JP6145267B2 - 半導体装置の作製方法 - Google Patents

半導体装置の作製方法 Download PDF

Info

Publication number
JP6145267B2
JP6145267B2 JP2012285686A JP2012285686A JP6145267B2 JP 6145267 B2 JP6145267 B2 JP 6145267B2 JP 2012285686 A JP2012285686 A JP 2012285686A JP 2012285686 A JP2012285686 A JP 2012285686A JP 6145267 B2 JP6145267 B2 JP 6145267B2
Authority
JP
Japan
Prior art keywords
film
insulating film
transistor
oxide
oxide semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012285686A
Other languages
English (en)
Other versions
JP2013153160A (ja
JP2013153160A5 (ja
Inventor
純一 肥塚
純一 肥塚
岡崎 健一
健一 岡崎
泰靖 保坂
泰靖 保坂
輝正 池山
輝正 池山
山崎 舜平
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2012285686A priority Critical patent/JP6145267B2/ja
Publication of JP2013153160A publication Critical patent/JP2013153160A/ja
Publication of JP2013153160A5 publication Critical patent/JP2013153160A5/ja
Application granted granted Critical
Publication of JP6145267B2 publication Critical patent/JP6145267B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/67Thin-film transistors [TFT]
    • H10D30/6729Thin-film transistors [TFT] characterised by the electrodes
    • H10D30/6737Thin-film transistors [TFT] characterised by the electrodes characterised by the electrode materials
    • H10D30/6739Conductor-insulator-semiconductor electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D86/00Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
    • H10D86/01Manufacture or treatment
    • H10D86/021Manufacture or treatment of multiple TFTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/0214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being a silicon oxynitride, e.g. SiON or SiON:H
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/022Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/031Manufacture or treatment of FETs having insulated gates [IGFET] of thin-film transistors [TFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/67Thin-film transistors [TFT]
    • H10D30/674Thin-film transistors [TFT] characterised by the active materials
    • H10D30/6755Oxide semiconductors, e.g. zinc oxide, copper aluminium oxide or cadmium stannate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D86/00Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
    • H10D86/40Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
    • H10D86/451Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs characterised by the compositions or shapes of the interlayer dielectrics
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D86/00Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
    • H10D86/40Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
    • H10D86/60Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs wherein the TFTs are in active matrices
    • H10P14/22
    • H10P14/2922
    • H10P14/3426
    • H10P14/3434
    • H10P14/6336
    • H10P14/6516
    • H10P14/6529
    • H10P14/662
    • H10P14/6927
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Thin Film Transistor (AREA)
  • Liquid Crystal (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Formation Of Insulating Films (AREA)

Description

酸化物半導体を用いる半導体装置及びその作製方法に関する。
なお、本明細書中において半導体装置とは、半導体特性を利用することで機能しうる装置全般を指し、電気光学装置、半導体回路および電子機器は全て半導体装置である。
液晶表示装置に代表されるように、ガラス基板などに形成されるトランジスタの多くはアモルファスシリコン、多結晶シリコンなどによって構成されている。アモルファスシリコンを用いたトランジスタは電界効果移動度が低いもののガラス基板の大面積化に対応することができる。また、多結晶シリコンを用いたトランジスタの電界効果移動度は高いがガラス基板の大面積化には適していないという欠点を有している。
シリコンを用いたトランジスタのほかに、近年は酸化物半導体を用いてトランジスタを作製し、電子デバイスや光デバイスに応用する技術が注目されている。例えば、酸化物半導体として、酸化亜鉛、In−Ga−Zn系酸化物を用いてトランジスタを作製し、表示装置の画素のスイッチング素子などに用いる技術が特許文献1および特許文献2で開示されている。
酸化物半導体において、水素の一部はドナーとなり、キャリアである電子を放出する。酸化物半導体のキャリア濃度が高まると、ゲートに電圧を印加しなくてもトランジスタにチャネルが形成されてしまう。即ち、しきい値電圧が負方向にシフトし、しきい値電圧の制御が困難となる。
特許文献3には、酸化物半導体膜中に水素を添加すると、導電率が4から5桁程度高くなることが示されている。また、酸化物半導体膜に接する絶縁膜から酸化物半導体膜に、水素が拡散していくことが示されている。
特開2007−123861号公報 特開2007−96055号公報 特開2008−141119号公報
酸化物半導体膜を用いたトランジスタに安定した電気的特性を付与し、信頼性の高い半導体装置を作製することを課題の一つとする。
絶縁表面を有する基板上に設けられたボトムゲート構造の逆スタガ型トランジスタを有する半導体装置において、ゲート電極層と酸化物半導体膜との間に、少なくとも第1のゲート絶縁膜と第2のゲート絶縁膜を設け、450℃以上、好ましくは650℃以上の加熱処理を行った後、酸化物半導体膜を形成する。
第1のゲート絶縁膜には、窒化物絶縁膜を用いることができる。例えば、窒化シリコン膜、窒化酸化シリコン膜などが挙げられる。第1のゲート絶縁膜は単層構造でも積層構造でもよい。第1のゲート絶縁膜の膜厚は、20nm以上350nm以下とする。基板としてガラス基板を用いる場合、第1のゲート絶縁膜は、ガラス基板に含まれる不純物の拡散を防止するバリア膜として機能する。また、ゲート電極層の材料として銅などを用いる場合、第1のゲート絶縁膜は銅元素の拡散を抑えるバリア膜として機能する。ただし、窒化物絶縁膜は、水素元素を含んでおり、酸化物半導体膜成膜後の加熱処理などによって、窒化物絶縁膜から水素元素が放出され、その水素元素が酸化物半導体膜へ拡散すると、その水素元素が酸化物半導体膜中の酸素と結合し、HOなどとなって放出されて酸化物半導体膜中の酸素欠損が生じ、トランジスタの電気特性の低下や変動を招く恐れがある。具体的には、ノーマリーオンの電気特性を有するトランジスタとなってしまう恐れがある。
酸化物半導体膜の形成前に450℃以上、好ましくは650℃以上の加熱処理を行うことにより、トランジスタの電気特性の低下や変動を招く要因となる水素元素の酸化物半導体膜への拡散を低減することができるため、トランジスタに安定した電気特性を付与することが可能となる。
成膜直後の第1のゲート絶縁膜の膜中の水素濃度が少なくなるように成膜条件を調節することが望ましい。また、成膜直後の第2のゲート絶縁膜の膜中の水素濃度も少なくなるように成膜条件を調節することが望ましい。また、第2のゲート絶縁膜の成膜後に450℃以上、好ましくは650℃以上の加熱処理を行い、膜中から放出される水素ガス量を低減させることが好ましい。
また、酸化物半導体膜を成膜する場合には、スパッタリングターゲットが多結晶、且つ、相対密度(充填率)の高いものを用い、成膜時のスパッタリングターゲットは十分冷やして室温とし、被成膜基板の被成膜面は、室温以上に高め、成膜チャンバー内に水分や水素がほとんどない雰囲気下で酸化物半導体膜の成膜を行うことが好ましい。
スパッタリングターゲットは高密度であるほど好ましい。スパッタリングターゲットの密度が高いことで成膜される膜密度も高くできる。具体的には、ターゲットの相対密度(充填率)は90%以上100%以下、好ましくは95%以上、さらに好ましくは99.9%以上とする。なお、スパッタリングターゲットの相対密度とは、スパッタリングターゲットの密度とスパッタリングターゲットと同一組成の材料の気孔のない状態における密度との比をいう。
また、成膜チャンバー内に残存する不純物を低減することも緻密な膜を得る上で重要である。成膜チャンバー内の背圧(到達真空度:反応ガスを導入する前の真空度)を5×10−3Pa以下、好ましくは6×10−5Paとし、成膜時の圧力を2Pa未満、好ましくは0.4Pa以下とする。背圧を低くすることで成膜チャンバー内の不純物を低減する。
また、成膜チャンバー内に導入するガス、即ち、成膜時に用いるガス中の不純物を低減することも緻密な膜を得る上で重要である。また、成膜ガス中の酸素割合を高め、電力を最適化することが重要である。成膜ガス中の酸素割合(上限は酸素100%)を高め、電力を最適化することによって成膜時のプラズマダメージを軽減することができる。そのため、緻密な膜を得やすくなる。
また、酸化物半導体膜の成膜前または成膜中には成膜チャンバー内の水分量などを監視(モニター)するため、四重極形質量分析計(以下、Q−massと呼ぶ)を常に作動させた状態で成膜を行うことが好ましい。
なお、酸化物半導体膜を成膜する場合の被成膜基板の温度は、水の吸着がない温度、好ましくは150℃以上500℃以下に加熱しておくことが好ましい。
本明細書で開示する発明の構成の一形態は、絶縁表面を有する基板上にゲート電極層を形成し、ゲート電極層上に第1のゲート絶縁膜を形成し、第1のゲート絶縁膜上に第2のゲート絶縁膜を形成し、第2のゲート絶縁膜形成後に650℃以上の温度で第1の加熱処理を行い、第1の加熱処理後に第2のゲート絶縁膜上に酸化物半導体膜を形成し、酸化物半導体膜形成後に第2の加熱処理を行う半導体装置の作製方法である。
上記構成において、第1のゲート絶縁膜は、プラズマCVD法によって得られる窒化シリコン膜であり、第2のゲート絶縁膜は、プラズマCVD法によって得られる酸化窒化シリコン膜である。
なお、第2の加熱処理は、酸化物半導体膜をエッチングする前後に行えばよく、その温度範囲は、350℃以上、好ましくは450℃以上であり、第1の加熱処理の温度以下とする。
酸化物半導体を用いたトランジスタを有する信頼性の高い半導体装置を提供する。
半導体装置の一形態を説明する平面図及び断面図。 半導体装置の作製方法の一形態を説明する断面図。 半導体装置の一形態を説明する平面図及び断面図。 半導体装置の一形態を説明する平面図及び断面図。 半導体装置の一形態を説明する平面図。 半導体装置の一形態を説明する平面図及び断面図。 半導体装置の一形態を示す断面図。 半導体装置の一形態を示す回路図及び断面図。 電子機器を示す図。 電子機器を示す図。 TDS分析の結果を示すグラフである。 TDS分析の結果を示すグラフである。 トランジスタの初期特性を示す図である。 トランジスタの信頼性の結果を示すグラフである。
以下では、本発明の実施の形態について図面を用いて詳細に説明する。ただし、本発明は以下の説明に限定されず、その形態および詳細を様々に変更し得ることは、当業者であれば容易に理解される。また、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。
(実施の形態1)
本実施の形態では、半導体装置及び半導体装置の作製方法の一形態を、図1を用いて説明する。本実施の形態では、半導体装置の一例として酸化物半導体膜を有するトランジスタを示す。
トランジスタはチャネル形成領域が1つ形成されるシングルゲート構造でも、2つ形成されるダブルゲート構造もしくは3つ形成されるトリプルゲート構造であってもよい。また、チャネル形成領域の上下にゲート絶縁膜を介して配置された2つのゲート電極層を有する、デュアルゲート型でもよい。
図1に示すトランジスタ440は、ボトムゲート構造の一つであり逆スタガ型トランジスタともいうトランジスタの一例である。図1(A)は平面図であり、図1(A)中の一点鎖線V−Zで切断した断面が図1(B)に相当する。
トランジスタ440のチャネル長方向の断面図である図1(B)に示すように、トランジスタ440を含む半導体装置は、基板400上に、ゲート電極層401と、ゲート電極層401を覆うように第1のゲート絶縁膜436が設けられ、第1のゲート絶縁膜436上に第2のゲート絶縁膜402、酸化物半導体膜403、ソース電極層405a、及びドレイン電極層405bを有する。また、トランジスタ440を覆う絶縁膜407が設けられている。
基板400としては、絶縁表面を有する基板、例えばガラス基板、絶縁膜を表面に有する半導体基板(単結晶シリコン基板など)が挙げられる。
なお、ガラス基板としては、アルミノシリケートガラス、バリウムホウケイ酸ガラス、アルミノホウケイ酸ガラスなどの電子工業用に使われる各種ガラス基板を用いることが出来る。なお、基板としては、熱膨張係数が25×10−7/℃以上50×10−7/℃以下(好ましくは、30×10−7/℃以上40×10−7/℃以下)であり、歪み点が650℃以上750℃以下(好ましくは、700℃以上740℃以下)である基板を用いることが好ましい。
第5世代(1000mm×1200mmまたは1300mm×1500mm)、第6世代(1500mm×1800mm)、第7世代(1870mm×2200mm)、第8世代(2200mm×2500mm)、第9世代(2400mm×2800mm)、第10世代(2880mm×3130mm)などの大型ガラス基板を用いる場合、半導体装置の作製工程における加熱処理などで生じる基板の縮みによって、微細な加工が困難になる場合ある。そのため、前述したような大型ガラス基板を基板として用いる場合、縮みの少ないものを用いることが好ましい。例えば、基板として、450℃、好ましくは500℃の温度で1時間加熱処理を行った後の縮み量が20ppm以下、好ましくは10ppm以下、さらに好ましくは5ppm以下である大型ガラス基板を用いればよい。
ゲート電極層401と酸化物半導体膜403との間に、少なくとも第1のゲート絶縁膜436と第2のゲート絶縁膜402を設ける。ゲート電極層401側に設けられる第1のゲート絶縁膜436と、酸化物半導体膜403側に設けられる第2のゲート絶縁膜402との組成を異ならせる。
第1のゲート絶縁膜436には、プラズマCVD法で得られる窒化物絶縁膜を用いる。例えば、窒化シリコン膜、窒化酸化シリコン膜、又は金属窒化物絶縁膜(窒化アルミニウム膜、窒化酸化アルミニウム膜)などが挙げられる。第1のゲート絶縁膜436の膜厚は、20nm以上350nm以下とすることができる。第1のゲート絶縁膜436は単層構造でも積層構造でもよい。
なお、第2のゲート絶縁膜402として、プラズマCVD法で得られる酸化物絶縁膜を用いる。例えば、酸化シリコン膜や酸化窒化シリコン膜などが挙げられる。その他にも第2のゲート絶縁膜402としてチタン(Ti)、モリブデン(Mo)、タングステン(W)、ハフニウム(Hf)、タンタル(Ta)、ランタン(La)、ジルコニウム(Zr)、ニッケル(Ni)、マグネシウム(Mg)、バリウム(Ba)、又はアルミニウム(Al)の金属元素のいずれかから選択される一以上を含む金属酸化物絶縁膜(例えば、酸化アルミニウム膜、酸化窒化アルミニウム膜、酸化ハフニウム膜、酸化マグネシウム膜、酸化ジルコニウム膜、酸化ランタン膜、酸化バリウム膜)などを用いることができる。
また、第2のゲート絶縁膜402の膜厚は、50nm以上300nm以下とすることができる。第2のゲート絶縁膜402は単層構造でも積層構造でもよい。
酸化物半導体膜403に用いる酸化物半導体としては、酸化インジウム、酸化スズ、酸化亜鉛、二元系金属の酸化物であるIn−Zn系酸化物、In−Mg系酸化物、In−Ga系酸化物、三元系金属の酸化物であるIn−Ga−Zn系酸化物(IGZOとも表記する)、In−Al−Zn系酸化物、In−Sn−Zn系酸化物、In−Hf−Zn系酸化物、In−La−Zn系酸化物、In−Ce−Zn系酸化物、In−Pr−Zn系酸化物、In−Nd−Zn系酸化物、In−Sm−Zn系酸化物、In−Eu−Zn系酸化物、In−Gd−Zn系酸化物、In−Tb−Zn系酸化物、In−Dy−Zn系酸化物、In−Ho−Zn系酸化物、In−Er−Zn系酸化物、In−Tm−Zn系酸化物、In−Yb−Zn系酸化物、In−Lu−Zn系酸化物、四元系金属の酸化物であるIn−Sn−Ga−Zn系酸化物、In−Hf−Ga−Zn系酸化物、In−Al−Ga−Zn系酸化物、In−Sn−Al−Zn系酸化物、In−Sn−Hf−Zn系酸化物、In−Hf−Al−Zn系酸化物を用いることができる。
なお、ここで、例えば、In−Ga−Zn系酸化物とは、InとGaとZnを主成分として有する酸化物という意味であり、InとGaとZnの比率は問わない。また、InとGaとZn以外の金属元素が入っていてもよい。
また、酸化物半導体として、InMO(ZnO)(m>0、且つ、mは整数でない)で表記される材料を用いてもよい。なお、Mは、Ga、Fe、Mn及びCoから選ばれた一の金属元素または複数の金属元素を示す。また、酸化物半導体として、InSnO(ZnO)(n>0、且つ、nは整数)で表記される材料を用いてもよい。
例えば、In:Ga:Zn=1:1:1(=1/3:1/3:1/3)、In:Ga:Zn=2:2:1(=2/5:2/5:1/5)、あるいはIn:Ga:Zn=3:1:2(=1/2:1/6:1/3)の原子数比のIn−Ga−Zn系酸化物やその組成の近傍の酸化物を用いることができる。あるいは、In:Sn:Zn=1:1:1(=1/3:1/3:1/3)、In:Sn:Zn=2:1:3(=1/3:1/6:1/2)あるいはIn:Sn:Zn=2:1:5(=1/4:1/8:5/8)の原子数比のIn−Sn−Zn系酸化物やその組成の近傍の酸化物を用いるとよい。
しかし、インジウムを含む酸化物半導体は、これらに限られず、必要とする半導体特性(移動度、しきい値、ばらつき等)に応じて適切な組成のものを用いればよい。また、必要とする半導体特性を得るために、キャリア濃度や不純物濃度、欠陥密度、金属元素と酸素の原子数比、原子間距離、密度等を適切なものとすることが好ましい。
例えば、In−Sn−Zn系酸化物では比較的容易に高い移動度が得られる。しかしながら、In−Ga−Zn系酸化物でも、バルク内欠陥密度を低くすることにより移動度を上げることができる。
なお、例えば、In、Ga、Znの原子数比がIn:Ga:Zn=a:b:c(a+b+c=1)である酸化物の組成が、原子数比がIn:Ga:Zn=A:B:C(A+B+C=1)の酸化物の組成の近傍であるとは、a、b、cが、(a−A)+(b−B)+(c−C)≦rを満たすことをいう。rとしては、例えば、0.05とすればよい。他の酸化物でも同様である。
酸化物半導体膜403の膜厚は、1nm以上50nm以下(好ましくは5nm以上40nm以下)とし、スパッタリング法、MBE(Molecular Beam Epitaxy)法、CVD法、パルスレーザ堆積法、ALD(Atomic Layer Deposition)法等を適宜用いることができる。また、酸化物半導体膜403は、スパッタリングターゲット表面に対し、概略垂直に複数の基板表面がセットされた状態で成膜を行うスパッタ装置を用いて成膜してもよい。
酸化物半導体膜403は、単結晶、多結晶(ポリクリスタルともいう。)または非晶質などの状態をとる。
好ましくは、酸化物半導体膜403は、CAAC−OS(C Axis Aligned Crystalline Oxide Semiconductor)膜とする。
CAAC−OS膜は、完全な単結晶ではなく、完全な非晶質でもない。CAAC−OS膜は、非晶質相に結晶部を有する結晶−非晶質混相構造の酸化物半導体膜である。なお、当該結晶部は、一辺が100nm未満の立方体内に収まる大きさであることが多い。また、透過型電子顕微鏡(TEM:Transmission Electron Microscope)による観察像では、CAAC−OS膜に含まれる非晶質部と結晶部との境界は明確ではない。また、TEMによってCAAC−OS膜には粒界(グレインバウンダリーともいう。)は確認できない。そのため、CAAC−OS膜は、粒界に起因する電子移動度の低下が抑制される。
CAAC−OS膜に含まれる結晶部は、c軸がCAAC−OS膜の被形成面の法線ベクトルまたは表面の法線ベクトルに平行な方向に揃い、かつab面に垂直な方向から見て三角形状または六角形状の原子配列を有し、c軸に垂直な方向から見て金属原子が層状または金属原子と酸素原子とが層状に配列している。なお、異なる結晶部間で、それぞれa軸およびb軸の向きが異なっていてもよい。本明細書において、単に垂直と記載する場合、85°以上95°以下の範囲も含まれることとする。また、単に平行と記載する場合、−5°以上5°以下の範囲も含まれることとする。
なお、CAAC−OS膜において、結晶部の分布が一様でなくてもよい。例えば、CAAC−OS膜の形成過程において、酸化物半導体膜の表面側から結晶成長させる場合、被形成面の近傍に対し表面の近傍では結晶部の占める割合が高くなることがある。また、CAAC−OS膜へ不純物を添加することにより、当該不純物添加領域において結晶部が非晶質化することもある。
CAAC−OS膜に含まれる結晶部のc軸は、CAAC−OS膜の被形成面の法線ベクトルまたは表面の法線ベクトルに平行な方向に揃うため、CAAC−OS膜の形状(被形成面の断面形状または表面の断面形状)によっては互いに異なる方向を向くことがある。なお、結晶部のc軸の方向は、CAAC−OS膜が形成されたときの被形成面の法線ベクトルまたは表面の法線ベクトルに平行な方向となる。結晶部は、成膜することにより、または成膜後に加熱処理などの結晶化処理を行うことにより形成される。
CAAC−OS膜を用いたトランジスタは、可視光や紫外光の照射による電気特性の変動が小さい。よって、当該トランジスタは、信頼性が高い。
図2(A)乃至(E)にトランジスタ440を有する半導体装置の作製方法の一例を示す。
まず、基板400としてガラス基板を用い、ガラス基板上に導電膜を形成し、該導電膜をエッチングして、ゲート電極層401を形成する(図2(A)参照)。導電膜のエッチングは、ドライエッチングでもウェットエッチングでもよく、両方を用いてもよい。
ゲート電極層401の材料は、モリブデン、チタン、タンタル、タングステン、アルミニウム、銅、クロム、ネオジム、スカンジウム等の金属材料またはこれらを主成分とする合金材料を用いて形成することができる。
本実施の形態では、スパッタリング法により膜厚100nmのタングステン膜を形成する。
次に、ゲート電極層401を覆うように第1のゲート絶縁膜436を設ける(図2(B)参照)。
第1のゲート絶縁膜436には、プラズマCVD法等により形成する窒化物絶縁膜を用いることができる。例えば、窒化シリコン膜、窒化酸化シリコン膜などが挙げられる。第1のゲート絶縁膜436は単層構造でも積層構造でもよい。
本実施の形態では第1のゲート絶縁膜436としてプラズマCVD法を用いて形成する膜厚50nmの窒化シリコン膜を用いる。
第1のゲート絶縁膜436によりゲート電極層401を覆うため、ゲート電極層401を形成するエッチング工程においてゲート電極層401表面に基板400に含まれる金属元素が付着していても、第2のゲート絶縁膜402への拡散を防止することができる。
次に、第1のゲート絶縁膜436上に第2のゲート絶縁膜402を形成する。
第2のゲート絶縁膜402の膜厚は、50nm以上300nm以下とし、ここではプラズマCVD法を用いて形成する膜厚200nmの酸化窒化シリコン膜を用いる。
また、第2のゲート絶縁膜402形成後に、基板400、ゲート電極層401、第1のゲート絶縁膜436、及び第2のゲート絶縁膜402に加熱処理を行う。例えば、高温のガスを用いて加熱処理を行うGRTA(Gas Rapid Thermal Anneal)装置により、650℃、1分〜6分間、加熱処理を行えばよい。なお、GRTAにおける高温のガスには、アルゴンなどの希ガス、または窒素のような、加熱処理によって被処理物と反応しない不活性気体が用いられる。また、電気炉により、450℃以上、30分〜1時間、加熱処理を行ってもよい。
ここで以下に示す実験を行った。
単結晶シリコン基板上に、第1のゲート絶縁膜436と同じ膜厚の第1絶縁膜と、第2のゲート絶縁膜402と同じ膜厚の第2絶縁膜とを成膜し、TDS(Thermal Desorption Spectroscopy:昇温脱離ガス分光法)分析にて水素(H)の放出量を調べた。
第1絶縁膜の成膜条件は、シランガス流量90sccm、窒素ガス流量4000sccm、NHガス流量2700sccmとし、RFパワーを2000W、成膜圧力を200Paとし、基板温度を350℃として窒化シリコン膜を成膜した。また、第2絶縁膜の成膜条件は、シランガス流量20sccm、NOガス流量3000sccmとし、RFパワーを100W、成膜圧力を40Paとし、基板温度を350℃として酸化窒化シリコン膜を成膜した。
サンプル1は、加熱処理しないサンプルであり、サンプル2は窒素雰囲気で350℃、1時間の加熱処理を行ったサンプルであり、サンプル3は窒素雰囲気で450℃、1時間の加熱処理を行ったサンプルであり、サンプル4は窒素雰囲気で650℃、6分の加熱処理を行ったサンプルである。
それぞれのサンプル1〜4の基板温度を650℃までTDS分析した結果を図11に示す。
図11からは、第2絶縁膜を形成後に450℃、1時間の加熱処理を行えば、水素ガスの放出量が低減できていることが読み取れる。また、第2絶縁膜を形成後に650℃、6分の加熱処理により水素ガスの放出量が大幅に低減できている。
この実験結果から第2のゲート絶縁膜402の成膜後に450℃以上、好ましくは650℃の加熱処理を行うことで、膜中の水素濃度を低減でき、放出される水素ガス量を低減できると言える。
また、第1絶縁膜の成膜条件を変えて放出される水素ガス量を比較した実験を行った。
ここでは、単結晶シリコン基板上に窒化シリコン膜のみを成膜し、TDS分析を行った。サンプル5は、シランガス流量90sccm、窒素ガス流量4000sccm、NHガス流量2700sccmとし、RFパワーを2000W、成膜圧力を200Paとし、基板温度を350℃として窒化シリコン膜を50nmの膜厚で成膜した。サンプル6は、シランガス流量30sccm、窒素ガス流量1500sccm、NHガス流量1500sccmとし、RFパワーを150W、成膜圧力を40Paとし、基板温度を350℃として窒化シリコン膜を50nmの膜厚で成膜した。サンプル7は、シランガス流量30sccm、窒素ガス流量900sccm、NHガス流量900sccmとし、RFパワーを150W、成膜圧力を40Paとし、基板温度を350℃として窒化シリコン膜を50nmの膜厚で成膜した。サンプル8は、シランガス流量30sccm、窒素ガス流量300sccm、NHガス流量300sccmとし、RFパワーを150W、成膜圧力を40Paとし、基板温度を350℃として窒化シリコン膜を50nmの膜厚で成膜した。
それぞれのサンプル5〜8の基板温度を650℃までTDS分析した結果、サンプル6が最も水素ガス放出量が少ない結果となった。
本実施の形態では、サンプル6の成膜条件で成膜した窒化シリコン膜を第1のゲート絶縁膜436として用いる。また、第2のゲート絶縁膜402は、シランガス流量20sccm、NOガス流量3000sccmとし、RFパワーを100W、成膜圧力を40Paとし、基板温度を350℃とした酸化窒化シリコン膜を用いる。そして第2のゲート絶縁膜402を成膜後に450℃以上、好ましくは650℃の加熱処理を行う。
上記加熱処理後に、第2のゲート絶縁膜402上に酸化物半導体膜403を形成する(図2(C)参照)。
酸化物半導体膜403の形成工程において、酸化物半導体膜403に水素、又は水がなるべく含まれないようにするために、酸化物半導体膜403の成膜の前処理として、スパッタリング装置の予備加熱室で第2のゲート絶縁膜402が形成された基板を予備加熱し、基板及び第2のゲート絶縁膜402に吸着した水素、水分などの不純物を脱離し排気することが好ましい。なお、予備加熱室に設ける排気手段はクライオポンプが好ましい。
第2のゲート絶縁膜402において酸化物半導体膜403が接して形成される領域に、平坦化処理を行ってもよい。平坦化処理としては、特に限定されないが、研磨処理(例えば、化学的機械研磨法(Chemical Mechanical Polishing:CMP))、ドライエッチング処理、プラズマ処理を用いることができる。
プラズマ処理としては、例えば、アルゴンガスを導入してプラズマを発生させる逆スパッタリングを行うことができる。逆スパッタリングとは、アルゴン雰囲気下で基板側にRF電源を用いて電圧を印加して基板近傍にプラズマを形成して表面を改質する方法である。なお、アルゴン雰囲気に代えて窒素、ヘリウム、酸素などを用いてもよい。逆スパッタリングを行うと、第2のゲート絶縁膜402の表面に付着している粉状物質(パーティクル、ごみともいう)を除去することができる。
平坦化処理として、研磨処理、ドライエッチング処理、プラズマ処理は複数回行ってもよく、それらを組み合わせて行ってもよい。また、組み合わせて行う場合、工程順も特に限定されず、第2のゲート絶縁膜402表面の凹凸状態に合わせて適宜設定すればよい。
なお、酸化物半導体膜403は、成膜時に酸素が多く含まれるような条件(例えば、酸素100%の雰囲気下でスパッタリング法により成膜を行うなど)で成膜して、酸素を多く含む(好ましくは酸化物半導体が結晶状態における化学量論的組成に対し、酸素の含有量が過剰な領域が含まれている)膜とすることが好ましい。
なお、本実施の形態において、酸化物半導体膜403として、AC電源装置を有するスパッタリング装置を用いたスパッタリング法を用い、膜厚35nmのIn−Ga−Zn系酸化物膜(IGZO膜)を成膜する。本実施の形態において、In:Ga:Zn=1:1:1(=1/3:1/3:1/3)の原子比のIn−Ga−Zn系酸化物ターゲットを用いる。なお、成膜条件は、酸素及びアルゴン雰囲気下(酸素流量比率50%)、圧力0.6Pa、電源電力5kW、基板温度170℃とする。この成膜条件での成膜速度は、16nm/minである。
酸化物半導体膜403を、成膜する際に用いるスパッタリングガスは水素、水、水酸基又は水素化物などの不純物が除去された高純度ガスを用いることが好ましい。
減圧状態に保持された成膜室内に基板を保持する。そして、成膜室内の残留水分を除去しつつ水素及び水分が除去されたスパッタガスを導入し、上記ターゲットを用いて基板400上に酸化物半導体膜403を成膜する。成膜室内の残留水分を除去するためには、吸着型の真空ポンプ、例えば、クライオポンプ、イオンポンプ、チタンサブリメーションポンプを用いることが好ましい。また、排気手段としては、ターボ分子ポンプにコールドトラップを加えたものであってもよい。クライオポンプを用いて排気した成膜室は、例えば、水素原子、水(HO)など水素原子を含む化合物(より好ましくは炭素原子を含む化合物も)等が排気されるため、当該成膜室で成膜した酸化物半導体膜403に含まれる不純物の濃度を低減できる。
酸化物半導体膜403は、膜状の酸化物半導体膜をフォトリソグラフィ工程により島状の酸化物半導体膜に加工して形成することができる。
また、島状の酸化物半導体膜403を形成するためのレジストマスクをインクジェット法で形成してもよい。レジストマスクをインクジェット法で形成するとフォトマスクを使用しないため、製造コストを低減できる。
なお、酸化物半導体膜のエッチングは、ドライエッチングでもウェットエッチングでもよく、両方を用いてもよい。例えば、酸化物半導体膜のウェットエッチングに用いるエッチング液としては、燐酸と酢酸と硝酸を混ぜた溶液などを用いることができる。また、ITO−07N(関東化学社製)を用いてもよい。また、ICP(Inductively Coupled Plasma:誘導結合型プラズマ)エッチング法によるドライエッチングによってエッチング加工してもよい。
また、酸化物半導体膜403に、過剰な水素(水や水酸基を含む)を除去(脱水化または脱水素化)するための加熱処理を行ってもよい。加熱処理の温度は、300℃以上700℃以下、または基板の歪み点未満とする。加熱処理は減圧下又は窒素雰囲気下などで行うことができる。
また、酸化物半導体膜403として結晶性酸化物半導体膜を用いる場合、結晶化のための加熱処理を行ってもよい。
本実施の形態では、加熱処理装置の一つである電気炉に基板を導入し、酸化物半導体膜403に対して窒素雰囲気下350℃において1時間、さらに窒素及び酸素の混合雰囲気下350℃において1時間の加熱処理を行う。
なお、加熱処理装置は電気炉に限られず、抵抗発熱体などの発熱体からの熱伝導または熱輻射によって、被処理物を加熱する装置を用いてもよい。例えば、GRTA装置、LRTA(Lamp Rapid Thermal Anneal)装置等のRTA(Rapid Thermal Anneal)装置を用いることができる。LRTA装置は、ハロゲンランプ、メタルハライドランプ、キセノンアークランプ、カーボンアークランプ、高圧ナトリウムランプ、高圧水銀ランプなどのランプから発する光(電磁波)の輻射により、被処理物を加熱する装置である。
なお、加熱処理においては、窒素、またはヘリウム、ネオン、アルゴン等の希ガスに、水、水素などが含まれないことが好ましい。または、熱処理装置に導入する窒素、またはヘリウム、ネオン、アルゴン等の希ガスの純度を、6N(99.9999%)以上好ましくは7N(99.99999%)以上(即ち不純物濃度を1ppm以下、好ましくは0.1ppm以下)とすることが好ましい。
また、加熱処理で酸化物半導体膜403を加熱した後、同じ炉に高純度の酸素ガス、高純度の一酸化二窒素ガス、又は超乾燥エア(CRDS(キャビティリングダウンレーザー分光法)方式の露点計を用いて測定した場合の水分量が20ppm(露点換算で−55℃)以下、好ましくは1ppm以下、より好ましくは10ppb以下の空気)を導入してもよい。酸素ガスまたは一酸化二窒素ガスに、水、水素などが含まれないことが好ましい。または、熱処理装置に導入する酸素ガスまたは一酸化二窒素ガスの純度を、6N以上好ましくは7N以上(即ち、酸素ガスまたは一酸化二窒素ガス中の不純物濃度を1ppm以下、好ましくは0.1ppm以下)とすることが好ましい。
また、脱水化又は脱水素化のための加熱処理は、複数回行ってもよく、他の加熱処理と兼ねてもよい。また、脱水化又は脱水素化のための加熱処理を行うタイミングは、膜状の酸化物半導体膜の形成後でも、島状の酸化物半導体膜403形成後でもよく、両方のタイミングで行ってもよい。
また、酸化物半導体膜403の成膜後に加熱処理を行うと、窒化シリコン膜である第1のゲート絶縁膜436から水素が放出され、酸化物半導体膜403を通過する際、酸化物半導体膜403の酸素と結合し、HOとして酸化物半導体膜403の外に放出される。このことは、以下に示す実験から示唆される。
シリコン基板上に50nmの窒化シリコン膜と、200nmの酸化窒化シリコン膜と、35nmのIGZO膜を積層したサンプル9をTDS分析し、その結果を図12に示した。なお、サンプル9はZnを含んでおり、Znの昇華によるTDS装置へのダメージ防止のため400℃までの測定結果となっている。また、比較のためにサンプル1の水素放出量を図12(A)に示し、サンプル1のHOの放出量を図12(B)に示した。
サンプル9の窒化シリコン膜の成膜条件は、シランガス流量90sccm、窒素ガス流量4000sccm、NHガス流量2700sccmとし、RFパワーを2000W、成膜圧力を200Paとし、基板温度を350℃とした。また、サンプル9の酸化窒化シリコン膜の成膜条件は、シランガス流量20sccm、NOガス流量3000sccmとし、RFパワーを100W、成膜圧力を40Paとし、基板温度を350℃とした。また、サンプル9のIGZO膜の成膜条件は、酸素及びアルゴン雰囲気下(酸素流量比率50%)、圧力0.6Pa、電源電力5kW、基板温度170℃とした。
図12(A)に示すようにサンプル9では水素の放出量がサンプル1に比べて少ない。また、図12(B)に示すようにサンプル9ではHOの放出量がサンプル1に比べて多い。また、これらの分析結果を重ね合わせたのが図12(C)である。図12(C)からは、サンプル1の水素の放出量とサンプル9のHOの放出量のプロファイルがほぼ一致する。このことから、酸化物半導体膜403の成膜後に加熱処理を行うと、窒化シリコン膜である第1のゲート絶縁膜436から水素が放出され、酸化物半導体膜403を通過する際、酸化物半導体膜403の酸素と結合し、HOとして酸化物半導体膜403の外に放出されることがこの実験によって導き出せている。これらのことから、第1のゲート絶縁膜436中に含まれる水素量を低減する、または第1のゲート絶縁膜436から放出される水素量を低減することは、酸化物半導体膜403を用いるトランジスタにとって重要であり、信頼性の向上を図ることができるといえる。
次いで、ゲート電極層401、第2のゲート絶縁膜402、及び酸化物半導体膜403上に、ソース電極層及びドレイン電極層(これと同じ層で形成される配線を含む)となる導電膜を形成する。
導電膜は後の加熱処理に耐えられる材料を用いる。ソース電極層、及びドレイン電極層に用いる導電膜としては、例えば、Al、Cr、Cu、Ta、Ti、Mo、Wから選ばれた元素を含む金属膜、または上述した元素を成分とする金属窒化物膜(窒化チタン膜、窒化モリブデン膜、窒化タングステン膜)等を用いることができる。また、Al、Cuなどの金属膜の下側又は上側の一方または双方にTi、Mo、Wなどの高融点金属膜またはそれらの金属窒化物膜(窒化チタン膜、窒化モリブデン膜、窒化タングステン膜)を積層させた構成としても良い。また、ソース電極層、及びドレイン電極層に用いる導電膜としては、導電性の金属酸化物で形成しても良い。導電性の金属酸化物としては酸化インジウム(In)、酸化スズ(SnO)、酸化亜鉛(ZnO)、酸化インジウム酸化スズ(In―SnO、ITOと略記する)、酸化インジウム酸化亜鉛(In―ZnO)またはこれらの金属酸化物材料に酸化シリコンを含ませたものを用いることができる。
フォトリソグラフィ工程により導電膜上にレジストマスクを形成し、選択的にエッチングを行ってソース電極層405a、ドレイン電極層405bを形成する(図2(D)参照)。ソース電極層405a、ドレイン電極層405bを形成した後、レジストマスクを除去する。
また、フォトリソグラフィ工程で用いるフォトマスク数及び工程数を削減するため、透過した光が複数の強度となる露光マスクである多階調マスクによって形成されたレジストマスクを用いてエッチング工程を行ってもよい。多階調マスクを用いて形成したレジストマスクは複数の膜厚を有する形状となり、エッチングを行うことでさらに形状を変形することができるため、異なるパターンに加工する複数のエッチング工程に用いることができる。よって、一枚の多階調マスクによって、少なくとも二種類以上の異なるパターンに対応するレジストマスクを形成することができる。よって露光マスク数を削減することができ、対応するフォトリソグラフィ工程も削減できるため、工程の簡略化が可能となる。
本実施の形態では、導電膜のエッチングには、塩素を含むガス、例えば、塩素(Cl)、三塩化硼素(BCl)、四塩化珪素(SiCl)、四塩化炭素(CCl)などを含むガスを用いることができる。また、フッ素を含むガス、例えば、四弗化炭素(CF)、六弗化硫黄(SF)、三弗化窒素(NF)、トリフルオロメタン(CHF)などを含むガスを用いることができる。また、これらのガスにヘリウム(He)やアルゴン(Ar)などの希ガスを添加したガス、などを用いることができる。
エッチング法としては、平行平板型RIE(Reactive Ion Etching)法や、ICP(Inductively Coupled Plasma:誘導結合型プラズマ)エッチング法を用いることができる。所望の加工形状にエッチングできるように、エッチング条件(コイル型の電極に印加される電力量、基板側の電極に印加される電力量、基板側の電極温度等)を適宜調節する。
本実施の形態では、導電膜としてスパッタリング法により膜厚100nmのチタン膜、膜厚400nmのアルミニウム膜、膜厚100nmのチタン膜の積層を用いる。導電膜のエッチングは、ドライエッチング法により、チタン膜、アルミニウム膜、チタン膜の積層をエッチングして、ソース電極層405a、ドレイン電極層405bを形成する。
本実施の形態では、第1のエッチング条件でチタン膜とアルミニウム膜の2層をエッチングした後、第2のエッチング条件で残りのチタン膜単層を除去する。なお、第1のエッチング条件は、エッチングガス(BCl:Cl=750sccm:150sccm)を用い、バイアス電力を1500Wとし、ICP電源電力を0Wとし、圧力を2.0Paとする。第2のエッチング条件は、エッチングガス(BCl:Cl=700sccm:100sccm)を用い、バイアス電力を750Wとし、ICP電源電力を0Wとし、圧力を2.0Paとする。
なお、導電膜のエッチング工程の際に、酸化物半導体膜403がエッチングされ、分断することのないようエッチング条件を最適化することが望まれる。しかしながら、導電膜のみをエッチングし、酸化物半導体膜403を全くエッチングしないという条件を得ることは難しく、導電膜のエッチングの際に酸化物半導体膜403は一部のみがエッチングされ、溝部(凹部)を有する酸化物半導体膜となることもある。
以上の工程で、本実施の形態のトランジスタ440が作製される。
本実施の形態では、ソース電極層405a、ドレイン電極層405b上に、酸化物半導体膜403と接して、絶縁膜407を形成する(図2(E)参照)。絶縁膜407を形成する前に窒素雰囲気下で300℃、1時間の加熱処理を行う。
絶縁膜407は、少なくとも1nm以上の膜厚とし、スパッタリング法など、絶縁膜407に水、水素等の不純物を混入させない方法を適宜用いて形成することができる。絶縁膜407に水素が含まれると、その水素の酸化物半導体膜403への侵入、又は水素による酸化物半導体膜中の酸素の引き抜きが生じ酸化物半導体膜403のバックチャネルが低抵抗化(N型化)してしまい、寄生チャネルが形成されるおそれがある。よって、絶縁膜407はできるだけ水素を含まない膜になるように、成膜方法に水素を用いないことが重要である。
絶縁膜407としては、代表的には酸化シリコン膜、酸化窒化シリコン膜、酸化アルミニウム膜、酸化窒化アルミニウム膜、酸化ハフニウム膜、又は酸化ガリウム膜、窒化シリコン膜、窒化アルミニウム膜、窒化酸化シリコン膜、窒化酸化アルミニウム膜などの無機絶縁膜の単層又は積層を用いることができる。
脱水化又は脱水素化処理として加熱工程を行った場合、酸化物半導体膜403に、酸素を供給することが好ましい。酸化物半導体膜403へ酸素を供給することにより、膜中の酸素欠損を補填することができる。
本実施の形態では、酸化物半導体膜403への酸素の供給を、絶縁膜407を供給源として行うので、絶縁膜407は酸素を含む酸化物絶縁膜(例えば酸化シリコン膜、酸化窒化シリコン膜)を用いる例を示す。絶縁膜407を酸素の供給源とする場合、絶縁膜407は酸素を多く(過剰)含む膜(好ましくは結晶状態における化学量論的組成に対し、酸素の含有量が過剰な領域が含まれている膜)とすると酸素の供給源として好適に機能させることができる。
本実施の形態では、絶縁膜407として膜厚400nmの酸化シリコン膜を、スパッタリング法を用いて成膜する。成膜時の基板温度は、室温以上300℃以下とすればよく、本実施の形態では室温とする。酸化シリコン膜のスパッタリング法による成膜は、希ガス(代表的にはアルゴン)雰囲気下、酸素雰囲気下、または希ガスと酸素の混合雰囲気下において行うことができる。また、ターゲットとして酸化シリコンターゲットまたはシリコンターゲットを用いることができる。例えば、シリコンターゲットを用いて、酸素を含む雰囲気下でスパッタリング法により酸化シリコン膜を形成することができる。
酸化物半導体膜403の成膜時と同様に、絶縁膜407の成膜室内の残留水分を除去するためには、吸着型の真空ポンプ(クライオポンプなど)を用いることが好ましい。クライオポンプを用いて排気した成膜室で成膜した絶縁膜407に含まれる不純物の濃度を低減できる。また、絶縁膜407の成膜室内の残留水分を除去するための排気手段としては、ターボ分子ポンプにコールドトラップを加えたものであってもよい。
絶縁膜407を、成膜する際に用いるスパッタガスとしては、水素、水などの不純物が除去された高純度ガスを用いることが好ましい。
次に酸化物半導体膜403に、一部(チャネル形成領域)が絶縁膜407と接した状態で加熱工程を行う。
加熱工程の温度は、250℃以上700℃以下、または400℃以上700℃以下、または基板の歪み点未満とする。本実施の形態では、加熱処理装置の一つである電気炉に基板を導入し、酸化物半導体膜403に対して窒素雰囲気下300℃において1時間の加熱処理を行う。
また、酸化物半導体膜403と酸素を含む絶縁膜407とを接した状態で加熱工程を行うため、酸化物半導体膜403の膜中に酸素欠損がある場合、酸化物半導体膜403を構成する主成分材料の一つである酸素を、酸素を含む絶縁膜407より酸化物半導体膜403へ供給することができる。
また、さらに絶縁膜407上に緻密性の高い無機絶縁膜を設けてもよい。例えば、絶縁膜407上にスパッタリング法により酸化アルミニウム膜を形成する。酸化アルミニウム膜を高密度(膜密度3.2g/cm以上、好ましくは3.6g/cm以上)とすることによって、トランジスタ440に安定な電気特性を付与することができる。膜密度はラザフォード後方散乱法(RBS:Rutherford Backscattering Spectrometry)や、X線反射率測定法(XRR:X−Ray Reflection)によって測定することができる。
トランジスタ440上に設けられる絶縁膜407として用いることのできる酸化アルミニウム膜は、水素、水分などの不純物、及び酸素の両方に対して膜を通過させない遮断効果(ブロック効果)が高い。
従って、酸化アルミニウム膜は、作製工程中及び作製後において、変動要因となる水素、水分などの不純物の酸化物半導体膜403への混入、及び酸化物半導体を構成する主成分材料である酸素の酸化物半導体膜403からの放出を防止する保護膜として機能する。
また、トランジスタ440起因の表面凹凸を低減するために平坦化絶縁膜を形成してもよい。平坦化絶縁膜としては、ポリイミド樹脂、アクリル樹脂、ベンゾシクロブテン系樹脂、等の有機材料を用いることができる。また上記有機材料の他に、低誘電率材料(low−k材料)等を用いることができる。なお、これらの材料で形成される絶縁膜を複数積層させることで、平坦化絶縁膜を形成してもよい。
本実施の形態では、平坦化絶縁膜として、膜厚1500nmのアクリル樹脂膜を形成すればよい。アクリル樹脂膜は塗布法による塗布後、焼成(例えば窒素雰囲気下250℃1時間)して形成することができる。
平坦化絶縁膜を形成後、加熱処理を行ってもよい。例えば、窒素雰囲気下250℃で1時間加熱処理を行う。
このように、トランジスタ440形成後、加熱処理を行ってもよい。また、加熱処理は複数回行ってもよい。
トランジスタ440の電気特性の低下や変動を招く要因となる第1のゲート絶縁膜436からの水素ガスの放出量を低減することにより、トランジスタ440に安定した電気特性を付与することが可能となる。
実際に上記工程順序に従って作製したトランジスタを用い、初期特性を図13に示す。図13に示すように、ノーマリーオフのトランジスタを実現できている。また、トランジスタの信頼性を評価するため、BT試験を行った結果を図14に示す。
BT試験は加速試験の一種であり、長期間の使用によって起こる薄膜トランジスタの特性変化を、短時間で評価することができる。特に、BT試験前後における薄膜トランジスタのしきい値電圧の変化量は、信頼性を調べるための重要な指標となる。BT試験前後において、しきい値電圧の変化量が少ないほど、信頼性が高い薄膜トランジスタであるといえる。
具体的には、薄膜トランジスタが形成されている基板の温度(基板温度)を一定に維持し、薄膜トランジスタのソースおよびドレインを同電位とし、ゲートにソースおよびドレインとは異なる電位を一定時間印加する。基板温度は、試験目的に応じて適宜設定すればよい。また、ゲートに印加する電位がソースおよびドレインの電位よりも高い場合を+BT試験といい、ゲートに印加する電位がソースおよびドレインの電位よりも低い場合を−BT試験という。
BT試験の試験強度は、基板温度、ゲート絶縁膜に加えられる電界強度、電界印加時間により決定することができる。ゲート絶縁膜に加えられる電界強度は、ゲートと、ソースおよびドレインの電位差をゲート絶縁膜の厚さで除して決定される。例えば、厚さが100nmのゲート絶縁膜に印加する電界強度を2MV/cmとしたい場合は、電位差を20Vとすればよい。
なお、電圧とは2点間における電位差のことをいい、電位とはある一点における静電場の中にある単位電荷が持つ静電エネルギー(電気的な位置エネルギー)のことをいう。ただし、一般的に、ある一点における電位と基準となる電位(例えば接地電位)との電位差のことを、単に電位もしくは電圧と呼び、電位と電圧が同義語として用いられることが多い。このため、本明細書では特に指定する場合を除き、電位を電圧と読み替えてもよいし、電圧を電位と読み替えてもよいこととする。
L/Wが、6μm/50μmのサイズのトランジスタを用い、ダーク環境下でのストレス強度は、Vg=−30〜+30V(電界強度3MV/cm)、Vd=Vs=0Vとし、ストレス温度は80℃、印加時間(ストレス時間とも呼ぶ)は2000秒とした。
なお、比較例として第2のゲート絶縁膜成膜後の第1の加熱処理(650℃の加熱処理)を行わずに作製し、その他の作製工程は同一としたトランジスタを用い、その信頼性を測定した結果も図14に示す。図14(A)では、Vd=5V時のストレス印加時間2000秒後のしきい値変動(ΔVth)を示し、図14(B)では、Vd=5V時のストレス印加時間2000秒後のシフト値変動(ΔShift)を示す。なお、シフト値(Shift)は、ゲート電圧(Vg[V])を横軸、ドレイン電流(Id[A])の対数を縦軸にプロットしたVg−Id曲線において、最大傾きであるIdの接線を外挿したときの直線Id=1.0×10−12[A]との交点のゲート電圧で定義する。
第1の加熱処理を行ったトランジスタは、初期特性に比べてダーク環境下での+BT試験後のしきい値電圧がプラス方向に2.7V変化しており、3.8Vの比較例と比べると小さくなっている。また、初期特性に比べてダーク環境下での−BT試験後のしきい値電圧がプラス方向に0.34V変化しており、0.62Vの比較例と比べると小さくなっている。これらの結果からダーク環境下でのBT試験において、第1の加熱処理なしのトランジスタに比べて第1の加熱処理を行ったトランジスタは信頼性が高いと言える。
また、LED光源(照度約3000ルクスの白色光)を用い、光を照射しながら行った+BT試験と−BT試験の結果も図14(A)及び図14(B)に示す。
第1の加熱処理を行ったトランジスタは、初期特性に比べて光を照射しながら行った+BT試験後のしきい値電圧がプラス方向に1.58V変化しており、3.01Vの比較例と比べると小さくなっている。また、初期特性に比べて光を照射しながら行った−BT試験後のしきい値電圧がプラス方向に0.06V変化しており、0.79Vの比較例と比べると小さくなっている。これらの結果から光を照射しながら行ったBT試験において、第1の加熱処理なしのトランジスタに比べて第1の加熱処理を行ったトランジスタは信頼性が高いと言える。
また、図14(B)には、Vg−Id曲線を比較した場合、特にVg−Id曲線の立ち上がり部分で大きな差(Δshift)も示した。この立ち上がり部分のトランジスタ特性は、オフ電流の値を重要視するデバイスで特に重要となる。なお、立ち上がり部分のトランジスタ特性値の一つであるshift値は、Vg−Id曲線の立ち上がりの電圧値を示しており、Idが1×10−12A以下となった電圧に相当する。Δshiftにおいても第1の加熱処理なしのトランジスタに比べて第1の加熱処理を行ったトランジスタは信頼性が高いと言える。
(実施の形態2)
本実施の形態では、半導体装置及び半導体装置の作製方法の他の一形態を、図3を用いて説明する。上記実施の形態と同一部分又は同様な機能を有する部分、及び工程は、上記実施の形態と同様に行うことができ、繰り返しの説明は省略する。また同じ箇所の詳細な説明は省略する。
図3(A)及び図3(B)に示すトランジスタ430は、チャネル保護型(チャネルストップ型ともいう)と呼ばれるボトムゲート構造の一つであり逆スタガ型トランジスタともいうトランジスタの一例である。図3(A)は平面図であり、図3(A)中の一点鎖線X1−Y1で切断した断面が図3(B)に相当する。
トランジスタ430のチャネル長方向の断面図である図3(B)に示すように、トランジスタ430を含む半導体装置は、基板400上に、ゲート電極層401と、ゲート電極層401を覆うように第1のゲート絶縁膜436が設けられ、第1のゲート絶縁膜436上に第2のゲート絶縁膜402、酸化物半導体膜403、ソース電極層405a、及びドレイン電極層405bを有する。また、酸化物半導体膜403に接する絶縁層413を有する。
ゲート電極層401と酸化物半導体膜403との間に、少なくとも第1のゲート絶縁膜436と第2のゲート絶縁膜402を設ける。ゲート電極層401側に設けられる第1のゲート絶縁膜436と、酸化物半導体膜403側に設けられる第2のゲート絶縁膜402との組成を異ならせる。
第1のゲート絶縁膜436には、プラズマCVD法で得られる窒化物絶縁膜を用いる。例えば、窒化シリコン膜、窒化酸化シリコン膜、又は金属窒化物絶縁膜(窒化アルミニウム膜、窒化酸化アルミニウム膜)などが挙げられる。第1のゲート絶縁膜436の膜厚は、20nm以上350nm以下とすることができる。第1のゲート絶縁膜436は単層構造でも積層構造でもよい。
酸化物半導体膜403に接する絶縁層413は、ゲート電極層401と重畳する酸化物半導体膜403のチャネル形成領域上に設けられており、チャネル保護膜として機能する。
チャネル形成領域上に重なる絶縁層413の断面形状、具体的には端部の断面形状(テーパ角や膜厚など)を工夫することにより、ドレイン電極層405bの端部近傍に生じる恐れのある電界集中を緩和し、トランジスタ430のスイッチング特性の劣化を抑えることができる。
具体的には、チャネル形成領域上に重なる絶縁層413の断面形状は、台形または三角形状とし、断面形状の下端部のテーパ角を60°以下、好ましくは45°以下、さらに好ましくは30°以下とする。このような角度範囲とすることで、高いゲート電圧がゲート電極層401に印加される場合、ドレイン電極層405bの端部近傍に生じる恐れのある電界集中を緩和することができる。
また、チャネル形成領域上に重なる絶縁層413の膜厚は、0.3μm以下、好ましくは5nm以上0.1μm以下とする。このような膜厚範囲とすることで、電界強度のピークを小さくできる、或いは電界集中が分散されて電界の集中する箇所が複数となり、結果的にドレイン電極層405bの端部近傍に生じる恐れのある電界集中を緩和することができる。
以下、トランジスタ430を有する半導体装置の作製方法の一例を示す。
絶縁表面を有する基板400上に導電膜を形成し、該導電膜をエッチングして、ゲート電極層401を形成する。本実施の形態では、スパッタリング法により膜厚100nmのタングステン膜を形成する。
次に、ゲート電極層401を覆うように第1のゲート絶縁膜436を設ける。
第1のゲート絶縁膜436には、プラズマCVD法又はスパッタリング法等により形成する窒化物絶縁膜を用いることができる。例えば、窒化シリコン膜、窒化酸化シリコン膜などが挙げられる。第1のゲート絶縁膜436は単層構造でも積層構造でもよい。
本実施の形態では第1のゲート絶縁膜436としてプラズマCVD法を用いて形成する膜厚30nmの窒化シリコン膜を用いる。
第1のゲート絶縁膜436上に第2のゲート絶縁膜402を形成する。本実施の形態では、プラズマCVD法により膜厚300nmの酸化窒化シリコン膜を形成する。
第2のゲート絶縁膜402の形成後、酸化物半導体膜の成膜前に加熱処理を行う。ここでは、GRTA装置により、650℃、6分間の加熱処理を行って第1のゲート絶縁膜436中の水素を放出させた。
加熱処理後に、第2のゲート絶縁膜402上に酸化物半導体膜403を形成する。本実施の形態において、酸化物半導体膜403として、AC電源装置を有するスパッタリング装置を用いたスパッタリング法を用い、膜厚35nmのIGZO膜を成膜する。
酸化物半導体膜403に、過剰な水素(水や水酸基を含む)を除去(脱水化または脱水素化)するための加熱処理を行ってもよい。本実施の形態では、加熱処理装置の一つである電気炉に基板を導入し、酸化物半導体膜403に対して窒素雰囲気下450℃において1時間、さらに窒素及び酸素雰囲気下450℃において1時間の加熱処理を行う。
次にゲート電極層401と重畳する酸化物半導体膜403のチャネル形成領域上に絶縁層413を形成する。
絶縁層413はプラズマCVD法、スパッタリング法により成膜した絶縁膜をエッチングにより加工して形成することができる。絶縁層413として、代表的には酸化シリコン膜、酸化窒化シリコン膜、酸化アルミニウム膜、酸化窒化アルミニウム膜、酸化ハフニウム膜、又は酸化ガリウム膜、窒化シリコン膜、窒化アルミニウム膜、窒化酸化シリコン膜、窒化酸化アルミニウム膜などの無機絶縁膜の単層又は積層を用いることができる。
酸化物半導体膜403と接する絶縁層413(絶縁層413が積層構造であった場合、酸化物半導体膜403と接する膜)を、酸素を多く含む状態とすると、酸化物半導体膜403へ酸素を供給する供給源として好適に機能させることができる。
絶縁層413の形成後、加熱処理を行ってもよい。本実施の形態では、窒素雰囲気下300℃で1時間加熱処理を行う。
次いで、ゲート電極層401、第1のゲート絶縁膜436、第2のゲート絶縁膜402、酸化物半導体膜403、及び絶縁層413上に、ソース電極層及びドレイン電極層となる導電膜を形成する。
本実施の形態では、導電膜としてスパッタリング法により膜厚100nmのチタン膜、膜厚400nmのアルミニウム膜、膜厚100nmのチタン膜の積層の導電膜を用いる。導電膜のエッチングは、ドライエッチング法により、チタン膜、アルミニウム膜、チタン膜の積層をエッチングして、ソース電極層405a、ドレイン電極層405bを形成する。
以上の工程で、本実施の形態のトランジスタ430が作製される。
ソース電極層405a、ドレイン電極層405b上に絶縁膜を形成してもよい。
絶縁膜は、絶縁層413と同様な材料及び方法を用いて形成することができる。例えば、CVD法により形成した酸化窒化シリコン膜を400nm形成する。また、絶縁膜の形成後、加熱処理を行ってもよい。例えば、窒素雰囲気下300℃で1時間加熱処理を行う。
また、トランジスタ430起因の表面凹凸を低減するために平坦化絶縁膜を形成してもよい。
例えば、絶縁膜上に平坦化絶縁膜として、膜厚1500nmのアクリル樹脂膜を形成すればよい。アクリル樹脂膜は塗布法による塗布後、焼成(例えば窒素雰囲気下250℃1時間)して形成することができる。
平坦化絶縁膜を形成後、加熱処理を行ってもよい。例えば、窒素雰囲気下250℃で1時間加熱処理を行う。
このように、トランジスタ430形成後、加熱処理を行ってもよい。また、加熱処理は複数回行ってもよい。
トランジスタ430の電気特性の低下や変動を招く要因となる第1のゲート絶縁膜436からの水素ガスの放出量を低減することにより、トランジスタ430に安定した電気特性を付与することが可能となる。
従って、酸化物半導体膜403を用いた安定した電気特性を有するトランジスタ430を含む信頼性の高い半導体装置を提供することができる。また、信頼性の高い半導体装置を歩留まりよく作製し、高生産化を達成することができる。
(実施の形態3)
本実施の形態では、半導体装置及び半導体装置の作製方法の他の一形態を、図4を用いて説明する。上記実施の形態と同一部分又は同様な機能を有する部分、及び工程は、上記実施の形態と同様に行うことができ、繰り返しの説明は省略する。また同じ箇所の詳細な説明は省略する。
図4(A)及び(B)に示すトランジスタ420は、チャネル保護型(チャネルストップ型ともいう)と呼ばれるボトムゲート構造の一つであり逆スタガ型トランジスタともいうトランジスタの一例である。図4(A)は平面図であり、図4(A)中の一点鎖線X2−Y2で切断した断面が図4(B)に相当する。
チャネル長方向の断面図である図4(B)に示すように、トランジスタ420を含む半導体装置は、基板400上に、ゲート電極層401と、ゲート電極層401を覆うように第1のゲート絶縁膜436が設けられ、第1のゲート絶縁膜436上に第2のゲート絶縁膜402、酸化物半導体膜403、絶縁層423、ソース電極層405a、ドレイン電極層405bを有する。
絶縁層423は、少なくともゲート電極層401と重畳する酸化物半導体膜403のチャネル形成領域上を含めた酸化物半導体膜403上に設けられており、チャネル保護膜として機能する。さらに、絶縁層423は、酸化物半導体膜403に達し、かつソース電極層405a又はドレイン電極層405bが内壁を覆うように設けられた開口425a、425bを有している。従って、酸化物半導体膜403の周縁部は、絶縁層423で覆われており、層間絶縁膜としても機能している。ゲート配線とソース配線の交差部において、第2のゲート絶縁膜402だけでなく、絶縁層423も層間絶縁膜として配置することで寄生容量を低減できる。
トランジスタ420において、酸化物半導体膜403は、絶縁層423、ソース電極層405a、及びドレイン電極層405bに覆われる構成となっている。
絶縁層423はプラズマCVD法、スパッタリング法により成膜した絶縁膜をエッチングにより加工して形成することができる。また、絶縁層423の開口425a、425bの内壁は、テーパ形状を有している。
絶縁層423は、少なくともゲート電極層401と重畳する酸化物半導体膜403のチャネル形成領域上を含めた酸化物半導体膜403上に設けられており、一部がチャネル保護膜として機能する。
ゲート電極層401と酸化物半導体膜403との間に、少なくとも第1のゲート絶縁膜436と第2のゲート絶縁膜402を設ける。ゲート電極層401側に設けられる第1のゲート絶縁膜436と、酸化物半導体膜403側に設けられる第2のゲート絶縁膜402との組成を異ならせる。
第1のゲート絶縁膜436には、プラズマCVD法で得られる窒化物絶縁膜を用いる。例えば、窒化シリコン膜、窒化酸化シリコン膜、又は金属窒化物絶縁膜(窒化アルミニウム膜、窒化酸化アルミニウム膜)などが挙げられる。第1のゲート絶縁膜436の膜厚は、20nm以上350nm以下とすることができる。第1のゲート絶縁膜436は単層構造でも積層構造でもよい。
また、チャネル形成領域上に重なる絶縁層423の膜厚は、0.3μm以下、好ましくは5nm以上0.1μm以下とする。このような膜厚範囲とすることで、電界強度のピークを小さくできる、或いは電界集中が分散されて電界の集中する箇所が複数となり、結果的にドレイン電極層405bの端部近傍に生じる恐れのある電界集中を緩和することができる。
トランジスタ420の電気特性の低下や変動を招く要因となる第1のゲート絶縁膜436からの水素ガスの放出量を低減することにより、トランジスタ420に安定した電気特性を付与することが可能となる。
従って、酸化物半導体膜403を用いた安定した電気特性を有するトランジスタ420を含む信頼性の高い半導体装置を提供することができる。また、信頼性の高い半導体装置を歩留まりよく作製し、高生産化を達成することができる。
(実施の形態4)
実施の形態1乃至3のいずれかに示したトランジスタを用いて表示機能を有する半導体装置(表示装置ともいう)を作製することができる。また、トランジスタを含む駆動回路の一部又は全体を、画素部と同じ基板上に一体形成し、システムオンパネルを形成することができる。
図5(A)において、ガラス基板である基板4001上に設けられた画素部4002を囲むようにして、シール材4005が設けられ、基板4006によって封止されている。図5(A)においては、基板4001上のシール材4005によって囲まれている領域とは異なる領域に、ICチップ、又は別途用意された基板上に単結晶半導体膜又は多結晶半導体膜で形成された走査線駆動回路4004、信号線駆動回路4003が実装されている。また別途形成された信号線駆動回路4003と、走査線駆動回路4004又は画素部4002に与えられる各種信号及び電位は、FPC(Flexible printed circuit)4018a、4018bから供給されている。
図5(B)、及び図5(C)において、基板4001上に設けられた画素部4002と、走査線駆動回路4004とを囲むようにして、シール材4005が設けられている。また画素部4002と、走査線駆動回路4004の上に基板4006が設けられている。よって画素部4002と、走査線駆動回路4004とは、基板4001とシール材4005と基板4006とによって、表示素子と共に封止されている。図5(B)、及び(C)においては、基板4001上のシール材4005によって囲まれている領域とは異なる領域に、ICチップ、又は別途用意された基板上に単結晶半導体膜又は多結晶半導体膜で形成された信号線駆動回路4003が実装されている。図5(B)、及び図5(C)においては、別途形成された信号線駆動回路4003と、走査線駆動回路4004又は画素部4002に与えられる各種信号及び電位は、FPC4018から供給されている。
また図5(B)、及び図5(C)においては、信号線駆動回路4003を別途形成し、基板4001に実装している例を示しているが、この構成に限定されない。走査線駆動回路を別途形成して実装してもよいし、信号線駆動回路の一部又は走査線駆動回路の一部のみを別途形成して実装してもよい。
なお、別途形成した駆動回路の接続方法は、特に限定されるものではなく、COG(Chip On Glass)方法、ワイヤボンディング方法、或いはTAB(Tape Automated Bonding)方法などを用いることができる。図5(A)は、COG方法により信号線駆動回路4003、走査線駆動回路4004を実装する例であり、図5(B)は、COG方法により信号線駆動回路4003を実装する例であり、図5(C)は、TAB方法により信号線駆動回路4003を実装する例である。
また、表示装置は、表示素子が封止された状態にあるパネルと、該パネルにコントローラを含むIC等を実装した状態にあるモジュールとを含む。
なお、本明細書中における表示装置とは、画像表示デバイス、表示デバイス、もしくは光源(照明装置含む)を指す。また、コネクター、例えばFPCもしくはTABテープもしくはTCPが取り付けられたモジュール、TABテープやTCPの先にプリント配線板が設けられたモジュール、又は表示素子にCOG方式によりIC(集積回路)が直接実装されたモジュールも全て表示装置に含むものとする。
また基板上に設けられた画素部及び走査線駆動回路は、トランジスタを複数有しており、実施の形態1乃至3のいずれかに示したトランジスタを適用することができる。
表示装置に設けられる表示素子としては液晶素子(液晶表示素子ともいう)、発光素子(発光表示素子ともいう)、を用いることができる。発光素子は、電流又は電圧によって輝度が制御される素子をその範疇に含んでおり、具体的には無機EL(Electro Luminescence)、有機EL等が含まれる。また、電子インクなど、電気的作用によりコントラストが変化する表示媒体も適用することができる。
また、半導体装置の一形態について、図5乃至図7を用いて説明する。図7は、図5(B)のM−Nにおける断面図に相当する。
図5及び図7で示すように、半導体装置は接続端子電極4015及び端子電極4016を有しており、接続端子電極4015及び端子電極4016はFPC4018、4018a、4018bが有する端子と異方性導電膜4019を介して、電気的に接続されている。
接続端子電極4015は、第1の電極層4030と同じ導電膜から形成され、端子電極4016は、トランジスタ4040、4011のソース電極層及びドレイン電極層と同じ導電膜で形成されている。
また基板4001上に設けられた画素部4002と、走査線駆動回路4004は、トランジスタを複数有しており、図7では、画素部4002に含まれるトランジスタ4010と、走査線駆動回路4004に含まれるトランジスタ4011とを例示している。図7(A)では、トランジスタ4010、4011上には絶縁膜4020が設けられ、図7(B)では、さらに、絶縁膜4021が設けられている。
トランジスタ4010、4011としては、実施の形態1乃至3のいずれかに示したトランジスタを適用することができる。本実施の形態では、実施の形態2で示したトランジスタ430と同様な構造を有するトランジスタを適用する例を示す。トランジスタ4010、4011は、酸化物半導体膜上にチャネル保護膜として機能する絶縁層が設けられた、ボトムゲート構造の逆スタガ型トランジスタである。
トランジスタ4010、4011のゲート電極層は、第1のゲート絶縁膜4023によって覆われており、トランジスタ4010、4011の第2のゲート絶縁膜及び酸化物半導体膜は基板4001に含まれる金属元素による汚染から保護されている。また、トランジスタ4010、4011の電気特性の低下や変動を招く要因となる第1のゲート絶縁膜436からの水素ガスの放出量を低減することにより、トランジスタ4010、4011に安定した電気特性を付与することが可能となる。
第1のゲート絶縁膜4023には、窒化物絶縁膜を用いることができる。本実施の形態では、第1のゲート絶縁膜4023として窒化シリコン膜を用いる。
従って、図7で示す本実施の形態の酸化物半導体膜を用いた安定した電気特性を有するトランジスタ4010、4011を含む半導体装置として信頼性の高い半導体装置を提供することができる。また、そのような信頼性の高い半導体装置を歩留まりよく作製し、高生産化を達成することができる。
また、駆動回路用のトランジスタ4011の酸化物半導体膜のチャネル形成領域と重なる位置にさらに導電層を設けてもよい。導電層を酸化物半導体膜のチャネル形成領域と重なる位置に設けることによって、バイアス−熱ストレス試験(BT試験)前後におけるトランジスタ4011のしきい値電圧の変化量をさらに低減することができる。また、導電層は、電位がトランジスタ4011のゲート電極層と同じでもよいし、異なっていても良く、第2のゲート電極層として機能させることもできる。また、導電層の電位がGND、0V、或いはフローティング状態であってもよい。
また、該導電層は外部の電場を遮蔽する、すなわち外部の電場が内部(トランジスタを含む回路部)に作用しないようにする機能(特に静電気に対する静電遮蔽機能)も有する。導電層の遮蔽機能により、静電気などの外部の電場の影響によりトランジスタの電気的な特性が変動することを防止することができる。
画素部4002に設けられたトランジスタ4010は表示素子と電気的に接続し、表示パネルを構成する。表示素子は表示を行うことができれば特に限定されず、様々な表示素子を用いることができる。
図7(A)に表示素子として液晶素子を用いた液晶表示装置の例を示す。図7(A)において、表示素子である液晶素子4013は、第1の電極層4030、第2の電極層4031、及び液晶層4008を含む。なお、液晶層4008を挟持するように配向膜として機能する絶縁膜4032、4033が設けられている。第2の電極層4031は基板4006側に設けられ、第1の電極層4030と第2の電極層4031とは液晶層4008を介して積層する構成となっている。
またスペーサ4035は絶縁膜を選択的にエッチングすることで得られる柱状のスペーサであり、液晶層4008の膜厚(セルギャップ)を制御するために設けられている。なお球状のスペーサを用いていてもよい。
表示素子として、液晶素子を用いる場合、サーモトロピック液晶、低分子液晶、高分子液晶、高分子分散型液晶、強誘電性液晶、反強誘電性液晶等を用いることができる。これらの液晶材料(液晶組成物)は、条件により、コレステリック相、スメクチック相、キュービック相、カイラルネマチック相、等方相等を示す。
また、液晶層4008に、配向膜を用いないブルー相を発現する液晶組成物を用いてもよい。この場合、液晶層4008と、第1の電極層4030及び第2の電極層4031とは接する構造となる。ブルー相は液晶相の一つであり、コレステリック液晶を昇温していくと、コレステリック相から等方相へ転移する直前に発現する相である。ブルー相は、液晶及びカイラル剤を混合させた液晶組成物を用いて発現させることができる。また、ブルー相が発現する温度範囲を広げるために、ブルー相を発現する液晶組成物に重合性モノマー及び重合開始剤などを添加し、高分子安定化させる処理を行って液晶層を形成することもできる。ブルー相を発現する液晶組成物は、応答速度が短く、光学的等方性であるため配向処理が不要であり、視野角依存性が小さい。また配向膜を設けなくてもよいのでラビング処理も不要となるため、ラビング処理によって引き起こされる静電破壊を防止することができ、作製工程中の液晶表示装置の不良や破損を軽減することができる。よって液晶表示装置の生産性を向上させることが可能となる。酸化物半導体膜を用いるトランジスタは、静電気の影響によりトランジスタの電気的な特性が著しく変動して設計範囲を逸脱する恐れがある。よって酸化物半導体膜を用いるトランジスタを有する液晶表示装置にブルー相を発現する液晶組成物を用いることはより効果的である。
また、液晶材料の固有抵抗は、1×10Ω・cm以上であり、好ましくは1×1011Ω・cm以上であり、さらに好ましくは1×1012Ω・cm以上である。なお、本明細書における固有抵抗の値は、20℃で測定した値とする。
液晶表示装置に設けられる保持容量の大きさは、画素部に配置されるトランジスタのリーク電流等を考慮して、所定の期間の間電荷を保持できるように設定される。保持容量の大きさは、トランジスタのオフ電流等を考慮して設定すればよい。本明細書に開示する酸化物半導体膜を有するトランジスタを用いることにより、各画素における液晶容量に対して1/3以下、好ましくは1/5以下の容量の大きさを有する保持容量を設ければ充分である。
本明細書に開示する酸化物半導体膜を用いたトランジスタは、オフ状態における電流値(オフ電流値)を低く制御することができる。よって、画像信号等の電気信号の保持時間を長くすることができ、電源オン状態では書き込み間隔も長く設定できる。よって、リフレッシュ動作の頻度を少なくすることができるため、消費電力を抑制する効果を奏する。
また、本明細書に開示する酸化物半導体膜を用いたトランジスタは、比較的高い電界効果移動度が得られるため、高速駆動が可能である。例えば、このような高速駆動が可能なトランジスタを液晶表示装置に用いることで、画素部のスイッチングトランジスタと、駆動回路部に使用するドライバートランジスタを同一基板上に形成することができる。すなわち、別途駆動回路として、シリコンウェハ等により形成された半導体装置を用いる必要がないため、半導体装置の部品点数を削減することができる。また、画素部においても、高速駆動が可能なトランジスタを用いることで、高画質な画像を提供することができる。
液晶表示装置には、TN(Twisted Nematic)モード、IPS(In−Plane−Switching)モード、FFS(Fringe Field Switching)モード、ASM(Axially Symmetric aligned Micro−cell)モード、OCB(Optical Compensated Birefringence)モード、FLC(Ferroelectric Liquid Crystal)モード、AFLC(AntiFerroelectric Liquid Crystal)モードなどを用いることができる。
また、ノーマリーブラック型の液晶表示装置、例えば垂直配向(VA)モードを採用した透過型の液晶表示装置としてもよい。垂直配向モードとしては、いくつか挙げられるが、例えば、MVA(Multi−Domain Vertical Alignment)モード、PVA(Patterned Vertical Alignment)モード、ASV(Advanced Super View)モードなどを用いることができる。また、VA型の液晶表示装置にも適用することができる。VA型の液晶表示装置とは、液晶表示パネルの液晶分子の配列を制御する方式の一種である。VA型の液晶表示装置は、電圧が印加されていないときにパネル面に対して液晶分子が垂直方向を向く方式である。また、画素(ピクセル)をいくつかの領域(サブピクセル)に分け、それぞれ別の方向に分子を倒すよう工夫されているマルチドメイン化あるいはマルチドメイン設計といわれる方法を用いることができる。
また、表示装置において、ブラックマトリクス(遮光層)、偏光部材、位相差部材、反射防止部材などの光学部材(光学基板)などは適宜設ける。例えば、偏光基板及び位相差基板による円偏光を用いてもよい。また、光源としてバックライト、サイドライトなどを用いてもよい。
また、画素部における表示方式は、プログレッシブ方式やインターレース方式等を用いることができる。また、カラー表示する際に画素で制御する色要素としては、RGB(Rは赤、Gは緑、Bは青を表す)の三色に限定されない。例えば、RGBW(Wは白を表す)、又はRGBに、イエロー、シアン、マゼンタ等を一色以上追加したものがある。なお、色要素のドット毎にその表示領域の大きさが異なっていてもよい。ただし、開示する発明はカラー表示の表示装置に限定されるものではなく、モノクロ表示の表示装置に適用することもできる。
また、表示装置に含まれる表示素子として、エレクトロルミネッセンスを利用する発光素子を適用することができる。エレクトロルミネッセンスを利用する発光素子は、発光材料が有機化合物であるか、無機化合物であるかによって区別され、一般的に、前者は有機EL素子、後者は無機EL素子と呼ばれている。
有機EL素子は、発光素子に電圧を印加することにより、一対の電極から電子および正孔がそれぞれ発光性の有機化合物を含む層に注入され、電流が流れる。そして、それらキャリア(電子および正孔)が再結合することにより、発光性の有機化合物が励起状態を形成し、その励起状態が基底状態に戻る際に発光する。このようなメカニズムから、このような発光素子は、電流励起型の発光素子と呼ばれる。本実施の形態では、発光素子として有機EL素子を用いる例を示す。
無機EL素子は、その素子構成により、分散型無機EL素子と薄膜型無機EL素子とに分類される。分散型無機EL素子は、発光材料の粒子をバインダ中に分散させた発光層を有するものであり、発光メカニズムはドナー準位とアクセプター準位を利用するドナー−アクセプター再結合型発光である。薄膜型無機EL素子は、発光層を誘電体層で挟み込み、さらにそれを電極で挟んだ構造であり、発光メカニズムは金属イオンの内殻電子遷移を利用する局在型発光である。なお、ここでは、発光素子として有機EL素子を用いて説明する。
発光素子は発光を取り出すために少なくとも一対の電極の一方が透光性であればよい。そして、基板上にトランジスタ及び発光素子を形成し、基板とは逆側の面から発光を取り出す上面射出や、基板側の面から発光を取り出す下面射出や、基板側及び基板とは反対側の面から発光を取り出す両面射出構造の発光素子があり、どの射出構造の発光素子も適用することができる。
図6(A)(B)及び図7(B)に表示素子として発光素子を用いた発光装置の例を示す。
図6(A)は発光装置の平面図であり、図6(A)中の一点鎖線V1−W1、V2−W2、及びV3−W3で切断した断面が図6(B)に相当する。なお、図6(A)の平面図においては、電界発光層542及び第2の電極層543は省略してあり図示していない。
図6に示す発光装置は、基板500上に、トランジスタ510、容量素子520、配線層交差部530を有しており、トランジスタ510は発光素子540と電気的に接続している。なお、図6は基板500を通過して発光素子540からの光を取り出す、下面射出型構造の発光装置である。
トランジスタ510としては、実施の形態1乃至3のいずれかで示したトランジスタを適用することができる。本実施の形態では、実施の形態3で示したトランジスタ420と同様な構造を有するトランジスタを適用する例を示す。トランジスタ510は、酸化物半導体膜上にチャネル保護膜として機能する絶縁層が設けられた、ボトムゲート構造の逆スタガ型トランジスタである。
トランジスタ510はゲート電極層511a、511b、第1のゲート絶縁膜501、第2のゲート絶縁膜502、酸化物半導体膜512、ソース電極層又はドレイン電極層として機能する導電層513a、513bを含む。
トランジスタ510のゲート電極層は、第1のゲート絶縁膜501によって覆われており、トランジスタ510の第2のゲート絶縁膜502及び酸化物半導体膜512は基板500に含まれる金属元素による汚染から保護されている。
第1のゲート絶縁膜501には、プラズマCVD法で得られる窒化物絶縁膜を用いる。例えば、窒化シリコン膜、窒化酸化シリコン膜、又は金属窒化物絶縁膜(窒化アルミニウム膜、窒化酸化アルミニウム膜)などが挙げられる。第1のゲート絶縁膜501の膜厚は、20nm以上350nm以下とすることができる。第1のゲート絶縁膜501は単層構造でも積層構造でもよい。本実施の形態では、第1のゲート絶縁膜501としてプラズマCVD法で得られる窒化シリコン膜を用いる。
従って、図6で示す本実施の形態の酸化物半導体膜512を用いた安定した電気特性を有するトランジスタ510を含む半導体装置として信頼性の高い半導体装置を提供することができる。また、そのような信頼性の高い半導体装置を歩留まりよく作製し、高生産化を達成することができる。
容量素子520は、導電層521a、521b、第2のゲート絶縁膜502、酸化物半導体膜522、導電層523を含み、導電層521a、521bと導電層523とで、第2のゲート絶縁膜502及び酸化物半導体膜522を挟む構成とすることで容量を形成する。
配線層交差部530は、ゲート電極層511a、511bと、導電層533との交差部であり、ゲート電極層511a、511bと、導電層533とは、間に第2のゲート絶縁膜502、及び第1のゲート絶縁膜501を介して交差する。実施の形態3で示す構造であると、配線層交差部530は、ゲート電極層511a、511bと、導電層533との間に第2のゲート絶縁膜502だけでなく、第1のゲート絶縁膜501も配置できるため、ゲート電極層511a、511bと、導電層533との間に生じる寄生容量を低減することができる。
本実施の形態においては、ゲート電極層511a及び導電層521aとして膜厚30nmのチタン膜を用い、ゲート電極層511b及び導電層521bとして膜厚200nmの銅薄膜を用いる。よって、ゲート電極層はチタン膜と銅薄膜との積層構造となる。
酸化物半導体膜512、522としては膜厚25nmのIGZO膜を用いる。
トランジスタ510、容量素子520、及び配線層交差部530上には層間絶縁膜504が形成され、層間絶縁膜504上において発光素子540と重畳する領域にカラーフィルタ層505が設けられている。層間絶縁膜504及びカラーフィルタ層505上には平坦化絶縁膜として機能する絶縁膜506が設けられている。
絶縁膜506上に第1の電極層541、電界発光層542、第2の電極層543の順に積層した積層構造を含む発光素子540が設けられている。発光素子540とトランジスタ510とは、導電層513aに達する絶縁膜506及び層間絶縁膜504に形成された開口において、第1の電極層541及び導電層513aとが接することによって電気的に接続されている。なお、第1の電極層541の一部及び該開口を覆うように隔壁507が設けられている。
層間絶縁膜504には、プラズマCVD法による膜厚200nm以上600nm以下の酸化窒化シリコン膜を用いることができる。また、絶縁膜506には膜厚1500nmの感光性のアクリル膜、隔壁507には膜厚1500nmの感光性のポリイミド膜を用いることができる。
カラーフィルタ層505としては、例えば有彩色の透光性樹脂を用いることができる。有彩色の透光性樹脂としては、感光性、非感光性の有機樹脂を用いることができるが、感光性の有機樹脂層を用いるとレジストマスク数を削減することができるため、工程が簡略化し好ましい。
有彩色は、黒、灰、白などの無彩色を除く色であり、カラーフィルタ層は、着色された有彩色の光のみを透過する材料で形成される。有彩色としては、赤色、緑色、青色などを用いることができる。また、シアン、マゼンダ、イエロー(黄)などを用いてもよい。着色された有彩色の光のみを透過するとは、カラーフィルタ層における透過光は、その有彩色の光の波長にピークを有するということである。カラーフィルタ層は、含ませる着色材料の濃度と光の透過率の関係に考慮して、最適な膜厚を適宜制御するとよい。例えば、カラーフィルタ層505の膜厚は1500nm以上2000nm以下とすればよい。
図7(B)に示す発光装置においては、表示素子である発光素子4513は、画素部4002に設けられたトランジスタ4010と電気的に接続している。なお発光素子4513の構成は、第1の電極層4030、電界発光層4511、第2の電極層4031の積層構造であるが、示した構成に限定されない。発光素子4513から取り出す光の方向などに合わせて、発光素子4513の構成は適宜変えることができる。
隔壁4510、507は、有機絶縁材料、又は無機絶縁材料を用いて形成する。特に感光性の樹脂材料を用い、第1の電極層4030、541上に開口部を形成し、その開口部の側壁が連続した曲率を持って形成される傾斜面となるように形成することが好ましい。
電界発光層4511、542は、単数の層で構成されていても、複数の層が積層されるように構成されていてもどちらでもよい。
発光素子4513、540に酸素、水素、水分、二酸化炭素等が侵入しないように、第2の電極層4031、543及び隔壁4510、507上に保護膜を形成してもよい。保護膜としては、窒化シリコン膜、窒化酸化シリコン膜、DLC膜等を形成することができる。
また、発光素子4513、540に酸素、水素、水分、二酸化炭素等が侵入しないように、発光素子4513、540を覆う有機化合物を含む層を蒸着法により形成してもよい。
また、基板4001、基板4006、及びシール材4005によって封止された空間には充填材4514が設けられ密封されている。このように外気に曝されないように気密性が高く、脱ガスの少ない保護フィルム(貼り合わせフィルム、紫外線硬化樹脂フィルム等)やカバー材でパッケージング(封入)することが好ましい。
充填材4514としては窒素やアルゴンなどの不活性な気体の他に、紫外線硬化樹脂又は熱硬化樹脂を用いることができ、PVC(ポリビニルクロライド)、アクリル樹脂、ポリイミド樹脂、エポキシ樹脂、シリコーン樹脂、PVB(ポリビニルブチラル)又はEVA(エチレンビニルアセテート)を用いることができる。例えば充填材として窒素を用いればよい。
また、必要であれば、発光素子の射出面に偏光板、又は円偏光板(楕円偏光板を含む)、位相差板(λ/4板、λ/2板)、カラーフィルタなどの光学フィルムを適宜設けてもよい。また、偏光板又は円偏光板に反射防止膜を設けてもよい。例えば、表面の凹凸により反射光を拡散し、映り込みを低減できるアンチグレア処理を施すことができる。
また、表示装置として、電子インクを駆動させる電子ペーパーを提供することも可能である。電子ペーパーは、電気泳動表示装置(電気泳動ディスプレイ)とも呼ばれており、紙と同じ読みやすさ、他の表示装置に比べ低消費電力、薄くて軽い形状とすることが可能という利点を有している。
電気泳動表示装置は、様々な形態が考えられ得るが、プラスの電荷を有する第1の粒子と、マイナスの電荷を有する第2の粒子とを含むマイクロカプセルが溶媒又は溶質に複数分散されたものであり、マイクロカプセルに電界を印加することによって、マイクロカプセル中の粒子を互いに反対方向に移動させて一方側に集合した粒子の色のみを表示するものである。なお、第1の粒子又は第2の粒子は染料を含み、電界がない場合において移動しないものである。また、第1の粒子の色と第2の粒子の色は異なるもの(無色を含む)とする。
このように、電気泳動表示装置は、誘電定数の高い物質が高い電界領域に移動する、いわゆる誘電泳動的効果を利用したディスプレイである。
上記マイクロカプセルを溶媒中に分散させたものが電子インクと呼ばれるものであり、この電子インクはガラス、プラスチック、布、紙などの表面に印刷することができる。また、カラーフィルタや色素を有する粒子を用いることによってカラー表示も可能である。
なお、マイクロカプセル中の第1の粒子および第2の粒子は、導電体材料、絶縁体材料、半導体材料、磁性材料、液晶材料、強誘電性材料、エレクトロルミネセント材料、エレクトロクロミック材料、磁気泳動材料から選ばれた一種の材料、又はこれらの複合材料を用いればよい。
また、電子ペーパーとして、ツイストボール表示方式を用いる表示装置も適用することができる。ツイストボール表示方式とは、白と黒に塗り分けられた球形粒子を、表示素子に用いる電極層である第1の電極層及び第2の電極層の間に配置し、第1の電極層及び第2の電極層に電位差を生じさせて球形粒子の向きを制御することにより、表示を行う方法である。
なお、図5乃至図7において、基板4001、500、基板4006としては、ガラス基板の他、可撓性を有する基板も用いることができ、例えば透光性を有するプラスチック基板などを用いることができる。プラスチックとしては、FRP(Fiberglass−Reinforced Plastics)板、PVF(ポリビニルフルオライド)フィルム、ポリエステルフィルム又はアクリル樹脂フィルムを用いることができる。また、透光性が必要でなければ、アルミニウムやステンレスなどの金属基板(金属フィルム)を用いてもよい。例えば、アルミニウムホイルをPVFフィルムやポリエステルフィルムで挟んだ構造のシートを用いることもできる。
本実施の形態では、絶縁膜4020として酸化アルミニウム膜を用いる。絶縁膜4020はスパッタリング法やプラズマCVD法によって形成することができる。
酸化物半導体膜上に絶縁膜4020として設けられた酸化アルミニウム膜は、水素、水分などの不純物、及び酸素の両方に対して膜を透過させない遮断効果(ブロック効果)が高い。
従って、酸化アルミニウム膜は、作製工程中及び作製後において、変動要因となる水素、水分などの不純物の酸化物半導体膜への混入、及び酸化物半導体を構成する主成分材料である酸素の酸化物半導体膜からの放出を防止する保護膜として機能する。
また、平坦化絶縁膜として機能する絶縁膜4021、506は、アクリル樹脂、ポリイミド樹脂、ベンゾシクロブテン系樹脂、ポリアミド樹脂、エポキシ樹脂等の、耐熱性を有する有機材料を用いることができる。また上記有機材料の他に、低誘電率材料(low−k材料)、シロキサン系樹脂、PSG(リンガラス)、BPSG(リンボロンガラス)等を用いることができる。なお、これらの材料で形成される絶縁膜を複数積層させることで、絶縁膜を形成してもよい。
絶縁膜4021、506の形成法は、特に限定されず、その材料に応じて、スパッタリング法、スピンコート、ディップ、スプレー塗布、液滴吐出法(インクジェット法等)、印刷法(スクリーン印刷、オフセット印刷等)等の方法、ドクターナイフ、ロールコーター、カーテンコーター、ナイフコーター等のツールを用いることができる。
表示装置は光源又は表示素子からの光を透過させて表示を行う。よって光が透過する画素部に設けられる基板、絶縁膜、導電膜などの薄膜はすべて可視光の波長領域の光に対して透光性とする。
表示素子に電圧を印加する第1の電極層及び第2の電極層(画素電極層、共通電極層、対向電極層などともいう)においては、取り出す光の方向、電極層が設けられる場所、及び電極層のパターン構造によって透光性、反射性を選択すればよい。
第1の電極層4030、541、第2の電極層4031、543は、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム錫酸化物(以下、ITOと示す。)、インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物、グラフェンなどの透光性を有する導電性材料を用いることができる。
また、第1の電極層4030、541、第2の電極層4031、543はタングステン(W)、モリブデン(Mo)、ジルコニウム(Zr)、ハフニウム(Hf)、バナジウム(V)、ニオブ(Nb)、タンタル(Ta)、クロム(Cr)、コバルト(Co)、ニッケル(Ni)、チタン(Ti)、白金(Pt)、アルミニウム(Al)、銅(Cu)、銀(Ag)等の金属、又はその合金、若しくはその金属窒化物から一つ、又は複数種を用いて形成することができる。
本実施の形態においては、図6に示す発光装置は下面射出型なので、第1の電極層541は透光性、第2の電極層543は反射性を有する。よって、第1の電極層541に金属膜を用いる場合は透光性を保てる程度膜厚を薄く、第2の電極層543に透光性を有する導電膜を用いる場合は、反射性を有する導電膜を積層するとよい。
また、第1の電極層4030、541、第2の電極層4031、543として、導電性高分子(導電性ポリマーともいう)を含む導電性組成物を用いて形成することができる。導電性高分子としては、いわゆるπ電子共役系導電性高分子が用いることができる。例えば、ポリアニリン又はその誘導体、ポリピロール又はその誘導体、ポリチオフェン又はその誘導体、若しくはアニリン、ピロールおよびチオフェンの2種以上からなる共重合体若しくはその誘導体などがあげられる。
また、トランジスタは静電気などにより破壊されやすいため、駆動回路保護用の保護回路を設けることが好ましい。保護回路は、非線形素子を用いて構成することが好ましい。
以上のように実施の形態1乃至3のいずれかで示したトランジスタを適用することで、様々な機能を有する半導体装置を提供することができる。
本実施の形態に示す構成、方法などは、他の実施の形態に示す構成、方法などと適宜組み合わせて用いることができる。
(実施の形態5)
実施の形態1乃至3のいずれかに示したトランジスタを用いて、対象物の情報を読み取るイメージセンサ機能を有する半導体装置を作製することができる。
図8(A)に、イメージセンサ機能を有する半導体装置の一例を示す。図8(A)はフォトセンサの等価回路であり、図8(B)はフォトセンサの一部を示す断面図である。
フォトダイオード602は、一方の電極がフォトダイオードリセット信号線658に、他方の電極がトランジスタ640のゲートに電気的に接続されている。トランジスタ640は、ソース又はドレインの一方がフォトセンサ基準信号線672に、ソース又はドレインの他方がトランジスタ656のソース又はドレインの一方に電気的に接続されている。トランジスタ656は、ゲートがゲート信号線659に、ソース又はドレインの他方がフォトセンサ出力信号線671に電気的に接続されている。
なお、本明細書における回路図において、酸化物半導体膜を用いるトランジスタと明確に判明できるように、酸化物半導体膜を用いるトランジスタの記号には「OS」と記載している。図8(A)において、トランジスタ640、トランジスタ656は実施の形態1乃至3のいずれかに示したトランジスタが適用でき、酸化物半導体膜を用いるトランジスタである。本実施の形態では、実施の形態2で示したトランジスタ430と同様な構造を有するトランジスタを適用する例を示す。トランジスタ640は、酸化物半導体膜上にチャネル保護膜として機能する絶縁層が設けられた、ボトムゲート構造の逆スタガ型トランジスタである。
図8(B)は、フォトセンサにおけるフォトダイオード602及びトランジスタ640に示す断面図であり、ガラス基板である基板601上に、センサとして機能するフォトダイオード602及びトランジスタ640が設けられている。フォトダイオード602、トランジスタ640の上には接着層608を用いて基板613が設けられている。
トランジスタ640のゲート電極層は、第1のゲート絶縁膜636によって覆われており第1のゲート絶縁膜636には、窒化物絶縁膜を用いることができる。例えば、窒化シリコン膜、窒化酸化シリコン膜などが挙げられる。第1のゲート絶縁膜636の膜厚は、20nm以上350nm以下とすることができる。第1のゲート絶縁膜636は単層構造でも積層構造でもよい。本実施の形態では、第1のゲート絶縁膜636としてプラズマCVD法で得られる窒化シリコン膜を用いる。
トランジスタ640上には絶縁膜631、層間絶縁膜633、層間絶縁膜634が設けられている。フォトダイオード602は、層間絶縁膜633上に設けられ、層間絶縁膜633上に形成した電極層641a、641bと、層間絶縁膜634上に設けられた電極層642との間に、層間絶縁膜633側から順に第1半導体膜606a、第2半導体膜606b、及び第3半導体膜606cを積層した構造を有している。
電極層641bは、層間絶縁膜634に形成された導電層643と電気的に接続し、電極層642は電極層641aを介して導電層645と電気的に接続している。導電層645は、トランジスタ640のゲート電極層と電気的に接続しており、フォトダイオード602はトランジスタ640と電気的に接続している。
ここでは、第1半導体膜606aとしてp型の導電型を有する半導体膜と、第2半導体膜606bとして高抵抗な半導体膜(I型半導体膜)、第3半導体膜606cとしてn型の導電型を有する半導体膜を積層するpin型のフォトダイオードを例示している。
第1半導体膜606aはp型半導体膜であり、p型を付与する不純物元素を含むアモルファスシリコン膜により形成することができる。第1半導体膜606aの形成には13族の不純物元素(例えばボロン(B))を含む半導体材料ガスを用いて、プラズマCVD法により形成する。半導体材料ガスとしてはシラン(SiH)を用いればよい。または、Si、SiHCl、SiHCl、SiCl、SiF等を用いてもよい。また、不純物元素を含まないアモルファスシリコン膜を形成した後に、拡散法やイオン注入法を用いて該アモルファスシリコン膜に不純物元素を導入してもよい。イオン注入法等により不純物元素を導入した後に加熱等を行うことで、不純物元素を拡散させるとよい。この場合にアモルファスシリコン膜を形成する方法としては、LPCVD法、気相成長法、又はスパッタリング法等を用いればよい。第1半導体膜606aの膜厚は10nm以上50nm以下となるよう形成することが好ましい。
第2半導体膜606bは、I型半導体膜(真性半導体膜)であり、アモルファスシリコン膜により形成する。第2半導体膜606bの形成には、半導体材料ガスを用いて、アモルファスシリコン膜をプラズマCVD法により形成する。半導体材料ガスとしては、シラン(SiH)を用いればよい。または、Si、SiHCl、SiHCl、SiCl、SiF等を用いてもよい。第2半導体膜606bの形成は、LPCVD法、気相成長法、スパッタリング法等により行ってもよい。第2半導体膜606bの膜厚は200nm以上1000nm以下となるように形成することが好ましい。
第3半導体膜606cは、n型半導体膜であり、n型を付与する不純物元素を含むアモルファスシリコン膜により形成する。第3半導体膜606cの形成には、15族の不純物元素(例えばリン(P))を含む半導体材料ガスを用いて、プラズマCVD法により形成する。半導体材料ガスとしてはシラン(SiH)を用いればよい。または、Si、SiHCl、SiHCl、SiCl、SiF等を用いてもよい。また、不純物元素を含まないアモルファスシリコン膜を形成した後に、拡散法やイオン注入法を用いて該アモルファスシリコン膜に不純物元素を導入してもよい。イオン注入法等により不純物元素を導入した後に加熱等を行うことで、不純物元素を拡散させるとよい。この場合にアモルファスシリコン膜を形成する方法としては、LPCVD法、気相成長法、又はスパッタリング法等を用いればよい。第3半導体膜606cの膜厚は20nm以上200nm以下となるよう形成することが好ましい。
また、第1半導体膜606a、第2半導体膜606b、及び第3半導体膜606cは、アモルファス半導体ではなく、多結晶半導体を用いて形成してもよいし、微結晶半導体(セミアモルファス半導体(Semi Amorphous Semiconductor:SAS))を用いて形成してもよい。
また、光電効果で発生した正孔の移動度は電子の移動度に比べて小さいため、pin型のフォトダイオードはp型の半導体膜側を受光面とする方がよい特性を示す。ここでは、pin型のフォトダイオードが形成されている基板601の面からフォトダイオード602が受ける光622を電気信号に変換する例を示す。また、受光面とした半導体膜側とは逆の導電型を有する半導体膜側からの光は外乱光となるため、電極層は遮光性を有する導電膜を用いるとよい。また、n型の半導体膜側を受光面として用いることもできる。
絶縁膜631、層間絶縁膜633、層間絶縁膜634としては、絶縁性材料を用いて、その材料に応じて、スパッタリング法、プラズマCVD法、スピンコート、ディップ、スプレー塗布、液滴吐出法(インクジェット法等)、印刷法(スクリーン印刷、オフセット印刷等)等を用いて形成することができる。
絶縁膜631としては、無機絶縁材料としては、酸化シリコン層、酸化窒化シリコン層、酸化アルミニウム層、又は酸化窒化アルミニウム層などの酸化物絶縁膜、窒化シリコン層、窒化酸化シリコン層、窒化アルミニウム層、又は窒化酸化アルミニウム層などの窒化物絶縁膜の単層、又は積層を用いることができる。
本実施の形態では、絶縁膜631として酸化アルミニウム膜を用いる。絶縁膜631はスパッタリング法やプラズマCVD法によって形成することができる。
酸化物半導体膜上に絶縁膜631として設けられた酸化アルミニウム膜は、水素、水分などの不純物、及び酸素の両方に対して膜を透過させない遮断効果(ブロック効果)が高い。
従って、酸化アルミニウム膜は、作製工程中及び作製後において、変動要因となる水素、水分などの不純物の酸化物半導体膜への混入、及び酸化物半導体を構成する主成分材料である酸素の酸化物半導体膜からの放出を防止する保護膜として機能する。
層間絶縁膜633、634としては、表面凹凸を低減するため平坦化絶縁膜として機能する絶縁膜が好ましい。層間絶縁膜633、634としては、例えばポリイミド樹脂、アクリル樹脂、ベンゾシクロブテン系樹脂、ポリアミド樹脂、エポキシ樹脂等の、耐熱性を有する有機絶縁材料を用いることができる。また上記有機絶縁材料の他に、低誘電率材料(low−k材料)、シロキサン系樹脂、PSG(リンガラス)、BPSG(リンボロンガラス)等の単層、又は積層を用いることができる。
フォトダイオード602に入射する光を検出することによって、被検出物の情報を読み取ることができる。なお、被検出物の情報を読み取る際にバックライトなどの光源を用いることができる。
トランジスタ640のゲート電極層は、第1のゲート絶縁膜636によって覆われており、トランジスタ640の第2のゲート絶縁膜及び酸化物半導体膜は基板601に含まれる金属元素による汚染から保護されている。
従って、本実施の形態の酸化物半導体膜を用いた安定した電気特性を有するトランジスタ640を含む信頼性の高い半導体装置を提供することができる。また、信頼性の高い半導体装置を歩留まりよく作製し、高生産化を達成することができる。
本実施の形態に示す構成、方法などは、他の実施の形態に示す構成、方法などと適宜組み合わせて用いることができる。
(実施の形態6)
本明細書に開示する半導体装置は、さまざまな電子機器(遊技機も含む)に適用することができる。電子機器としては、テレビジョン装置(テレビ、又はテレビジョン受信機ともいう)、コンピュータ用などのモニタ、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機、携帯型ゲーム機、携帯情報端末、音響再生装置、遊技機(パチンコ機、スロットマシン等)、ゲーム筐体が挙げられる。これらの電子機器の具体例を図9に示す。
図9(A)は、表示部を有するテーブル9000を示している。テーブル9000は、筐体9001に表示部9003が組み込まれており、表示部9003により映像を表示することが可能である。なお、4本の脚部9002により筐体9001を支持した構成を示している。また、電力供給のための電源コード9005を筐体9001に有している。
実施の形態1乃至5のいずれかに示す半導体装置は、表示部9003に用いることが可能であり、表示部を有するテーブル9000に高い信頼性を付与することができる。
表示部9003は、タッチ入力機能を有しており、テーブル9000の表示部9003に表示された表示ボタン9004を指などで触れることで、画面操作や、情報を入力することができ、また他の家電製品との通信を可能とする、又は制御を可能とすることで、画面操作により他の家電製品をコントロールする制御装置としてもよい。例えば、実施の形態5に示したイメージセンサ機能を有する半導体装置を用いれば、表示部9003にタッチ入力機能を持たせることができる。
また、筐体9001に設けられたヒンジによって、表示部9003の画面を床に対して垂直に立てることもでき、テレビジョン装置としても利用できる。狭い部屋においては、大きな画面のテレビジョン装置は設置すると自由な空間が狭くなってしまうが、テーブルに表示部が内蔵されていれば、部屋の空間を有効に利用することができる。
図9(B)は、テレビジョン装置9100を示している。テレビジョン装置9100は、筐体9101に表示部9103が組み込まれており、表示部9103により映像を表示することが可能である。なお、ここではスタンド9105により筐体9101を支持した構成を示している。
テレビジョン装置9100の操作は、筐体9101が備える操作スイッチや、別体のリモコン操作機9110により行うことができる。リモコン操作機9110が備える操作キー9109により、チャンネルや音量の操作を行うことができ、表示部9103に表示される映像を操作することができる。また、リモコン操作機9110に、当該リモコン操作機9110から出力する情報を表示する表示部9107を設ける構成としてもよい。
図9(B)に示すテレビジョン装置9100は、受信機やモデムなどを備えている。テレビジョン装置9100は、受信機により一般のテレビ放送の受信を行うことができ、さらにモデムを介して有線又は無線による通信ネットワークに接続することにより、一方向(送信者から受信者)又は双方向(送信者と受信者間、あるいは受信者間同士など)の情報通信を行うことも可能である。
実施の形態1乃至5のいずれかに示す半導体装置は、表示部9103、9107に用いることが可能であり、テレビジョン装置、及びリモコン操作機に高い信頼性を付与することができる。
図9(C)はコンピュータであり、本体9201、筐体9202、表示部9203、キーボード9204、外部接続ポート9205、ポインティングデバイス9206等を含む。
実施の形態1乃至5のいずれかに示す半導体装置は、表示部9203に用いることが可能であり、コンピュータに高い信頼性を付与することができる。
図10(A)及び図10(B)は2つ折り可能なタブレット型端末である。図10(A)は、開いた状態であり、タブレット型端末は、筐体9630、表示部9631a、表示部9631b、表示モード切り替えスイッチ9034、電源スイッチ9035、省電力モード切り替えスイッチ9036、留め具9033、操作スイッチ9038、を有する。
実施の形態1乃至5のいずれかに示す半導体装置は、表示部9631a、表示部9631bに用いることが可能であり、信頼性の高いタブレット型端末とすることが可能となる。
表示部9631aは、一部をタッチパネルの領域9632aとすることができ、表示された操作キー9638にふれることでデータ入力をすることができる。なお、表示部9631aにおいては、一例として半分の領域が表示のみの機能を有する構成、もう半分の領域がタッチパネルの機能を有する構成を示しているが該構成に限定されない。表示部9631aの全ての領域がタッチパネルの機能を有する構成としても良い。例えば、表示部9631aの全面をキーボードボタン表示させてタッチパネルとし、表示部9631bを表示画面として用いることができる。
また、表示部9631bにおいても表示部9631aと同様に、表示部9631bの一部をタッチパネルの領域9632bとすることができる。また、タッチパネルのキーボード表示切り替えボタン9639が表示されている位置に指やスタイラスなどでふれることで表示部9631bにキーボードボタン表示することができる。
また、タッチパネルの領域9632aとタッチパネルの領域9632bに対して同時にタッチ入力することもできる。
また、表示モード切り替えスイッチ9034は、縦表示又は横表示などの表示の向きを切り替え、白黒表示やカラー表示の切り替えなどを選択できる。省電力モード切り替えスイッチ9036は、タブレット型端末に内蔵している光センサで検出される使用時の外光の光量に応じて表示の輝度を最適なものとすることができる。タブレット型端末は光センサだけでなく、ジャイロ、加速度センサ等の傾きを検出するセンサなどの他の検出装置を内蔵させてもよい。
また、図10(A)では表示部9631bと表示部9631aの表示面積が同じ例を示しているが特に限定されず、一方のサイズともう一方のサイズが異なっていてもよく、表示の品質も異なっていてもよい。例えば一方が他方よりも高精細な表示を行える表示パネルとしてもよい。
図10(B)は、閉じた状態であり、タブレット型端末は、筐体9630、太陽電池9633、充放電制御回路9634、バッテリー9635、DCDCコンバータ9636を有する。なお、図10(B)では充放電制御回路9634の一例としてバッテリー9635、DCDCコンバータ9636を有する構成について示している。
なお、タブレット型端末は2つ折り可能なため、未使用時に筐体9630を閉じた状態にすることができる。従って、表示部9631a、表示部9631bを保護できるため、耐久性に優れ、長期使用の観点からも信頼性の優れたタブレット型端末を提供できる。
また、この他にも図10(A)及び図10(B)に示したタブレット型端末は、様々な情報(静止画、動画、テキスト画像など)を表示する機能、カレンダー、日付又は時刻などを表示部に表示する機能、表示部に表示した情報をタッチ入力操作又は編集するタッチ入力機能、様々なソフトウェア(プログラム)によって処理を制御する機能、等を有することができる。
タブレット型端末の表面に装着された太陽電池9633によって、電力をタッチパネル、表示部、又は映像信号処理部等に供給することができる。なお、太陽電池9633は、筐体9630の片面又は両面に設けることができ、バッテリー9635の充電を効率的に行う構成とすることができる。なおバッテリー9635としては、リチウムイオン電池を用いると、小型化を図れる等の利点がある。
また、図10(B)に示す充放電制御回路9634の構成、及び動作について図10(C)にブロック図を示し説明する。図10(C)には、太陽電池9633、バッテリー9635、DCDCコンバータ9636、コンバータ9637、スイッチSW1乃至SW3、表示部9631について示しており、バッテリー9635、DCDCコンバータ9636、コンバータ9637、スイッチSW1乃至SW3が、図10(B)に示す充放電制御回路9634に対応する箇所となる。
まず外光により太陽電池9633により発電がされる場合の動作の例について説明する。太陽電池9633で発電した電力は、バッテリー9635を充電するための電圧となるようDCDCコンバータ9636で昇圧又は降圧がなされる。そして、表示部9631の動作に太陽電池9633からの電力が用いられる際にはスイッチSW1をオンにし、コンバータ9637で表示部9631に必要な電圧に昇圧又は降圧をすることとなる。また、表示部9631での表示を行わない際には、SW1をオフにし、SW2をオンにしてバッテリー9635の充電を行う構成とすればよい。
なお太陽電池9633については、発電手段の一例として示したが、特に限定されず、圧電素子(ピエゾ素子)や熱電変換素子(ペルティエ素子)などの他の発電手段によるバッテリー9635の充電を行う構成であってもよい。例えば、無線(非接触)で電力を送受信して充電する無接点電力伝送モジュールや、また他の充電手段を組み合わせて行う構成としてもよい。
本実施の形態に示す構成、方法などは、他の実施の形態に示す構成、方法などと適宜組み合わせて用いることができる。
400 基板
401 ゲート電極層
402 ゲート絶縁膜
403 酸化物半導体膜
405a ソース電極層
405b ドレイン電極層
407 絶縁膜
413 絶縁層
420 トランジスタ
423 絶縁層
425a 開口
430 トランジスタ
436 ゲート絶縁膜
440 トランジスタ
500 基板
501 ゲート絶縁膜
502 ゲート絶縁膜
504 層間絶縁膜
505 カラーフィルタ層
506 絶縁膜
507 隔壁
510 トランジスタ
511a ゲート電極層
511b ゲート電極層
512 酸化物半導体膜
513a 導電層
513b 導電層
520 容量素子
521a 導電層
521b 導電層
522 酸化物半導体膜
523 導電層
530 配線層交差部
533 導電層
540 発光素子
541 電極層
542 電界発光層
543 電極層
601 基板
602 フォトダイオード
606a 半導体膜
606b 半導体膜
606c 半導体膜
608 接着層
613 基板
622 光
631 絶縁膜
633 層間絶縁膜
634 層間絶縁膜
636 ゲート絶縁膜
640 トランジスタ
641a 電極層
641b 電極層
642 電極層
643 導電層
645 導電層
656 トランジスタ
658 フォトダイオードリセット信号線
659 ゲート信号線
671 フォトセンサ出力信号線
672 フォトセンサ基準信号線
4001 基板
4002 画素部
4003 信号線駆動回路
4004 走査線駆動回路
4005 シール材
4006 基板
4008 液晶層
4010 トランジスタ
4011 トランジスタ
4013 液晶素子
4015 接続端子電極
4016 端子電極
4019 異方性導電膜
4020 絶縁膜
4021 絶縁膜
4023 ゲート絶縁膜
4030 電極層
4031 電極層
4032 絶縁膜
4035 スペーサ
4040 トランジスタ
4510 隔壁
4511 電界発光層
4513 発光素子
4514 充填材
9000 テーブル
9001 筐体
9002 脚部
9003 表示部
9004 表示ボタン
9005 電源コード
9033 留め具
9034 スイッチ
9035 電源スイッチ
9036 スイッチ
9038 操作スイッチ
9100 テレビジョン装置
9101 筐体
9103 表示部
9105 スタンド
9107 表示部
9109 操作キー
9110 リモコン操作機
9201 本体
9202 筐体
9203 表示部
9204 キーボード
9205 外部接続ポート
9206 ポインティングデバイス
9630 筐体
9631 表示部
9631a 表示部
9631b 表示部
9632a 領域
9632b 領域
9633 太陽電池
9634 充放電制御回路
9635 バッテリー
9636 DCDCコンバータ
9637 コンバータ
9638 操作キー
9639 ボタン

Claims (1)

  1. 絶縁表面を有する基板上に第1のゲート絶縁膜を形成し、
    前記第1のゲート絶縁膜上に第2のゲート絶縁膜を形成し、
    前記第2のゲート絶縁膜形成後に450℃以上の温度で第1の加熱処理を行い、前記第1の加熱処理後に前記第2のゲート絶縁膜上に酸化物半導体膜を形成し、
    前記酸化物半導体膜形成後に第2の加熱処理を行い、
    前記第1のゲート絶縁膜は、プラズマCVD法により、シランガス、窒素ガス、及び、NH ガスを用いて、第1のRFパワーで形成し、
    前記第2のゲート絶縁膜は、プラズマCVD法により、シランガス、及びN Oガスを用いて、第2のRFパワーで形成し、
    前記第1のRFパワーは、前記第2のRFパワーよりも高いことを特徴とする半導体装置の作製方法。
JP2012285686A 2011-12-27 2012-12-27 半導体装置の作製方法 Expired - Fee Related JP6145267B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012285686A JP6145267B2 (ja) 2011-12-27 2012-12-27 半導体装置の作製方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011285559 2011-12-27
JP2011285559 2011-12-27
JP2012285686A JP6145267B2 (ja) 2011-12-27 2012-12-27 半導体装置の作製方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017096350A Division JP2017157853A (ja) 2011-12-27 2017-05-15 半導体装置の作製方法

Publications (3)

Publication Number Publication Date
JP2013153160A JP2013153160A (ja) 2013-08-08
JP2013153160A5 JP2013153160A5 (ja) 2016-01-28
JP6145267B2 true JP6145267B2 (ja) 2017-06-07

Family

ID=48654953

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2012285686A Expired - Fee Related JP6145267B2 (ja) 2011-12-27 2012-12-27 半導体装置の作製方法
JP2017096350A Withdrawn JP2017157853A (ja) 2011-12-27 2017-05-15 半導体装置の作製方法
JP2018221263A Active JP6686111B2 (ja) 2011-12-27 2018-11-27 半導体装置の作製方法
JP2020066165A Withdrawn JP2020115566A (ja) 2011-12-27 2020-04-01 半導体装置

Family Applications After (3)

Application Number Title Priority Date Filing Date
JP2017096350A Withdrawn JP2017157853A (ja) 2011-12-27 2017-05-15 半導体装置の作製方法
JP2018221263A Active JP6686111B2 (ja) 2011-12-27 2018-11-27 半導体装置の作製方法
JP2020066165A Withdrawn JP2020115566A (ja) 2011-12-27 2020-04-01 半導体装置

Country Status (5)

Country Link
US (1) US8809154B2 (ja)
JP (4) JP6145267B2 (ja)
KR (1) KR101981338B1 (ja)
CN (2) CN107452751B (ja)
TW (1) TWI584383B (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130221345A1 (en) 2012-02-28 2013-08-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8860022B2 (en) 2012-04-27 2014-10-14 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and semiconductor device
TWI614813B (zh) 2013-01-21 2018-02-11 半導體能源研究所股份有限公司 半導體裝置的製造方法
TWI633668B (zh) * 2013-09-23 2018-08-21 半導體能源研究所股份有限公司 半導體裝置
KR102270823B1 (ko) 2013-10-22 2021-06-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치와 그 제작 방법
JP2015119175A (ja) * 2013-11-15 2015-06-25 株式会社半導体エネルギー研究所 半導体装置及び表示装置
JP6659255B2 (ja) * 2014-09-02 2020-03-04 株式会社神戸製鋼所 薄膜トランジスタ
US9722091B2 (en) 2014-09-12 2017-08-01 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
WO2017064590A1 (en) 2015-10-12 2017-04-20 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP6676990B2 (ja) * 2016-02-01 2020-04-08 株式会社リコー 電界効果型トランジスタの製造方法
US20180026055A1 (en) * 2016-07-19 2018-01-25 Applied Materials, Inc. Hybrid high-k dielectric material film stacks comprising zirconium oxide utilized in display devices
CN107464850B (zh) * 2017-08-01 2020-05-15 上海天马微电子有限公司 一种薄膜晶体管及其制造方法、显示面板和显示装置
KR102550633B1 (ko) 2018-05-04 2023-07-04 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 그 제조방법
US10818770B2 (en) * 2018-07-23 2020-10-27 Ricoh Company, Ltd. Metal oxide, field-effect transistor, and method for producing the same
SG11202010548YA (en) 2018-07-31 2021-02-25 Applied Materials Inc On stack overlay improvement for 3d nand
WO2020166720A1 (ja) 2019-02-14 2020-08-20 株式会社タダノ アウトリガ制御装置
KR20200115061A (ko) * 2019-03-27 2020-10-07 고려대학교 세종산학협력단 박막 트랜지스터 및 박막 트랜지스터의 제조방법
CN113314424B (zh) * 2021-05-27 2022-09-02 惠科股份有限公司 薄膜晶体管及其制备方法和阵列基板、显示器件

Family Cites Families (133)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100394896B1 (ko) 1995-08-03 2003-11-28 코닌클리케 필립스 일렉트로닉스 엔.브이. 투명스위칭소자를포함하는반도체장치
JP3625598B2 (ja) 1995-12-30 2005-03-02 三星電子株式会社 液晶表示装置の製造方法
JP4170454B2 (ja) 1998-07-24 2008-10-22 Hoya株式会社 透明導電性酸化物薄膜を有する物品及びその製造方法
JP2000150861A (ja) 1998-11-16 2000-05-30 Tdk Corp 酸化物薄膜
JP3276930B2 (ja) * 1998-11-17 2002-04-22 科学技術振興事業団 トランジスタ及び半導体装置
TW460731B (en) 1999-09-03 2001-10-21 Ind Tech Res Inst Electrode structure and production method of wide viewing angle LCD
JP4785229B2 (ja) * 2000-05-09 2011-10-05 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP4089858B2 (ja) 2000-09-01 2008-05-28 国立大学法人東北大学 半導体デバイス
KR20020038482A (ko) 2000-11-15 2002-05-23 모리시타 요이찌 박막 트랜지스터 어레이, 그 제조방법 및 그것을 이용한표시패널
JP3997731B2 (ja) 2001-03-19 2007-10-24 富士ゼロックス株式会社 基材上に結晶性半導体薄膜を形成する方法
JP2002289859A (ja) 2001-03-23 2002-10-04 Minolta Co Ltd 薄膜トランジスタ
JP4090716B2 (ja) 2001-09-10 2008-05-28 雅司 川崎 薄膜トランジスタおよびマトリクス表示装置
JP3925839B2 (ja) 2001-09-10 2007-06-06 シャープ株式会社 半導体記憶装置およびその試験方法
WO2003040441A1 (fr) 2001-11-05 2003-05-15 Japan Science And Technology Agency Film mince monocristallin homologue a super-reseau naturel, procede de preparation et dispositif dans lequel est utilise ledit film mince monocristallin
JP4164562B2 (ja) 2002-09-11 2008-10-15 独立行政法人科学技術振興機構 ホモロガス薄膜を活性層として用いる透明薄膜電界効果型トランジスタ
JP4083486B2 (ja) 2002-02-21 2008-04-30 独立行政法人科学技術振興機構 LnCuO(S,Se,Te)単結晶薄膜の製造方法
US7049190B2 (en) 2002-03-15 2006-05-23 Sanyo Electric Co., Ltd. Method for forming ZnO film, method for forming ZnO semiconductor layer, method for fabricating semiconductor device, and semiconductor device
JP3933591B2 (ja) 2002-03-26 2007-06-20 淳二 城戸 有機エレクトロルミネッセント素子
US7339187B2 (en) 2002-05-21 2008-03-04 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures
JP2004022625A (ja) 2002-06-13 2004-01-22 Murata Mfg Co Ltd 半導体デバイス及び該半導体デバイスの製造方法
US7105868B2 (en) 2002-06-24 2006-09-12 Cermet, Inc. High-electron mobility transistor with zinc oxide
US7067843B2 (en) 2002-10-11 2006-06-27 E. I. Du Pont De Nemours And Company Transparent oxide semiconductor thin film transistors
JP4166105B2 (ja) 2003-03-06 2008-10-15 シャープ株式会社 半導体装置およびその製造方法
JP2004273732A (ja) 2003-03-07 2004-09-30 Sharp Corp アクティブマトリクス基板およびその製造方法
JP4108633B2 (ja) 2003-06-20 2008-06-25 シャープ株式会社 薄膜トランジスタおよびその製造方法ならびに電子デバイス
US7262463B2 (en) 2003-07-25 2007-08-28 Hewlett-Packard Development Company, L.P. Transistor including a deposited channel region having a doped portion
US7145174B2 (en) 2004-03-12 2006-12-05 Hewlett-Packard Development Company, Lp. Semiconductor device
US7282782B2 (en) 2004-03-12 2007-10-16 Hewlett-Packard Development Company, L.P. Combined binary oxide semiconductor device
CN1998087B (zh) 2004-03-12 2014-12-31 独立行政法人科学技术振兴机构 非晶形氧化物和薄膜晶体管
US7297977B2 (en) * 2004-03-12 2007-11-20 Hewlett-Packard Development Company, L.P. Semiconductor device
TWI251348B (en) 2004-04-13 2006-03-11 Toppoly Optoelectronics Corp Thin film transistor and its manufacturing method
US7211825B2 (en) 2004-06-14 2007-05-01 Yi-Chi Shih Indium oxide-based thin film transistors and circuits
JP2006100760A (ja) 2004-09-02 2006-04-13 Casio Comput Co Ltd 薄膜トランジスタおよびその製造方法
US7285501B2 (en) 2004-09-17 2007-10-23 Hewlett-Packard Development Company, L.P. Method of forming a solution processed device
US7298084B2 (en) 2004-11-02 2007-11-20 3M Innovative Properties Company Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes
US7453065B2 (en) 2004-11-10 2008-11-18 Canon Kabushiki Kaisha Sensor and image pickup device
JP5118812B2 (ja) 2004-11-10 2013-01-16 キヤノン株式会社 電界効果型トランジスタ
US7829444B2 (en) 2004-11-10 2010-11-09 Canon Kabushiki Kaisha Field effect transistor manufacturing method
KR100953596B1 (ko) 2004-11-10 2010-04-21 캐논 가부시끼가이샤 발광장치
US7791072B2 (en) 2004-11-10 2010-09-07 Canon Kabushiki Kaisha Display
RU2402106C2 (ru) 2004-11-10 2010-10-20 Кэнон Кабусики Кайся Аморфный оксид и полевой транзистор с его использованием
US7863611B2 (en) 2004-11-10 2011-01-04 Canon Kabushiki Kaisha Integrated circuits utilizing amorphous oxides
US7579224B2 (en) 2005-01-21 2009-08-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film semiconductor device
TWI472037B (zh) 2005-01-28 2015-02-01 半導體能源研究所股份有限公司 半導體裝置,電子裝置,和半導體裝置的製造方法
US7608531B2 (en) 2005-01-28 2009-10-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, electronic device, and method of manufacturing semiconductor device
US7858451B2 (en) 2005-02-03 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US7948171B2 (en) 2005-02-18 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US20060197092A1 (en) 2005-03-03 2006-09-07 Randy Hoffman System and method for forming conductive material on a substrate
US8681077B2 (en) 2005-03-18 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and display device, driving method and electronic apparatus thereof
US7544967B2 (en) 2005-03-28 2009-06-09 Massachusetts Institute Of Technology Low voltage flexible organic/transparent transistor for selective gas sensing, photodetecting and CMOS device applications
US7645478B2 (en) 2005-03-31 2010-01-12 3M Innovative Properties Company Methods of making displays
US8300031B2 (en) 2005-04-20 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element
JP2006344849A (ja) 2005-06-10 2006-12-21 Casio Comput Co Ltd 薄膜トランジスタ
US7402506B2 (en) 2005-06-16 2008-07-22 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7691666B2 (en) 2005-06-16 2010-04-06 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7507618B2 (en) 2005-06-27 2009-03-24 3M Innovative Properties Company Method for making electronic devices using metal oxide nanoparticles
KR100711890B1 (ko) 2005-07-28 2007-04-25 삼성에스디아이 주식회사 유기 발광표시장치 및 그의 제조방법
JP2007059128A (ja) 2005-08-23 2007-03-08 Canon Inc 有機el表示装置およびその製造方法
JP4280736B2 (ja) 2005-09-06 2009-06-17 キヤノン株式会社 半導体素子
JP5116225B2 (ja) 2005-09-06 2013-01-09 キヤノン株式会社 酸化物半導体デバイスの製造方法
JP4850457B2 (ja) * 2005-09-06 2012-01-11 キヤノン株式会社 薄膜トランジスタ及び薄膜ダイオード
JP2007073705A (ja) 2005-09-06 2007-03-22 Canon Inc 酸化物半導体チャネル薄膜トランジスタおよびその製造方法
JP5078246B2 (ja) 2005-09-29 2012-11-21 株式会社半導体エネルギー研究所 半導体装置、及び半導体装置の作製方法
EP1770788A3 (en) 2005-09-29 2011-09-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having oxide semiconductor layer and manufacturing method thereof
JP5064747B2 (ja) 2005-09-29 2012-10-31 株式会社半導体エネルギー研究所 半導体装置、電気泳動表示装置、表示モジュール、電子機器、及び半導体装置の作製方法
JP5037808B2 (ja) 2005-10-20 2012-10-03 キヤノン株式会社 アモルファス酸化物を用いた電界効果型トランジスタ、及び該トランジスタを用いた表示装置
KR101112652B1 (ko) 2005-11-15 2012-02-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 액티브 매트릭스 디스플레이 장치 및 텔레비전 수신기
TWI292281B (en) 2005-12-29 2008-01-01 Ind Tech Res Inst Pixel structure of active organic light emitting diode and method of fabricating the same
US7867636B2 (en) 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
JP4977478B2 (ja) 2006-01-21 2012-07-18 三星電子株式会社 ZnOフィルム及びこれを用いたTFTの製造方法
US7576394B2 (en) 2006-02-02 2009-08-18 Kochi Industrial Promotion Center Thin film transistor including low resistance conductive thin films and manufacturing method thereof
US7977169B2 (en) 2006-02-15 2011-07-12 Kochi Industrial Promotion Center Semiconductor device including active layer made of zinc oxide with controlled orientations and manufacturing method thereof
KR20070101595A (ko) 2006-04-11 2007-10-17 삼성전자주식회사 ZnO TFT
US20070252928A1 (en) 2006-04-28 2007-11-01 Toppan Printing Co., Ltd. Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof
US20070296003A1 (en) 2006-06-08 2007-12-27 Samsung Electronics Co., Ltd. Thin Film Transistor Substrate and Method for Manufacturing the Same
JP5028033B2 (ja) 2006-06-13 2012-09-19 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
KR101243809B1 (ko) 2006-06-30 2013-03-18 엘지디스플레이 주식회사 박막트랜지스터의 제조방법 및 이를 이용한 tft 어레이기판의 제조방법
JP4999400B2 (ja) 2006-08-09 2012-08-15 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4609797B2 (ja) 2006-08-09 2011-01-12 Nec液晶テクノロジー株式会社 薄膜デバイス及びその製造方法
JP4332545B2 (ja) 2006-09-15 2009-09-16 キヤノン株式会社 電界効果型トランジスタ及びその製造方法
JP4274219B2 (ja) 2006-09-27 2009-06-03 セイコーエプソン株式会社 電子デバイス、有機エレクトロルミネッセンス装置、有機薄膜半導体装置
JP5164357B2 (ja) 2006-09-27 2013-03-21 キヤノン株式会社 半導体装置及び半導体装置の製造方法
US7622371B2 (en) 2006-10-10 2009-11-24 Hewlett-Packard Development Company, L.P. Fused nanocrystal thin film semiconductor and method
US7772021B2 (en) 2006-11-29 2010-08-10 Samsung Electronics Co., Ltd. Flat panel displays comprising a thin-film transistor having a semiconductive oxide in its channel and methods of fabricating the same for use in flat panel displays
JP2008140684A (ja) 2006-12-04 2008-06-19 Toppan Printing Co Ltd カラーelディスプレイおよびその製造方法
JP5105842B2 (ja) 2006-12-05 2012-12-26 キヤノン株式会社 酸化物半導体を用いた表示装置及びその製造方法
KR101303578B1 (ko) 2007-01-05 2013-09-09 삼성전자주식회사 박막 식각 방법
US8207063B2 (en) 2007-01-26 2012-06-26 Eastman Kodak Company Process for atomic layer deposition
JP4420032B2 (ja) * 2007-01-31 2010-02-24 ソニー株式会社 薄膜半導体装置の製造方法
KR100851215B1 (ko) 2007-03-14 2008-08-07 삼성에스디아이 주식회사 박막 트랜지스터 및 이를 이용한 유기 전계 발광표시장치
JP5197058B2 (ja) 2007-04-09 2013-05-15 キヤノン株式会社 発光装置とその作製方法
US7795613B2 (en) 2007-04-17 2010-09-14 Toppan Printing Co., Ltd. Structure with transistor
KR101325053B1 (ko) 2007-04-18 2013-11-05 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 이의 제조 방법
KR20080094300A (ko) 2007-04-19 2008-10-23 삼성전자주식회사 박막 트랜지스터 및 그 제조 방법과 박막 트랜지스터를포함하는 평판 디스플레이
KR101334181B1 (ko) 2007-04-20 2013-11-28 삼성전자주식회사 선택적으로 결정화된 채널층을 갖는 박막 트랜지스터 및 그제조 방법
US8274078B2 (en) 2007-04-25 2012-09-25 Canon Kabushiki Kaisha Metal oxynitride semiconductor containing zinc
KR101345376B1 (ko) 2007-05-29 2013-12-24 삼성전자주식회사 ZnO 계 박막 트랜지스터 및 그 제조방법
US7998800B2 (en) * 2007-07-06 2011-08-16 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
TWI464510B (zh) * 2007-07-20 2014-12-11 Semiconductor Energy Lab 液晶顯示裝置
KR101009646B1 (ko) * 2007-08-01 2011-01-19 삼성모바일디스플레이주식회사 박막 트랜지스터 및 이를 구비한 표시 장치
US9054206B2 (en) * 2007-08-17 2015-06-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP2009130229A (ja) * 2007-11-27 2009-06-11 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
US8591650B2 (en) * 2007-12-03 2013-11-26 Semiconductor Energy Laboratory Co., Ltd. Method for forming crystalline semiconductor film, method for manufacturing thin film transistor, and method for manufacturing display device
JP5215158B2 (ja) 2007-12-17 2013-06-19 富士フイルム株式会社 無機結晶性配向膜及びその製造方法、半導体デバイス
US8049215B2 (en) * 2008-04-25 2011-11-01 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor
TWI491048B (zh) 2008-07-31 2015-07-01 Semiconductor Energy Lab 半導體裝置
JP4623179B2 (ja) 2008-09-18 2011-02-02 ソニー株式会社 薄膜トランジスタおよびその製造方法
JP5451280B2 (ja) 2008-10-09 2014-03-26 キヤノン株式会社 ウルツ鉱型結晶成長用基板およびその製造方法ならびに半導体装置
JP4752925B2 (ja) * 2009-02-04 2011-08-17 ソニー株式会社 薄膜トランジスタおよび表示装置
JP5564331B2 (ja) * 2009-05-29 2014-07-30 株式会社半導体エネルギー研究所 半導体装置の作製方法
EP2256814B1 (en) 2009-05-29 2019-01-16 Semiconductor Energy Laboratory Co, Ltd. Oxide semiconductor device and method for manufacturing the same
KR101457837B1 (ko) 2009-06-30 2014-11-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 제작 방법
JP5663214B2 (ja) * 2009-07-03 2015-02-04 株式会社半導体エネルギー研究所 半導体装置の作製方法
WO2011027702A1 (en) * 2009-09-04 2011-03-10 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and method for manufacturing the same
WO2011037010A1 (en) * 2009-09-24 2011-03-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and method for manufacturing the same
KR20220122778A (ko) * 2009-09-24 2022-09-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 장치
WO2011043163A1 (en) 2009-10-05 2011-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
WO2011043206A1 (en) 2009-10-09 2011-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR101402294B1 (ko) 2009-10-21 2014-06-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 제작방법
KR101470303B1 (ko) * 2009-12-08 2014-12-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
WO2011070928A1 (en) * 2009-12-11 2011-06-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP5727204B2 (ja) * 2009-12-11 2015-06-03 株式会社半導体エネルギー研究所 半導体装置の作製方法
US8476744B2 (en) * 2009-12-28 2013-07-02 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor with channel including microcrystalline and amorphous semiconductor regions
JP5419730B2 (ja) * 2010-01-27 2014-02-19 三菱電機株式会社 薄膜トランジスタ
CN105405747B (zh) 2010-02-05 2020-03-13 株式会社半导体能源研究所 半导体装置和制造半导体装置的方法
KR20180110212A (ko) * 2010-02-19 2018-10-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 트랜지스터 및 이를 이용한 표시 장치
US8653514B2 (en) * 2010-04-09 2014-02-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP5897910B2 (ja) * 2011-01-20 2016-04-06 株式会社半導体エネルギー研究所 半導体装置の作製方法
TWI624878B (zh) * 2011-03-11 2018-05-21 半導體能源研究所股份有限公司 半導體裝置的製造方法
US9496138B2 (en) 2011-07-08 2016-11-15 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing oxide semiconductor film, method for manufacturing semiconductor device, and semiconductor device
JP6226518B2 (ja) 2011-10-24 2017-11-08 株式会社半導体エネルギー研究所 半導体装置
US8772094B2 (en) * 2011-11-25 2014-07-08 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
WO2013080900A1 (en) 2011-12-02 2013-06-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same

Also Published As

Publication number Publication date
US8809154B2 (en) 2014-08-19
JP6686111B2 (ja) 2020-04-22
JP2013153160A (ja) 2013-08-08
CN107452751B (zh) 2021-06-01
TW201332023A (zh) 2013-08-01
CN107452751A (zh) 2017-12-08
JP2020115566A (ja) 2020-07-30
CN103187262A (zh) 2013-07-03
CN103187262B (zh) 2017-06-20
JP2017157853A (ja) 2017-09-07
JP2019024145A (ja) 2019-02-14
KR101981338B1 (ko) 2019-05-22
US20130164899A1 (en) 2013-06-27
KR20130075671A (ko) 2013-07-05
TWI584383B (zh) 2017-05-21

Similar Documents

Publication Publication Date Title
JP7654136B2 (ja) 表示装置
JP6145267B2 (ja) 半導体装置の作製方法
JP6338640B2 (ja) 半導体装置の作製方法
JP6231743B2 (ja) 半導体装置の作製方法
JP6423901B2 (ja) トランジスタの作製方法
JP6141002B2 (ja) 半導体装置の作製方法
JP6226518B2 (ja) 半導体装置
JP5839592B2 (ja) 半導体装置の作製方法
JP6099920B2 (ja) 半導体装置
JP6286512B2 (ja) 半導体装置の作製方法
JP6199583B2 (ja) 半導体装置
JP2013149953A (ja) 半導体装置及び半導体装置の作製方法
JP6125211B2 (ja) 半導体装置の作製方法
JP5873324B2 (ja) 半導体装置の作製方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151202

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170515

R150 Certificate of patent or registration of utility model

Ref document number: 6145267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees