecylphenol was 0.16 g / cm 3 .
  • granulation was performed in the same manner as in Production Example 1 to obtain a granulated product having a bulk density of 0.46 g / cm 3 .
  • Example 1 ⁇ Production of High Purity 3-Pentadecylphenol in Methylene Chloride> After introducing nitrogen gas into a container with a glass stirrer having an internal volume of 1000 mL shown in FIG. 1, the funnel of 3-pentadecylphenol produced in Production Example 1 was used from the opening attached to the upper part of the container. 158 g of the granulated product was charged. After adding the granulated material, the opening was closed, and then 500 g of methylene chloride was introduced from a methylene chloride introduction line attached to the upper part of the container. The increase in internal pressure was discharged from the exhaust gas discharge line, and the internal pressure was normal pressure. The temperature in the container was kept at 30 ° C. and stirred at 150 rpm for 10 minutes to produce a methylene chloride solution having a concentration of 3-pentadecylphenol of 24% by mass. When the glass container was visually observed from the outside, it was confirmed that there was no undissolved residue.
  • Example 2 ⁇ Production of High Purity 3-Pentadecylphenol in Methylene Chloride> A methylene chloride solution of 3-pentadecylphenol was produced in the same manner as in Example 1 except that the granulated product of 3-pentadecylphenol obtained in Production Example 2 was used. When the glass container was visually observed from the outside, it was confirmed that there was no undissolved residue.
  • Example 3 ⁇ Production of polycarbonate resin>
  • Polycarbonate oligomer methylene chloride having a terminal mole fraction determined by NMR of pt-butylphenol (PTBP): OH: chloroformate (CF) 3.3: 7.7: 89.0
  • the solution was used as a raw material.
  • the weight average molecular weight (Mw) was determined by using THF (tetrahydrofuran) as a developing solvent, GPC [column: TOSOH TSK-GEL MULTIPIORE HXL-M (two) + Shodex KF801 (one), temperature 40 ° C., flow rate 1. It was measured as a standard polystyrene equivalent molecular weight (weight average molecular weight: Mw) at 0 ml / min, detector: RI].
  • the polycarbonate oligomer (PCO) solution was 20 liters / hr
  • the 3-pentadecylphenol methylene chloride solution (3-pentadecylphenol concentration 24 mass%) obtained in Example 1 was 1.7 liters / hr. hr, at a flow rate of 0.04 liter / hr of a 4% by weight aqueous solution of triethylamine and 1.0 liter / hr of a 10% by weight aqueous sodium hydroxide solution, with an inner volume of 0.3 liter having turbine blades of 43 mm in diameter and 48 mm in diameter.
  • polymerization was carried out by supplying a three-stage tower-type stirring tank with a jacketed 50 liter paddle blade. Cooling water of 15 ° C. was flowed through the jacket, and the outlet temperature of the polymerization liquid was set to 30 ° C. This polymerization liquid was allowed to stand, and was separated into an organic phase containing polycarbonate and an aqueous phase containing excess bisphenol A and NaOH. The water content in the organic phase 60 minutes after standing was 2000 ppm by mass.
  • the organic phase is washed with alkali, acid, and water (washing with pure water is repeated until the electric conductivity in the aqueous phase after washing is 0.05 ⁇ S / m or less.) Obtained as a phase.
  • the unreacted 3-pentadecylphenol in this organic phase was 9 mass ppm.
  • the methylene chloride solution of the polycarbonate resin obtained by washing was concentrated and pulverized, and the obtained flakes were dried at 100 ° C. under reduced pressure to obtain a polycarbonate resin.
  • the resulting polycarbonate resin has a viscosity average molecular weight of 11900, a flow value (Q value) of 123 ⁇ 10 ⁇ 2 mL / sec, and a terminal 3-pentadecylphenoxy group composition of 4.53 mol. %Met.
  • Comparative Example 1 In a container with a stainless steel stirrer having an internal volume of 1000 mL shown in FIG. 2, a metal rotary valve was installed in the middle of the introduction line of 3-pentadecylphenol having an inner diameter of 2 cm attached to the upper part of the container. 500 g of methylene chloride was introduced from a methylene chloride introduction line attached to the upper part of the container, and the temperature in the container was maintained at 30 ° C. Subsequently, the 3-pentadecylphenol granulated product obtained in Production Example 1 was fed at a feeding rate of 30 g / min through a rotary valve. It was no longer possible to feed phenol granules.
  • the surface temperature of the rotary valve was 55 ° C.
  • the inside of the rotary valve was inspected, it was found that molten 3-pentadecylphenol adhered to the line from the inlet of the rotary valve to the upper side, and the introduction line was blocked.
  • Comparative Example 2 Using the dissolution tank shown in FIG. 1 used in Example 1, 500 g of methylene chloride was introduced from a methylene chloride introduction line attached to the upper part of the container, and the temperature in the container was maintained at 30 ° C. Thereafter, 158 g of the granulated product of 3-pentadecylphenol obtained in Production Example 1 was charged using a funnel from the opening attached to the upper part of the container. Around the opening, methylene chloride vapor drifted, and the working environment in the periphery deteriorated significantly.
  • the methylene chloride solution of 3-pentadecylphenol can be efficiently produced without generating methylene chloride vapor in the periphery. it can.
  • the rotary valve is blocked and it becomes difficult to introduce a predetermined amount of 3-pentadecylphenol. I understand.
  • the method for producing a methylene chloride solution of 3-pentadecylphenol shown in Comparative Example 2 generates methylene chloride vapor and deteriorates the surrounding environment.
  • the method for producing a methylene chloride solution of 3-pentadecylphenol of the present invention can efficiently produce a methylene chloride solution of 3-pentadecylphenol without causing leakage of methylene chloride vapor, and uses the solution.
  • a polycarbonate resin excellent in moldability can be produced efficiently.
  • Dissolution tank 2 3-Pentadecylphenol charging port 3: Stirring motor 4: Methylene chloride introduction line 5: Dissolving liquid extraction line 6: Rotary valve

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

ポリカーボネート樹脂の末端停止剤(分子量調節剤)として用いられる3-ペンタデシルフェノールを塩化メチレン溶液として効率よく製造する方法を提供するとともに、その溶液を用いることにより、成形性に優れたポリカーボネート樹脂を効率よく製造する方法を提供する。 3-ペンタデシルフェノールの塩化メチレン溶液を得るための溶解槽に、所定量の3-ペンタデシルフェノールを該溶解槽の投入口から投入し、次いで該投入口を閉じた後に、塩化メチレン導入ラインから所定量の塩化メチレンを導入し、攪拌することにより3-ペンタデシルフェノールの塩化メチレン溶液を製造する方法。

Description

3-ペンタデシルフェノールの塩化メチレン溶液、その製造方法、及び該溶液を用いるポリカーボネート樹脂の製造方法
 本発明は、ポリカーボネート樹脂の製造において、末端停止剤(分子量調節剤)として使用される3-ペンタデシルフェノールの塩化メチレン溶液を製造する方法、その製造方法によって得られる3-ペンタデシルフェノールの塩化メチレン溶液及びそれを使用するポリカーボネート樹脂の製造方法に関する。
 ポリカーボネート樹脂は、透明性、耐熱性、機械特性など優れた特徴を有し、OA・家電の筐体や電気・電子分野の部材、レンズなどの光学材料など、幅広い用途に使用されている。近年、成形品の薄型化、大型化や成形サイクルの向上といった要望に対し、さらに流動性の向上が必要となっている。
 ポリカーボネート樹脂を用いた成形材料の流動性を改善する方法として、可塑剤を使用したり、ABS、HIPS、AS等のスチレン系樹脂のような流動性に優れる樹脂を使用したりする方法が用いられている。しかし、これらの方法は、ポリカーボネート樹脂の流動性を向上できるが、ポリカーボネート樹脂が本来有する優れた耐衝撃性を低下させるという問題があった。
 また、上記の問題点を回避するために、ポリカーボネート樹脂自体の構造を変えることにより流動性を向上させることが知られている。その方法の一つに、長鎖アルキルフェノールを末端停止剤(分子量調節剤)として利用することが知られている。特許文献1及び2には、末端停止剤(分子量調節剤)の長鎖アルキルフェノールとして、3-ペンタデシルフェノールを用いるポリカーボネートの製造方法が開示されている。これらの文献に記載されている製造方法は、実験室的なバッチ製造方法が記載されているのみであり、3-ペンタデシルフェノールを用いる際の効率的な使用方法、特に連続的にポリカーボネートを工業的に製造する際の3-ペンタデシルフェノールの使用方法については記載されていない。
 ポリカーボネート樹脂の末端停止剤(分子量調節剤)として代表的に使用されているp-t-ブチルフェノール(PTBP)は、結晶状固体であり、界面重縮合法(ホスゲン法)でポリカーボネート樹脂を製造する場合、特に定量的に使用するに当たっては、塩化メチレンに溶解させた塩化メチレン溶液を、定量ポンプを用いて使用している。
 従って、ポリカーボネート樹脂を工業的に製造するに当たり、このPTBPの塩化メチレン溶液を事前に調製して製造しておく必要がある。従来、このPTBPの塩化メチレン溶液を工業的に製造する際、図2に示すような溶解槽に事前に塩化メチレンを導入しておき、溶解槽の上部に設置されたPTBPの導入ラインからPTBPを所定量導入し、所定の濃度の塩化メチレン溶液としていた。このPTBPの導入ラインには、ロータリーバルブが設けられ、ロータリーバルブ上方部には、導入ラインを介してロート状の投入口が設置され、ロート状の投入口を通して、所定量のPTBPをロータリーの回転により、溶解槽内部に導入することができ、かつロータリーバルブがシール性を有するため、溶解槽内部の塩化メチレン蒸気は、PTBPの導入ラインを通して、上部に漏れない構造となっていた。
 しかし、3-ペンタデシルフェノールをこのようなロータリーバルブを通過させて、PTBPと同様の方法で3-ペンタデシルフェノールを溶解させた塩化メチレン溶液を製造する場合、ロータリーバルブの回転に伴う摩擦熱が発生し、ロータリーバルブ本体及び周辺部が3-ペンタデシルフェノールの融点(50~53℃)以上となり、3-ペンタデシルフェノールが溶融し、その結果、導入ラインに溶融物が付着し、導入ラインを閉塞させ、3-ペンタデシルフェノールの導入が困難となる問題点が発生した。なお、PTBPの融点は96~101℃であり、摩擦熱が発生しても、この温度を超えることはなく、溶融等の問題もなくPTBPをロータリーバルブを通じて導入することができていた。
 3-ペンタデシルフェノールの塩化メチレン溶液を製造するに当たって、このようなロータリーバルブを使用しないで、投入口から直接導入することも考えられるが、投入口から、内部の塩化メチレン蒸気がもれ、周辺部の環境を悪化させる恐れがあった。
特表2005-524923号公報 特開2003-41011号公報
 本発明の課題は、ポリカーボネート樹脂の末端停止剤(分子量調節剤)として3-ペンタデシルフェノールを使用する際に、塩化メチレン蒸気の漏れが発生することなく、3-ペンタデシルフェノールを塩化メチレンに効率よく溶解させて、3-ペンタデシルフェノールの塩化メチレン溶液を効率よく製造するとともに、その溶液を用いることにより成形性に優れたポリカーボネート樹脂を効率よく製造する方法を提供することである。
 本発明者らは、鋭意検討した結果、ロータリーバルブを使用しなくても、3-ペンタデシルフェノールの塩化メチレン溶液を、溶解槽から塩化メチレン蒸気をもらすことなく、効率よく製造できることを見出し、本発明を完成させるに至った。
 すなわち、本発明は、下記[1]~[11]に関する。
[1]3-ペンタデシルフェノールの塩化メチレン溶液を得るための溶解槽に、所定量の3-ペンタデシルフェノールを該溶解槽の投入口から投入し、次いで該投入口を閉じた後に、塩化メチレン導入ラインから所定量の塩化メチレンを導入し、攪拌する、3-ペンタデシルフェノールの塩化メチレン溶液の製造方法。
[2]溶解槽の投入口から投入される3-ペンタデシルフェノールが、0.3~0.7g/cmのかさ密度を有する造粒物であるか、又は3-ペンタデシルフェノールの溶融液を冷却固化させて得られる造粒物である、上記[1]に記載の3-ペンタデシルフェノールの塩化メチレン溶液の製造方法。
[3]3-ペンタデシルフェノールを溶解槽に投入する前に溶解槽内に不活性ガスを導入し、その後に所定量の3-ペンタデシルフェノールを投入する、上記[1]又は[2]に記載の3-ペンタデシルフェノールの塩化メチレン溶液の製造方法。
[4]溶解槽の投入口から投入される3-ペンタデシルフェノールの純度が97.5質量%以上である、上記[1]~[3]のいずれかに記載の3-ペンタデシルフェノールの塩化メチレン溶液の製造方法。
[5]溶解槽内の温度を15~35℃に保持して攪拌する、上記[1]~[4]のいずれかに記載の3-ペンタデシルフェノールの塩化メチレン溶液の製造方法。
[6]3-ペンタデシルフェノールの投入口が、溶解槽の上部側に設置されている、上記[1]~[5]のいずれかに記載の3-ペンタデシルフェノールの塩化メチレン溶液の製造方法。
[7]塩化メチレン溶液中の3-ペンタデシルフェノールの濃度が5~35質量%である、上記[1]~[6]のいずれかに記載の3-ペンタデシルフェノールの塩化メチレン溶液の製造方法。
[8]上記[1]~[7]のいずれかに記載の3-ペンタデシルフェノールの塩化メチレン溶液の製造方法で得られる、3-ペンタデシルフェノールの塩化メチレン溶液。
[9]上記[8]に記載の3-ペンタデシルフェノールの塩化メチレン溶液をポリカーボネート樹脂の末端停止剤(分子量調節剤)として用いる、ポリカーボネート樹脂の製造方法。
[10]ポリカーボネート樹脂の製造方法が界面重縮合法である、上記[9]に記載のポリカーボネート樹脂の製造方法。
[11]ポリカーボネート樹脂を連続的に製造する、上記[9]又は[10]に記載のポリカーボネート樹脂の製造方法。
 本発明によれば、ポリカーボネート樹脂の末端停止剤(分子量調節剤)として用いる3-ペンタデシルフェノール(PDP)を該ポリカーボネート樹脂の製造の際に取扱い容易な塩化メチレン溶液の状態として効率よく、また周辺に塩化メチレン蒸気をもらすこともなく製造することができる。このPDPの塩化メチレン溶液を用いることにより、PDPを末端基構造とするポリカーボネートを効率よく製造することができる。
実施例1で使用した攪拌機付き容器の概略図を示す。 比較例1で使用した攪拌機付き容器の概略図を示す。
 本発明の3-ペンタデシルフェノールの塩化メチレン溶液の製造方法では、3-ペンタデシルフェノールの塩化メチレン溶液を得るための溶解槽の投入口に、3-ペンタデシルフェノールを投入し、次いで該投入口を閉じた後に、塩化メチレンを導入し、攪拌することにより、3-ペンタデシルフェノールの塩化メチレン溶液を得ることができる。
 以下、本発明の3-ペンタデシルフェノールの塩化メチレン溶液の製造方法について詳細に説明する。なお、本明細書において、好ましいとされている規定は任意に採用することができ、好ましいもの同士の組み合わせはより好ましいと言える。
[3-ペンタデシルフェノール]
 3-ペンタデシルフェノールは、一般的にカシューナッツ殻油等の天然物由来の植物油から蒸留及び抽出を経て得られるカルダノールを主成分とする組成物を水素添加反応処理することにより得られる。3-ペンタデシルフェノールの市販品の純度は、通常90質量%以上、97.5質量%未満である。本発明で使用される3-ペンタデシルフェノールの純度としては、ポリカーボネート樹脂の熱安定性や透明性が特に求められない場合は、97.5質量%未満でもよく、市販品を使用することもできるが、導光板やレンズ等の光学用途に使用する場合には、97.5質量%以上の純度のものを用いることが好ましい。特に純度が97.5質量%以上の高純度の3-ペンタデシルフェノールは、低純度の3-ペンタデシルフェノールを晶析等することにより、高純度化することができる。高純度化した3-ペンタデシルフェノールは、微細な針状結晶状態となっている。そのサイズは、長さが200~300μm、径(長径)が50μm程度であり、そのかさ密度は、約0.16g/cm程度と極めて小さい値を有している。このような微細な粉末状の3-ペンタデシルフェノールを用いた場合、流動性が極めて悪く、投入に多大な時間を要し、場合によっては粉塵爆発の可能性もあるため、極めて取扱いに注意を要する。
 上記理由から、本発明で使用する3-ペンタデシルフェノールが微細な粉末状態である場合には、造粒して使用することが望ましい。造粒する方法としては、所定形状(造粒形状)の窪み部を有する型内にそのかさ密度の低い3-ペンタデシルフェノールの微粉末を入れ、微粉末をプレスしてペレット形状として造粒する方法や、ローラーコンパクターを用い、回転する2つのロールの間にかさ密度の低い3-ペンタデシルフェノールの微粉末を入れてプレスした後、粉砕してフレーク状に造粒する方法、所定形状(造粒形状)の窪み部を有する型内にその融点以上の温度にして液状化された3-ペンタデシルフェノールを入れ、冷却した後、ペレット形状として造粒する方法がある。ローラーコンパクターによりプレスする際の温度は、通常30~48℃であり、圧力は、通常ロール幅1cmあたり通常0.1~1トンである。かさ密度の低い3-ペンタデシルフェノールの微粉末を30~48℃でプレスして造粒した場合、かさ密度を0.3~0.7g/cm程度とすることができ、このようなかさ密度としたものを用いることが好ましい。造粒物のサイズは特に制限されないが、最大径又は長さが好ましくは0.5~10mm、より好ましくは0.5~5mmとすることができる。造粒物の形状は特に制限されないが、円筒状、直方体状、立方体状、楕円状、球状、薄片状等とすることができる。なお、溶解槽に塩化メチレンを導入してから、3-ペンタデシルフェノールを投入する場合には、直ぐに塩化メチレンに3-ペンタデシルフェノールが浸透するので、3-ペンタデシルフェノールのかさ密度が低くても、溶解槽の内容量に影響を与えない。しかし、本発明のように、溶解槽に塩化メチレンを導入する前に3-ペンタデシルフェノールを投入する場合には、そのかさ密度が低いと、溶解槽から3-ペンタデシルフェノールの微粉末があふれ出ないように、溶解槽の容量を大きくする必要があり、その観点からも3-ペンタデシルフェノールのかさ密度を上げることで、溶解槽の容量を小さくすることができる。
[溶解槽]
 本発明で使用する3-ペンタデシルフェノールを溶解させるための溶解槽としては、攪拌機能を有する溶解槽を用いる。図1に一例として、本発明に用いる攪拌機能を有する溶解槽を示す。溶解槽上部側には、3-ペンタデシルフェノールを投入するための投入口が設けられている。また、溶媒となる塩化メチレンの導入位置は特に制限されないが、逆流防止の観点から好ましくは上部側に導入ラインが設置されている。また、溶解液の抜出しラインも設置されている。また、図示はしていないが、溶解槽の温度を通常15~35℃、好ましくは20~35℃程度に保持するためのジャケットを溶解槽の側壁に取り付けることが望ましい。また、3-ペンタデシルフェノールを溶解槽に投入する際の粉塵爆発を防止するために、窒素等の不活性ガスを導入するためのラインや、溶解槽内の圧力が上昇するのを防止するためのガス排出ラインを上部に設置することが好ましい。
[溶解槽を用いた3-ペンタデシルフェノールの塩化メチレン溶液の製造方法]
 上記に説明した溶解槽を使用して3-ペンタデシルフェノールの塩化メチレン溶液を製造する方法について説明する。
 まず、溶解槽の3-ペンタデシルフェノールの投入口から所定量の3-ペンタデシルフェノールを投入するが、この投入操作に先だって、粉塵爆発を防止する目的で事前に窒素等の不活性ガスを導入しておくことが好ましい。不活性ガスの導入量は、酸素濃度を爆発限界以下の濃度となるように、酸素濃度計で確認しながら決定することができる。所定量の3-ペンタデシルフェノールを投入する際には、ロートを使用してもよいし、3-ペンタデシルフェノールが収納されている容器やバッグの底部を開口して、投入部から直接導入してもよい。3-ペンタデシルフェノールの造粒物を使用することにより、3-ペンタデシルフェノールが収納されている容器やバッグを小さくすることができ、短時間で溶解槽内に導入することができ、かつ浮遊粉塵を少なくすることができるので好ましい。
 特に、高純度化された3-ペンタデシルフェノールは、長さが200~300μm、長径が50μm程度の微細な針状結晶状態となっており、そのかさ密度は、0.16g/cm程度と極めて小さい値を有している。このような微細な粉末状の3-ペンタデシルフェノールを用いた場合、流動性が極めて悪く、取り扱いが困難となることから、前記で説明したとおり、造粒物とすることが好ましい。
 溶解槽内に所定量の3-ペンタデシルフェノールを投入した後、その投入口を閉じ、塩化メチレン導入ラインから所定量の塩化メチレンを導入する。3-ペンタデシルフェノールの濃度は、通常5~35質量%の範囲内、好ましくは15~35質量%の範囲内で調製される。溶解槽の攪拌は、塩化メチレンを導入しながら、あるいは塩化メチレンの導入完了後のどちらで行ってもよい。このとき、溶解槽内の温度を通常15~35℃、好ましくは20~35℃に保持する。溶解槽内の温度を15~35℃にすることにより、比較的短時間で均一な溶液とすることができる。特に15~35質量%の高濃度で調製する場合は、溶解槽内の温度を15~35℃にすることが、溶解度と溶解速度の観点から重要である。攪拌時間は、通常1~30分間行えばよい。攪拌速度は、特に制限はないが、通常50~400rpmである。
 上記に説明した方法で得られる3-ペンタデシルフェノールの塩化メチレン溶液は、抜出ラインから抜き出して別容器に移送し、ポリカーボネート樹脂製造時の末端停止剤として使用してもよいし、抜出ラインから直接ポリカーボネート樹脂製造時の末端停止剤として使用してもよい。
[ポリカーボネート樹脂の製造]
 次に、本発明のポリカーボネート樹脂の製造方法について説明する。本発明のポリカーボネート樹脂の製造方法では、本発明で製造された3-ペンタデシルフェノールの塩化メチレン溶液をポリカーボネート樹脂の末端停止剤(分子量調節剤)として用いる。
 本発明の製造方法で得られるポリカーボネート樹脂は、好ましくは芳香族ポリカーボネート樹脂であり、主鎖が下記一般式(I)で表される繰り返し単位を含む。
Figure JPOXMLDOC01-appb-C000001
〔式中、R及びRは、それぞれ独立にハロゲン原子、炭素数1~6のアルキル基又は炭素数1~6のアルコキシ基を示す。Xは、単結合、炭素数1~8のアルキレン基、炭素数2~8のアルキリデン基、炭素数5~15のシクロアルキレン基、炭素数5~15のシクロアルキリデン基、フルオレンジイル基、炭素数7~15のアリールアルキレン基、炭素数7~15のアリールアルキリデン基、-S-、-SO-、-SO-、-O-又は-CO-を示す。a及びbは、それぞれ独立に0~4の整数を示す。〕
 R及びRがそれぞれ独立して示すハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 R及びRがそれぞれ独立して示すアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、各種ブチル基(「各種」とは、直鎖状及びあらゆる分岐鎖状のものを含むことを示し、以下、同様である。)、各種ペンチル基、各種ヘキシル基が挙げられる。R及びRがそれぞれ独立して示すアルコキシ基としては、アルキル基部位が前記アルキル基である場合が挙げられる。
 R及びRとしては、いずれも、好ましくは炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基である。
 Xが表すアルキレン基としては、例えば、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、ヘキサメチレン基等が挙げられ、炭素数1~5のアルキレン基が好ましい。Xが表すアルキリデン基としては、エチリデン基、イソプロピリデン基等が挙げられる。Xが表すシクロアルキレン基としては、シクロペンタンジイル基やシクロヘキサンジイル基、シクロオクタンジイル基等が挙げられ、炭素数5~10のシクロアルキレン基が好ましい。Xが表すシクロアルキリデン基としては、例えば、シクロヘキシリデン基、3,5,5-トリメチルシクロヘキシリデン基、2-アダマンチリデン基等が挙げられ、炭素数5~10のシクロアルキリデン基が好ましく、炭素数5~8のシクロアルキリデン基がより好ましい。
 Xが表すアリールアルキレン基のアリール部位、及びXが表すアリールアルキリデン基のアリール部位としては、フェニル基、ナフチル基、ビフェニル基、アントリル基などの環形成炭素数6~14のアリール基が挙げられる。
 a及びbは、それぞれ独立に0~4の整数を示し、好ましくは0~2、より好ましくは0又は1である。
 末端停止剤としては、3-ペンタデシルフェノール以外の末端停止剤(他の末端停止剤)を3-ペンタデシルフェノールと併用して用いてもよい。他の末端停止剤としては、従来から使用されているポリカーボネート樹脂を製造するための末端停止剤を用いることができ、例えば、フェノール、p-クレゾール、p-t-ブチルフェノール、p-クミルフェノール、トリブロモフェノール、ノニルフェノール、p-t-オクチルフェノールなどが挙げられる。これらの中では、p-t-ブチルフェノールとp-クミルフェノールが特に好ましい。3-ペンタデシルフェノールと他の末端停止剤とを併用して用いる場合、その使用比率は、(3-ペンタデシルフェノール):(他の末端停止剤)のモル比は、好ましくは99:1~10:90、より好ましくは90:10~10:90である。
 本発明においてポリカーボネート樹脂を製造するためには、主鎖を構成するための二価フェノールを用いる必要がある。二価フェノールとしては、各種の公知の二価フェノールを用いることができるが、下記一般式(1)で表される二価フェノールを用いることが好ましい。
Figure JPOXMLDOC01-appb-C000002
 ここで、一般式(1)中、R、R、X、a及びbは前記と同じである。
 一般式(1)で表される二価フェノールとしては、特に限定されないが、2,2-ビス(4-ヒドロキシフェニル)プロパン〔通称:ビスフェノールA〕が好適である。
 ビスフェノールA以外の二価フェノールとしては、例えば、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)オクタン、ビス(4-ヒドロキシフェニル)フェニルメタン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、ビス(4-ヒドロキシフェニル)ナフチルメタン、1,1-ビス(4-ヒドロキシ-t-ブチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-ブロモフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-クロロフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジクロロフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジブロモフェニル)プロパン等のビス(ヒドロキシアリール)アルカン類、1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,5,5-トリメチルシクロヘキサン、2,2-ビス(4-ヒドロキシフェニル)ノルボルナン、1,1-ビス(4-ヒドロキシフェニル)シクロドデカン等のビス(ヒドロキシアリール)シクロアルカン類、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシ-3,3’-ジメチルフェニルエーテル等のジヒドロキシアリールエーテル類、4,4’-ジヒドロキシジフェニルスルフィド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルフィド等のジヒドロキシジアリールスルフィド類、4,4’-ジヒドロキシジフェニルスルホキシド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホキシド等のジヒドロキシジアリールスルホキシド類、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホン等のジヒドロキシジアリールスルホン類、4,4’-ジヒドロキシジフェニル等のジヒドロキシジフェニル類、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン等のジヒドロキシジアリールフルオレン類、1,3-ビス(4-ヒドロキシフェニル)アダマンタン、2,2-ビス(4-ヒドロキシフェニル)アダマンタン、1,3-ビス(4-ヒドロキシフェニル)-5,7-ジメチルアダマンタン等のジヒドロキシジアリールアダマンタン類、4,4’-[1,3-フェニレンビス(1-メチルエチリデン)]ビスフェノール、10,10-ビス(4-ヒドロキシフェニル)-9-アントロン、1,5-ビス(4-ヒドロキシフェニルチオ)-2,3-ジオキサペンタン等が挙げられる。
 これらの二価フェノールは、単独で又は二種以上を混合して用いてもよい。
 さらに、上記一般式(1)で表される二価フェノールに含まれない二価フェノールして、下記式(2)で表される構成単位を含む二価フェノールを一般式(1)で表される二価フェノールと併用して用いることができる。このような構成単位を有する共重合体とすることにより、ポリカーボネート樹脂の難燃性を向上させることができる。下記一般式(2)で表される構成単位を含む二価フェノールは、下記一般式(2-1)で表されるポリオルガノシロキサンで表わされる。
Figure JPOXMLDOC01-appb-C000003
 上記一般式(2)又は一般式(2-1)中、R、R、R及びR10は、それぞれ独立に水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基を示す。Zは、アリル基を有するフェノール化合物から誘導される、トリメチレン基を有するフェノール残基を示す。nは70~1000を示す。
 上記一般式(2-1)で表されるポリオルガノシロキサンは、末端が水素のポリオルガノシロキサンの末端を、例えば、2-アリルフェノール及びオイゲノール等のアリル基を有するフェノール化合物で変性したものである。末端がアリル基を有するフェノール化合物で変性されたポリオルガノシロキサンは、特許第2662310号公報に記載の方法により合成することができる。
 上記ポリオルガノシロキサンとしては、ジメチルシロキサンが好適である。
 更に、上記の一般式(1)又は/及び(2)で表される二価フェノールに対して、分岐化剤を用いて、該ポリカーボネート樹脂の主鎖中に分岐構造を有することもできる。この分岐化剤の添加量は、上記の二価フェノールに対して、好ましくは0.01~3モル%、より好ましくは0.1~1.0モル%である。
 分岐化剤としては、例えば、1,1,1-トリス(4-ヒドロキシフェニル)エタン、4,4’-[1-[4-[1-(4-ヒドロキシフェニル)-1-メチルエチル]フェニル]エチリデン]ビスフェノール、α,α’,α”-トリス(4-ヒドロキシフェニル)-1,3,5-トリイソプロピルベンゼン、1-[α-メチル-α-(4’-ヒドロキシフェニル)エチル]-4-[α’,α’-ビス(4”-ヒドロキシフェニル)エチル]ベンゼン、フロログルシン、トリメット酸、イサチンビス(o-クレゾール)等の官能基を3つ以上有する化合物が挙げられる。
 本発明で製造されるポリカーボネート樹脂は、カーボネート原料と二価フェノールとを反応させることによって得られる。カーボネート原料とは、重合体生成反応によってポリカーボネート主鎖中にカーボネート結合を生成し得る化合物のことである。
 本発明におけるポリカーボネート樹脂は、通常のポリカーボネート樹脂の製造において慣用されている方法を用いて製造することができるが、界面重縮合法を用いて製造することが好ましく、連続的にポリカーボネート樹脂を製造することが好ましい。
 界面重縮合法によるポリカーボネート樹脂の製造においては、カーボネート原料としてはホスゲンまたはホスゲン誘導体が使用され、具体的には、ホスゲンをはじめ、トリホスゲン、ブロモホスゲン、ビス(2,4,6-トリクロロフェニル)カーボネート、ビス(2,4-ジクロロフェニル)カーボネート、ビス(2-シアノフェニル)カーボネート、クロロギ酸トリクロロメチル等のホスゲン誘導体が挙げられる。
 ホスゲンまたはホスゲン誘導体を用いる界面重縮合法としては、例えば、予め前記二価フェノールのポリカーボネートオリゴマーを前記二価フェノールとホスゲンまたはホスゲン誘導体とから合成しておき、このオリゴマーの塩化メチレン溶液に、前記二価フェノールを含有するアルカリ水溶液、苛性アルカリ、前記3-ペンタデシルフェノールの塩化メチレン溶液、及び必要に応じて使用される重合触媒や他の末端停止剤を加えて反応させる方法、または、前記二価フェノールのアルカリ水溶液、前記3-ペンタデシルフェノールの塩化メチレン溶液、必要に応じて使用される他の末端停止剤、塩化メチレン、必要に応じて使用される追加の苛性アルカリ、重合触媒等を含む混合液にホスゲンまたはホスゲン誘導体を加えて反応させる方法などが挙げられるが、これらの中で前者のオリゴマー法が好適である。
 次に、オリゴマー法による本発明のポリカーボネート樹脂の製造方法について説明すると、先ず、アルカリ金属水酸化物の水溶液に前記二価フェノールを溶解させ、二価フェノールのアルカリ水溶液(水酸化ナトリウム等の水溶液)を調整する。次いで、このアルカリ水溶液と不活性有機溶剤(塩化メチレン等の有機溶剤)との混合液にホスゲンまたはホスゲン誘導体を導入して、前記二価フェノールのポリカーボネートオリゴマーを合成する。この際、該アルカリ水溶液のアルカリ濃度は1~15質量%の範囲が好ましく、また有機相と水相との容積比は通常5:1~1:7、好ましくは2:1~1:4の範囲にあるのが望ましい。反応温度は水浴冷却し、通常0~70℃、好ましくは5~40℃の範囲で選ばれ、反応時間は通常15分~4時間、好ましくは30分~2時間程度である。このようにして得られたポリカーボネートオリゴマーの重合度は、通常20以下、好ましくは2~10程度である。
 このポリカーボネートオリゴマーの製造に使用される反応器としては、特に制限されないが、管型反応器(パイプ型反応器)、槽型反応器、塔型反応器等を用いることができ、例えば、ホスゲンと有機溶媒,およびビスフェノールA等の二価フェノールのアルカリ水溶液を連続的に管型反応器に導入して反応させたり、攪拌機付き槽型反応器に前記原料を連続的に導入し、必要に応じてポンプおよび熱交換器を付けて循環させて、反応させたりして、連続的にポリカーボネートオリゴマーを製造することができる。
 次いで、このようにして得られたポリカーボネートオリゴマーを含む有機相に、前記二価フェノールのアルカリ水溶液、前記3-ペンタデシルフェノールの塩化メチレン溶液を含む末端停止剤、所望により不活性有機溶剤を加えて攪拌等を行うことにより接触させて、通常0~50℃、好ましくは5~40℃の範囲の温度において、通常10分~6時間程度界面重縮合させる。この際、該アルカリ水溶液のアルカリ濃度は1~15質量%が好ましく、また有機相と水相との容積比は通常7:1~2:1、好ましくは4:1~2:1の範囲にあるのが望ましい。そして、前記二価フェノールとポリカーボネートオリゴマーとの割合は、(二価フェノール)/(ポリカーボネートオリゴマーのクロロホーメート基)のモル比が、通常0.4~0.55、好ましくは0.45~0.5になるように選ばれる。また、アルカリ金属水酸化物とポリカーボネートオリゴマーとの割合は、(アルカリ金属水酸化物)/(ポリカーボネートオリゴマーのクロロホーメート基)のモル比が、通常1.0~2.0、好ましくは1.2~1.7になるように選ばれる。また、末端停止剤の使用量は、(末端停止剤)/(ポリカーボネートオリゴマーのクロロホーメート基)のモル比が、通常0.02~0.20、好ましくは0.04~0.17になるように選ばれる。さらに、この反応において、所望に応じて触媒を用いることができる。触媒の使用量は、(触媒)/(ポリカーボネートオリゴマーのクロロホーメート基)のモル比が、通常1.0×10-3~10.0×10-3、好ましくは1.0×10-3~5.0×10-3になるように選ばれる。
 本発明のポリカーボネート樹脂の製造方法において用いられるアルカリ金属の水酸化物としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、及び水酸化セシウムなどが挙げられる。これらの中では、水酸化ナトリウムと水酸化カリウムが好適である。
 前記触媒としては、各種のものを用いることができる。具体的には四級アンモニウム塩,四級ホスホニウム塩あるいは三級アミンなどが挙げられる。四級アンモニウム塩としては、例えば、トリメチルベンジルアンモニウムクロライド,トリエチルベンジルアンモニウムクロライド,トリブチルベンジルアンモニウムクロライド,トリオクチルメチルアンモニウムクロライド,テトラブチルアンモニウムクロライド,テトラブチルアンモニウムブロマイドなどが挙げられる。また、四級ホスホニウム塩としては、例えば、テトラブチルホスホニウムクロライド,テトラブチルホスホニウムブロマイドなどが、そして、三級アミンとしては、例えば、トリエチルアミン,トリブチルアミン,N,N-ジメチルシクロヘキシルアミン,ピリジン,ジメチルアニリンなどが挙げられる。
 前記触媒の中では、三級アミンが好ましく、特にトリエチルアミンが好適である。
 このようにして得られたポリカーボネート樹脂を含む有機溶媒溶液は、水相と有機相とに分離する。分離する方法に特に制限は無いが、静置分離や遠心分離などの手段を用いて分離させることが好ましい。
 分離後に得られた有機相は、第一にアルカリ水溶液で洗浄する、アルカリ洗浄を行うことが好ましい。該アルカリ洗浄によって、有機相に含まれている微量の二価フェノール性化合物を除去することができる。アルカリ水溶液に用いるアルカリ性化合物は、前記のポリカーボネートの製造にて例示したアルカリ金属の水酸化物が挙げられ、前記のポリカーボネートの製造で使用したものと同じものを使用することが好ましい。アルカリ洗浄後、水相と有機相とに分離する。分離する方法に特に制限は無いが、静置分離や遠心分離などの手段を用いて分離させることが好ましい。
 アルカリ洗浄後、分離された有機相を酸性水溶液で洗浄する、酸洗浄を行うことが好ましい。該酸洗浄によって、有機相に含まれることのある重合触媒や微量のアルカリ性化合物を除去することができる。酸性水溶液の調製に用いる酸としては、例えば塩酸、リン酸等が挙げられ、塩酸が好ましいが、特にこれらに制限されるものではない。酸洗浄後、水相と有機相とに分離する。なお、分離する方法に特に制限は無いが、静置分離や遠心分離などの手段を用いて分離させることが好ましい。
 上記分離によって得られる有機相には、洗浄で用いた酸や無機物が含まれる傾向にあるため、1回以上水によって洗浄(以下、水洗と称することがある。)することが好ましい。ここで、有機相の清浄度は、洗浄後の水相の電気伝導度により評価できる。目標とする電気伝導度は、好ましくは1mS/m以下、より好ましくは0.5mS/m以下である。水で洗浄した後、水相と有機相とに分離する。この際、分離する方法に特に制限は無く、静置分離でよい。
 上記で述べた洗浄工程を経た有機相を濃縮し、粉砕し、乾燥することによって、又はさらに造粒することによって、ポリカーボネート樹脂を得ることができる。
 重合後の洗浄工程において水相と有機相の分離性が悪く明瞭な界面が形成されない場合、生産効率が著しく低下するが、純度が好ましくは97.5質量%以上の3-ペンタデシルフェノールを含む末端停止剤を用いることによって、重合後のアルカリ洗浄、酸洗浄、及び水洗の各洗浄工程における水相と有機相の分離性が良好で明瞭な界面を形成することができる。
 本発明のポリカーボネート樹脂の製造方法は、3-ペンタデシルフェノールの塩化メチレン溶液を末端停止剤として用いるものであり、得られるポリカーボネート樹脂は3-ペンタデシルフェノールに由来する末端基を有する。
 本発明の製造方法により得られるポリカーボネート樹脂の粘度平均分子量は、特に限定されるものではないが、薄肉の成形品を成形する際の流動性と強度を保つ観点から、好ましくは8,000~30,000、より好ましくは8,000~22,000、更に好ましくは8,000~19,000、特に好ましくは8,000~14,000とすることが望ましい。
 本発明のポリカーボネート樹脂の製造方法によって得られるポリカーボネート樹脂のイエローインデックス(YI)は、好ましくは1.5以下である。ポリカーボネート樹脂のYIが1.5以下であると色調に優れ、透明性が要求される液晶用部材に好適に使用することができる。以上の観点から、本発明で得られるポリカーボネート樹脂のYIは、1.3以下であることがより好ましく、1.1以下であることが更に好ましい。
 本発明のポリカーボネート樹脂の製造方法によって得られるポリカーボネート樹脂は、該ポリカーボネート樹脂以外の芳香族ポリカーボネート樹脂と任意の割合で混合して、ポリカーボネート樹脂組成物とすることができる。
 前記芳香族ポリカーボネート樹脂としては、特に制限はなく種々の公知の芳香族ポリカーボネート樹脂を使用できる。
 前記ポリカーボネート樹脂又はポリカーボネート樹脂組成物には、必要に応じて、酸化防止剤、紫外線吸収剤、難燃剤、離型剤、無機充填材(ガラス繊維、タルク、酸化チタン、マイカ等)、着色剤、光拡散剤等の添加剤を目的とする用途に必要とされる特性に応じて用いることができる。前記のポリカーボネート樹脂又はポリカーボネート樹脂組成物は、射出成形、射出圧縮成形、押出成形、ブロー成形等の各種成形方法により、成形体とすることができる。
 前記ポリカーボネート樹脂又はポリカーボネート樹脂組成物を成形してなる成形体は、好ましくは、携帯電話、液晶テレビ、パソコン、電子辞書、電子書籍等に用いられる液晶表示装置の液晶機器用部材とすることができる。本発明で得られるポリカーボネート樹脂は、流動性に優れるため、特に、厚みの薄い成形体を製造する場合は、射出成形により成形することが望ましく、液晶表示装置の導光板や光拡散板用の樹脂として好適に用いることができる。
 以下に実施例を挙げ、本発明をさらに詳しく説明する。なお、本発明はこれらの例によって限定されるものではない。なお、実施例及び比較例中の測定評価は以下に示す方法で行った。
<3-ペンタデシルフェノールの純度の測定方法>
 3-ペンタデシルフェノールの純度は、アジレント・テクノロジー製;「AGILENT1200」にて、カラムに「L-column ODS」(4.6mmID×150mm,粒径3μm)、移動相にアセトニトリル/ギ酸バッファー=95/5(vol/vol)を用いて測定した。
<造粒物のかさ密度の測定>
 造粒物のかさ密度は、JISK7365に基づいて測定した。
<粘度平均分子量(Mv)の測定>
 ポリカーボネート樹脂の粘度平均分子量(Mv)は、ウベローデ型粘度計を用いて、20℃における塩化メチレン溶液の粘度を測定し、これより極限粘度[η]を求め、次式にて算出するものである。
 [η]=1.23×10-5Mv0.83
<末端基組成量の測定>
 日本電子株式会社製;「JNM-LA500」を用い、H-NMRを測定して、ポリカーボネート樹脂の末端基組成量を算出した。
<流れ値(Q値)の測定>
 高架式フローテスターを用い、JISK7210に準拠して、280℃、15.7MPaの圧力下で、直径1mm、長さ10mmのノズルより流出する溶融樹脂量(×10-2mL/秒)を測定した。
製造例1<高純度3-ペンタデシルフェノールの製造>
 内径30mm、容量500mLのカラムにマクマホンパッキング(Mc.MAHON Packing、規格サイズ:6mm)を充填して精留塔とし、内温測定装置の付いた2Lフラスコに取り付け、充填塔頂には還流比(還流量/留出量)を調整する器具と塔頂温度を測定する装置、更には減圧度調整装置を取り付けた。3-ペンタデシルフェノール固形物(東京化成工業株式会社製、純度92.10質量%)1006.96gをフラスコに供給し、窒素置換後、加熱減圧を開始した。減圧度2mmHg、還流量/留出量=1に設定し、塔頂温度205~210℃の留分を分取した。この時、フラスコ温度は230~245℃であった。分取量は825.71g(仕込みの82質量%)、3-ペンタデシルフェノールの純度は93.61質量%であった。
 次に、得られた粗3-ペンタデシルフェノールを60℃の湯浴にて融解させ規格瓶に70g秤量した後、420gのn-ヘキサンを加え溶解させた。室温にて12時間静置し、析出した固体を減圧濾過した後、室温にて8時間減圧乾燥することにより、針状結晶を有する3-ペンタデシルフェノールの微粉末48gを得た。顕微鏡観察により、この針状結晶は、平均長さが280μm、断面の長径が50μmを有していた。この3-ペンタデシルフェノール微粉末中の3-ペンタデシルフェノール純度は97.75質量%、3-ペンタデシルフェノール微粉末のかさ密度は0.16g/cmであった。この純度が97.75質量%の3-ペンタデシルフェノール微粉末をローラーコンパクターに入れ、ロール幅1cmあたり0.2トンの荷重を加えた後に粉砕し、最大径が3mmを有する造粒物を得た。造粒後の粉体温度は23.4℃であった。この造粒物のかさ密度は、0.46g/cmであった。
製造例2<高純度3-ペンタデシルフェノールの製造>
 製造例1に示す方法で得られた3-ペンタデシルフェノール(純度97.75質量%)70gを60℃の湯浴にて融解させ、規格瓶に70g秤量した後、420gのn-ヘキサンを加え溶解させた。室温にて12時間静置し、析出した固体を減圧濾過した後、室温にて8時間減圧乾燥することにより針状結晶を有する3-ペンタデシルフェノールの微粉末54gを得た。この化合物中の3-ペンタデシルフェノール純度は99.33質量%、3-ペンタデシルフェノールの微粉末のかさ密度は0.16g/cmであった。次に、製造例1と同様にして、造粒し、かさ密度は、0.46g/cmの造粒物を得た。
実施例1<高純度3-ペンタデシルフェノールの塩化メチレン溶液の製造>
 図1に示す内容積が1000mLのガラス製の攪拌機付きの容器に、窒素ガスを導入した後、容器上部に取り付けた開口部からロートを用いて、製造例1で製造した3-ペンタデシルフェノールの造粒物を158g投入した。造粒物を投入後、その開口部を閉じ、次いで容器上部に取り付けた塩化メチレン導入ラインから、500gの塩化メチレンを導入した。内圧の上昇分は、排気ガス排出ラインから排出させ、内圧は常圧とした。容器内の温度を30℃に保持し、150rpmで10分間攪拌させて、3-ペンタデシルフェノールの濃度が24質量%の塩化メチレン溶液を製造した。ガラス製容器を外側から目視にて観察したところ、未溶解の残渣物がないことを確認した。
実施例2<高純度3-ペンタデシルフェノールの塩化メチレン溶液の製造>
 実施例1において、製造例2で得られた3-ペンタデシルフェノールの造粒物を用いた以外は、実施例1と同様にして3-ペンタデシルフェノールの塩化メチレン溶液を製造した。ガラス製容器を外側から目視にて観察したところ、未溶解の残渣物がないことを確認した。
実施例3<ポリカーボネート樹脂の製造>
 ポリカーボネートオリゴマーとして、ビスフェノールAの水酸化ナトリウム水溶液、ホスゲン、塩化メチレン及びp-t-ブチルフェノールを用いて製造された、濃度318g/L、クロロホーメート基濃度0.75mol/L、重量平均分子量(Mw)=3,100、NMRより求めた末端モル分率がp-t-ブチルフェノール(PTBP):OH:クロロホーメート(CF)=3.3:7.7:89.0のポリカーボネートオリゴマーの塩化メチレン溶液を原料に使用した。
 なお、重量平均分子量(Mw)は、展開溶媒としてTHF(テトラヒドロフラン)を用い、GPC〔カラム:TOSOH TSK-GEL MULTIPORE HXL-M(2本)+Shodex KF801(1本)、温度40℃、流速1.0ml/分、検出器:RI〕にて、標準ポリスチレン換算分子量(重量平均分子量:Mw)として測定した。
 次に、上記ポリカーボネートオリゴマー(PCO)溶液を20リットル/hr,上記実施例1で得られた3-ペンタデシルフェノールの塩化メチレン溶液(3-ペンタデシルフェノール濃度24質量%)を1.7リットル/hr,トリエチルアミンの4質量%水溶液0.04リットル/hr及び10質量%の水酸化ナトリウム水溶液1.0リットル/hrの流量で、直径43mmと直径48mmのタービン翼を有する内容積0.3リットルのT.Kパイプラインホモミキサー2SL型(特殊機化工業(株)製)に供給し、3000rpmの回転下で反応を行い、ポリカーボネートオリゴマー末端基のクロロホーメート基の一部と3-ペンタデシルフェノールとを反応させ、末端基の一部が3-ペンタデシルフェノキシ基であるポリカーボネートオリゴマー反応液を得た。このポリカーボネートオリゴマー反応液中に含まれているポリカーボネートオリゴマーの全末端基に対する3-ペンタデシルフェノキシ基の割合は32モル%であり、クロロホーメート基の割合は、57モル%であった。また、ポリカーボネートオリゴマー反応液中に含まれている未反応の3-ペンタデシルフェノールをH-NMRにより測定したところ、未反応の3-ペンタデシルフェノールは、0.1質量%であり、99.7質量%が反応していることを確認した。
 続いて、内径9.2mm,長さ230mmでエレメント14個を内蔵したスルーザーミキサー(住友重機械(株)製)を第二反応器として用い、第一反応器出口からの反応液,5.6質量%の水酸化ナトリウム水溶液にビスフェノールAを溶解して13.5質量%の濃度にした水溶液11.5リットル/hr(Na/OH当量比=1.03),分子量調節剤としてp-t-ブチルフェノールを溶解して濃度24質量%にした塩化メチレン溶液0.35リットル/hr、及び25質量%水酸化ナトリウム水溶液0.64リットル/hrを導入した。
 反応を完結させるための第三反応器として、ジャケット付きの50リットルパドル翼三段の塔型撹拌槽に供給し、重合を行った。ジャケットには、15℃の冷却水を流し、重合液の出口温度を30℃とした。
 この重合液を静置し、ポリカーボネートを含む有機相と過剰のビスフェノールA及びNaOHを含む水相に分離した。静置してから60分後の有機相中の水分量は2000質量ppmであった。この有機相をアルカリ洗浄,酸洗浄及び水洗(洗浄後の水相中の電気伝導度が0.05μS/m以下になるまで純水で洗浄を繰り返した。)することによって透明なポリマー溶液を有機相として得た。この有機相中の未反応の3-ペンタデシルフェノールは9質量ppmであった。洗浄により得られたポリカーボネート樹脂の塩化メチレン溶液を濃縮・粉砕し、得られたフレークを減圧下、100℃で乾燥し、ポリカーボネート樹脂を得た。得られたポリカーボネート樹脂の粘度平均分子量は、11900であり、流れ値(Q値)は、123×10-2mL/秒であり、末端の3-ペンタデシルフェノキシ基組成量は、4.53モル%であった。
比較例1
 図2に示す、内容積が1000mLのステンレス製の攪拌機付きの容器に、容器上部に取り付けた内径2cmを有する3-ペンタデシルフェノールの導入ラインの途中に金属製のロータリーバルブを設置した。容器上部に取り付けた塩化メチレン導入ラインから500gの塩化メチレンを導入し、容器内温度を30℃に保持した。次いで、製造例1で得られた3-ペンタデシルフェノールの造粒物をロータリーバルブを通して、30g/分の投入速度で、投入し始めたところ、投入開始後、3分経過後、3-ペンタデシルフェノールの造粒物を投入することができなくなった。この際、ロータリーバルブの表面温度は55℃となっていた。ロータリーバルブの内部を点検したところ、ロータリーバルブの入口部から上方向にかけてのラインに、溶融した3-ペンタデシルフェノールが付着し、導入ラインを閉塞していることがわかった。
比較例2
 実施例1で使用した図1に示す溶解槽を用いて、容器上部に取り付けた塩化メチレン導入ラインから500gの塩化メチレンを導入し、容器内温度を30℃に保持した。その後、容器上部に取り付けた開口部からロートを用いて、製造例1で得られた3-ペンタデシルフェノールの造粒物を158g投入した。開口部の周辺部は、塩化メチレン蒸気が漂い、周辺部の作業環境が著しく悪化した。
 上記実施例1で示した3-ペンタデシルフェノールの塩化メチレン溶液を製造する方法では、3-ペンタデシルフェノールの塩化メチレン溶液を周辺部に塩化メチレン蒸気を発生させることなく、効率よく製造することができる。一方、上記比較例1で示されるように、ロータリーバルブを介して3-ペンタデシルフェノール投入する方法では、ロータリーバルブ内で閉塞し、3-ペンタデシルフェノールを所定量投入することが困難となることがわかる。また、上記比較例2で示した3-ペンタデシルフェノールの塩化メチレン溶液を製造する方法では、塩化メチレン蒸気が発生し、周辺部の環境を悪化させることがわかる。上記実施例及び比較例では、容器として実験室規模の小型の溶解槽を用いて検討した結果を示すものであるが、工業的規模で実施する場合は、ポリカーボネート樹脂の製造能力が大型化するに従い、溶解槽も大型化するので本発明の効果はより効果の大きいものとなることがわかる。
 本発明の3-ペンタデシルフェノールの塩化メチレン溶液の製造方法は、塩化メチレン蒸気の漏れが発生することなく、効率よく3-ペンタデシルフェノールの塩化メチレン溶液を製造することができ、その溶液を用いることにより成形性に優れたポリカーボネート樹脂を効率よく製造することができる。
1:溶解槽
2:3-ペンタデシルフェノール投入口
3:撹拌モーター
4:塩化メチレン導入ライン
5:溶解液抜き出しライン
6:ロータリーバルブ

Claims (11)

  1.  3-ペンタデシルフェノールの塩化メチレン溶液を得るための溶解槽に、所定量の3-ペンタデシルフェノールを該溶解槽の投入口から投入し、次いで該投入口を閉じた後に、塩化メチレン導入ラインから所定量の塩化メチレンを導入し、攪拌する、3-ペンタデシルフェノールの塩化メチレン溶液の製造方法。
  2.  溶解槽の投入口から投入される3-ペンタデシルフェノールが、0.3~0.7g/cmのかさ密度を有する造粒物であるか、又は3-ペンタデシルフェノールの溶融液を冷却固化させて得られる造粒物である、請求項1に記載の3-ペンタデシルフェノールの塩化メチレン溶液の製造方法。
  3.  3-ペンタデシルフェノールを溶解槽に投入する前に溶解槽内に不活性ガスを導入し、その後に所定量の3-ペンタデシルフェノールを投入する、請求項1又は2に記載の3-ペンタデシルフェノールの塩化メチレン溶液の製造方法。
  4.  溶解槽の投入口から投入される3-ペンタデシルフェノールの純度が97.5質量%以上である、請求項1~3のいずれかに記載の3-ペンタデシルフェノールの塩化メチレン溶液の製造方法。
  5.  溶解槽内の温度を15~35℃に保持して攪拌する、請求項1~4のいずれかに記載の3-ペンタデシルフェノールの塩化メチレン溶液の製造方法。
  6.  3-ペンタデシルフェノールの投入口が、溶解槽の上部側に設置されている、請求項1~5のいずれかに記載の3-ペンタデシルフェノールの塩化メチレン溶液の製造方法。
  7.  塩化メチレン溶液中の3-ペンタデシルフェノールの濃度が5~35質量%である、請求項1~6のいずれかに記載の3-ペンタデシルフェノールの塩化メチレン溶液の製造方法。
  8.  請求項1~7のいずれかに記載の3-ペンタデシルフェノールの塩化メチレン溶液の製造方法で得られる、3-ペンタデシルフェノールの塩化メチレン溶液。
  9.  請求項8に記載の3-ペンタデシルフェノールの塩化メチレン溶液をポリカーボネート樹脂の末端停止剤(分子量調節剤)として用いる、ポリカーボネート樹脂の製造方法。
  10.  ポリカーボネート樹脂を界面重縮合法によって製造する、請求項9に記載のポリカーボネート樹脂の製造方法。
  11.  ポリカーボネート樹脂を連続的に製造する、請求項9又は10に記載のポリカーボネート樹脂の製造方法。
     
PCT/JP2015/059449 2014-03-28 2015-03-26 3-ペンタデシルフェノールの塩化メチレン溶液、その製造方法、及び該溶液を用いるポリカーボネート樹脂の製造方法 WO2015147198A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014069293A JP2015189900A (ja) 2014-03-28 2014-03-28 3−ペンタデシルフェノールの塩化メチレン溶液、その製造方法、及び該溶液を用いるポリカーボネート樹脂の製造方法
JP2014-069293 2014-03-28

Publications (1)

Publication Number Publication Date
WO2015147198A1 true WO2015147198A1 (ja) 2015-10-01

Family

ID=54195702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059449 WO2015147198A1 (ja) 2014-03-28 2015-03-26 3-ペンタデシルフェノールの塩化メチレン溶液、その製造方法、及び該溶液を用いるポリカーボネート樹脂の製造方法

Country Status (3)

Country Link
JP (1) JP2015189900A (ja)
TW (1) TW201536730A (ja)
WO (1) WO2015147198A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10717814B2 (en) 2016-02-29 2020-07-21 Mitsubishi Gas Chemical Company, Inc. Polycarbonate resin and production method therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113663543B (zh) * 2021-10-22 2022-02-01 苏州丰倍生物科技有限公司 一种难溶有机化合物的溶解方法和乳化方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6483044A (en) * 1987-09-24 1989-03-28 Toa Gosei Chem Ind Production of granular sodium benzoate
JP2003041011A (ja) * 2001-07-31 2003-02-13 Teijin Chem Ltd 光学記録媒体
JP2005511811A (ja) * 2001-10-10 2005-04-28 ゼネラル・エレクトリック・カンパニイ ポリカーボネート樹脂の末端封鎖法及び当該方法に用いられる組成物
JP2005524923A (ja) * 2002-05-09 2005-08-18 ゼネラル・エレクトリック・カンパニイ 光ディスクのピット複製を高める方法
JP2007503488A (ja) * 2003-08-23 2007-02-22 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト ポリカーボネートの吸水性を低減するための添加剤としての芳香族ホルマール
JP2007262021A (ja) * 2006-03-29 2007-10-11 Mitsubishi Chemicals Corp 粒状有機物の製造方法
WO2011115136A1 (ja) * 2010-03-16 2011-09-22 三菱化学株式会社 コハク酸の製造方法
WO2014171509A1 (ja) * 2013-04-19 2014-10-23 出光興産株式会社 液晶部材用ポリカーボネート樹脂、それを含む液晶部材用ポリカーボネート樹脂組成物及び液晶部材

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6483044A (en) * 1987-09-24 1989-03-28 Toa Gosei Chem Ind Production of granular sodium benzoate
JP2003041011A (ja) * 2001-07-31 2003-02-13 Teijin Chem Ltd 光学記録媒体
JP2005511811A (ja) * 2001-10-10 2005-04-28 ゼネラル・エレクトリック・カンパニイ ポリカーボネート樹脂の末端封鎖法及び当該方法に用いられる組成物
JP2005524923A (ja) * 2002-05-09 2005-08-18 ゼネラル・エレクトリック・カンパニイ 光ディスクのピット複製を高める方法
JP2007503488A (ja) * 2003-08-23 2007-02-22 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト ポリカーボネートの吸水性を低減するための添加剤としての芳香族ホルマール
JP2007262021A (ja) * 2006-03-29 2007-10-11 Mitsubishi Chemicals Corp 粒状有機物の製造方法
WO2011115136A1 (ja) * 2010-03-16 2011-09-22 三菱化学株式会社 コハク酸の製造方法
WO2014171509A1 (ja) * 2013-04-19 2014-10-23 出光興産株式会社 液晶部材用ポリカーボネート樹脂、それを含む液晶部材用ポリカーボネート樹脂組成物及び液晶部材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIKKEN KAGAKU KOZA 5 -KAGAKU JIKKEN NO TAMENO KISO GIJUTSU, 28 February 2005 (2005-02-28), pages 78 - 79 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10717814B2 (en) 2016-02-29 2020-07-21 Mitsubishi Gas Chemical Company, Inc. Polycarbonate resin and production method therefor

Also Published As

Publication number Publication date
TW201536730A (zh) 2015-10-01
JP2015189900A (ja) 2015-11-02

Similar Documents

Publication Publication Date Title
JP5919294B2 (ja) ポリカーボネート−ポリオルガノシロキサン共重合体及びその製造方法
WO2014058033A1 (ja) ポリカーボネート-ポリオルガノシロキサン共重合体の連続的な製造方法
JP6711502B2 (ja) ポリカーボネート−ポリオルガノシロキサン共重合体の製造方法
JP6913028B2 (ja) ポリカーボネート系樹脂組成物
JP6397645B2 (ja) ポリカーボネート樹脂組成物、及び成形体
WO2015147198A1 (ja) 3-ペンタデシルフェノールの塩化メチレン溶液、その製造方法、及び該溶液を用いるポリカーボネート樹脂の製造方法
JP6199008B2 (ja) ポリカーボネート樹脂及びポリカーボネート樹脂の製造方法
US20170327639A1 (en) Polycarbonate-polyorganosiloxane copolymer production method
WO2015159958A1 (ja) ポリカーボネート樹脂の製造方法
WO2014171509A1 (ja) 液晶部材用ポリカーボネート樹脂、それを含む液晶部材用ポリカーボネート樹脂組成物及び液晶部材
US10059800B2 (en) Process for producing polycarbonate
JP6357408B2 (ja) 分岐ポリカーボネートの製造方法
JP2014224244A (ja) ポリカーボネート樹脂、ポリカーボネート樹脂組成物、及び成形体
WO2016104532A1 (ja) ポリカーボネートの製造方法
JP2013018240A (ja) ポリカーボネート樹脂成形品の製造方法
WO2016080382A1 (ja) ポリカーボネート-ポリオルガノシロキサン共重合体の製造方法
JP2014224245A (ja) ポリカーボネート樹脂の製造方法
WO2019230951A1 (ja) ポリカーボネート系樹脂及びその製造方法、並びにポリカーボネート系樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15770011

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 15770011

Country of ref document: EP

Kind code of ref document: A1