JP5892209B2 - 単結晶の製造方法 - Google Patents

単結晶の製造方法 Download PDF

Info

Publication number
JP5892209B2
JP5892209B2 JP2014157587A JP2014157587A JP5892209B2 JP 5892209 B2 JP5892209 B2 JP 5892209B2 JP 2014157587 A JP2014157587 A JP 2014157587A JP 2014157587 A JP2014157587 A JP 2014157587A JP 5892209 B2 JP5892209 B2 JP 5892209B2
Authority
JP
Japan
Prior art keywords
single crystal
wall portion
region
crucible
bottom wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014157587A
Other languages
English (en)
Other versions
JP2016034880A (ja
Inventor
俊策 上田
俊策 上田
勉 堀
勉 堀
松島 彰
彰 松島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2014157587A priority Critical patent/JP5892209B2/ja
Priority to US14/808,375 priority patent/US9777400B2/en
Publication of JP2016034880A publication Critical patent/JP2016034880A/ja
Application granted granted Critical
Publication of JP5892209B2 publication Critical patent/JP5892209B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/06Heating of the deposition chamber, the substrate or the materials to be evaporated
    • C30B23/066Heating of the material to be evaporated
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は単結晶の製造方法に関し、より特定的には原料粉末を昇華させて種結晶上に再結晶させることにより、当該種結晶上に単結晶を成長させる単結晶の製造方法に関するものである。
坩堝内において原料粉末を昇華させて種結晶上に再結晶させる方法(昇華法)により、炭化珪素などの単結晶を製造することができる。具体的には、坩堝内に原料粉末および種結晶を配置し、誘導加熱によって坩堝を加熱することにより、原料粉末を昇華させて種結晶上に再結晶させる方法が知られている(たとえば、特許文献1および2参照)。
特開平9−48688号公報 特開2013−35705号公報
上記特許文献に開示された単結晶の製造方法では、坩堝の周壁部が加熱される。そのため、坩堝の周壁部から離れた領域(径方向中央付近)に位置する原料粉末の温度が十分に上昇しない。その結果、当該領域の原料粉末が十分に昇華せず、単結晶の成長速度が小さくなるという問題が生じる。
そこで、単結晶の成長速度を増大させることを可能とする単結晶の製造方法を提供することを目的の1つとする。
本発明に従った単結晶の製造方法は、坩堝内に原料粉末および種結晶を配置する工程と、原料粉末を昇華させて種結晶上に再結晶させることにより、種結晶上に単結晶を成長させる工程と、を備える。上記坩堝は、筒状の形状を有する周壁部と、周壁部に接続され、周壁部の一方の開口を閉塞する底壁部と、周壁部に接続され、周壁部の他方の開口を閉塞し、種結晶を保持すべき保持部を有する蓋部と、を含む。原料粉末および種結晶を配置する工程では、底壁部の内面に接触するように原料粉末が配置されるとともに、蓋部の保持部に保持されるように種結晶が配置される。単結晶を成長させる工程では、周壁部が加熱されることにより、原料粉末が昇華する。そして、上記底壁部には、上記単結晶の成長方向に垂直な平面に対する上記底壁部の正射影の重心を通り、単結晶の成長方向に沿った方向に延びる軸である中央軸を取り囲むように、上記周壁部との接続部よりも厚みの大きい厚肉領域が形成されている。
上記単結晶の製造方法によれば、単結晶の成長速度を増大させることを可能とする単結晶の製造方法を提供することができる。
実施の形態1における単結晶の製造装置の構造を示す概略断面図である。 単結晶の製造方法の概略を示すフローチャートである。 実施の形態2における単結晶の製造装置の構造を示す概略断面図である。 実施の形態3における単結晶の製造装置の構造を示す概略断面図である。 実施の形態4における単結晶の製造装置の構造を示す概略断面図である。 実施の形態5における単結晶の製造装置の構造を示す概略断面図である。 実施の形態6における単結晶の製造装置の構造を示す概略断面図である。 坩堝の内径と温度差との関係を示す図である。
[本願発明の実施形態の説明]
最初に本願発明の実施態様を列記して説明する。本願の単結晶の製造方法は、坩堝内に原料粉末および種結晶を配置する工程と、原料粉末を昇華させて種結晶上に再結晶させることにより、種結晶上に単結晶を成長させる工程と、を備える。上記坩堝は、筒状の形状を有する周壁部と、周壁部に接続され、周壁部の一方の開口を閉塞する底壁部と、周壁部に接続され、周壁部の他方の開口を閉塞し、種結晶を保持すべき保持部を有する蓋部と、を含む。原料粉末および種結晶を配置する工程では、底壁部の内面に接触するように原料粉末が配置されるとともに、蓋部の保持部に保持されるように種結晶が配置される。単結晶を成長させる工程では、周壁部が加熱されることにより、原料粉末が昇華する。そして、上記底壁部には、上記単結晶の成長方向に垂直な平面に対する上記底壁部の正射影の重心を通り、単結晶の成長方向に沿った方向に延びる軸である中央軸を取り囲むように、上記周壁部との接続部よりも厚みの大きい厚肉領域が形成されている。
坩堝の周壁部を加熱して原料粉末を昇華させる場合、坩堝内において径方向に温度差が生じる。具体的には、加熱される周壁部に近い領域の温度が高くなり、周壁部から離れた領域、すなわち中央軸に近い領域の温度が低くなる。その結果、中央軸に近い領域に位置する原料粉末の昇華が十分に進行せず、単結晶の成長速度が小さくなる。これに対し、本願の単結晶の製造方法において採用される坩堝の底壁部には、中央軸を取り囲むように、上記周壁部との接続部よりも厚みの大きい厚肉領域が形成されている。この厚肉領域が形成された領域では、底壁部が加熱されやすくなるとともに底壁部からの熱の流出が小さくなる。そのため、中央軸に近い領域の温度が、厚肉領域が形成されない場合に比べて高くなる。その結果、中央軸に近い領域に位置する原料粉末の昇華が十分に進行し、単結晶の成長速度が大きくなる。このように、本願の単結晶の製造方法によれば、単結晶の成長速度を増大させることができる。
上記単結晶の製造方法において、上記厚肉領域は、上記底壁部の外面が上記中央軸に沿って突出することにより形成されていてもよい。これにより、坩堝の容積を減少させることなく、上記厚肉領域を形成することができる。
上記単結晶の製造方法において、上記単結晶を成長させる工程では、上記周壁部が誘導加熱により加熱されてもよい。誘導加熱は、上記坩堝の加熱方法として好適である。
上記単結晶の製造方法において、上記厚肉領域の厚みは、上記周壁部との接続部における上記底壁部の厚みよりも10mm以上40mm以下大きくなるように設定されてもよい。
上記周壁部との接続部における上記底壁部の厚みと厚肉領域における上記底壁部の厚みとの差を10mm以上とすることにより、加熱量を増加させる効果および熱の流出を抑制する効果を十分に得ることができる。一方、上記周壁部との接続部における上記底壁部の厚みと厚肉領域における上記底壁部の厚みとの差が40mmを超えると、底壁部の外面と原料粉末との温度差が大きくなり、底壁部の外面の温度に基づいて原料粉末の温度を把握することが難しくなる場合がある。上記周壁部との接続部における上記底壁部の厚みと厚肉領域における上記底壁部の厚みとの差を40mm以下とすることにより、底壁部の外面の温度に基づいて原料粉末の温度を把握することが容易となる。
なお、厚肉領域は、上記中央軸からの距離が坩堝の内径の30%以内の領域に形成されることが好ましく、20%以内の領域に形成されることが特に好ましい。また、上記厚肉領域は、上記単結晶の成長方向に垂直な平面に対する上記底壁部の正射影において、上記底壁部の10%以上の面積を占めるように形成されることが好ましく、40%以下の面積を占めるように形成されることが好ましい。
上記単結晶の製造方法において、上記坩堝内に上記原料粉末および上記種結晶を配置する工程では、炭化珪素からなる上記原料粉末および上記種結晶が上記坩堝内に配置され、上記種結晶上に上記単結晶を成長させる工程では、上記種結晶上に炭化珪素からなる上記単結晶を成長させてもよい。このようにすることにより、炭化珪素単結晶を効率よく製造することが可能となる。
上記単結晶の製造方法では、上記厚肉領域において、上記中央軸を取り囲む領域である中央領域は、上記中央領域を取り囲む厚肉領域内の領域である外周領域に比べて厚みが大きく設定されてもよい。このように、上記厚肉領域内において上記中央軸に近い領域の厚みをより大きくすることにより、単結晶の成長速度をより確実に増大させることができる。
上記単結晶の製造方法において、上記種結晶上に単結晶を成長させる工程では、上記底壁部の外面に接するように空間を形成するスペーサー上に上記坩堝が載置されてもよい。上記底壁部の外面に接するように空間が形成される場合、上記底壁部からの熱の流出が特に大きくなる。このような場合でも、上記厚肉領域を有する坩堝が採用される上記単結晶の製造方法によれば、単結晶の成長速度を増大させることができる。
上記単結晶の製造方法において、上記坩堝の内径は110mm以上であってもよい。坩堝の内径が110mm以上にまで大きくなると、坩堝内の径方向における温度差が許容範囲を超えて大きくなり、中央軸付近の原料粉末が十分に昇華しないことによる単結晶の成長速度の低下が顕著となる。このような場合でも、上記厚肉領域を有する坩堝が採用される上記単結晶の製造方法によれば、高い単結晶の成長速度を確保することが可能となる。
[本願発明の実施形態の詳細]
(実施の形態1)
次に、本発明にかかる単結晶の製造方法の一実施の形態である実施の形態1を、炭化珪素の単結晶が製造される場合を例に、以下に図面を参照しつつ説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。
図1を参照して、本実施の形態における単結晶の製造装置100は、坩堝1と、スペーサー31と、断熱部材21,22,23と、放射温度計71,72と、誘導加熱コイル74とを備えている。
坩堝1は、誘導加熱により加熱可能な材料、たとえばグラファイトからなっている。坩堝1は、筒状の形状を有する周壁部11と、周壁部11に接続され、周壁部11の一方の開口を閉塞する底壁部12と、周壁部11に接続され、周壁部11の他方の開口を閉塞し、種結晶51を保持すべき保持部14を有する蓋部13とを含む。本実施の形態において、周壁部11は、中空円筒状の形状を有している。周壁部11の内径、すなわち坩堝1の内径は、たとえば110mm以上である。底壁部12は、円盤状の形状を有している。周壁部11と底壁部12とは、一体に形成されている。底壁部12には、単結晶53の成長方向に垂直な平面に対する底壁部12の正射影の重心を通り、単結晶53の成長方向に沿った方向に延びる軸である中央軸αを取り囲むように、周壁部11との接続部12Cよりも厚みの大きい厚肉領域15が形成されている。厚肉領域15は、底壁部12の外面12Bが中央軸αに沿って突出することにより形成されている。より具体的には、厚肉領域15は、底壁部12の外面12Bに一体に形成された円盤状の突出領域である。底壁部12の中心軸と厚肉領域15の中心軸とは一致している。そして、厚肉領域15の中心軸は、中央軸αに一致する。厚肉領域15の厚みは、たとえば周壁部11との接続部12Cにおける底壁部12の厚みよりも10mm以上40mm以下大きい。
蓋部13は、周壁部11に対して着脱自在となっている。蓋部13の外周に形成された蓋部結合面13Aと周壁部11の内周に形成された周壁部結合面11Aとが接触することにより、蓋部13は周壁部11に対して固定される。蓋部結合面13Aおよび周壁部結合面11Aには、たとえばらせん状のねじ溝が形成されていてもよい。蓋部13の一方の主面には、当該主面の中央部から突出する保持部14が形成されている。蓋部13を周壁部11に取り付けた状態において、保持部14は、中央軸αを含むように位置する。保持部14の先端には、種結晶を保持する保持面14Aが形成されている。
スペーサー31は、たとえば成形断熱材からなっている。スペーサー31は、中空円筒状の形状を有している。スペーサー31の外径は、坩堝1の外径とほぼ同一である。坩堝1の底壁部12の外面12Bとスペーサー31の第1の端面33とが接触するように、坩堝1はスペーサー31上に載置される。これにより、坩堝1の底壁部12の外面12Bに接するように空間61が形成される。坩堝1がスペーサー31上に載置された状態において、坩堝1の周壁部11の外面11Bとスペーサー31の外周面とは同一の円筒面に沿って配置される。スペーサー31の内径は、たとえば外径よりも10mm以上60mm以下小さい。
断熱部材21,22,23は、たとえば成形断熱材からなっている。断熱部材22は、円盤状の形状を有している。断熱部材22の第1の主面22B上にスペーサー31の第2の端面34が接触するように、スペーサー31が断熱部材22上に載置される。断熱部材21は、中空円筒状の形状を有している。断熱部材21は、スペーサー31の外周面および坩堝1の周壁部11の外面11Bを全域にわたって覆うように配置される。断熱部材23は、坩堝1の蓋部13の外面を覆うように蓋部13の外面上に配置される。スペーサー31および坩堝1は、断熱部材21,22,23によって取り囲まれる。断熱部材22において中央軸αを含む領域には、貫通孔22Aが形成される。そして、この貫通孔22Aを通して坩堝1の底壁部12と向かい合うように、放射温度計71が配置される。放射温度計71により、底壁部12の温度が測定され、原料粉末52の温度が把握される。一方、断熱部材23において中央軸αを含む領域には、貫通孔23Aが形成される。そして、この貫通孔23Aを通して坩堝1の蓋部13と向かい合うように、放射温度計72が配置される。放射温度計72により、蓋部13の温度が測定され、種結晶51の温度が把握される。
誘導加熱コイル74は、断熱部材21に覆われた坩堝1の周壁部11の外面11B側をらせん状に取り囲むように配置される。誘導加熱コイル74は、電源(図示しない)に接続される。
次に、上記単結晶の製造装置100を用いた炭化珪素単結晶の製造方法を説明する。図2を参照して、本実施の形態における炭化珪素単結晶の製造方法では、まず工程(S10)として原料粉末配置工程が実施される。この工程(S10)では、図1を参照して、坩堝1の底壁部12の内面12A上に接触するように原料粉末52が配置される。具体的には、蓋部13を取り外した状態で、坩堝1内に原料粉末52を配置する。
次に、工程(S20)として種結晶配置工程が実施される。この工程(S20)では、保持部14に種結晶51が配置される。具体的には、たとえば周壁部11から取り外された蓋部13の保持部14に、種結晶51を貼り付ける。種結晶51は、保持部14の保持面14Aに貼り付けられる。次に、蓋部13を周壁部11に取り付ける。これにより、種結晶51は、中央軸αと交差する領域に配置される。上記工程(S10)〜(S20)により、坩堝1内に原料粉末52および種結晶51が配置される。
次に、工程(S30)として昇華−再結晶工程が実施される。この工程(S30)では、原料粉末52を昇華させて種結晶51上に再結晶させることにより、種結晶51上に単結晶53を成長させる。具体的には、たとえば原料粉末52および種結晶51が内部に配置された坩堝1を上述のようにスペーサー31上に載置した状態で断熱部材21,22,23により覆う。そして、断熱部材21,22,23により覆われた坩堝1およびスペーサー31を、図1に示すように誘導加熱コイル74に取り囲まれた領域に配置する。そして、誘導加熱コイル74に高周波電流を流すと、周壁部11が誘導加熱により加熱される。これにより、炭化珪素の粉末である原料粉末52が昇華し、気体状態の炭化珪素である原料気体が生成する。この原料気体は、種結晶51上に供給される。その結果、種結晶51上で原料気体が再結晶し、種結晶51上に炭化珪素の単結晶53が形成される。そして、この状態が維持されることにより、単結晶53は中央軸αに沿った方向に成長する。そして、予め設定された加熱時間が経過することにより加熱が終了し、工程(S30)が完了する。
次に、工程(S40)として単結晶採取工程が実施される。この工程(S40)では、工程(S30)において坩堝1内に成長した単結晶が、坩堝1から取り出される。具体的には、工程(S30)における加熱終了後、誘導加熱コイル74に取り囲まれた領域から坩堝1が取り出される。その後、坩堝1の蓋部13が取り外される。そして、蓋部13から単結晶53が採取される。以上の工程により、本実施の形態における単結晶の製造方法は完了する。採取された単結晶は、たとえばスライスされて基板に加工され、半導体装置の製造などに使用される。
ここで、上述のように、本実施の形態における単結晶の製造方法では、底壁部12に厚肉領域15が形成された坩堝1が採用される。厚肉領域15が形成された領域では、底壁部12が加熱されやすくなるとともに底壁部12からの熱の流出が小さくなる。そのため、中央軸αに近い領域の温度が、厚肉領域15が形成されない場合に比べて高くなる。その結果、中央軸αに近い領域に位置する原料粉末52の昇華が十分に進行し、単結晶53の成長速度が大きくなる。このように、本実施の形態の単結晶の製造方法によれば、単結晶53の成長速度を増大させることができる。
(実施の形態2)
次に、他の実施の形態である実施の形態2について説明する。実施の形態2における単結晶の製造方法は、実施の形態1の場合と基本的には同様に実施され、同様の効果を奏する。しかし、実施の形態2における単結晶の製造方法は、坩堝1の底壁部12に形成される厚肉領域15の構成において、実施の形態1とは異なっている。
具体的には、図3および図1を参照して、実施の形態2の底壁部12に形成される厚肉領域15には、中央軸αを含む領域に凹部15Aが形成されている点において実施の形態2は実施の形態1とは異なっている。凹部15Aは底部を有する孔である。この凹部15Aを形成することにより、放射温度計71によって原料粉末52に近い位置の底壁12の温度を測定することが可能となる。その結果、結晶成長時の温度管理が容易となる。
(実施の形態3)
次に、他の実施の形態である実施の形態3について説明する。実施の形態3における単結晶の製造方法は、実施の形態1の場合と基本的には同様に実施され、同様の効果を奏する。しかし、実施の形態2における単結晶の製造方法は、坩堝1の底壁部12に形成される厚肉領域15の構成において、実施の形態1とは異なっている。
具体的には、図4および図1を参照して、実施の形態3の厚肉領域15は、底壁部12の内面12Aが中央軸αに沿って突出することにより形成されている点において実施の形態1とは異なっている。このように、厚肉領域15を坩堝1内に突出するように形成した場合でも、実施の形態1の場合と同様の効果が得られる。
(実施の形態4)
次に、他の実施の形態である実施の形態4について説明する。実施の形態4における単結晶の製造方法は、実施の形態1の場合と基本的には同様に実施され、同様の効果を奏する。しかし、実施の形態4における単結晶の製造方法は、坩堝1の底壁部12に形成される厚肉領域15の構成において、実施の形態1とは異なっている。
具体的には、図5および図1を参照して、実施の形態4の厚肉領域15は、円錐状の形状を有している点において実施の形態1とは異なっている。すなわち、実施の形態4においては、厚肉領域15は、中央軸αに近づくにしたがって厚みが大きくなっている。別の観点から説明すると、厚肉領域15において、中央軸αを取り囲む領域である中央領域15Bは、中央領域15Bを取り囲む厚肉領域15内の領域である外周領域15Cに比べて厚みが大きい。このような構造を採用することにより、厚肉領域15の形成による温度上昇の効果を、温度が低下しやすい中央軸αに近い領域において、より大きくすることができる。
(実施の形態5)
次に、他の実施の形態である実施の形態5について説明する。実施の形態5における単結晶の製造方法は、実施の形態1の場合と基本的には同様に実施され、同様の効果を奏する。しかし、実施の形態5における単結晶の製造方法は、坩堝1の底壁部12に形成される厚肉領域15の構成において、実施の形態1とは異なっている。
具体的には、図6および図1を参照して、実施の形態5の厚肉領域15は、階段状の形状を有している点において実施の形態1とは異なっている。すなわち、実施の形態5における厚肉領域15は、円盤状の形状を有する第1突出領域上に、第1突出領域よりも直径が小さい円盤状の形状を有する第2突出領域が、互いの中心軸が一致するように積層された構造を有している。別の観点から説明すると、厚肉領域15において、中央軸αを取り囲む領域である中央領域15Bは、中央領域15Bを取り囲む厚肉領域15内の領域である外周領域15Cに比べて厚みが大きい。このような構造を採用することにより、厚肉領域15の形成による温度上昇の効果を、温度が低下しやすい中央軸αに近い領域において、より大きくすることができる。
(実施の形態6)
次に、他の実施の形態である実施の形態6について説明する。実施の形態6における単結晶の製造方法は、実施の形態1の場合と基本的には同様に実施され、同様の効果を奏する。しかし、実施の形態6における単結晶の製造方法は、坩堝1の底壁部12の構成において、実施の形態1とは異なっている。
具体的には、図7および図1を参照して、実施の形態6の底壁部12は、中央軸αに沿って蓋部13から離れる向きに突出するドーム状の形状を有している点において実施の形態1とは異なっている。また、厚肉領域15は、底壁部12の外面12Bが中央軸αに沿ってドーム状に突出することにより形成されている。このような構造の坩堝1を採用した場合でも、実施の形態1の場合と同様の効果が得られる。
なお、上記実施の形態における坩堝1の構造は、採用可能な坩堝の構造の具体例であって、採用可能な坩堝の構造はこれらに限られるものではない。したがって、たとえば上記実施の形態1〜6において説明した構造を適宜組み合わせた構造を採用してもよい。また、上記実施の形態においては、炭化珪素からなる単結晶が製造される場合について説明したが、本願の単結晶の製造方法により、昇華法によって作製可能な他の単結晶、たとえば窒化アルミニウムからなる単結晶を製造することも可能である。さらに、上記実施の形態では、厚肉領域が底壁部と一体に形成される場合について説明したが、たとえば別体の厚肉領域が底壁部に設置されてもよい。このとき、厚肉領域の素材は坩堝を構成する素材と異なっていてもよく、たとえば成形断熱材からなるものを採用してもよい。この場合、厚肉領域が加熱されやすくなる効果は得られないものの、底壁部からの熱の流出が抑制されるため、単結晶の成長速度を増大させることができる。
(実験例1)
坩堝の底壁部に厚肉領域を形成することによる効果を確認する実験を行った。実験の手順は以下の通りである。
実施の形態1と同様の構造を有する単結晶の製造装置100を準備し、炭化珪素からなる単結晶を成長させた。坩堝1の外径は140mm、内径は110mm、底壁部12の厚肉領域15の厚みは30mm、底壁部12の厚肉領域15以外の領域の厚みは20mmとした。そして、坩堝1内に実施の形態1と同様に炭化珪素からなる種結晶51および原料粉末52を配置し、誘導加熱コイル74に電流を流すことで原料粉末52を2000℃〜2400℃に加熱し、100時間保持することにより炭化珪素からなる単結晶53を成長させた(実施例)。また、同様の坩堝において厚肉領域を形成しないものを準備し、同様に種結晶および原料粉末を配置した。そして、坩堝の全面を断熱部材により覆ったうえで(特許文献1の図4参照)原料粉末を加熱し、同様に単結晶を成長させた(比較例A)。また、同様の坩堝において厚肉領域を形成しないものを準備し、同様に種結晶および原料粉末を配置した。そして、坩堝をグラファイト製の円筒部材上に載置し、坩堝および円筒部材を断熱部材により覆ったうえで(特許文献2の図1参照)原料粉末を加熱し、同様に単結晶を成長させた(比較例B)。実施例、比較例Aおよび比較例Bにおける単結晶の平均成長速度(中央軸α方向における1時間あたりの単結晶の高さの増加量)を表1に示す。
Figure 0005892209
表1を参照して、実施例の平均成長速度は、比較例Aおよび比較例Bに比べて明確に増大している。これは、実施例においては坩堝1の底壁部12に厚肉領域15が形成されることにより、厚肉領域15が形成された領域において底壁部12が加熱されやすくなるとともに底壁部12からの熱の流出が小さくなり、中央軸αに近い領域に位置する原料粉末52の昇華が十分に進行したためであると考えられる。
(実験例2)
上記実施例と同様の坩堝において厚肉領域を形成しないものを想定し、坩堝の全面を断熱部材により覆ったうえで(特許文献1の図4参照)炭化珪素からなる原料粉末を2000℃〜2400℃に加熱するシミュレーションを行った。そして、坩堝の内径が90mm〜120mmの範囲で変化した場合の坩堝内の径方向における温度差を算出した。シミュレーションの結果を図8に示す。
図8において、横軸は坩堝の内径、縦軸は坩堝内の径方向における温度差を示している。図8を参照して、坩堝の内径が大きくなるにしたがって温度差が大きくなっていることが分かる。ここで、温度差が20℃を超えると低温部(中央軸に近い領域)において原料粉末の昇華が十分に進行しないことに起因する単結晶の成長速度の低下が顕著となる。図8を参照して、坩堝の内径が110mm以上の場合、温度差が20℃を超えている。このシミュレーション結果より、中央軸に近い領域の温度を上昇させることが可能な本願の単結晶の製造方法は、坩堝の内径が110mm以上である場合に特に有効であるといえる。
今回開示された実施の形態および実施例はすべての点で例示であって、どのような面からも制限的なものではないと理解されるべきである。本発明の範囲は上記した説明ではなく、特許請求の範囲によって規定され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
本願の単結晶の製造方法は、高い成長速度が求められる単結晶の製造方法に、特に有利に適用され得る。
1 坩堝
11 周壁部
11A 周壁部結合面
11B 外面
12 底壁部
12A 内面
12B 外面
12C 接続部
13 蓋部
13A 蓋部結合面
14 保持部
14A 保持面
15 厚肉領域
15A 凹部
15B 中央領域
15C 外周領域
21 断熱部材
22 断熱部材
22A 貫通孔
22B 主面
23 断熱部材
23A 貫通孔
31 スペーサー
33 第1の端面
34 第2の端面
51 種結晶
52 原料粉末
53 単結晶
61 空間
71 放射温度計
72 放射温度計
74 誘導加熱コイル
100 単結晶の製造装置

Claims (7)

  1. 坩堝内に原料粉末および種結晶を配置する工程と、
    前記原料粉末を昇華させて前記種結晶上に再結晶させることにより、前記種結晶上に単結晶を成長させる工程と、を備え、
    前記坩堝は、
    筒状の形状を有する周壁部と、
    前記周壁部に接続され、前記周壁部の一方の開口を閉塞する底壁部と、
    前記周壁部に接続され、前記周壁部の他方の開口を閉塞し、前記種結晶を保持すべき保持部を有する蓋部と、を含み、
    前記原料粉末および前記種結晶を配置する工程では、前記底壁部の内面に接触するように前記原料粉末が配置されるとともに、前記蓋部の前記保持部に保持されるように前記種結晶が配置され、
    前記単結晶を成長させる工程では、前記周壁部が加熱されることにより、前記原料粉末が昇華し、
    前記底壁部には、前記単結晶の成長方向に垂直な平面に対する前記底壁部の正射影の重心を通り、前記単結晶の成長方向に沿った方向に延びる軸である中央軸を取り囲むように、前記周壁部との接続部よりも厚みの大きい厚肉領域が形成されており、
    前記厚肉領域は、前記底壁部の外面が前記中央軸に沿って突出することにより形成されている、単結晶の製造方法。
  2. 前記単結晶を成長させる工程では、前記周壁部が誘導加熱により加熱される、請求項1に記載の単結晶の製造方法。
  3. 前記厚肉領域の厚みは、前記周壁部との接続部における前記底壁部の厚みよりも10mm以上40mm以下大きい、請求項1または2に記載の単結晶の製造方法。
  4. 前記坩堝内に前記原料粉末および前記種結晶を配置する工程では、炭化珪素からなる前記原料粉末および前記種結晶が前記坩堝内に配置され、
    前記種結晶上に前記単結晶を成長させる工程では、前記種結晶上に炭化珪素からなる前記単結晶を成長させる、請求項1〜のいずれか1項に記載の単結晶の製造方法。
  5. 前記厚肉領域において、前記中央軸を取り囲む領域である中央領域は、前記中央領域を取り囲む厚肉領域内の領域である外周領域に比べて厚みが大きい、請求項1〜のいずれか1項に記載の単結晶の製造方法。
  6. 前記種結晶上に単結晶を成長させる工程では、前記底壁部の外面に接するように空間を形成するスペーサー上に前記坩堝が載置される、請求項1〜のいずれか1項に記載の単結晶の製造方法。
  7. 前記坩堝の内径は110mm以上である、請求項1〜のいずれか1項に記載の単結晶の製造方法。
JP2014157587A 2014-08-01 2014-08-01 単結晶の製造方法 Expired - Fee Related JP5892209B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014157587A JP5892209B2 (ja) 2014-08-01 2014-08-01 単結晶の製造方法
US14/808,375 US9777400B2 (en) 2014-08-01 2015-07-24 Method for producing single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014157587A JP5892209B2 (ja) 2014-08-01 2014-08-01 単結晶の製造方法

Publications (2)

Publication Number Publication Date
JP2016034880A JP2016034880A (ja) 2016-03-17
JP5892209B2 true JP5892209B2 (ja) 2016-03-23

Family

ID=55179430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014157587A Expired - Fee Related JP5892209B2 (ja) 2014-08-01 2014-08-01 単結晶の製造方法

Country Status (2)

Country Link
US (1) US9777400B2 (ja)
JP (1) JP5892209B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2621767C1 (ru) * 2016-06-15 2017-06-07 Федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина)" (СПбГЭТУ "ЛЭТИ") СПОСОБ ПОЛУЧЕНИЯ МОНОКРИСТАЛЛИЧЕСКОГО SiC
JP6859800B2 (ja) * 2017-03-29 2021-04-14 株式会社デンソー 炭化珪素単結晶製造装置およびそれを用いた炭化珪素単結晶の製造方法
JP6953843B2 (ja) * 2017-07-07 2021-10-27 セイコーエプソン株式会社 単結晶基板および炭化ケイ素基板
JP7286970B2 (ja) * 2019-01-10 2023-06-06 株式会社レゾナック SiC単結晶成長用坩堝、SiC単結晶の製造方法およびSiC単結晶製造装置
US11856678B2 (en) * 2019-10-29 2023-12-26 Senic Inc. Method of measuring a graphite article, apparatus for a measurement, and ingot growing system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0558774A (ja) * 1991-09-03 1993-03-09 Sanyo Electric Co Ltd 炭化ケイ素単結晶成長装置用容器
JP3491402B2 (ja) * 1995-08-07 2004-01-26 株式会社デンソー 単結晶製造方法及びその単結晶製造装置
JP4597285B2 (ja) * 1999-04-28 2010-12-15 昭和電工株式会社 炭化珪素単結晶の製造方法及び製造装置
KR100530889B1 (ko) * 2003-06-11 2005-11-24 김형준 실리콘 카바이드 단결정 제조용 흑연 도가니
JP2006143497A (ja) * 2004-11-17 2006-06-08 Bridgestone Corp 炭化ケイ素単結晶製造装置
JP2007230846A (ja) * 2006-03-03 2007-09-13 Matsushita Electric Ind Co Ltd 単結晶製造装置用坩堝
US7524376B2 (en) * 2006-05-04 2009-04-28 Fairfield Crystal Technology, Llc Method and apparatus for aluminum nitride monocrystal boule growth
CN102245813B (zh) * 2008-12-08 2014-08-06 Ii-Vi有限公司 改进的轴向梯度传输(agt)生长工艺和利用电阻加热的装置
JP5573753B2 (ja) * 2011-03-29 2014-08-20 信越半導体株式会社 SiC成長装置
JP5630400B2 (ja) 2011-08-05 2014-11-26 三菱電機株式会社 単結晶の製造装置及び製造方法

Also Published As

Publication number Publication date
US9777400B2 (en) 2017-10-03
JP2016034880A (ja) 2016-03-17
US20160032487A1 (en) 2016-02-04

Similar Documents

Publication Publication Date Title
JP5892209B2 (ja) 単結晶の製造方法
US9890470B2 (en) Seed crystal holder for growing a crystal by a solution method
JP7018816B2 (ja) 坩堝及びSiC単結晶成長装置
JP2016037441A (ja) 単結晶の製造方法
JP2013212952A (ja) 炭化珪素単結晶の製造方法
JP2016098157A (ja) 炭化珪素単結晶の製造方法
JP2017154954A (ja) 炭化珪素単結晶の製造方法および炭化珪素単結晶の製造装置
JP6668674B2 (ja) 炭化珪素基板
JP2014201498A (ja) 炭化珪素単結晶の製造方法
JP2016117624A (ja) 坩堝
JP2011251884A (ja) 炭化ケイ素単結晶の製造装置
JP5333315B2 (ja) 炭化珪素単結晶の製造装置および炭化珪素単結晶の製造方法
JP6231375B2 (ja) 坩堝、結晶製造装置および結晶の製造方法
KR20130083653A (ko) 단결정 성장 장치
JP6861557B2 (ja) 炭化珪素単結晶インゴットの製造装置及び炭化珪素単結晶インゴットの製造方法
JP2012036035A (ja) 炭化ケイ素単結晶の製造方法
JP6394124B2 (ja) 坩堝および単結晶の製造方法
JP6387895B2 (ja) 炭化珪素単結晶の製造方法
JP5746013B2 (ja) 単結晶製造装置、及び単結晶の製造方法
JP6248832B2 (ja) 坩堝および単結晶の製造方法
JP2021102531A (ja) SiC単結晶製造装置およびSiC単結晶の製造方法
JP6872346B2 (ja) 単結晶成長装置
JP2021104909A (ja) 坩堝および単結晶製造装置
JP2016017002A (ja) 坩堝および単結晶の製造方法
JP6279930B2 (ja) 結晶製造装置および結晶の製造方法

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160208

R150 Certificate of patent or registration of utility model

Ref document number: 5892209

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees